
Appendix B

Symbolic Mathematics with Sage

B.1 Introduction to Sage

B.1.1 What is Sage, and why use it?

Sage is free, open source mathematics software. Lots of software can carry out numerical
calculations, and so can Sage. What makes Sage special is that it can also do symbolic
computation. That is, it is able to manipulate symbols as well as numbers.

If you think about it, you will realize that a lot of the “mathematics” you do in your
statistics courses does not really require much mathematical thinking. Sometimes, all you
are really doing is pushing symbols around. You might have to do something like partially
differentiate a log likelihood function with respect to several variables, set all the expres-
sions to zero and solve the resulting equations. To do this you need to know some rules,
apply them accurately, and pay attention to detail. This kind of “thinking” is something
that computers do a lot better than humans. So particularly for big, complicated tasks,
why not let a computer do the grunt work? Symbolic mathematics software is designed
for this purpose.

There are several commercial products that do symbolic math. The best known are
Mathematica (http://www.wolfram.com) and Maple (http://www.maplesoft.com). There
are also quite a few free, open source alternatives that are developed and maintained by
volunteers. Sage is one of them. What makes Sage really special is that in addition to
its own core capabilities, it incorporates and more or less unifies quite a few of the other
mathematical programs using a single convenient interface. After all, why not? They are
free and open source, so there are no legal obstacles (like copyrights) to prevent the Sage
programmers from sending a particular task to the program that does it best1.

It’s all accomplished with Python scripts. In fact, Sage is largely a set of sophisticated
Python functions. So if you know the Python programming language, you have a huge
head start in learning Sage. If you want to do something in Sage and you can figure out
how to do it in Python, try it. Probably the Python code will work.

1A by-product of this approach is that if you download a copy of Sage, you’ll see that it’s huge. This
is because you’re really downloading six or seven complete programs.

138

http://www.wolfram.com
http://www.maplesoft.com

B.1. INTRODUCTION TO SAGE 139

Reference Materials

This appendix is intended to be more or less complete. For further information and
documentation, see the Sage project home page at http://www.sagemath.org. Other
useful sources of information (many of which are available from the Sage website) include

• The Wikipedia article: http://en.wikipedia.org/wiki/Sage (mathematics software)

•

•

•

B.1.2 A Guided tour

The Interface

Sage has a browser interface. So, whether the software resides on a remote server or you
have downloaded and installed your own free copy as described in Section B.2, you type
your input and see your output using an ordinary Web browser like Firefox.

Sage also has a text-only interface, in which the output as well as input is in plain text
format. Many mathematicians who use Sage prefer the simplicity of plain text, and most
Sage documentation uses plan text. But a great strength of Sage, and our main reason
for using it, is that we can manipulate and view the results of calculations using Greek
symbols. This capability depends on the browser interface, so we’ll stick exclusively to
that.

When you first start up Sage, you’ll see the Sage Notebook with a list of your active
Worksheets. You can save your worksheets and go back to them later. It’s great, but
right now you don’t have any worksheets. Your screen looks roughly like this:

Click on “New Worksheet.” A new window opens. It looks like this:

http://www.sagemath.org
http://en.wikipedia.org/wiki/Sage_(mathematics_software)

140 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Type in a nice informative name and click Rename. I called mine Tour1, because we’re
on a guided tour of Sage. Now the browser window looks like something like this:

You definitely want to check the “Typeset” box, so you can see nice Greek letters. Now,
the way it works is that you type (or paste) your commands into the upper box and
Sage writes the output in the box below it. As soon as you click in the upper box, the
underlined word evaluate appears below. It looks like this.

B.1. INTRODUCTION TO SAGE 141

Now you type your input, which in this case is numerical as well as mathematically
profound. Pressing the Enter (or Return) key just lets you type another line of input.
To execute the command(s), click evaluate. An alternative to clicking evaluate is to hold
down the Shift key and press Enter. Here is the result.

Notice that now there’s another box for your next set of input. Here’s a variation on
1 + 1 = 2.

In the first case, Sage was doing integer arithmetic. In the second case, part of the input
was interpreted as real-valued because it had a decimal point. Integer plus real is real, so
Sage converted the 1 to 1.0 and did a floating-point calculation. This kind of “dynamic
typing” is a virtue that Sage shares with Python. Sage is very good at integer arithmetic.
In the next example, everything following # is a comment.

142 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

For comparison, this is how the calculation goes in R.

> prod(1:100)/(prod(1:60)*prod(1:30)*prod(1:10))

> prod(1:100)/(prod(1:60)*prod(1:30)*prod(1:10))

[1] 1.165214e+37

The whole thing is a floating point calculation, and R returns the answer in an imprecise
scientific notation.

Exact integer arithmetic is nice, but it’s not why we’re using Sage. Let’s calculate

the third derivative ∂3

∂x3

(
e4x

1+e4x

)
. This is something you could do by hand, but would you

want to?

B.1. INTRODUCTION TO SAGE 143

You can see how the worksheet grows. At any time, you can click on the Save button if
you like what you have. You can also print it just as you would any other Web page.

You can edit the contents of an input box by clicking in the box. When you do,
evaluate appears beneath the box. Click on it, and the code in the box is executed. You
can re-do all the calculations in order by choosing Evaluate All from the Action menu
(upper right). When you quit Sage and come back to a worksheet later, you may want
to Evaluate All so all the objects you’ve defined – like f(x) above – are available. When
you’re done (for the present), click the Save & Quit button. If you click Discard & Quit,
all the material since the last Save will be lost; sometimes this is what you want. When
you Save & Quit, you see something like this:

144 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Click on Sign out (upper right) and you’re done. Next time you run Sage the worksheet
will be available. You can double-click on it to work on it some more, or start a new one.

The guided tour will resume now, but without continuing to illustrate the interface.
Instead, the input will be given in a typewriter typeface like this, and then the output
will given, usually in typeset form2.

Limits, Integrals and Derivatives (Plus a little plotting and solving)

Now we return to the Tour1 worksheet and choose Evaluate All from the Action menu.
Then

f(x)

and clicking on evaluate yields

e(4 x)

(e(4 x)+1)

This really looks like a cumulative distribution function. Is it? Let’s try lim
x→−∞

f(x).

limit(f(x),x=-Infinity);limit(f(x),x=Infinity)

evaluate

0
1

Okay! So it’s a distribution function. Notice the two commands on the same line, sep-
arated by a semi-colon. Without the semi-colon, only the last item is displayed. An
alternative to the semi-colon is the show command:

show(limit(f(x),x=-Infinity))

show(limit(f(x),x=Infinity))

evaluate

0

1

The (single) derivative of f(x) is a density.

derivative(f(x),x)

2In case you are interested in how this works, Sage uses the free open source LATEX typesetting system
to produce output in mathematical script. The LATEX code produced by Sage is available. So, in the
Tour1 worksheet, if I enter f(x) in the input box, I get nice-looking mathematical output (see above).
Then if I type print(latex()) in the next input box, I get the LATEX code for the preceding expression.
Since this book is written in LATEX, I can directly paste in the machine-generated LATEX code without
having to typeset it myself. My code might be a bit cleaner and more human-readable, but this is very
convenient.

B.1. INTRODUCTION TO SAGE 145

evaluate

4 e(4 x)

(e(4 x)+1)
− 4 e(8 x)

(e(4 x)+1)
2

Here is another way to get the same thing.

Another way

f(x).derivative(x)

evaluate

4 e(4 x)

e(4 x)+1
− 4 e(8 x)

(e(4 x)+1)
2

This second version of the syntax is more like Python, and makes it clear that the deriva-
tive is an attribute, or method associated with the object f(x). Many tasks can be re-
quested either way, but frequently only the second form (object followed by a dot, followed
by the attribute) is available. It is the preferred form from a programming perspective.

The expression for f ′(x) could and should be simplified. Sage has a simplify com-
mand that does nothing in this case and in any others, because simplify is automatically
applied before any expression is displayed. But factor does the trick nicely.

g(x) = factor(f(x).derivative(x)); g(x)

evaluate

4 e(4 x)

(e(4 x)+1)
2

Want to see what it looks like? Plotting functions is straightforward.

plot(g(x),x,-5,5)

evaluate

-4 -2 2 4

0.2

0.4

0.6

0.8

1

146 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

It’s easy to add labels and so on to make the plot look nicer, but that’s not the point
here. The objective was just to take a quick look to see what’s going on.

Actually, the picture is a bit surprising. It looks like the density is symmetric around
x = 0, which would make the median and the mean both equal to zero. But the formula
for g(x) above does not suggest symmetry. Well, it’s easy to verify that the median is
zero.

f(0)

evaluate

1
2

How about symmetry? The first try is unsuccessful, because the answer is not obviously
zero (though it is). But then factor works.

g(x)-g(-x)

evaluate

4 e(4 x)

(e(4 x)+1)
2 − 4 e(−4 x)

(e(−4 x)+1)
2

factor(g(x)-g(-x))

evaluate

0

Is this right? Yes. To see it, just multiply numerator and denominator of g(−x) by e8x.
Sage does not show its work, but it’s a lot less likely to make a mistake than you are. And
even if you’re the kind of person who likes to prove everything, Sage is handy because it
can tell you what you should try to prove.

