STA 431s13 Assignment Five¹

All these questions are just practice for the quiz on Feb. 15th, and are not to be handed in. The first question is a deliberate repeat from last week. If you did it already, that's great.

1. Here is a multivariate regression model with no intercept and no measurement error. Independently for i = 1, ..., n,

$$\mathbf{Y}_i = \boldsymbol{eta} \mathbf{X}_i + \boldsymbol{\epsilon}_i$$

where

 \mathbf{Y}_i is an $q \times 1$ random vector of observable response variables, so the regression can be multivariate; there are q response variables.

 \mathbf{X}_i is a $p \times 1$ multivariate normal observable random vector; there are p explanatory variables. \mathbf{X}_i has expected value zero and variance-covariance matrix $\mathbf{\Phi}$, a $p \times p$ symmetric and positive definite matrix of unknown constants.

 β is a $q \times p$ matrix of unknown constants. These are the regression coefficients, with one row for each response variable and one column for each explanatory variable.

 ϵ_i is the error term of the latent regression. It is an $q \times 1$ multivariate normal random vector with expected value zero and variance-covariance matrix Ψ , a $q \times q$ symmetric and positive definite matrix of unknown constants. ϵ_i is independent of \mathbf{X}_i .

- (a) Calculate the variance-covariance matrix of the observable variables. It's a partitioned matrix. Show your work.
- (b) Write down the moment structure equations. These are matrix equations.
- (c) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No and give the numbers.
- (d) Are the parameters of this model identifiable? Answer Yes or No and prove your answer. If the answer is no, all you need is a simple numerical example of two different parameter vectors that yield the same probability distribution for the sample data.

¹Copyright information is at the end of the last page.

2. Independently for $i = 1, \ldots, n$, let

$$Y_i = \beta X_i + \epsilon_i$$

 $W_{i,1} = X_i + e_{i,1}$
 $W_{i,2} = X_i + e_{i,2}$
 $V_i = Y_i + e_{i,3}$

where

- X_i and Y_i are latent variables, while $W_{i,1}$, $W_{i,2}$ and V_i are observable.
- X_i is a normally distributed *latent* variable with mean zero and variance $\phi > 0$
- ϵ_i is normally distributed with mean zero and variance $\psi > 0$
- $e_{i,1}$ is normally distributed with mean zero and variance $\omega_1 > 0$
- $e_{i,2}$ is normally distributed with mean zero and variance $\omega_2 > 0$
- $e_{i,3}$ is normally distributed with mean zero and variance $\omega_3 > 0$
- X_i , ϵ_i , $e_{i,1}$, $e_{i,2}$ and $e_{i,3}$ are all independent of one another.
- (a) What is the parameter vector $\boldsymbol{\theta}$ for this model?
- (b) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No and give the numbers.
- (c) Calculate the variance-covariance matrix of the observable variables. Show your work.
- (d) Is the parameter β identifiable? Answer Yes and prove it.
- (e) Give a simple numerical example to show that the entire parameter vector is not identifiable.
- (f) This model places one equality constraint on the covariance matrix. What is it?
- (g) What null hypothesis could you test about the covariances σ_{ij} to challenge the model? What would you conclude if H_0 were rejected? Hint: the null hypothesis contains an = sign.
- (h) You can also use the model to deduce more than one testable *inequality* involving the variances and covariances. Give at least two.

3. Let

$$W_i = X_i + e_i$$

$$Y_{i,1} = \beta_1 X_i + \epsilon_{i,1}$$

$$Y_{i,2} = \beta_2 X_i + \epsilon_{i,2}$$

where X_i , e_i , $\epsilon_{i,1}$ and $\epsilon_{i,2}$ are all independent, $Var(X_i) = \phi$, $Var(e_i) = \omega$, $Var(\epsilon_{i,1}) = \psi_1$, $Var(\epsilon_{i,2}) = \psi_2$, and all the expected values are zero. The explanatory variable X_i is latent, while W_i , $Y_{i,1}$ and $Y_{i,2}$ are observable

