More Linear Algebra ${ }^{1}$ STA431 Winter/Spring 2013

${ }^{1}$ See last slide for copyright information.

Overview

(1) Things you already know
(2) Trace
(3) Spectral decomposition
(4) Positive definite matrices
(5) Square root matrices

You already know about

- Matrices $\mathbf{A}=\left[a_{i j}\right]$
- Matrix addition and subtraction $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$
- Scalar multiplication $a \mathbf{B}=\left[a b_{i j}\right]$
- Matrix multiplication $\mathbf{A B}=\left[\sum_{k} a_{i k} b_{k j}\right]$
- Inverse $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$
- Transpose $\mathbf{A}^{\prime}=\left[a_{j i}\right]$
- Symmetric matrices $\mathbf{A}=\mathbf{A}^{\prime}$
- Determinants
- Linear independence

Linear independence

\mathbf{X} be an $n \times p$ matrix of constants. The columns of \mathbf{X} are said to be linearly dependent if there exists $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X v}=\mathbf{0}$. We will say that the columns of \mathbf{X} are linearly independent if $\mathbf{X v}=\mathbf{0}$ implies $\mathbf{v}=\mathbf{0}$.

For example, show that \mathbf{A}^{-1} exists implies that the columns of \mathbf{A} are linearly independent.

$$
\mathbf{A} \mathbf{v}=\mathbf{0} \Rightarrow \mathbf{A}^{-1} \mathbf{A} \mathbf{v}=\mathbf{A}^{-1} \mathbf{0} \Rightarrow \mathbf{v}=\mathbf{0}
$$

How to show $\mathbf{A}^{-1 /}=\mathbf{A}^{\prime-1}$

Suppose $\mathbf{B}=\mathbf{A}^{-1}$, meaning $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$. Must show two things: $\mathbf{B}^{\prime} \mathbf{A}^{\prime}=\mathbf{I}$ and $\mathbf{A}^{\prime} \mathbf{B}^{\prime}=\mathbf{I}$.

$$
\begin{aligned}
& \mathbf{A B}=\mathbf{I} \Rightarrow \mathbf{B}^{\prime} \mathbf{A}^{\prime}=\mathbf{I}^{\prime}=\mathbf{I} \\
& \mathbf{B A}=\mathbf{I} \Rightarrow \mathbf{A}^{\prime} \mathbf{B}^{\prime}=\mathbf{I}^{\prime}=\mathbf{I}
\end{aligned}
$$

Trace of a square matrix: Sum of the diagonal elements

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i, i}
$$

- Of course $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$, etc.
- But less obviously, even though $\mathbf{A B} \neq \mathbf{B A}$,
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$

$\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$

Let \mathbf{A} be an $r \times p$ matrix and \mathbf{B} be a $p \times r$ matrix, so that the product matrices $\mathbf{A B}$ and $\mathbf{B A}$ are both defined.

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A B}) & =\operatorname{tr}\left(\left[\sum_{k=1}^{p} a_{i, k} b_{k, j}\right]\right) \\
& =\sum_{i=1}^{r} \sum_{k=1}^{p} a_{i, k} b_{k, i} \\
& =\sum_{k=1}^{p} \sum_{i=1}^{r} b_{k, i} a_{i, k} \\
& \left.=\sum_{i=1}^{p} \sum_{k=1}^{r} b_{i, k} a_{k, i} \quad \text { (Switching } i \text { and } k\right) \\
& =\operatorname{tr}\left(\left[\sum_{k=1}^{r} b_{i, k} a_{k, j}\right]\right) \\
& =\operatorname{tr}(\mathbf{B A})
\end{aligned}
$$