Clearly, the number 4 in f(x) is arbitrary, and could be any positive number. So we’ll
replace 4 with θ. Now Sage, like most software, will usually complain if you try to use
variables that have not been defined yet. So we have to declare θ as a symbolic variable,
using a var statement. The variable x is the only symbolic variable that does not have
to be declared. It comes pre-defined as symbolic3.

var(’theta’)

F(x) = exp(theta*x)/(1+exp(theta*x)); F(x)

evaluate

e(θx)

e(θx)+1

Is F (x) a distribution function? Let’s see.

3In Mathematica, all variables are symbolic by default unless they are assigned a numeric value. I
wish Sage did this too, but Sage has other strengths that Mathematica lacks.

B.1. INTRODUCTION TO SAGE 147

limit(F(x),x=-Infinity)

evaluate

Traceback (click to the left of this block for traceback)

...

Is theta positive, negative, or zero?

This is how error messages are displayed. You can click on the bank space to the
left of the error message for more information, but in this case it’s unnecessary. Sage

asks a very good question about θ. Well, actually, the question is asked by the excellent
open-source calculus program Maxima, and Sage relays the question. In Maxima, you could
answer the question interactively through the console and the calculation would proceed,
but this capability is not available in Sage. The necessary information can be provided
non-interactively. Go back into the box and edit the text.

assume(theta>0)

F(x).limit(x=-oo); F(x).limit(x=oo)

evaluate
0
1

Notice how two small letter o characters can be used instead of typing out Infinity. Now
we’ll differentiate F (x) to get the density. It will be called f(x), and that will replace the
existing definition of f(x).

f(x) = factor(F(x).derivative(x)); f(x)

evaluate

θe(θx)

(e(θx)+1)
2

Of course this density is also symmetric about zero, just like the special case with θ = 4.
It’s easy to verify.

factor(f(x)-f(-x))

evaluate
0

Symmetry of the density about zero implies that the expected value is zero, because the
expected value is the physical balance point. Direct calculation confirms this.

Expected value

integrate(x*f(x),x,-oo,oo)

evaluate
0

148 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

It would be nice to calculate the variance too, but the variance emerges in terms of an
unfamiliar function called the polylog. The calculation will not be shown.

This distribution (actually, a version of the logistic distribution) is a good source of
cute homework problems because the parameter θ has to be estimated numerically. So,
for the benefit of some lucky future students, let’s figure out how to simulate a random
sample from F (x). First, we’ll add a location parameter, because two-parameter problems
are more fun. The following definition rubs out the previous F (x).

Add a location parameter

var(’mu’)

F(x) = exp(theta*(x-mu))/(1+exp(theta*(x-mu))); F(x)

evaluate

e(−(µ−x)θ)

e(−(µ−x)θ)+1

I can’t control the order of variables in Sage output. It looks alphabetical, with the m in
mu coming before x.

Now, it’s well known that if U is a random variable with a uniform density on the
interval (0, 1) and F (x) is the cumulative distribution function of a continuous random
variable, then if you transform U with the inverse of F (x), the result is a random variable
with distribution function F (x). Symbolically,

F−1(U) = X ∼ F (x)

Of course this is something you could do by hand, but it’s so fast and easy with Sage:

Inverse of cdf

var(’X U’)

solve(F(X)==U,X) # Solve F(X)=U for X

evaluate[
X =

µθ+log(− U
U−1)

θ

]
It might be a bit better to write this as

X = µ+
1

θ
log

(
U

1− U

)
,

but what Sage gives us is quite nice. A few technical comments are in order. First, the
double equal sign in F(X)==U indicates a logical relation. For example,

1==4

evaluate

False

B.1. INTRODUCTION TO SAGE 149

Second, the solve returns a list of solutions. Sage uses brackets to indicate a list. In this
case, there is only one solution so the list contains only one element. It’s element zero in
the list, not element one. Like Python, Sage starts all lists and array indices with element
zero. It’s a hard-core computer science feature, and mildly irritating for the ordinary user.
Here’s how one can extract element zero from the list of solutions.

solve(F(X)==U,X)[0]

evaluate

X =
µθ+log(− U

U−1)
θ

The equals sign in that last expression is actually a double equals. If you’re going to use
something like that solution in later calculations, it can matter. In Sage, the underscore
character always refers to the output of the preceding command. It’s quite handy. The
print function means “Please don’t typeset it.”

print(_)

evaluate

X == (mu*theta + log(-U/(U - 1)))/theta

Just for completeness, here’s how that inverse function could be used to simulate data
from F (x) in R.

> n = 20; mu = -2; theta = 4

> U = runif(n)

> X = mu + log(U/(1-U))/theta; X

[1] -1.994528 -2.455775 -2.389822 -2.996261 -1.477381 -2.422011 -1.855653

[8] -2.855570 -2.358733 -1.712423 -2.075641 -1.908347 -2.018621 -2.019441

[15] -1.956178 -2.015682 -2.846583 -1.727180 -1.726458 -2.207717

Random number generation is available from within Sage too, and in fact R is one of
the programs incorporated in Sage, but to me it’s more convenient to use R directly –
probably just because I’m used to it.

You have to declare most variables (like θ, µ, X, U and so on) before you can use them,
but there are exceptions. The pre-defined symbolic variable x is one. Here is another.

pi

evaluate

π

Is that really the ratio of a circle’s circumference to its diameter, or just the Greek letter?

150 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

cos(pi)

evaluate

−1

That’s pretty promising. Evaluate it numerically.

n(pi) # Could also say pi.n()

evaluate

3 : 14159265358979

gamma(1/2)

evaluate
√
π

So it’s really π. Let’s try using pi in the normal distribution.

Normal density

var(’mu, sigma’)

assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2)); f(x)

evaluate

√
2e

(
− (µ−x)2

2σ2

)
2
√
πσ

Integrate the density

integrate(f(x),x,-oo,oo)

evaluate

1

Calculate the expected value.

E(X)

integrate(x*f(x),x,-oo,oo)

evaluate

µ

Obtain the variance directly.

E(X-mu)^2

integrate((x-mu)^2*f(x),x,-oo,oo)

evaluate

B.1. INTRODUCTION TO SAGE 151

σ2

Calculate the moment-generating function and use it to get E(X4).

Moment-generating function M(t) = E(e^{Xt})

var(’t’)

M(t) = integrate(exp(x*t)*f(x),x,-oo,oo); M(t)

evaluate

e(
1
2
σ2t2+µt)

Differentiate four times, set t=0

derivative(M(t),t,4)(t=0)

evaluate

µ4 + 6µ2σ2 + 3σ4

Discrete distributions are easy to work with, too. In the geometric distribution, a
coin with Pr{Head} = θ is tossed repeatedly, and X is the number of tosses required to
get the first head. Notice that two separate assume statements are required to establish
0 < θ < 1. All the commands work as expected, but only the output from the last one is
displayed.

Geometric

var(’theta’)

assume(0<theta); assume(theta<1)

p(x) = theta*(1-theta)^(x-1); p(x)

p(x).sum(x,1,oo) # Sum the pmf

(x*p(x)).sum(x,1,oo) # Expected value

((x-1/theta)^2*p(x)).sum(x,1,oo) # Variance

evaluate

− θ−1
θ2

In the next example, the parameter λ of the Poisson distribution must be treated specially
because it has a specific advanced programming meaning and the word is reserved. It
can still be used as a symbol if it is assigned to a variable and used with an underscore
as illustrated. Lambdas with subscripts present no problems. In fact, lambda can be
viewed as a λ with an invisible subscript.

Poisson - lambda has a special meaning. But if you assign

it to a variable and define it WITH AN UNDERSCORE you can

still use it as a symbol.

L = var(’lambda_’)

p(x) = exp(-L) * L^x / factorial(x) ; p(x)

152 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

evaluate

λxe(−λ)

x!

p(x).sum(x,0,oo) # Sums nicely to one

(x*p(x)).sum(x,0,oo) # Expected value

evaluate

λ

Here is some sample code for the Gamma distribution. Note the use of full simplify

on ratios of gamma functions.

Gamma

var(’alpha beta’)

assume(alpha>0); assume(beta>0)

assume(alpha,’noninteger’); assume(beta,’noninteger’)

f(x) = 1/(beta^alpha*gamma(alpha)) * exp(-x/beta) * x^(alpha-1)

integrate(f(x),x,0,oo) # Equals one

integrate(x*f(x),x,0,oo) # E(X)

evaluate

βΓ(α+1)
Γ(α)

_.full_simplify() # Underscore refers to the preceding expression.

evaluate

αβ

Now for the the moment-generating function. When I first tried it Sage asked “Is
beta*t-1 positive, negative, or zero?” Because the moment-generating function
only needs be defined in a neighbourhood of zero. I said assume(beta*t<1), which is
equivalent to t < 1

β
. In this way, Sage makes us specify the radius of convergence of the

moment-generating function, but only when the radius of convergence is not the whole
real line. Sage may be just a calculator, but it’s a very smart calculator. It helps keep us
mathematically honest. You have to love it.

