Instrumental Variables¹ STA431 Winter/Spring 2013

¹See last slide for copyright information.

Seeking identifiability

We have seen that in simple regression, parameters of a model with measurement error are not identifiable.

$$Y_i = \alpha_1 + \beta_1 X_i + \epsilon_i$$

$$W_i = \nu + X_i + e_i,$$

- For example, X might be income and Y might be credit card debt.
- Include another response variable Y_2 , like value of automobile.

Include a second response variable

- Response variable of primary interest is now called $Y_{i,1}$
- The second response variable $Y_{i,2}$ is called an *instrumental* variable.
- It's just a tool.

$$W_i = \nu + X_i + e_i$$

$$Y_{i,1} = \alpha_1 + \beta_1 X_i + \epsilon_{i,1}$$

$$Y_{i,2} = \alpha_2 + \beta_2 X_i + \epsilon_{i,2}$$

where X_i , e_i , $\epsilon_{i,1}$ and $\epsilon_{i,2}$ are all independent, $Var(X_i) = \phi$, $Var(e_i) = \omega$, $Var(\epsilon_{i,1}) = \psi_1$, $Var(\epsilon_{i,2}) = \psi_2$, $E(X_i) = \mu_x$ and the expected values of all error terms are zero. The regression coefficients α_j and β_j are unknown constants.

Are the parameters identifiable?

$$\begin{array}{rcl} W_{i} & = & \nu + X_{i} + e_{i} \\ Y_{i,1} & = & \alpha_{1} + \beta_{1}X_{i} + \epsilon_{i,1} \\ Y_{i,2} & = & \alpha_{2} + \beta_{2}X_{i} + \epsilon_{i,2} \end{array}$$

- Assume everything is normal: $\mathbf{D}_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- $\boldsymbol{\theta} = (\nu, \alpha_1, \alpha_2, \beta_1, \beta_2, \mu_x, \phi, \omega, \psi_1, \psi_2)$: Ten parameters.
- $\boldsymbol{\mu}$ is 3×1 .
- Σ is 3×3 .
- Nine moment structure equations in ten unknowns.

•

Look at the covariance structure equations We are pessimistic about the expected values

$$W_i = \nu + X_i + e_i$$

$$Y_{i,1} = \alpha_1 + \beta_1 X_i + \epsilon_{i,1}$$

$$Y_{i,2} = \alpha_2 + \beta_2 X_i + \epsilon_{i,2}$$

$$\boldsymbol{\Sigma} = V \begin{pmatrix} W_i \\ Y_{i,1} \\ Y_{i,2} \end{pmatrix} = \begin{bmatrix} \phi + \omega & \beta_1 \phi & \beta_2 \phi \\ & \beta_1^2 \phi + \psi_1 & \beta_1 \beta_2 \phi \\ & & & \beta_2^2 \phi + \psi_2 \end{bmatrix}$$

Six equations in six unknowns A unique solution is possible but not guaranteed

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{22} & \sigma_{23} \\ \sigma_{33} \end{bmatrix} = \begin{bmatrix} \phi + \omega & \beta_1 \phi & \beta_2 \phi \\ & \beta_1^2 \phi + \psi_1 & \beta_1 \beta_2 \phi \\ & & & \beta_2^2 \phi + \psi_2 \end{bmatrix}$$

Identifiability depends on where you are in the parameter space. Consider

- $\beta_1 = 0$ and $\beta_2 = 0$
- $\beta_1 = 0$ and $\beta_2 \neq 0$
- $\beta_1 \neq 0$ and $\beta_2 = 0$
- $\beta_1 \neq 0$ and $\beta_2 \neq 0$

The parameter β_1 is identifiable if $\beta_2 \neq 0$: $\beta_1 = \frac{\sigma_{23}}{\sigma_{13}}$.