Eigenvalues and eigenvectors

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $n \times n$ matrix, so that the following applies to square matrices. \mathbf{A} is said to have an eigenvalue λ and (non-zero) eigenvector \mathbf{x} corresponding to λ if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- Eigenvalues are the λ values that solve the determinantal equation $|\mathbf{A}-\lambda \mathbf{I}|=0$.
- The determinant is the product of the eigenvalues:

$$
|\mathbf{A}|=\prod_{i=1}^{n} \lambda_{i}
$$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $\mathbf{A}=\left[a_{i, j}\right]$ may be written

$$
\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\prime}
$$

where the columns of \mathbf{P} (which may also be denoted $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$) are the eigenvectors of \mathbf{A}, and the diagonal matrix $\boldsymbol{\Lambda}$ contains the corresponding eigenvalues.

$$
\mathbf{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Because the eigenvectors are orthonormal, \mathbf{P} is an orthogonal matrix; that is, $\mathbf{P P}^{\prime}=\mathbf{P}^{\prime} \mathbf{P}=\mathbf{I}$.

Positive definite matrices

The $n \times n$ matrix \mathbf{A} is said to be positive definite if

$$
\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}>0
$$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called non-negative definite (or sometimes positive semi-definite) if $\mathbf{y}^{\prime} \mathbf{A y} \geq 0$.

Example: Show $\mathbf{X}^{\prime} \mathbf{X}$ non-negative definite

Let \mathbf{X} be an $n \times p$ matrix of real constants and \mathbf{y} be $p \times 1$. Then $\mathbf{Z}=\mathbf{X y}$ is $n \times 1$, and

$$
\begin{aligned}
& \mathbf{y}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{y} \\
= & (\mathbf{X y})^{\prime}(\mathbf{X y}) \\
= & \mathbf{Z}_{\mathbf{\prime}}^{\mathbf{Z}} \\
= & \sum_{i=1}^{n} Z_{i}^{2} \geq 0
\end{aligned}
$$

Some properties of symmetric positive definite matrices Variance-covariance matrices are often assumed positive definite.

Positive definite
\Rightarrow All eigenvalues positive \Leftrightarrow Determinant positive
\Rightarrow Inverse exists \Leftrightarrow Columns (rows) linearly independent

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix must be, Inverse exists \Rightarrow Positive definite

Showing Positive definite \Rightarrow Eigenvalues positive For example

Let \mathbf{A} be square and symmetric as well as positive definite.

- Spectral decomposition says $\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\prime}$.
- Using $\mathbf{y}^{\prime} \mathbf{A y}>0$, let \mathbf{y} be an eigenvector, say the third one.
- Because eigenvectors are orthonormal,

$$
\mathbf{y}^{\prime} \mathbf{A y}=\mathbf{y}^{\prime} \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\prime} \mathbf{y}
$$

$$
=\left(\begin{array}{lllll}
0 & 0 & 1 & \cdots & 0
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)
$$

$$
=\lambda_{3}
$$

$$
>0
$$

Square root matrices

Define

$$
\boldsymbol{\Lambda}^{1 / 2}=\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)
$$

So that

$$
\begin{aligned}
\boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2}= & \left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)=\boldsymbol{\Lambda}
\end{aligned}
$$

For a general symmetric matrix \mathbf{A}

Define

$$
\mathbf{A}^{1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime}
$$

So that

$$
\begin{aligned}
\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2} & =\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime} \mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime} \\
& =\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{I} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime} \\
& =\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime} \\
& =\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\prime} \\
& =\mathbf{A}
\end{aligned}
$$

More about symmetric positive definite matrices

Show as exercises

Let A be symmetric and positive definite. Then $\mathbf{A}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{-1} \mathbf{P}^{\prime}$.

Letting $\mathbf{B}=\mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\prime}$,

$$
\begin{aligned}
& \mathbf{B}=\left(\mathbf{A}^{-1}\right)^{1 / 2} \\
& \mathbf{B}=\left(\mathbf{A}^{1 / 2}\right)^{-1}
\end{aligned}
$$

This justifies saying $\mathbf{A}^{-1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\prime}$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/431s31

