
STA 431s13 Assignment Six1

For the SAS question, please bring your log and list files to the quiz. Do not write anything
on the printouts except your name and student number. The other questions are just practice
for the quiz on Friday March 1st, and are not to be handed in.

1. Independently for i = 1, . . . , n, let

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2

Yi,1 = β1Xi,1 + εi,1

Yi,2 = β2Xi,2 + εi,2

Yi,3 = β3Xi,1 + β4Xi,2 + εi,3

where

• The Xi,j variables are latent, while the Wi,j and Yi,j variables are observable.

• ei,1 ∼ N(0, ω1) and ei,2 ∼ N(0, ω2).

• εi,j ∼ N(0, ψj) for j = 1, 2, 3.

• ei,j and εi,j are independent of each other and of Xi,j.

• Xi,j have expected value zero and

V

(
Xi,1

Xi,2

)
=

(
φ11 φ12

φ12 φ22

)
.

Denote the vector of observable data by Di = (Wi,1,Wi,2, Yi,1, Yi,2, Yi,3)
′, with V (Di) =

Σ = [σij].

Among other things, this question illustrates how the search for identifiability can
be supported by exploratory data analysis. Hypotheses about single covariances, like
H0 : σij = 0 can be tested without effort by looking at tests of the corresponding
correlations. These tests are produced automatically by proc corr.

(a) What is the parameter vector θ for this model?

(b) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No
and give the numbers.

(c) Calculate the variance-covariance matrix of the observable variables. Show your
work.

(d) The parameter φ12 is identifiable. How?

1Copyright information is at the end of the last page.
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(e) Suppose β1 = 0. Why is the parameter β1 identifiable? Of course the same applies
to β2.

(f) But the idea here is that Y1 and Y2 are instrumental variables, so that β1 6= 0 and
β2 6= 0. What hypotheses about single covariances would you test to verify this?

(g) From this point on, suppose we have verified β1 6= 0 and β2 6= 0. Under what
circumstances (that is, where in the parameter space) can the parameters β1 and
β2 be easily identified?

(h) What hypotheses about single covariances would you test to persuade yourself
that this is okay?

(i) Assuming the last step worked out well, give a formula for β1 in term of σij values.

(j) Suppose you were sure φ12 6= 0, but you were not so sure about normality so
you were uncomfortable with maximum likelihood estimation. Suggest a nice
estimator of β2. Why are you sure it is consistent? Note that even if you were
interested in the MLE, this estimate would be an excellent starting value.

(k) Suppose your test for φ12 = 0 did not reject the null hypothesis, so dividing by
σ12 makes you uncomfortable. Show that even if φ12 = 0, there is another way
to identify β1. What assumption to you have to make (that is, where in the
parameter space does the true parameter vector have to be) for this to work?
How would you test it?

(l) How could you identify β2 if φ12 = 0?

(m) In question 1j, you gave an estimator for β2 that is consistent in most of the
parameter space. Based on your answer to the preceding question, give a second
estimator for β2 that is consistent in most of the parameter space. It should be
geometrically obvious that except for a set of volume zero in the parameter space,
both estimators are consistent.

(n) Assuming β1 and β2 are identifiable one way or the other, now we seek to identify
φ11 and φ22. How can this be done? Give the formulas. Also, give a consistent
estimator of φ22 that is not the MLE. Why are you sure it’s consistent?

(o) Since Y1 and Y2 are instrumental variables, primary interest is in β3 and β4, the
coefficients linking Y3 to X1 and X2. If our efforts so far have been successful
(which they are, except on a set of volume zero in the parameter space), then β3
and β4 can be identified as the solution to two linear equations in two unknowns.
Write these equations in matrix form.

(p) What condition on the φij values ensure a unique solution to the two equations
in two unknowns? Is this a lot to ask?

(q) Now let’s back up, and admit that the identification of β3 and β4 is really the
whole point, since they are the parameters of interest. We have seen that φ12 is
always identifiable. If φ12 6= 0, it can be used to identify β1 and β2, and they can
be used to identify φ11 and φ22. Then β3 and β4 can be identified by solving the
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two equations in two unknowns. Now suppose that φ12 = 0. In this case β3 and
β4 can be identified without knowing the values of φ11 and φ22, provided β1 and
β2 are non-zero. Show how this can be done.

