Confirmatory Factor Analysis: The Measurement Model¹ STA431 Winter/Spring 2013

¹See last slide for copyright information.

Section One

A confirmatory factor analysis model One Factor: Starting simply

$$Z_1 = \lambda_1 F + e_1$$

$$Z_2 = \lambda_2 F + e_2$$

$$Z_3 = \lambda_3 F + e_3$$

$$V(F) = V(e_1) = V(e_2) = V(e_3) = 1$$

F, e₁, e₂, e₃ all independent

$$V(Z_1) = 1 = \lambda^2 + V(e_1)$$

$$\Rightarrow \quad V(e_1) = 1 - \lambda_1^2, \text{ etc.}$$

Section One

Σ is a correlation matrix $Corr(X, Y) = \frac{Cov(X, Y)}{SD(X)SD(Y)}$

$$Z_1 = \lambda_1 F + e_1$$

$$Z_2 = \lambda_2 F + e_2$$

$$Z_3 = \lambda_3 F + e_3$$

$$\boldsymbol{\Sigma} = \begin{array}{cccc} & Z_1 & Z_2 & Z_3 \\ \hline Z_1 & 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ Z_2 & 1 & \lambda_2 \lambda_3 \\ Z_3 & & 1 \end{array}$$

- $\boldsymbol{\theta} = (\lambda_1, \lambda_2, \lambda_3)$
- The parameter space is an open cube.
- Are the parameters identifiable? What if just one is zero?

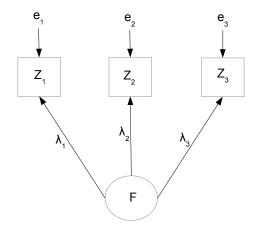
Suppose no factor loadings equal zero

$$\Sigma = \begin{pmatrix} 1 & \sigma_{12} & \sigma_{13} \\ & 1 & \sigma_{23} \\ & & 1 \end{pmatrix} = \begin{pmatrix} 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ & 1 & \lambda_2 \lambda_3 \\ & & 1 \end{pmatrix}$$
$$\lambda_1^2 = \frac{\sigma_{12} \sigma_{13}}{\sigma_{23}} = \frac{\lambda_1 \lambda_2 \lambda_1 \lambda_3}{\lambda_2 \lambda_3}$$
$$\lambda_2^2 = \frac{\sigma_{12} \sigma_{23}}{\sigma_{13}}$$
$$\lambda_3^2 = \frac{\sigma_{13} \sigma_{23}}{\sigma_{12}}$$

- Squared factor loadings are identifiable, but not the loadings.
- Replace λ_j with $-\lambda_j$, get same Σ
- Likelihood function will have two maxima, same height.
- Which one you find depends on where you start.

Section One

Solution: Decide on the sign of one loading Based on meaning



- Is F_1 math ability or math *inability*? You decide.
- It's just a matter of naming the factors.

If $\lambda_1 > 0$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1 & \sigma_{12} & \sigma_{13} \\ & 1 & \sigma_{23} \\ & & 1 \end{pmatrix} = \begin{pmatrix} 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ & 1 & \lambda_2 \lambda_3 \\ & & & 1 \end{pmatrix}$$

- Signs of λ_2 and λ_3 can be recovered right away from Σ .
- And all the parameters are identified.

Equality constraints

- Three parameters minus three correlations (equations) = ZERO.
- The inequality constraints are more slippery.

Section One

Inequality constraints Slippery devils

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1 & \sigma_{12} & \sigma_{13} \\ & 1 & \sigma_{23} \\ & & 1 \end{pmatrix} = \begin{pmatrix} 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ & 1 & \lambda_2 \lambda_3 \\ & & 1 \end{pmatrix}$$

•
$$\sigma_{12}\sigma_{13}\sigma_{23} = \lambda_1^2 \lambda_2^2 \lambda_3^2$$
, so $0 \le \sigma_{12}\sigma_{13}\sigma_{23} < 1$.

- But $\sigma_{12}\sigma_{13}\sigma_{23} < 1$ is true of *any* positive definite correlation matrix, so that's one inequality, not two.
- How about $\lambda_1^2 = \frac{\sigma_{12}\sigma_{13}}{\sigma_{23}}$ so $0 \le \frac{\sigma_{12}\sigma_{13}}{\sigma_{23}} < 1$?

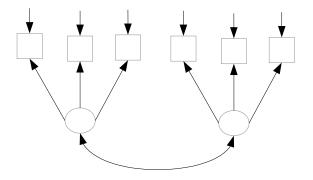
$$\begin{aligned} & \frac{\sigma_{12}\sigma_{13}}{\sigma_{23}}\frac{\sigma_{23}}{\sigma_{23}} < 1 \\ \Rightarrow & 0 \le \sigma_{12}\sigma_{13}\sigma_{23} < \sigma_{23}^2 \end{aligned}$$

Add another variable: $Z_4 = \lambda_4 F + e_4$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 & \lambda_1 \lambda_4 \\ & 1 & \lambda_2 \lambda_3 & \lambda_2 \lambda_4 \\ & & 1 & \lambda_3 \lambda_4 \\ & & & 1 \end{pmatrix}$$

- Parameters will all be identifiable as long as 3 out of 4 loadings are non-zero, and one sign is known.
- For example, if $\lambda_1 = 0$ then the top row = 0 and you can get $\lambda_2, \lambda_3, \lambda_4$ as before.
- For 5 variables, two loadings can be zero, etc.
- How many equality restrictions? 6 4 = 2.
- Inequality restrictions? It's like an Easter egg hunt.

Now add another factor



 $Z_1 = \lambda_1 F_1 + e_1$ \vdots $Z_6 = \lambda_6 F_2 + e_6$

Correlation matrix of observable variables

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 & \lambda_1 \lambda_4 \phi_{12} & \lambda_1 \lambda_5 \phi_{12} & \lambda_1 \lambda_6 \phi_{12} \\ & 1 & \lambda_2 \lambda_3 & \lambda_2 \lambda_4 \phi_{12} & \lambda_2 \lambda_5 \phi_{12} & \lambda_2 \lambda_6 \phi_{12} \\ & 1 & \lambda_3 \lambda_4 \phi_{12} & \lambda_3 \lambda_5 \phi_{12} & \lambda_3 \lambda_6 \phi_{12} \\ & 1 & \lambda_4 \lambda_5 & \lambda_4 \lambda_6 \\ & & 1 & \lambda_5 \lambda_6 \\ & & & 1 \end{pmatrix}$$

- Identify $\lambda_1, \lambda_2, \lambda_3$ from set 1
- Identify $\lambda_4, \lambda_5, \lambda_6$ from set 2
- Identify ϕ_{12} from any unused correlation.
- What if you added more variables?
- What if you added more factors?
- What if observed variables were centered but not standardized?

Three-variable identification rule

For a factor analysis model, the parameters will be identifiable provided

- Errors are independent of one another and of the factors.
- Variances of factors equal one.
- Each observed variable is a function of only one factor.
- There are at least three observable variables with non-zero loadings per factor.
- The sign of one non-zero loading is known for each factor.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/431s31