Moment-generating function

var(’t’); assume(beta*t<1)

M(t) = integrate(exp(x*t)*f(x),x,0,oo).full_simplify(); M(t)

derivative(M(t),t,2)(t=0).full_simplify() # Lovely

evaluate

(α2 + α)β2

B.1. INTRODUCTION TO SAGE 153

Here is some sample code for the Binomial distribution. Only the input is given.

Binomial

var(’n theta’)

assume(n,’integer’); assume(n>-1)

assume(0<theta); assume(theta<1)

p(x) = factorial(n)/(factorial(x)*factorial(n-x)) * theta^x * (1-theta)^(n-x)

p(x).sum(x,0,n) # Adds to one

(x*p(x)).sum(x,0,n).full_simplify() # E(X)

(x^2*p(x)).sum(x,0,n).full_simplify() # E(X^2)

((x-n*theta)^2*p(x)).sum(x,0,n).full_simplify() # V(X) directly

Maxima and Minima in Several Variables (Maximum Likelihood)

The standard way to derive maximum likelihood estimators is to partially differentiate the
log likelihood with respect to each parameter, set the resulting expressions to zero, and
solve for the parameters. This task is routine with Sage, except for one part. The “one
part” is actually a nasty clerical chore that a symbolic math program like Sage should be
able to do for us. Writing the likelihood function as

L(θ) =
n∏
i=1

f(xi|θ),

the task is to carry out the multiplication, using the fact that multiplication is addition of
exponents. The result is often an expression in the parameter θ and a a set of (sufficient)
statistics – that is, functions of the sample data that could be calculated without knowing
any of the parameters. I’m not insisting this step cannot be done with Sage, only that
I’ve tried hard, I can’t do it with Mathematica either, and other knowledgeable users4

can’t seem to make Sage do it either.

The Univariate Normal Distribution For the normal distribution, one version of
the calculation goes like this.

L(µ, σ) =
n∏
i=1

(
=

1

σ
√

2π
e−

(xi−µ)
2

2σ2

)
=

1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(xi−µ)2

=
1

σn(2π)n/2
e−

1
2σ2

∑n
i=1(x2i−2xiµ+µ2)

=
1

σn(2π)n/2
e−

1
2σ2

(
∑n
i=1 x

2
i−2µ

∑n
i=1 xi+nµ

2)

4Somebody is a statistician in New Zealand who uses Sage in her classes. I have not asked her directly,
but in the material she posts online she simplifies likelihood functions by hand, just as I am forced to do
here.

154 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

This is not actually the best way to do the calculation. Better is to add and subtract x in
the exponent. But this way requires a bit less insight (or experience), and leads to a more
complicated problem that illustrates Sage’s power. Continuing, the minus log likelihood
function is

−`(µ, σ) = n log σ +
n

2
log 2π +

1

2σ2

((
n∑
i=1

x2
i

)
− 2µ

(
n∑
i=1

xi

)
+ nµ2

)
.

Notice how the likelihood has been simplified to an expression that depends on the sample
data only through a two-dimensional sufficient statistic5. This is what we need to minimize
over the pair (µ, σ). In the Sage code,

∑n
i=1 xi will be denoted by s1 and

∑n
i=1 x

2
i will be

denoted by s2.

Minus Log Likelihood for univariate normal

s1 is sum of x, s2 is sum of x^2

var(’mu sigma s1 s2 n’)

mLL = n*log(sigma) + n/2 * log(2*pi) + 1/(2*sigma^2) * (s2 - 2*mu*s1 + n*mu^2)

mLL

evaluate

1
2
n log (2 π) + n log (σ) + µ2n−2µs1+s2

2σ2

Now partially differentiate the minus log likelihood with respect to µ and σ, set the
derivates to zero, and solve.

d1 = derivative(mLL,mu); d2 = derivative(mLL,sigma)

eq = [d1==0,d2==0]; eq

evaluate[
µn−s1
σ2 = 0, n

σ
− µ2n−2µs1+s2

σ3 = 0
]

Solution is a list of lists

sol1 = solve(eq,[mu,sigma]); sol1

evaluate[[
µ = s1

n
, σ = −

√
ns2−s21
n

]
,

[
µ = s1

n
, σ =

√
ns2−s21
n

]]
Notice that there is only one solution for µ; it’s µ = s1

n
= x. But there are two solutions

for σ; they simplify to plus and minus the sample standard deviation (with n rather than
n− 1 in the denominator).

Of course we discard the negative solution because it’s outside the parameter space,
but this illustrates a feature of Sage that can be easy to forget. It doesn’t know as much

5The fact that the sufficient statistic has the same dimension as the parameter suggests that we will
live happily ever after.

B.1. INTRODUCTION TO SAGE 155

about the problem as you do. Not only does it not know that variances can’t be negative,
it does not know that the quantity under the square root sign has to be positive, or even
that all the symbols represent real numbers rather than complex numbers. I tried playing
around with assume, but to no avail. There were always two solutions. It’s easy enough
to get the one we want. It’s element one in the list of lists – the second one.

Extract the second list of solutions

sol1[1]

evaluate[
µ = s1

n
, σ =

√
ns2−s21
n

]
Later, it will be handy to evaluate the parameter vector at the vector of MLEs. So,
this time, get the solution in the form of a dictionary (exactly like a Python dictionary).
Actually, solve returns a list of dictionaries, and we want the second one.

This time, get the solutions in the form of a LIST of dictionaries.

Save item one, the second one. (Indices begin with zero, not one.)

mle = solve(eq,[mu,sigma],solution_dict=True)[1]; mle

evaluate{
σ :

√
ns2−s21
n

, µ : s1
n

}

Refer to the elements of a dictionary using the keys.

mle[mu] # MLE of mu

evaluate

s1
n

For this particular case, it’s not hard to show by elementary methods that the likeli-
hood function attains its maximum at the sample mean and standard deviation, rather
than a minimum or saddle point. But the general method is of interest. For a function
g(θ1, . . . , θt), define the Hessian as the t× t matrix of mixed partial derivatives whose i, j
element is

∂2g

∂θi∂θj
. (B.1)

If the eigenvalues of the Hessian are all positive at a critical point, the function is concave
up there. If they are all negative, it’s concave down. If some are positive and some are
negative, it’s a saddle point.

In Sage, functions have a built-in Hessian attribute, but unfortunately, it applies
to all symbolic variables. So mLL.hessian() returns a 5 × 5 matrix, corresponding to
(µ, n, s1, s2, σ), in alphabetical order. And mLL.hessian([mu,sigma]) (which is natural,
and similar to expressions that work with gradients and Jacobians) yields TypeError:

156 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

hessian() takes no arguments (1 given). So we’ll construct the Hessian from scratch.
Start by making an empty matrix that will be filled with partial derivates. It’s critical
that the matrix be of the right type (symbolic). Also, note that a lot of burdensome High
School algebra is avoided by the quiet use of factor in the calculations below.

H will be hessian of MINUS log likelihood

H = identity_matrix(SR,2); H # SR is the Symbolic Ring

evaluate(
1 0
0 1

)

Fill it with mixed partial derivatives

H[0,0] = derivative(mLL,mu,2); H[0,1] = derivative(mLL,[mu,sigma])

H[1,0] = H[0,1] ; H[1,1] = derivative(mLL,sigma,2)

H = factor(H); H

evaluate(
n
σ2 −2 (µn−s1)

σ3

−2 (µn−s1)
σ3

(3µ2n−nσ2−6µs1+3 s2)
σ4

)

Evaluate at mle

hmle = factor(H(mle)); hmle

evaluate(
n3

(ns2−s21)
0

0 2 n3

(ns2−s21)

)

Function is concave up at critical point iff all eigenvalues > 0 there.

hmle.eigenvalues()

evaluate[
n3

(ns2−s21)
, 2 n3

(ns2−s21)

]
The denominator of both eigenvalues equals

n

n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

= n
n∑
i=1

(xi − x)2,

so both eigenvalues are positive and the minus log likelihood is concave up at the MLE.

The Multinomial Distribution The multinomial distribution is based on a statistical
experiment in which one of k outcomes occurs, with probability θj, j = 1, . . . , k, where

B.1. INTRODUCTION TO SAGE 157

∑k
j=1 θj = 1. For example, consumers might be asked to smell six perfumes, and indicate

which one they like most. The probability of preferring perfume j is θj, for j = 1, . . . , 6.
The likelihood function may be written in terms of multinomial random vectors made

up of k indicators random variables: For case i, xij = 1 if event j occurs, and zero

otherwise.
∑k

j=1 xij = 1. The likelihood function is

L(θ) =
n∏
i=1

θ
xi,1
1 θ

xi,2
2 · · · θxi,kk

= θ
∑n
i=1 xi,1

1 θ
∑n
i=1 xi,2

2 · · · θ
∑n
i=1 xi,k

k .