(r) Assuming that the parameters appearing in the covariances of Σ are identifiable,
the additional 5 parameters (whch appear only in the variances) may be identified
by subtraction. So we see that except on a set of volume zero in the parameter
space, all the parameters are identifiable. In that region, how many equality
constraints should the model impose on the covariance matrix? Use your answer
to Question 1b.

(s) To see what the equality constraints are, note that earlier parts of this question
point to two ways of identifying β1 and two ways of identifying β2. There are also
two simple ways to identify φ12. So write down the three constraints. Multiply
through by the denominators.

(t) Now you have three equalities involving products of σij terms. For each one, use
your covariance matrix to write both sides in terms of the model parameters. For
each equality, does it hold everywhere in the parameter space, or are there some
points in the parameter space where it does not hold? If there are points in the
parameter space where an equality does not hold, state the set explicitly.

(u) The idea here is that the three degrees of freedom in the likelihood ratio test
of model fit correspond to three equalities involving the covariances, and those
equalities are directly testable without the normality assumption2 required by the
likelihood ratio test. State the null hypothesis (there’s just one) in terms of the
σij quantities.

(v) If the null hypothesis were rejected, what would you conclude about the model?

(w) In ordinary multivariate regression (which has more than one response variable),
it is standard to assume the error terms for the response variable may have non-
zero covariance. Suppose, then, that Cov(εi,1, εi,2) = ψ12. How would this change
the covariance matrix?

(x) Always remembering that β1 and β2 are non-zero, suppose that φ12 = 0. Is ψ12

identifiable? What if φ12 6= 0?

(y) Well, what if there were non-zero covariances ψ13 and ψ23 as well? What does the
parameter count rule tell you?

(z) Again by the parameter count rule, φ12 6= 0 is absolutely necessary to identify the
entire parameter if all three ψij are added to the model. Why? In this case, are
ψ13 and ψ23 identifiable? Why or why not?

2It’s true that I have not told you how to do this yet, but it’s not hard.
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2. Question 3 (the SAS part of this assignment) will use the Longitudinal IQ Data. IQ is
short for “Intelligence Quotient,” and IQ tests are attempts to measure intelligence. A
score of 100 is considered average, while scores above 100 are above average and scores
below 100 are below average. Most IQ tests have many sub-parts, including vocabulary
tests, math tests, logical puzzles, tests of spatial reasoning, and so on. What the better
tests probably succeed in doing is to measure one kind of intelligence – potential for
doing well in school. And of course they measure it with error.

In the Longitudinal IQ Data, the IQs of adopted children were measured at ages 2, 4, 8
and 13. The birth mother’s IQ was assessed at the time of adoption, and the adoptive
mother’s education (in years) was also recorded. The variables are

• Adoptive mother’s education

• Birth mother’s IQ

• IQ at age 2

• IQ at age 4

• IQ at age 8

• IQ at age 13

In our dreams, we wish for a regression model in which the explanatory variables are
adoptive mother’s actual education (a latent variable), birth mother’s true IQ (also
latent), and child’s IQ at ages 2, 4, 8 and 13 — all latent. Well, adoptive mother’s
education has only one measurement and no convincing instrumental variables, so we’ll
reluctantly set it aside for now.

(a) To show you know what’s going on, write down a model for just the IQ part of
the data. My model has 5 latent variables and 5 observable variables. Give all the
details. It has been verified many times that IQ scores have a normal distribution,
so for once the normal distribution assumption is very reasonable.

(b) As usual, set the intercepts and expected values aside. Calculate the covariance
matrix in terms of the model parameters.

(c) Does the model pass the test of the parameter count rule? Give the numbers.

(d) To get out of this mess, we re-parameterize, combining the variance of ε and the
variance of e into a single parameter. This is equivalent to adopting a model with
no measurement error in the response variables. So now we have a model that has
one explanatory variable measured with error, and 4 response variables measured
without error. Write the covariance matrix for this model, which you can mostly
just copy from your earlier work.