Suppose both $\beta_1 \neq 0$ and $\beta_2 \neq 0$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{22} & \sigma_{23} \\ \sigma_{33} \end{bmatrix} = \begin{bmatrix} \phi + \omega & \beta_1 \phi & \beta_2 \phi \\ & \beta_1^2 \phi + \psi_1 & \beta_1 \beta_2 \phi \\ & & & \beta_2^2 \phi + \psi_2 \end{bmatrix}$$

$$\beta_1 = \frac{\sigma_{23}}{\sigma_{13}}$$
$$\beta_2 = \frac{\sigma_{23}}{\sigma_{12}}$$
$$\phi = \frac{\sigma_{12}\sigma_{13}}{\sigma_{23}}$$

Solve for ω , ψ_1 and ψ_2 by subtraction. Can write

$$\begin{split} & \omega = \sigma_{11} - \phi \\ & \psi_1 = \sigma_{22} - \beta_1^2 \phi \\ & \psi_2 = \sigma_{33} - \beta_2^2 \phi \end{split}$$

Without substituting for parameter that have already been identified. Don't need to give complete explicit solution. This shows it can be done.

What about the expected values?

$$\begin{array}{rcl} W_{i} & = & \nu + X_{i} + e_{i} \\ Y_{i,1} & = & \alpha_{1} + \beta_{1} X_{i} + \epsilon_{i,1} \\ Y_{i,2} & = & \alpha_{2} + \beta_{2} X_{i} + \epsilon_{i,2} \end{array}$$

$$\mu_1 = \nu + \mu_x$$

$$\mu_2 = \alpha_1 + \beta_1 \mu_x$$

$$\mu_3 = \alpha_2 + \beta_2 \mu_x$$

- Three equations in four unknowns, even assuming β_1 and β_2 known.
- Re-parameterize.

Re-parameterize

$$\mu_1 = \nu + \mu_x$$

$$\mu_2 = \alpha_1 + \beta_1 \mu_x$$

$$\mu_3 = \alpha_2 + \beta_2 \mu_x$$

- Absorb $\nu, \mu_x, \alpha_1, \alpha_2$ into μ .
- Parameter was $\boldsymbol{\theta} = (\nu, \mu_x, \alpha_1, \alpha_2, \beta_1, \beta_2, \phi, \omega, \psi_1, \psi_2)$
- Now it's $\boldsymbol{\theta} = (\mu_1, \mu_2, \mu_3, \beta_1, \beta_2, \phi, \omega, \psi_1, \psi_2)$
- Dimension of the parameter space is now one less.
- We haven't lost much.

One Explanatory Variable

Multiple Explanatory Variables

We haven't lost much especially because the model was already re-parameterized

Model is

$$\begin{array}{lll} W_i & = & \nu + X_i + e_i \\ Y_{i,1} & = & \alpha_1 + \beta_1 X_i + \epsilon_{i,1} \\ Y_{i,2} & = & \alpha_2 + \beta_2 X_i + \epsilon_{i,2} \end{array}$$

But of course there is measurement error in Y_1 and Y_2 . Recall

$$Y = \alpha + \beta X + \epsilon$$

$$V = \nu_0 + Y + e$$

$$= \nu_0 + (\alpha + \beta X + \epsilon) + e$$

$$= (\nu_0 + \alpha) + \beta X + (\epsilon + e)$$

$$= \alpha' + \beta X + \epsilon'$$

Summary

- Adding the instrumental variable didn't help identify the expected values and intercepts. That's hopeless.
- But we did identify β_1 , which is the most interesting parameter.
- Re-parameterizing, absorbed the intercepts and expected values into μ .
- Where β_1 and β_2 are both non-zero, the entire parameter vector is identifiable.
- For maximum likelihood estimation, it helps to have the *entire* parameter vector identifiable at the true parameter value.
- This is definitely a success.

Testing $H_0: \beta_1 = 0$ The most interesting null hypothesis

- The parameter β_1 is identifiable, so a valid test is possible.
- But the whole parameter *vector* is not identifiable when $\beta_1 = 0$.
- Technical conditions of the likelihood ratio test are not satisfied.
- It becomes quite "interesting."
- Likelihood ratio statistic actually has 2 df even though H_0 appears to impose only one restriction on the parameter.
- Too interesting.

•

It's better with two (or more) instrumental variables.

$$\begin{split} W_i &= \nu + X_i + e_i \\ Y_{i,1} &= \alpha_1 + \beta_1 X_i + \epsilon_{i,1} \\ Y_{i,2} &= \alpha_2 + \beta_2 X_i + \epsilon_{i,2} \\ Y_{i,3} &= \alpha_3 + \beta_3 X_i + \epsilon_{i,3}, \end{split}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \phi + \omega & \beta_1 \phi & \beta_2 \phi & \beta_3 \phi \\ & \beta_1^2 \phi + \psi_1 & \beta_1 \beta_2 \phi & \beta_1 \beta_3 \phi \\ & & & \beta_2^2 \phi + \psi_2 & \beta_2 \beta_3 \phi \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ \end{array} \right)$$

With two instrumental variables

- Again, identification of the expected values and intercepts is out of the question.
- So we re-parameterize,
- Absorbing the expected values and intercepts into µ = E(D_i)
- And look at the covariance structure equations.