Using xj to represent the sum
∑n

i=1 xi,j, the likelihood may be expressed in a non-
redundant way in terms of k − 1 parameters and k − 1 sufficient statistics, as follows:

L(θ) = θx11 θ
x2
2 · · · θ

xk
k

= θx11 · · · θ
xk−1

k−1

(
1−

k−1∑
j=1

θj

)n−
∑k−1
j=1 xj

.

Here’s an example with k = 6 (six perfumes).

Multinomial Maximum likelihood - 6 categories

var(’theta1 theta2 theta3 theta4 theta5 x1 x2 x3 x4 x5 n’)

theta = [theta1, theta2, theta3, theta4, theta5]

LL = x1*log(theta1) + x2*log(theta2) + x3*log(theta3) +

x4*log(theta4) + x5*log(theta5) +

(n-x1-x2-x3-x4-x5)*log(1-theta1-theta2-theta3-theta4-theta5)

LL

evaluate

(n− x1 − x2 − x3 − x4 − x5) log (−θ1 − θ2 − θ3 − θ4 − θ5 + 1) + x1 log (θ1) + x2 log (θ2) +
x3 log (θ3) + x4 log (θ4) + x5 log (θ5)

Instead of calculating all five partial derivatives, it’s easier to request the gradient – which
is the same thing. Then we loop through the element of the gradient list, setting each
derivative to zero, displaying the equation, and appending it to a list of equations that
need to be solved. Notice the use of the colon (:) and indentation for looping. Sage shares
this syntax with Python.

Gradient is zero at MLE. It’s a tuple, not a list.

gr = LL.gradient(theta)

Setting the derivatives to zero ...

eq = [] # Start with empty list

for a in gr :
equation = (a==0)

show(equation) # Display the equation

eq.append(equation) # Append equation to list eq.

158 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

evaluate

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x1
θ1

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x2
θ2

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x3
θ3

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x4
θ4

= 0

n−x1−x2−x3−x4−x5
θ1+θ2+θ3+θ4+θ5−1

+ x5
θ5

= 0

Now we will solve for θ1, . . . , θ5. While it’s true that the Sage calculation is specific
to k = 6 categories, the list of equations to solve makes the pattern clear, and points the
way to a general solution. Here is the specific solution:

Get the solutions in the form of a LIST of dictionaries.

Dictionary items are not in any particular order.

Save item zero, the first dictionary.

ThetaHat = solve(eq,theta,solution_dict=True)[0]

ThetaHat # The mean (vector)

evaluate{
θ3 : x3

n
, θ2 : x2

n
, θ1 : x1

n
, θ5 : x5

n
, θ4 : x4

n

}
So for j = 1, . . . , 5, the MLE is θ̂j =

∑n
i=1 xij
n

= xj, or the sample proportion. There’s
little doubt that this is really where the likelihood function achieves its maximum, and
not a minimum or saddle point. But it’s instructive to check. Here is the Hessian of the
minus log likelihood.

Is it really the maximum?

H will be hessian of MINUS log likelihood

H = identity_matrix(SR,5) # SR is the Symbolic Ring

for i in interval(0,4) :
for j in interval(0,i) :

H[i,j] = derivative(-LL,[theta[i],theta[j]])

H[j,i] = H[i,j] # It’s symmetric

H

evaluate

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x1
θ21

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x2
θ22

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x3
θ23

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x4
θ24

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

n−x1−x2−x3−x4−x5
(θ1+θ2+θ3+θ4+θ5−1)2

+
x5
θ25

B.1. INTRODUCTION TO SAGE 159

All its eigenvalues should be positive at the critical point where the derivates simultane-
ously equal zero.

Evaluate at critical point

Hmle = factor(H(ThetaHat)); Hmle

evaluate

(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x4−x5)n2

(n−x1−x2−x3−x4−x5)x3
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x5)n2

(n−x1−x2−x3−x4−x5)x4
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x2−x3−x4)n2

(n−x1−x2−x3−x4−x5)x5

Concave up iff all eigenvalues > 0

Hmle.eigenvalues()

evaluate

Traceback (click to the left of this block for traceback)

...

ArithmeticError: could not determine eigenvalues exactly using symbolic

matrices; try using a different type of matrix via self.change_ring(),

if possible

It seems that Sage cannot solve for the eigenvalues symbolically. A numerical solution
for a particular set of sample data would be routine. But there is another way out. A
real symmetric matrix has all positive eigenvalues if and only if it’s positive definite. And
Sylvester’s Criterion6 is a necessary and sufficient condition for a real symmetric matrix
to be positive definite. A minor of a matrix is the determinant of a square sub-matrix that
is formed by deleting selected rows and columns from the original matrix. The principal
minors of a square matrix are the determinants of the upper left 1× 1 matrix, the upper
left 2× 2 matrix, and so on. Sylvester’s Criterion says that the matrix is positive definite
if and only if all the principal minors are positive.

Here, there are five determinants to evaluate, one of which is just the upper left matrix
element. We’ll do it in a loop. The submatrix(h,i,j,k) attribute returns the submatrix
starting in row h and column i, consisting of j rows and k columns. As usual, index
numbering starts with zero. For full documentation, try something like Hmle.submatrix?

Hmle.submatrix(0,0,2,2) # Upper left 2x2, just to see

evaluate

6The Wikipedia has a nice article on this, including a formal proof. See
http://www.en.wikipedia.org/.

http://www.en.wikipedia.org/wiki/Sylvester's_criterion

160 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

(
(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1
n2

n−x1−x2−x3−x4−x5
n2

n−x1−x2−x3−x4−x5
(n−x1−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x2

)

Calculate and display determinants

for j in interval(1,5) :
show(Hmle.submatrix(0,0,j,j).determinant().factor())

evaluate

(n−x2−x3−x4−x5)n2

(n−x1−x2−x3−x4−x5)x1

(n−x3−x4−x5)n4

(n−x1−x2−x3−x4−x5)x1x2

(n−x4−x5)n6

(n−x1−x2−x3−x4−x5)x1x2x3

(n−x5)n8

(n−x1−x2−x3−x4−x5)x1x2x3x4

n11

(n−x1−x2−x3−x4−x5)x1x2x3x4x5

Assuming the sample size is large enough so that there’s at least one observation in each
category, these quantities are obviously all positive. You can also see that while Sage

performs calculations that are very specific to the problem at hand, the answers can
reveal regular patters that could be exploited in something like a proof by induction. And
the effort involved is tiny, compared to doing it by hand.

Incidentally, the submatrix function can be used to obtain Hessians a bit more easily.
Recall that Sage functions have a hessian attribute, but it’s calculated with respect to
all the variables, which is never what you want for likelihood calculations. But the rows
and columns are in alphabetical order, which in the present case is n, θ1, . . . , θ5, x1, . . . , x5.
So the 5× 5 Hessian we want is easy to extract. Check and see if it’s what we calculated
earlier in a double loop.

-LL.hessian().submatrix(1,1,5,5) == H

evaluate

True

Ho Ho!

Fisher Information

There are many places in mathematical Statistics where Sage can save a lot of tedious
calculation. One of these is in conjunction with Fisher Information (See Appendix A
for some discussion). For a model with parameter vector θ = (θ1, . . . , θt)

′, the Fisher

B.1. INTRODUCTION TO SAGE 161

information matrix is a t× t matrix I(θ) whose (i, j) element is

−E
(

∂2

∂θi∂θj
log f(X|θ)

)
.

This is the information about θ in a single observation. The information in n independent
and identically distributed observations is n I(θ). Under some regularity conditions that
amount to smoothness of the functions involved, the vector of MLEs is approximately
multivariate normal for large samples, with mean θ and covariance matrix (n I(θ))−1.
This is a source of large-sample tests and confidence intervals.

The Univariate Normal Distribution Comparing the formula for the Fisher Infor-
mation to Expression (B.1), it is clear that the Fisher information is just the expected
value of the Hessian of the minus log density7. We’ll start by calculating the Hessian.
The last line says “Take minus the log of f(X), calculate the Hessian, extract the 2 × 2
matrix with upper left entry (1, 1), and factor it. Then put the result in h; display h.” In
this case and many others, factoring yields a lot of simplification.

Normal

var(’mu, sigma, X, n’); assume(sigma>0)

f(x) = 1/(sigma*sqrt(2*pi)) * exp(-(x-mu)^2/(2*sigma^2))

Extract lower right 2x2 of Hessian of minus log density

That is, of Hessian with respect to X, mu, sigma.

X is alphabetically first because it’s capitalized.

h = -log(f(X)).hessian().submatrix(1,1,2,2).factor(); h

evaluate(
1
σ2

2 (X−µ)
σ3

2 (X−µ)
σ3

3X2−6Xµ+3µ2−σ2

σ4

)
Now take the expected value. In the lower right we’ll directly integrate, though it could
also be done by substituting in known quantities and then simplifying. The other cells
can be done by inspection.