(e) Show that the parameters of your model (anyway, those appearing in the covari-
ance matrix) are identifiable. What do you need to assume? What hypotheses
would you test about single sigmaij quantities to verify this?
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(f) How many degrees of freedom should there be in the likelihood ratio test for model
fit? The answer is a number.

(g) Suppose you want to test whether all the regression coefficients are equal, using
a likelihood ratio test.

i. What are the degrees of freedom for this test?

ii. If you reject H0, what will you conclude about how the birth mother’s IQ is
related to the child’s IQ at various ages?

3. The longitudinal IQ data are given in the file origIQ.data. These data are taken
from The Statistical Sleuth by F. Ramsey and D. Schafer, and are reproduced without
permission. There is a link on the course web page in case the one in this document
does not work. Note there are n = 62 cases, so please verify that you are reading the
correct number of cases.

(a) Start by reading the data and then running proc corr to produce a correlation
matrix (with tests) of all the variables, including adoptive mother’s education.
The proc corr procedure is illustrated in SAS Example One.

(b) How are the proc corr results helpful in justifying your identifiability calculations
from the last question?

(c) Remember your model model that has one explanatory variable measured with
error, and 4 response variables measured without error? We’ll call this the full
model. Please fit the full model.

(d) Sticking strictly to the α = 0.05 significance level, does the full model fit the data
adequately? Answer Yes or No, and give a value of G2, the degrees of freedom
and the p-value. These numbers are all directly on your printout. Do the degrees
of freedom agree with your answer to Question 2f?

(e) Now fit the reduced model in which all the regression coefficients are equal. Us-
ing a calculator (or proc IML if you want to), calculate the likelihood ratio test
comparing the full and reduced models. Obtain G2, a number.

(f) What are the degrees of freedom for this test? Compare your answer to Ques-
tion 2(g)i.

(g) Using this table of critical values, do you reject H0 at α = 0.05? Answer Yes or
No. Does birth mother’s IQ seem to affect her child’s IQ to the same degree at
different ages?

> df = 1:8

> CriticalValue = qchisq(0.95,df)

> round(rbind(df,CriticalValue),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

df 1.000 2.000 3.000 4.000 5.00 6.000 7.000 8.000

CriticalValue 3.841 5.991 7.815 9.488 11.07 12.592 14.067 15.507
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(h) That was interesting, but now let’s bring in adoptive mother’s education. We
wonder whether, controlling for birth mother’s true IQ, adoptive mother’s true
education is related to the child’s true IQ. Write the model equations, using
notation similar to Question 1. There are now two regression coefficients for each
response variable. Don’t bother with the intercepts.

(i) Calculate the covariance matrix in terms of the model parameters. Does this
model pass the test of the parameter count rule?

(j) There is still hope. Your model has a term φ12, representing the covariance
between birth mother’s true IQ and adoptive mother’s true education. But unless
the adoption agency acted in a very peculiar way, there is no reason these variables
should be related. Furthermore, it’s testable without actually fitting the model
under consideration. Locate the test on your printout (it’s there) and give the
p-value.

(k) This is exploratory data analysis, so let’s tentatively accept the (null) hypothesis
φ12 = 0. Under this assumption, your covariance matrix simplifies quite a bit.
Either re-write it, or else circle the terms with φ12, to remind yourself that they
equal zero.

(l) The regression coefficients linking adoptive mother’s education to child’s IQ at
various ages are now identifiable, meaning they are identifiable at points in the
parameter space where φ12 = 0. Recover one of them from the covariance matrix
just to show you can do it.

(m) Under the null hypothesis that adoptive mother’s true education has no effect on
child’s IQ at any age, four covariances in Σ should be zero (assuming φ12 = 0, of
course). Which ones are they?

(n) Give the p-values, numbers from your printout. What do you conclude? Do these
data support a link between adoptive mother’s education and child’s IQ?

This story could be continued a bit more, but that’s pretty good. The lesson is that
valid inference about a latent variable may be possible even when the model parameters
cannot be estimated.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, Uni-
versity of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0
Unported License. Use any part of it as you like and share the result freely. The LATEX source
code may be found at In Appendix A and at the end of Chapter 0 in the textbook:

http://www.utstat.toronto.edu/∼brunner/openSEM
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