\documentclass[12pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb %\usepackage{graphicx} % To include pdf files! \usepackage{pdfpages} % Include full pages of pdf files; thank you Cristina! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \usepackage{fullpage} % Good for US Letter paper %\usepackage{fancyheadings} %\pagestyle{fancy} %\cfoot{Page \thepage {} of 2} %\headrulewidth=0pt % Otherwise there's a rule under the header \pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 431s13 Formulas}}\footnote{This formula sheet was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistics, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \href{http://www.utstat.toronto.edu/~brunner/oldclass/312f12} {\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/431s13}} }\\ \vspace{1 mm} \end{center} %\noindent \begin{center} \renewcommand{\arraystretch}{1.5} \begin{tabular}{ll} $E(g(X)) = \int_{-\infty}^\infty g(x) \, f_{_X}(x) \, dx$, & or $E(g(X)) = \sum_x g(x) \, p_{_X}(x) $ \\ $Var(X) = E[(X-\mu_{_X})^2]$ & $Cov(X,Y) = E[(X-\mu_{_X})(Y-\mu_{_Y})]$ \\ $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$ & %$\boldsymbol{\Sigma} = \mathbf{P}\boldsymbol{\Lambda}\mathbf{P}^\prime$ \\ If $W=X+e$, & Reliability is $Corr(W,X)^2 = \frac{\sigma^2_X}{\sigma^2_X+\sigma^2_e}$ \\ $V(\mathbf{X}) = E\left\{(\mathbf{X}-\boldsymbol{\mu}_x)(\mathbf{X}-\boldsymbol{\mu}_x)^\prime\right\}$ & $C(\mathbf{X,Y}) = E\left\{ (\mathbf{X}-\boldsymbol{\mu}_x) (\mathbf{Y}-\boldsymbol{\mu}_y)^\prime\right\}$ \\ \multicolumn{2}{l} {If $\mathbf{X} \sim N(\boldsymbol{\mu},\boldsymbol{\Sigma} )$, then $\mathbf{AX} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^\prime )$.} \end{tabular} \renewcommand{\arraystretch}{1.0} \end{center} \vspace{3mm} \begin{displaymath} \begin{array}{l} f(\mathbf{x}_i|\boldsymbol{\mu,\Sigma}) = \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}} (2 \pi)^{\frac{k}{2}}} \exp\left[ -\frac{1}{2} (\mathbf{x}_i-\boldsymbol{\mu})^\prime \boldsymbol{\Sigma}^{-1}(\mathbf{x}_i-\boldsymbol{\mu})\right] \\ \\ L(\boldsymbol{\mu,\Sigma}) = |\boldsymbol{\Sigma}|^{-n/2} (2\pi)^{-nk/2} \exp -\frac{n}{2}\left\{ tr(\boldsymbol{\widehat{\Sigma}\Sigma}^{-1}) + (\overline{\mathbf{x}}-\boldsymbol{\mu})^\prime \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}}-\boldsymbol{\mu}) \right\}, \mbox{ where} \\ \\ \displaystyle{\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i - \overline{\mathbf{x}} \right) \left(\mathbf{x}_i - \overline{\mathbf{x}} \right)^\prime} \end{array} \end{displaymath} \begin{eqnarray*} \mathbf{Y}_i &=& \boldsymbol{\beta} \mathbf{Y}_i + \boldsymbol{\Gamma} \mathbf{X}_i + \boldsymbol{\epsilon}_i \\ && V(\mathbf{X}_i)=\boldsymbol{\Phi}_{11} \mbox{ and } V(\boldsymbol{\epsilon}_i)=\boldsymbol{\Psi} \\ \\ \mathbf{F}_i &=& \left( \begin{array}{c} \mathbf{X}_i \\ \mathbf{Y}_i \end{array} \right) \\ && V(\mathbf{F}_i) = \boldsymbol{\Phi} = \left( \begin{array}{c c} V(\mathbf{X}_i) & C(\mathbf{X}_i,\mathbf{Y}_i) \\ C(\mathbf{Y}_i,\mathbf{X}_i) & V(\mathbf{Y}_i) \end{array} \right) = \left( \begin{array}{c c} \boldsymbol{\Phi}_{11} & \boldsymbol{\Phi}_{12} \\ \boldsymbol{\Phi}_{12}^\prime & \boldsymbol{\Phi}_{22} \\ \end{array} \right) \\ \\ \mathbf{D}_i &=& \boldsymbol{\Lambda}\mathbf{F}_i + \mathbf{e}_i \\ && V(\mathbf{e}_i) = \boldsymbol{\Omega} \end{eqnarray*} \vspace{3mm} \begin{center} \textbf{Please see identifiability rules on the reverse.} \end{center} \includepdf[pages={-}]{LittleIdentRules} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% with $T$ the true score and $X$ observed,