Covariance structure equations

- Ten equations in eight unknowns.
- Unique solution possible but not guaranteed.
- Primary interest is still in β_1 .
- Assume $\beta_2 \neq 0$ and $\beta_3 \neq 0$, meaning only that Y_2 and Y_3 are well chosen.

One Explanatory Variable

Multiple Explanatory Variables

Solve for ϕ Assuming $\beta_2 \neq 0$ and $\beta_3 \neq 0$

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{33} & \sigma_{3,4} \\ & & & & & & & \\ \end{pmatrix} = \begin{pmatrix} \phi + \omega & \beta_1 \phi & \beta_2 \phi & \beta_3 \phi \\ & \beta_1^2 \phi + \psi_1 & \beta_1 \beta_2 \phi & \beta_1 \beta_3 \phi \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & &$$

$$\frac{\sigma_{13}\sigma_{14}}{\sigma_{34}} = \frac{\beta_2\beta_3\phi^2}{\beta_2\beta_3\phi} = \phi$$

Then all you have to write is

$$\begin{split} \omega &= \sigma_{11} - \phi \\ \beta_1 &= \frac{\sigma_{12}}{\phi} \\ \beta_2 &= \frac{\sigma_{13}}{\phi} \\ \beta_3 &= \frac{\sigma_{14}}{\phi} \\ \psi_1 &= \sigma_{22} - \beta_1^2 \phi \\ \psi_2 &= \sigma_{33} - \beta_2^2 \phi \\ \psi_3 &= \sigma_{44} - \beta_3^2 \phi \end{split}$$

Notice again how once we have solved for a model parameter, we may use it to solve for other parameters without explicitly substituting in terms of σ_{ij} .

Parameters can be recovered from the covariance matrix

$$\phi = \frac{\sigma_{13}\sigma_{14}}{\sigma_{34}} \qquad \beta_3 = \frac{\sigma_{14}}{\phi}$$

$$\omega = \sigma_{11} - \phi \qquad \psi_1 = \sigma_{22} - \beta_1^2 \phi$$

$$\beta_1 = \frac{\sigma_{12}}{\phi} \qquad \psi_2 = \sigma_{33} - \beta_2^2 \phi$$

$$\beta_2 = \frac{\sigma_{13}}{\phi} \qquad \psi_3 = \sigma_{44} - \beta_3^2 \phi$$

- Parameter vector is identifiable almost everywhere in the parameter space.
- Everywhere β_2 and β_3 are both non-zero
- $\beta_1 = 0 \Leftrightarrow \sigma_{12} = 0$ presents no problem.

But there is more than one way to recover the parameter values from Σ

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{33} & \sigma_{3,4} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & &$$

$$\beta_1 = \frac{\sigma_{12}\sigma_{34}}{\sigma_{13}\sigma_{14}}$$
$$\beta_1 = \frac{\sigma_{23}}{\sigma_{13}}$$
$$\beta_1 = \frac{\sigma_{24}}{\sigma_{14}}$$

Is there a problem?

$$\beta_1 = \frac{\sigma_{12}\sigma_{34}}{\sigma_{13}\sigma_{14}} = \frac{\sigma_{23}}{\sigma_{13}} = \frac{\sigma_{24}}{\sigma_{14}}$$

Does this mean the solution for β_1 is not "unique?"