Fisher information in one observation is expected h

info = h

info[0,1]=0; info[1,0]=0 # Because E(X)=mu

info[1,1] = integrate(info[1,1]*f(X),X,-oo,oo)

info

evaluate

7The Hessian reflects curvature of the function. Fisher’s insight was that the greater the curvature of
the log likelihood function at the true parameter value, the more information the data provide about the
parameter. Further discussion of the connection between the Hessian and the Fisher Information may be
found in Appendix A.

162 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

(
1
σ2 0
0 2

σ2

)
That’s the Fisher Information in one observation. To get the asymptotic (approximate,
for large n) covariance matrix, multiply by n and invert the matrix.

Fisher info in n observations is n * info in one observation.

MLEs are asymptotically multivariate normal with mean theta

and variance-covariance matrix the inverse of the Fisher info.

avar = (n*info).inverse(); avar

evaluate(
σ2

n
0

0 σ2

2n

)
That’s a standard example that can be done by hand, though perhaps it’s a little unusual
because the model is parameterized in terms of the standard deviation rather than the
variance. This next one, however, would be fearsome to do by hand.

The Multinomial Distribution We’ll stay with the case of six categories. Now,
because the MLE equals the sample mean vector in this case, the multivariate Central
Limit Theorem (see Appendix A) can be used directly without going through the Fisher
Information. We’ll do it tis way first, because it’s a good way to check Sage’s final answer.

The multivariate Central Limit Theorem says that if X1, . . . ,Xn are i.i.d. random vec-
tors with expected value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges

in distribution to a multivariate normal with mean 0 and covariance matrix Σ. That is,
for large n, Xn has a distribution that is approximately multivariate normal, with mean
µ and covariance matrix 1

n
Σ.

Here, each of the i.i.d. random vectors is filled with k − 1 = 5 zeros and possibly
a single 1 , with the number 1 indicating which event occurred. If all five entries of
Xi equal zero, then the sixth event occurred. The marginal distributions are Bernoulli,
so E(Xi,j) = θj and µ = (θ1, . . . , θ5)′. The variances are V ar(Xi,j) = θj(1 − θj), for
j = 1, . . . , 5. Since, Pr{Xi,jXi,m = 0} for j 6= m, E(Xi,jXi,m) = 0, and

Cov(Xi,jXi,m) = E(Xi,jXi,m)− E(Xi,j)E(Xi,m)

= −θjθm.

So by the Central Limit Theorem, the asymptotic mean of the MLE is µ = (θ1, . . . , θ5)′,
and the asymptotic covariance matrix is

1

n
Σ =

θ1(1−θ1)

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n

θ2(1−θ2)
n

− θ2θ3
n

− θ2θ4
n

− θ2θ5
n

− θ1θ3
n

− θ2θ3
n

θ3(1−θ3)
n

− θ3θ4
n

− θ3θ5
n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n

θ4(1−θ4)
n

− θ4θ5
n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n

θ5(1−θ5)
n

 (B.2)

B.1. INTRODUCTION TO SAGE 163

To compare this to what we get from the likelihood approach, first calculate the Hessian
of the minus log probability mass function.

Multinomial - 6 categories again

var(’theta1 theta2 theta3 theta4 theta5 X1 X2 X3 X4 X5 n’)

Lp = X1*log(theta1) + X2*log(theta2) + X3*log(theta3)

+ X4*log(theta4) + X5*log(theta5) + (1-X1-X2-X3-X4-X5)

* log(1-theta1-theta2-theta3-theta4-theta5)

h = -Lp.hessian().submatrix(5,5,5,5); h

evaluate
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
+ X1

θ21
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X2

θ22
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X3

θ23
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X4

θ24
−X1+X2+X3+X4+X5−1

(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

−X1+X2+X3+X4+X5−1
(θ1+θ2+θ3+θ4+θ5−1)2

+ X5

θ25

Sometimes, Sage output runs off the right side of the screen and you have to scroll to
see it all. In this document, it just gets chopped off. But you can still see that all the
Xj quantities appear in the numerator, and taking the expected values would be easy by
hand.

Computing expected values is just substituting theta_j for X_j

info = h(X1=theta1,X2=theta2,X3=theta3,X4=theta4,X5=theta5)

info

evaluate

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ2

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ3

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ4

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

− 1
θ1+θ2+θ3+θ4+θ5−1

+ 1
θ5

The asymptotic covariance matrix is obtained by multiplying by n and taking the inverse.
Inverting the matrix by hand is possible, but it would be a brutal experience. With Sage,
it takes a few seconds, including the typing.

Asymptotic covariance matrix

avar = (n*info).inverse().factor(); avar

evaluate

164 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

− (θ1−1)θ1

n
− θ1θ2

n
− θ1θ3

n
− θ1θ4

n
− θ1θ5

n

− θ1θ2
n
− (θ2−1)θ2

n
− θ2θ3

n
− θ2θ4

n
− θ2θ5

n

− θ1θ3
n

− θ2θ3
n
− (θ3−1)θ3

n
− θ3θ4

n
− θ3θ5

n

− θ1θ4
n

− θ2θ4
n

− θ3θ4
n
− (θ4−1)θ4

n
− θ4θ5

n

− θ1θ5
n

− θ2θ5
n

− θ3θ5
n

− θ4θ5
n
− (θ5−1)θ5

n

This is the same as Expression B.2, which came from the Central Limit Theorem. It’s an
unqualified success.

Taylor Expansions

There are many versions of Taylor’s Theorem. Here is a useful one. Let the nth derivative
f (n) of the function f(x) be continuous in [a, b] and differentiable in (a, b), with x and x0

in (a, b). Then there exists a point ξ between x and x0 such that

f(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)(x− x0)2

2!
+ . . . +

f (n)(x0)(x− x0)n

n!

+
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!
(B.3)

where Rn = f (n+1)(ξ)(x−x0)n+1

(n+1)!
is called the remainder term. If Rn → 0 as n → ∞, the

resulting infinite series is called the Taylor Series for f(x).
In certain styles of applied statistics, when people are having trouble with a function,

they approximate it by just taking the first two or three terms of a Taylor expansion, and
discarding the remainder. Sometimes, the approximation can be quite helpful. Consider,
for example, a simple8 logistic regression in which a linear model for the log odds of Y = 1
leads to

Pr{Y = 1|X = x} = E(Y |X = x) =
eβ0+β1x

1 + eβ0+β1x
.

Under this model, what is the covariance between X and Y ? It’s easy to wonder, but not
easy to calculate. Suppose X has a distribution with expected value µ and variance σ2.
Perhaps X is normal. Let’s use the formula Cov(X, Y) = E(XY)− E(X)E(Y), and try
double expectation. That is,

E[Y] = E[E(Y |X)]

=

∫ ∞
−∞

E(Y |X = x) f(x) dx

=

∫ ∞
−∞

eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.4)

If X is normal, I certainly can’t do this integral. I have tried many times and failed. Sage
can’t do it either. Details are omitted.

8One explanatory variable.

B.1. INTRODUCTION TO SAGE 165

Let’s approximate g(X) = E(Y |X) with the first few terms of a Taylor series. Then
it’s easier to work with. Note that you can find out what atributes the function g has
with print(dir(g)), and then get details about the taylor attribute with g.taylor? .

Cov(X,Y) for logistic regression (Taylor)

var(’X beta0 beta1 mu sigma’)

g = exp(beta0 + beta1*X)/(1+exp(beta0 + beta1*X))

print(dir(g))

g.taylor?

t1 = g.taylor(X,mu,2); t1 # Expand function of X about mu, degree 2 (3 terms)

evaluate

(X−µ)β1e(β1µ+β0)

2 e(β1µ+β0)+e(2 β1µ+2 β0)+1
+

(X−µ)2(β2
1e

(β1µ+β0)−β2
1e

(2 β1µ+2 β0))
2 (3 e(β1µ+β0)+3 e(2 β1µ+2 β0)+e(3 β1µ+3 β0)+1)

+ e(β1µ+β0)

e(β1µ+β0)+1

Taking the expected value with respect to X will cause the first term to disappear, and
replace (X − µ)2 with σ2 in the second term. We’ll integrate with respect to the normal
distribution, but that’s just for convenience. Any distribution with expected value µ and
variance σ2 would yield the same result.

Use normal to take expected value Just a convenience :
f = 1/(sigma*sqrt(2*pi)) * exp(-(X-mu)^2/(2*sigma^2))

assume(sigma>0)

EY = (t1*f).integrate(X,-oo,oo).factor(); EY

evaluate

−(β2
1σ

2e(β1µ+β0)−β2
1σ

2−4 e(β1µ+β0)−2 e(2 β1µ+2 β0)−2)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

That’s pretty messy, but maybe there will be some simplification when we calculate
Cov(X, Y) = E(XY)− E(X)E(Y). First we need an approximation of E(XY).

