More Linear Algebra¹ STA431 Winter/Spring 2013

¹See last slide for copyright information.

Overview

- 1 Things you already know
- 2 Trace
- 3 Spectral decomposition
- 4 Positive definite matrices
- **5** Square root matrices

You already know about

- Matrices $\mathbf{A} = [a_{ij}]$
- Matrix addition and subtraction $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$
- Scalar multiplication $a\mathbf{B} = [a b_{ij}]$
- Matrix multiplication $\mathbf{AB} = \left[\sum_{k} a_{ik} b_{kj}\right]$
- Inverse $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- Transpose $\mathbf{A}' = [a_{ji}]$
- Symmetric matrices $\mathbf{A} = \mathbf{A}'$
- Determinants
- Linear independence

Linear independence

X be an $n \times p$ matrix of constants. The columns of **X** are said to be *linearly dependent* if there exists $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X}\mathbf{v} = \mathbf{0}$. We will say that the columns of **X** are linearly *independent* if $\mathbf{X}\mathbf{v} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$.

For example, show that \mathbf{A}^{-1} exists implies that the columns of \mathbf{A} are linearly independent.

$$Av = 0 \Rightarrow A^{-1}Av = A^{-1}0 \Rightarrow v = 0$$

Things you already know Trace Spectral decomposition Positive definite matrices Square root matrices

How to show $\mathbf{A}^{-1\prime} = \mathbf{A}^{\prime-1}$

Suppose $\mathbf{B} = \mathbf{A}^{-1}$, meaning $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$. Must show two things: $\mathbf{B'A'} = \mathbf{I}$ and $\mathbf{A'B'} = \mathbf{I}$.

$$\mathbf{AB} = \mathbf{I} \quad \Rightarrow \quad \mathbf{B'A'} = \mathbf{I'} = \mathbf{I} \\ \mathbf{BA} = \mathbf{I} \quad \Rightarrow \quad \mathbf{A'B'} = \mathbf{I'} = \mathbf{I}$$

Trace of a square matrix: Sum of the diagonal elements

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{i,i}.$$

- Of course $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$, etc.
- But less obviously, even though $AB \neq BA$,
- $tr(\mathbf{AB}) = tr(\mathbf{BA})$

$tr(\mathbf{AB}) = tr(\mathbf{BA})$

Let **A** be an $r \times p$ matrix and **B** be a $p \times r$ matrix, so that the product matrices **AB** and **BA** are both defined.

$$tr(\mathbf{AB}) = tr\left(\left[\sum_{k=1}^{p} a_{i,k} b_{k,j}\right]\right)$$
$$= \sum_{i=1}^{r} \sum_{k=1}^{p} a_{i,k} b_{k,i}$$
$$= \sum_{k=1}^{p} \sum_{i=1}^{r} b_{k,i} a_{i,k}$$
$$= \sum_{i=1}^{p} \sum_{k=1}^{r} b_{i,k} a_{k,i} \quad (\text{Switching } i \text{ and } k)$$
$$= tr\left(\left[\sum_{k=1}^{r} b_{i,k} a_{k,j}\right]\right)$$
$$= tr(\mathbf{BA})$$

Eigenvalues and eigenvectors

Let $\mathbf{A} = [a_{i,j}]$ be an $n \times n$ matrix, so that the following applies to square matrices. \mathbf{A} is said to have an *eigenvalue* λ and (non-zero) *eigenvector* \mathbf{x} corresponding to λ if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

- Eigenvalues are the λ values that solve the determinantal equation $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- The determinant is the product of the eigenvalues: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $\mathbf{A} = [a_{i,j}]$ may be written

$$\mathbf{A}=\mathbf{P}\mathbf{\Lambda}\mathbf{P}^{\prime},$$

where the columns of **P** (which may also be denoted $\mathbf{x}_1, \ldots, \mathbf{x}_n$) are the eigenvectors of **A**, and the diagonal matrix $\boldsymbol{\Lambda}$ contains the corresponding eigenvalues.

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Because the eigenvectors are orthonormal, \mathbf{P} is an orthogonal matrix; that is, $\mathbf{PP'} = \mathbf{P'P} = \mathbf{I}$.

Positive definite matrices

The $n \times n$ matrix **A** is said to be *positive definite* if

$\mathbf{y}'\mathbf{A}\mathbf{y} > 0$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called *non-negative definite* (or sometimes positive semi-definite) if $\mathbf{y}' \mathbf{A} \mathbf{y} \ge 0$.

Example: Show $\mathbf{X}'\mathbf{X}$ non-negative definite

Let **X** be an $n \times p$ matrix of real constants and **y** be $p \times 1$. Then **Z** = **Xy** is $n \times 1$, and

 $\mathbf{y}' (\mathbf{X}'\mathbf{X}) \mathbf{y}$ $= (\mathbf{X}\mathbf{y})'(\mathbf{X}\mathbf{y})$ $= \mathbf{Z}'\mathbf{Z}$ $= \sum_{i=1}^{n} Z_i^2 \ge 0$

Things you already know Trace Spectral decomposition **Positive definite matrices** Square root matrices

Some properties of symmetric positive definite matrices Variance-covariance matrices are often assumed positive definite.

Positive definite

- \Rightarrow All eigenvalues positive \Leftrightarrow Determinant positive
- \Rightarrow Inverse exists \Leftrightarrow Columns (rows) linearly independent

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix must be, Inverse exists \Rightarrow Positive definite

Things you already know Trace Spectral decomposition Positive definite matrices Square root matrices

Showing Positive definite \Rightarrow Eigenvalues positive For example

Let ${\bf A}$ be square and symmetric as well as positive definite.

- Spectral decomposition says $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$.
- Using $\mathbf{y}' \mathbf{A} \mathbf{y} > 0$, let \mathbf{y} be an eigenvector, say the third one.
- Because eigenvectors are orthonormal,

$$\mathbf{y}' \mathbf{A} \mathbf{y} = \mathbf{y}' \mathbf{P} \mathbf{\Lambda} \mathbf{P}' \mathbf{y}$$

$$= \begin{pmatrix} 0 & 0 & 1 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$= \lambda_3$$

$$> 0$$

Square root matrices

Define

$$\mathbf{\Lambda}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0\\ 0 & \sqrt{\lambda_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

So that

$$\begin{split} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} &= \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \\ &= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \mathbf{\Lambda} \end{split}$$

For a general symmetric matrix **A**

Define

$$\mathbf{A}^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}'$$

So that

$$\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{P}\mathbf{\Lambda}^{1/2}\mathbf{P}'\mathbf{P}\mathbf{\Lambda}^{1/2}\mathbf{P}'$$
$$= \mathbf{P}\mathbf{\Lambda}^{1/2}\mathbf{I}\mathbf{\Lambda}^{1/2}\mathbf{P}'$$
$$= \mathbf{P}\mathbf{\Lambda}^{1/2}\mathbf{\Lambda}^{1/2}\mathbf{P}'$$
$$= \mathbf{P}\mathbf{\Lambda}\mathbf{P}'$$
$$= \mathbf{A}$$

More about symmetric positive definite matrices Show as exercises

Let A be symmetric and positive definite. Then $A^{-1} = P \Lambda^{-1} P'$.

Letting $\mathbf{B} = \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}'$,

$$\mathbf{B} = (\mathbf{A}^{-1})^{1/2}$$
$$\mathbf{B} = (\mathbf{A}^{1/2})^{-1}$$

This justifies saying $\mathbf{A}^{-1/2} = \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}'$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/431s31