- No everything is okay.
- If the parameters can be recovered from the covariances in any way at all, they are identifiable.
- If the model is correct, all the seemingly different ways must be the same.
- That is,

$$\frac{\sigma_{12}\sigma_{34}}{\sigma_{13}\sigma_{14}} = \frac{\sigma_{23}}{\sigma_{13}} \text{ and } \frac{\sigma_{12}\sigma_{34}}{\sigma_{13}\sigma_{14}} = \frac{\sigma_{24}}{\sigma_{14}}$$

• Simplifying a bit,

$$\sigma_{12}\sigma_{34} = \sigma_{14}\sigma_{23} = \sigma_{13}\sigma_{24}$$

Model implies two constraints on the covariance matrix

$\sigma_{12}\sigma_{34} = \sigma_{14}\sigma_{23} = \sigma_{13}\sigma_{24}$

- All three products equal $\beta_1 \beta_2 \beta_3 \phi^2$
- True even when some $\beta_j = 0$

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{33} & \sigma_{3,4} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & &$$

Model implies $\sigma_{12}\sigma_{34} = \sigma_{14}\sigma_{23} = \sigma_{13}\sigma_{24}$

- Parameter is identifiable.
- Ten equations in eight unknowns.
- Call the parameter *over-identifiable*.
- If there were the same number of equations as unknowns, it would be *just identifiable*.
- Model imposes two equality constraints (restrictions) on the covariance matrix: 10 8 = 2
- Sometimes called *over-identifying restrictions*.
- These are the constraints that are tested in the likelihood ratio test for goodness of fit.
- More instrumental variables can't hurt.

Multiple Explanatory Variables An example with just two explanatory variables (and two instrumental variables)

Independently for $i = 1, \ldots, n$,

$$W_{i,1} = \nu_1 + X_{i,1} + e_{i,1}$$

$$Y_{i,1} = \alpha_1 + \beta_1 X_{i,1} + \epsilon_{i,1}$$

$$Y_{i,2} = \alpha_2 + \beta_2 X_{i,1} + \epsilon_{i,2}$$

$$W_{i,2} = \nu_2 + X_{i,2} + e_{i,2}$$

$$Y_{i,3} = \alpha_3 + \beta_3 X_{i,2} + \epsilon_{i,3}$$

$$Y_{i,4} = \alpha_4 + \beta_4 X_{i,2} + \epsilon_{i,4}$$

where $E(X_{i,j}) = \mu_j$, $e_{i,j}$ and $\epsilon_{i,j}$ are independent of one another and of $X_{i,j}$, $Var(e_{i,j}) = \omega_j$, $Var(\epsilon_{i,j}) = \psi_j$, and

$$V\left(\begin{array}{c}X_{i,1}\\X_{i,1}\end{array}\right) = \left(\begin{array}{c}\phi_{11} & \phi_{12}\\\phi_{12} & \phi_{22}\end{array}\right)$$

As usual, intercepts and expected values can't be recovered individually

- Eight intercepts and expected values of latent variables.
- Six expected values of observable variables.
- Re-parameterize, absorbing them into μ_1, \ldots, μ_6 .
- Estimate with the vector of 6 sample means and set them aside, forever.

Covariance matrix of $(W_{i,1}, Y_{i,1}, Y_{i,2}, W_{i,2}, Y_{i,3}, Y_{i,4})'$

$$[\sigma_{ij}] =$$

$$\boldsymbol{\theta} = (\beta_1, \beta_2, \beta_3, \beta_4, \phi_{11}, \phi_{12}, \phi_{22}, \omega_1, \omega_2, \psi_1, \psi_2, \psi_3, \psi_4)$$

- Does this model pass the test of the parameter count rule?
- Where the parameter vector is identifiable, how many over-identifying restrictions are there?
- How many degrees of freedom in the likelihood ratio test for model fit?

Where is the entire parmeter vector identifiable?

- What happens if $\beta_1 = \beta_2 = 0$?
- Why is it reasonable to assume $\beta_2 \neq 0$ and $\beta_4 \neq 0$?
- In that case, what else do you need?
- Would any other condition identify the whole parameter vector?

My answer

EITHER

- One of β_1 and β_2 non-zero, and
- One of β_3 and β_4 non-zero, and
- $\phi_{12} \neq 0$

OR, all of β_1, \ldots, β_4 non-zero.

Could we get by with less information? If we wanted to identify just some interesting parameters?

- Usual rule in Econometrics is at least one instrumental variable for each explanatory variable.
- What if no instrumental variable for X_2 ?
- What if no response variables at all for X_2 ?

Observations

- Instrumental variables can solve some of the terrible problems with measurement error in regression.
- General rules like "At least one instrumental variable for each explanatory variable" are useful even if they are over-simplifications.
- Awareness of parameter identifiability is vital in the *planning* of data collection.
- Most observational data sets are collected without the right kind of planning.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/431s31