Double expectation for E(XY) - First, approximate XE(Y|X)

t2 = (X*g).taylor(X,mu,2); t2 # Looks pretty hairy

EXY = (t2*f).integrate(X,-oo,oo).factor(); EXY

evaluate

−(β2
1µσ

2e(β1µ+β0)−β2
1µσ

2−2β1σ2e(β1µ+β0)−2β1σ2−4µe(β1µ+β0)−2µe(2 β1µ+2 β0)−2µ)e(β1µ+β0)

2 (e(β1µ+β0)+1)
3

Finally, approximate the covariance

Cov = (EXY-mu*EY).factor(); Cov

evaluate

166 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

β1σ2e(β1µ+β0)

(e(β1µ+β0)+1)
2

Well, you have to admit that’s nice! Some of the intermediate steps were fiercely com-
plicated, but the final result is clean and simple. Sage has saved us a lot of unpleasant
work. Furthermore, the result makes sense because the sign of the covariance is the same
as the sign of β1, as it should be.

However, we really don’t know if it’s a good approximation or not. That’s right. Taylor
expansions are more accurate closer to the point about which you expand the function,
and they are more accurate the more terms you take. Beyond that, it’s generally unknown,
unless you have more information (like perhaps the remainder you’ve discarded approaches
zero as the sample size increases, or something).

So we need to investigate it a bit more, and the easiest thing to do is to try some
numerical examples. With specific numbers for the parameters, Sage will be able to
calculate E(Y) and E(XY) by numerical integration. First, we’ll try µ = 0, σ = 2, β0 =
0, β1 = 1. The approximation is

Example 1, with mu=0,beta0=0,sigma=2,beta1=1

Cov(mu=0,beta0=0,sigma=2,beta1=1)

evaluate

1

The calculation of Cov(X, Y) = E(XY) by double expectation is similar to (B.4).

E[XY] = E[E(XY |X)]

=

∫ ∞
−∞

E(XY |X = x) f(x) dx

=

∫ ∞
−∞

E(xY |X = x) f(x) dx

=

∫ ∞
−∞

xE(Y |X = x) f(x) dx

=

∫ ∞
−∞

x
eβ0+β1x

1 + eβ0+β1x
f(x) dx. (B.5)

In the material below, the result of show(EXY1) tells us that E(XY), though it’s simplified
a but, is an integral that Sage cannot take any farther, even with specific numerical values.
Then, EXY1.n() says please evaluate it numerically. The numerical evaluation attribute,
in the case of an integral, is a sophisticated numerical integration algorithm.

This will be the covariance, since mu=0

EXY1 = (X*g*f)(mu=0,beta0=0,sigma=2,beta1=1).integrate(X,-oo,oo)

show(EXY1)

EXY1.n()

evaluate

B.1. INTRODUCTION TO SAGE 167

√
2
∫+∞
−∞

Xe
(− 1

8 X
2+X)

eX+1
dX

4
√
π

0.605705509602159

That’s not too promising. Is the approximation really this bad? While Sage is extremely
accurate compared to almost any human being, mistakes in the input can cause big
problems. Typos are the main source of trouble, but misunderstandings are possible
too, and the results can be even worse. So, when a result is a bit surprising like this,
it’s important to cross-check it somehow. Let’s try a simulation with R. The idea is to
first simulate a large collection of X values from a normal distribution with mean µ = 0
and standard deviation σ = 2, calculate Pr{Y = 1|Xi}, using β0 = 0 and β1 = 1.
Finally, generate binary Y values using those probabilities, and calculate the sample
covariance. By the Strong Law of Large Numbers, the probability equals one that the
sample covariance approaches the true covariance as n → ∞, like an ordinary limit. So
with a very large n, we’ll get a good approximation of Cov(X, Y). Is it closer to 1, or
0.606? Here is the R calculation, without further comment.

> n = 100000; mu=0; beta0=0; sigma=2; beta1=1

> x = rnorm(n,mu,sigma)

> xb = beta0 + beta1*x

> p = exp(xb)/(1+exp(xb))

> y = rbinom(n,1,p)

> var(cbind(x,y))

x y

x 3.9687519 0.6039358

y 0.6039358 0.2499991

Now we can be confident that the numerical integration (and the double expectation
reasoning behind it) produced correct results, and the Taylor series approximation was
poor. It can easily get worse. For example, with µ = 1, σ = 10, β0 = 1, β1 = 1, the Taylor
series approximation of the covariance is 10.499, while the correct answer by numerical
integration is 3.851.

The story has a two-part moral. Taylor series approximations are easy with Sage, but
whether they are accurate enough to be useful is another matter. This point is sometimes
overlooked in applied Statistics.

To leave a better taste about Taylor series approximations, let X1, . . . , Xn be a random
sample from a Bernoulli distribution, with Pr{Xi = 1} = θ. A quantity that is useful in
categorical data analysis is the log odds :

Log Odds = log
θ

1− θ
,

where log refers to the natural logarithm.

168 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

The best estimator of θ is the sample proportion: X = 1
n

∑n
i=1Xi. The log odds is

estimated by

Y = log
X

1−X
.

The variance of X is θ(1−θ)
n

, but what is the variance of the estimated log odds Y ? As we
shall see, it’s possible to give an exact answer for any given n, but the expression is very
complicated and hard to use in later calculations.

Instead, for any statistic Tn that estimates θ, and any differentiable function g(t) (of
which g(t) = log t

1−t is an example), expand g(t) about θ, taking just the first two terms
of a Taylor expansion (see Expression B.3) and discarding the remainder. Then

V ar (g(Tn)) ≈ V ar (g(θ) + g′(θ)(Tn − θ))
= 0 + g′(θ)2V ar(Tn) + 0

= g′(θ)2V ar(Tn). (B.6)

The only reason for making Tn a statistic that estimates θ is so it will be reasonable to
expand g(t) about θ. Actually, Tn could be any random variable and θ could be any real
number, but in that case the approximation could be arbitrarily bad.

Formula (B.6) for the variance of a function is quite general. We don’t need taylor;
instead, we’ll just use Sage to take the derivative, square it, multiply by the variance of
Tn, and simplify.

Variance of log odds

var(’n theta’)

g = log(theta/(1-theta))

vTn = theta*(1-theta)/n

v = (g.derivative(theta)^2 * vTn).factor(); v

evaluate

− 1
(θ−1)nθ

Let’s try a numerical example, with θ = 0.1 and n = 200.

v(theta=0.1,n=200)

evaluate

0.0555555555555556

Is this a good approximation? We certainly can’t take it for granted. Now, for any
fixed n, the random variable Xn (also known as Tn) is just X

n
, where X is binomial with

B.1. INTRODUCTION TO SAGE 169

parameters n and θ. So,

Y = Y (X) = log
X

1−X

= log
X/n

1−X/n

= log
X

n−X
,

and we can calculate

E(Y) =
n∑
x=0

y(x)Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)
Pr{X = x}

=
n∑
x=0

log

(
X

n−X

)(
n

x

)
θx(1− θ)n−x.

The calculation of E(Y 2) is similar, and then V ar(Y) = E(Y 2)− [E(Y)]2.
Because we’re actually going to do it (an insane proposition by hand), we notice that

the variance of the estimated log odds is not even defined for any finite n. Everything falls
apart for x = 0 and x = n.

Now in standard categorical data analysis, it assumed that θ is strictly between zero
and one, and the sample size is large enough so that the events X = 0 and X = n
(whose probability goes to zero as n → ∞ do not occur. In practice if they did occur,
the statistician would move to a different technology. So, the variance we want is actually
conditional on 1 ≤ X ≤ n− 1.

Adjusting Pr{X = x} to make it a conditional probability involves dividing by 1 −
Pr{X = 0}−Pr{X = n}, which for n = 200 is a number extremely close to one. So will
it be okay to just discard x = 0 and x = n rather than really adjusting? Take a look at
how small the probabilities are.

Is it okay to just drop x=0 and x=200?

p(x) = n.factorial()/(x.factorial() * (n-x).factorial()) * theta^x * (1-theta)^(n-x)

p(0)(theta=0.1); p(200)(theta=0.1)

evaluate

7.05507910865537× 10−10

1.00000000000001× 10−200

Okay, we’ll just sum from x = 1 to x = n − 1, and call it an “exact” calculation. In the
Sage work below, note that because n is so large, the binomial coefficient in p(x) can be
big enough to overflow the computer’s memory, while at the same time the product of θ
and (1− θ) values can be small enough to underflow. To avoid the numerical inaccuracy

170 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

that would come from this, θ is written as a ratio of two integers. Then inside the loop,
p(x) is evaluated by exact integer arithmetic and then factored, resulting in numerous
cancellations so that the result is as accurate as possible before it is numerically evaluated
and multiplied by the numerical version of log x

n−x . By the way, it’s a lot faster to do it this
way rather than doing the whole calculation symbolically and then numerically evaluating
the final result.

