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You already know about

Matrices A = [aij ]

Matrix addition and subtraction A + B = [aij + bij ]

Scalar multiplication aB = [a bij ]

Matrix multiplication AB =

[∑
k

aikbkj

]
Inverse A−1A = AA−1 = I

Transpose A′ = [aji]

Symmetric matrices A = A′

Determinants

Linear independence
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Linear independence

X be an n× p matrix of constants.The columns of X are said to
be linearly dependent if there exists v 6= 0 with Xv = 0. We
will say that the columns of X are linearly independent if
Xv = 0 implies v = 0.

For example, show that A−1 exists implies that the columns of
A are linearly independent.

Av = 0⇒ A−1Av = A−10⇒ v = 0
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How to show A−1′ = A′−1

Suppose B = A−1, meaning AB = BA = I. Must show two
things: B′A′ = I and A′B′ = I.

AB = I ⇒ B′A′ = I′ = I

BA = I ⇒ A′B′ = I′ = I

�
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Trace of a square matrix: Sum of the diagonal elements

tr(A) =

n∑
i=1

ai,i.

Of course tr(A + B) = tr(A) + tr(B), etc.

But less obviously, even though AB 6= BA,

tr(AB) = tr(BA)
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tr(AB) = tr(BA)

Let A be an r × p matrix and B be a p× r matrix, so that the
product matrices AB and BA are both defined.

tr(AB) = tr

([
p∑

k=1

ai,kbk,j

])

=

r∑
i=1

p∑
k=1

ai,kbk,i

=

p∑
k=1

r∑
i=1

bk,iai,k

=

p∑
i=1

r∑
k=1

bi,kak,i (Switching i and k)

= tr

([
r∑

k=1

bi,kak,j

])
= tr(BA)
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Eigenvalues and eigenvectors

Let A = [ai,j ] be an n× n matrix, so that the following applies
to square matrices. A is said to have an eigenvalue λ and
(non-zero) eigenvector x corresponding to λ if

Ax = λx.

Eigenvalues are the λ values that solve the determinantal
equation |A− λI| = 0.

The determinant is the product of the eigenvalues:
|A| =

∏n
i=1 λi
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Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and
symmetric matrix A = [ai,j ] may be written

A = PΛP′,

where the columns of P (which may also be denoted x1, . . . ,xn)
are the eigenvectors of A, and the diagonal matrix Λ contains
the corresponding eigenvalues.

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Because the eigenvectors are orthonormal, P is an orthogonal
matrix; that is, PP′ = P′P = I.
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Positive definite matrices

The n× n matrix A is said to be positive definite if

y′Ay > 0

for all n× 1 vectors y 6= 0. It is called non-negative definite (or
sometimes positive semi-definite) if y′Ay ≥ 0.
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Example: Show X′X non-negative definite

Let X be an n× p matrix of real constants and y be p× 1.
Then Z = Xy is n× 1, and

y′ (X′X) y

= (Xy)′(Xy)

= Z′Z

=
n∑

i=1

Z2
i ≥ 0
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Some properties of symmetric positive definite matrices
Variance-covariance matrices are often assumed positive definite.

Positive definite

⇒ All eigenvalues positive ⇔ Determinant positive

⇒ Inverse exists ⇔ Columns (rows) linearly independent

If a real symmetric matrix is also non-negative definite, as a
variance-covariance matrix must be, Inverse exists ⇒ Positive
definite
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Showing Positive definite ⇒ Eigenvalues positive
For example

Let A be square and symmetric as well as positive definite.

Spectral decomposition says A = PΛP′.

Using y′Ay > 0, let y be an eigenvector, say the third one.

Because eigenvectors are orthonormal,

y′Ay = y′PΛP′y

= ( 0 0 1 · · · 0 )


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




0
0
1
...
0


= λ3

> 0
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Square root matrices

Define

Λ1/2 =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn


So that

Λ1/2Λ1/2 =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn



√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λn



=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = Λ
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For a general symmetric matrix A

Define
A1/2 = PΛ1/2P′

So that

A1/2A1/2 = PΛ1/2P′PΛ1/2P′

= PΛ1/2 I Λ1/2P′

= PΛ1/2Λ1/2P′

= PΛP′

= A
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More about symmetric positive definite matrices
Show as exercises

Let A be symmetric and positive definite. Then
A−1 = PΛ−1P′.

Letting B = PΛ−1/2P′,

B =
(
A−1

)1/2
B =

(
A1/2

)−1
This justifies saying A−1/2 = PΛ−1/2P′
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/∼brunner/oldclass/431s31
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