Calculate exactly, trying to minimize rounding error

y(x) = log(x/(n-x))

n=200; EY=0.0; EYsq=0.0

for x in interval(1,n-1) :
EY = EY + y(x).n()*(p(x)(theta=1/10).factor().n())

EYsq = EYsq + (y(x)^2).n()*(p(x)(theta=1/10).factor().n())

vxact = EYsq-EY^2; vxact

evaluate

0.0595418877731042

As a check on this, one can randomly generate a large number of Binomial(n, θ) pseudo-
random numbers. Dividing each one by n gives a random sample of Xn values, and then
computing any function of the Xn values yields a collection of random variables that is
a nice estimate of the sampling distribution of the statistic in question. With ten million

Binomial(n, θ) values, this approach is used to approximate V ar
(

log
(

Xn

1−Xn

))
.

> set.seed(9999)

> n = 200; theta = 0.1; m=10000000

> xbar = rbinom(m,n,theta)/n

> logodds = log(xbar/(1-xbar))

> var(logodds)

[1] 0.05955767

So the “exact” calculation is right, and the Taylor series approximation is pretty close.
Is it a coincidence? No. By the Law of Large Numbers, the probability distribution
of the sample proportion Xn becomes increasingly concentrated around θ as the sample
size increases, so that within a tiny interval enclosing θ, the linear approximation of g(t)
in (B.6) is very accurate in the neighbourhood where most of the probability distribution
resides. As the sample size increases, it becomes even better, and the approximation of
the variance becomes even better.

As a final note about Taylor series, Sage can easily calculate truncated Taylor series
approximations of functions of several variables, in which derivatives are replaced by
matrices of partial derivatives (Jacobians).

Matrices and linear algebra

In this book, Sage will be used mostly to do symbolic matrix calculations. Some matrix
operations have already been illustrated in connection with the Hessian. Here, we’ll just

B.1. INTRODUCTION TO SAGE 171

calculate the covariance matrices of the observable data for a couple of structural equation
models.

The first example is a small regression model with instrumental variables, from Chap-
ter 0. Repeating material from Model (35), we have independently for i = 1, . . . , n,

Wi = Xi + ei

Yi,1 = β1Xi + εi,1

Yi,2 = β2Xi + εi,2

Yi,3 = β3Xi + εi,3,

where Xi, ei, εi,1, εi,2 and εi,3 are all independent, V ar(Xi) = φ, V ar(ei) = ω, V ar(εi,1) =
ψ1, V ar(εi,2) = ψ2, V ar(εi,3) = ψ3, all expected values are zero, and the regression
coefficients β1, β2 and β3 are fixed constants.

To calculate the covariance matrix, write the model equations in matrix form as

Yi = βXi + εi,

with Xi and εi independent, V (Xi) = Φ, and V (εi) = Ψ. In the present case, this means
Wi

Yi,1
Yi,2
Yi,3

 =

1
β1

β2

β3

 (Xi) +

ei
εi,1
εi,2
εi,3

 ,

with V (Xi) = Φ equal to the 1× 1 matrix (φ), and

V

ei
εi,1
εi,2
εi,3

 = Ψ =

ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3

 .

The variance-covariance matrix of the observable variables is then

V (Yi) = V (βXi + εi)

= βΦβ′ + Ψ.

This is the quantity we’ll compute with Sage.

Ex 1 - Instrumental Variables

beta = matrix(SR,4,1) # SR is the Symbolic Ring. Want 4 rows, 1 col.

beta[0,0] = 1 ; beta[1,0] = var(’beta1’); beta[2,0] = var(’beta2’);

beta[3,0] = var(’beta3’)

beta

evaluate

172 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

1
β1

β2

β3

Phi = matrix(SR,1,1); Phi[0,0] = var(’phi’)

show(Phi)

Psi = matrix(SR,4,4)

Psi[0,0] = var(’omega’); Psi[1,1] = var(’psi1’)

Psi[2,2] = var(’psi2’); Psi[3,3] = var(’psi3’)

Psi

evaluate(
φ
)

ω 0 0 0
0 ψ1 0 0
0 0 ψ2 0
0 0 0 ψ3

Sigma = beta*Phi*beta.transpose() + Psi ; Sigma

evaluate
ω + φ β1φ β2φ β3φ
β1φ β2

1φ+ ψ1 β1β2φ β1β3φ
β2φ β1β2φ β2

2φ+ ψ2 β2β3φ
β3φ β1β3φ β2β3φ β2

3φ+ ψ3

This agrees with Example of Chapter 0, which was done by hand.

The next example is a bit more challenging. First, we calculate the covariance matrix
for a latent model, stitching together a partitioned matrix consisting of the variance of
the exogenous variables, the covariance of the exogenous and endogenous variables, and
the variance of the endogenous variables. Then that matrix is used as the covariance
matrix of the latent variables (“factors”) in a measurement model. The model equations
are (independently for i = 1, . . . , n)

(
Yi,1
Yi,2

)
=

(
β1,1 β1,2

0 β2,2

)(
Xi,1

Xi,2

)
+

(
εi,1
εi,2

)

B.1. INTRODUCTION TO SAGE 173

and

Di =

Wi,1

Wi,2

Wi,3

Vi,1
Vi,2
Vi,3

 =

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

Xi,1

Xi,2

Yi,1
Yi,2

+

ei,1
ei,2
ei,3
ei,4
ei,5
ei,6

 ,

where

• V
(
Xi,1

Xi,2

)
= Φ11 =

(
φ11 φ12

φ12 φ22

)

• V (εi,1) = ψ2, V (εi,2) = ψ2

• V (ei,j) = ωj for j = 1, . . . , 6, and

• All the error terms are independent of one another, and independent of Xi,1 and
Xi,2.

For this model, the latent variable component is over-identified while the measurement
component is under-identified. So parameter identifiability for the combined model is
completely unknown, which is what makes the example interesting.

To calculate the covariance matrix of the observed data Di, write the model equations
as

Yi = βXi + εi

Di = ΛFi + ei,

where Fi =

(
Xi

Yi

)
. That is, the vector of latent variables or “factors” is just Xi stacked

on top of Yi. Denoting the variance-covariance matrices by V (Xi) = Φ11, V (εi) = Ψ
and V (ei) = Ω, we first calculate the variance-covariance matrix of Fi as the partitioned
matrix

V (Fi) = Φ =

(
Φ11 Φ11β

′

βΦ11 βΦ11β
′ + Ψ

)
,

and then using that, the variance-covariance matrix of the observed data:

V (Di) = Σ = ΛΦΛ′ + Ω.

Here is the calculation in Sage.

174 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Ex 2 - More challenging

Y = beta X + epsilon

F = (X,Y)’

D = Lambda F + e

V(X) = Phi11, V(epsilon) = Psi, V(e) = Omega

Set up matrices

beta = matrix(SR,2,2)

beta[0,0] = var(’beta11’); beta[0,1] = var(’beta12’)

beta[1,0] = var(’beta21’); beta[1,1] = var(’beta22’)

beta[1,0] = 0

show(beta)

evaluate(
β11 β12

0 β22

)

Phi11 = matrix(SR,2,2) # V(X), Symmetric

Phi11[0,0] = var(’phi11’); Phi11[0,1] = var(’phi12’)

Phi11[1,0] = var(’phi12’); Phi11[1,1] = var(’phi22’)

show(Phi11)

evaluate(
φ11 φ12

φ12 φ22

)

Psi = matrix(SR,2,2) # V(epsilon)

Psi[0,0] = var(’psi1’) ; Psi[1,1] = var(’psi2’)

show(Psi)

evaluate(
ψ1 0
0 ψ2

)

Omega = matrix(SR,6,6) # V(e)

Omega[0,0] = var(’omega1’) ; Omega[1,1] = var(’omega2’)

Omega[2,2] = var(’omega3’) ; Omega[3,3] = var(’omega4’)

Omega[4,4] = var(’omega5’); Omega[5,5] = var(’omega6’)

show(Omega)

evaluate

B.1. INTRODUCTION TO SAGE 175

ω1 0 0 0 0 0
0 ω2 0 0 0 0
0 0 ω3 0 0 0
0 0 0 ω4 0 0
0 0 0 0 ω5 0
0 0 0 0 0 ω6

Lambda = matrix(SR,6,4)

Lambda[0,0]=1; Lambda[1,0]=1; Lambda[2,1]=1

Lambda[3,2]=1; Lambda[4,2]=1; Lambda[5,3]=1

show(Lambda)

evaluate
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

Calculate Phi = V(F)

EXY = Phi11 * beta.transpose()

VY = beta*Phi11*beta.transpose() + Psi

top = Phi11.augment(EXY) # Phi11 on left, EXY on right

bot = EXY.transpose().augment(VY)

Phi = (top.stack(bot)).factor() # Stack top over bot, then factor

show(Phi)

evaluate
φ11 φ12 β11φ11 + β12φ12 β22φ12

φ12 φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2 β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ22 (β11φ12 + β12φ22)β22 β2
22φ22 + ψ2

Calculate Sigma = V(D) = V(W,V)

Sigma = Lambda * Phi * Lambda.transpose() + Omega

show(Sigma)

evaluate
ω1 + φ11 φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12

φ11 ω2 + φ11 φ12 β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
φ12 φ12 ω3 + φ22 β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β11φ11 + β12φ12 β11φ11 + β12φ12 β11φ12 + β12φ22 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ψ1 β2

11φ11 + 2β11β12φ12 + β2
12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22

β22φ12 β22φ12 β22φ22 (β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2
22φ22 + ω6 + ψ2

176 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

Again, this is the covariance matrix of the observable data vector Di = (Wi,1,Wi,2,Wi,3, Vi,1, Vi,2, Vi,3)′.
The covariance matrix is big and the last two columns got cut off, but in Sage you can
scroll to the right and see something like the following:

· · ·

β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ11 + β12φ12 β11φ11 + β12φ12 β22φ12
β11φ12 + β12φ22 β11φ12 + β12φ22 β22φ22

β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω4 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 (β11φ12 + β12φ22)β22
β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ψ1 β2
11φ11 + 2β11β12φ12 + β2

12φ22 + ω5 + ψ1 (β11φ12 + β12φ22)β22
(β11φ12 + β12φ22)β22 (β11φ12 + β12φ22)β22 β2

22φ22 + ω6 + ψ2

Now it is possible to see that at points in the parameter space where φ12 6= 0, the
regression parameters β11, β12 and β22 are all identifiable. This is a bit surprising, since
the measurement model is under-identified. It happens only because β21 = 0.

B.2 Using Sage on your Computer

Sage has a browser interface, which means you interact with it through an ordinary Web
browser9. This means that the actual Sage software can reside either on your computer
or a remote server. In practice, there are three possibilities:

1. You may use Sage free of charge on computers maintained by the Sage development
group. To do it this way, go to http://sagenb.com, set up a free account, and
start using Sage. This is the easiest way to get started, but be aware that many
people may be trying to use the service at the same time. My experience is that
performance is sometimes quick and pleasant (for example, during the summer),
and sometimes very slow. So this is an excellent way to give Sage a try and it’s very
handy for occasional use, but depending on it to do homework assignments is a bit
risky.

2. You can connect to Sage on a server at your university or organization, provided
that someone has gone to the trouble to set it up. If you can use Sage this way, you
are fortunate, and you only have some minor font issues to take care of. These are
discussed below.

3. You can download and install Sage on your own computer. You still use a Web
browser, but the Web server is your own machine, and it serves only you. It’s pretty
straightforward, but the details depend on your operating system. Some of these
details may change, because the Sage developers are constantly working (without
payment) to improve the package. They also are responding to the actions of various
companies like Apple, Google and Microsoft.

9The Sage website says Mozilla Firefox and Google Chrome are recommended, and you should believe
it.

http://sagenb.com

B.2. USING SAGE ON YOUR COMPUTER 177

Mac OS and Linux There are two steps. First, go to http://www.sagemath.org,
download the software, and install it as usual. As of July 2012, there was nothing out of
the ordinary for Mac OS, and this appeared to be the case for linux as well.

The second step is probably needed if you do not already have LATEX installed, which
will be the case for many students. Even if you do have LATEX installed, the follow-
ing is very helpful if you plan to use Sage on the servers at http://sagenb.com, even
occasionally. Go to

http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them. You should only download one set of fonts.
To install, Mac users can open the System folder, open the library sub-folder, and then
drag the fonts to the Fonts sub-sub folder. You may need to click “Authenticate” and
type your password. A re-start will be required before the new fonts are available.

Microsoft Windows As mentioned earlier, Sage incorporates a number of other open
source math programs, and makes them work together using a common interface. This
marvelous feat, which is accomplished mostly with Python scripts, depends heavily on
features that are part of the linux and unix operating systems, but are missing from
Microsoft Windows. This makes it difficult or perhaps actually impossible to construct a
native version of Sage for Windows. The current (and possibly final) solution is to run
Sage in a virtual machine – a set of software instructions that act like a separate computer
within Windows. The virtual machine uses the linux operating system, and has Sage

preinstalled. The http://www.sagemath.org website calls it the “Sage appliance.”
The software that allows the virtual machine to function under Windows is Oracle

Corporation’s free open-source VirtualBox, and you need to install that first. Start at
http://wiki.sagemath.org/SageApplianceInstallation, and follow the directons. You will
see that the first step is to download VirtualBox.

Then, go to http://wiki.sagemath.org/SageAppliance, and follow the directions
there. It is highly recommended that you set up a folder for sharing files between Windows
and the Sage appliance, because a good way of printing your Sage output depends on it.
Follow all the directions, including the part about resetting the virtual machine.

Now you are ready to use Sage and see your output on screen. Printing under Windows
is a separate issue, but it’s easy once you know how.

Printing Under Windows The virtual machine provided by VirtualBox is incomplete
by design; it lacks USB support10. So, most printers don’t work easily. I know of four
ways to print, and I have gotten the first three to work. The fourth way is speculation
only and I don’t intend to try it. The methods are ordered in terms of my personal
preference.

10Presumably this is a strategic decision by Oracle Corporation. As of this writing, USB support
is available from Oracle as a separate free add-on. It’s free to individual users for their personal use,
meaning nobody can legally re-sell a virtual machine that includes it without paying Oracle a royalty.
Sagemath would give it away and not sell it, but the developers strongly prefer to keep Sage fully free
under the GNU public license.

http://www.sagemath.org
http://sagenb.com
http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html
http://www.sagemath.org
http://wiki.sagemath.org/SageApplianceInstallation
 http://wiki.sagemath.org/SageAppliance

178 APPENDIX B. SYMBOLIC MATHEMATICS WITH SAGE

1. In the Sage appliance, click on the printer icon or press the right mouse button
and choose Print from the resulting menu. The default will be to Save as PDF.
To choose the location to save the file, click on File System, then media, then the
name of the shared folder11. Click Save. In Windows, go to the shared folder and
print the pdf file12. An advantage of this method is that you don’t need to install
any fonts, because the jsMath fonts are already installed in the linux system of the
Sage Applicance.

2. For this method, you do need to install the jsMath fonts under Windows. Go to

http://www.math.union.edu/ dpvc/jsMath/download/jsMath-fonts.html,

download the jsMath fonts, and install them; A darkness level of 25 is good. To
install under Windows 7, I needed to double-click on each font individually and
click install. More experienced Windows users may be able to install the fonts some
other way. A re-start is required.

Now once the jsMath fonts are installed, note that you can reach the Sage runnning
in your virtual machine from Windows. Minimize the browser in the virtual machine,
and open Firefox or Chrome under Windows. Go to https://localhost:8000.
Now you can do whatever calculations you wish and print as usual. When you are
done, you need to close the browser in the Sage appliance as well as Windows, and
sent the shutdown signal before closing Virtualbox.

3. When you chose Print from within the Sage appliance, the default is Save as PDF.
But because the Web browser in the Sage appliance is Google Chrome, Google Cloud
Print is also an option. You can connect your printer to Google Cloud Print provided
that Google Chrome is installed under Windows, and you have a Google (gmail)
account. Using Chrome, go to http://www.google.com/cloudprint/learn and locate
the instructions to set up your printer. If the printer is physically connected to
the computer (not wireless), it’s called a “classic” printer. Once your printer is
connected, you can print to it from the Sage appliance through Google’s servers,
provided you are connected to the Internet and signed in to your Google account
under Windows at the time. There is no need to install any fonts; they are already
installed on the virtual linux machine.

4. Finally, in principle one should be able to install the appropriate printer driver (if
one exists) in the virtual linux machine and print directly from the Sage appliance.
Under Windows, you can access the linux command line using the free open source
PuTTy SSH client, which can be obtained from www.putty.org. Once the Sage

appliance is running, connect using Host Name localhost through port 2222. The

11You set up the shared folder when you installed the Sage applicance.
12When working with Sage in a Windows environment, it may be helpful to keep the shared folder open

in Windows Explorer. As soon as you save the file you want to print, you will see it appear in Windows
Explorer.

http://www.math.union.edu/~dpvc/jsMath/download/jsMath-fonts.html
https://localhost:8000
http://www.google.com/cloudprint/learn
www.putty.org

B.3. THE SEM PACKAGE 179

user name is sage and the password is also sage. There may be easier ways to reach
the linux shell, but this works. You can ignore all the warnings.

A package containing USB support for VirtualBox is available at https://www.virtualbox.org.
Once it’s installed, you can start looking for a linux driver for your printer. This
printing method is appropriate only for those with linux experience who feel like
playing around.

B.3 The sem Package

https://www.virtualbox.org

	Symbolic Mathematics with Sage
	Introduction to Sage
	What is Sage, and why use it?
	A Guided tour

	Using Sage on your Computer
	The sem Package