- (a) What is the parameter vector $\boldsymbol{\theta}$ for this model?
- (b) Does this problem pass the test of the Parameter Count Rule? Answer Yes or No and give the numbers.
- (c) Calculate the variance-covariance matrix of the observable variables. Show your work.
- (d) The parameter of primary interest is β_1 . Is β_1 identifiable at points in the parameter space where $\beta_1 = 0$? Why or why not?
- (e) Give a simple numerical example to show that β_1 is not identifiable at points in the parameter space where $\beta_1 \neq 0$ and $\beta_2 = 0$.
- (f) Is β_1 identifiable at points in the parameter space where $\beta_2 \neq 0$? Answer Yes or No and prove your answer.
- (g) Show that the entire parameter vector is identifiable at points in the parameter space where $\beta_1 \neq 0$ and $\beta_2 \neq 0$.
- (h) It is reasonable to assume $\beta_2 \neq 0$, since Y_2 is an instrumental variable and we assume it's well chosen. So at points in the parameter space where $\beta_2 \neq 0$, what *two* equality constraints on the elements of Σ are implied by $H_0: \beta_1 = 0$?
- (i) Assuming $\beta_1 \neq 0$ and $\beta_2 \neq 0$, you can use the model to deduce more than one testable *inequality* involving the variances and covariances. Give at least one example.

4. This example shows that sometimes, another explanatory variable can be as useful as an instrumental variable. Independently for i = 1, ..., n, let

$$W_{i,1} = \nu_1 + X_{i,1} + e_{i,1}$$

$$Y_{i,1} = \alpha_1 + \beta_1 X_{i,1} + \epsilon_{i,1}$$

$$W_{i,2} = \nu_2 + X_{i,2} + e_{i,2}$$

$$Y_{i,2} = \alpha_2 + \beta_2 X_{i,2} + \epsilon_{i,2},$$

where $E(X_{i,j}) = \mu_j$, $e_{i,j}$ and $\epsilon_{i,j}$ are independent of one another and of $X_{i,j}$, $Var(e_{i,j}) = \omega_j$, $Var(\epsilon_{i,j}) = \psi_j$, and

$$V\left(\begin{array}{c}X_{i,1}\\X_{i,1}\end{array}\right) = \left(\begin{array}{cc}\phi_{11} & \phi_{12}\\\phi_{12} & \phi_{22}\end{array}\right).$$

- (a) Calculate the variance-covariance matrix of the observable variables. Show your work.
- (b) Show that β_1 and β_2 are identifiable provided $\phi_{12} \neq 0$.
- (c) Are there any other points in the parameter space where β_1 is identifiable? β_2 ?
- (d) Give one testable equality constraint (a statement about the σ_{ij} quantities) that is implied by the model. Is it still true with $\phi_{12} = 0$? $\beta_1 = 0$? $\beta_2 = 0$?
- (e) Suppose you wanted to estimate β_1 . Suggest a *statistic* (function of the sample data) to serve as an estimator.
- (f) Is your estimator consistent? Under what circumstances? You don't have to prove anything in detail.
- (g) If the primary interest is in β_1 , do we really need the response variable $Y_{i,2}$?

5. In this problem, $Y_{i,1}$ is the dependent variable of primary interest, while $Y_{i,2}$ and $Y_{i,3}$ are instrumental variables. The point of the question is that the error terms of instrumental variables need not all be independent.

Independently for $i = 1, \ldots, n$,

$$\begin{array}{rcl} Y_{i,1} &=& \beta_{0,1} + \beta_{1,1} X_i + \epsilon_{i,1} \\ Y_{i,2} &=& \beta_{0,2} + \beta_{1,2} X_i + \epsilon_{i,2} \\ Y_{i,3} &=& \beta_{0,3} + \beta_{1,3} X_i + \epsilon_{i,3} \\ W_i &=& X_i + e_i \end{array}$$

where

- $X_i \sim N(\mu_x, \phi)$ is a latent variable
- $e_i \sim N(0, \omega)$
- $\boldsymbol{\epsilon}_i = (\epsilon_{i,1}, \epsilon_{i,2}, \epsilon_{i,3})'$
- X_i , e_i and ϵ_i are independent of one another
- $\boldsymbol{\epsilon}_i$ is multivariate normal with mean zero and covariance matrix

$$\Psi = \begin{bmatrix} \psi_{1,1} & \psi_{1,2} & 0\\ \psi_{1,2} & \psi_{2,2} & \psi_{2,3}\\ 0 & \psi_{2,3} & \psi_{3,3} \end{bmatrix}.$$

- (a) What is the parameter vector $\boldsymbol{\theta}$ for this model?
- (b) How many moment structure equations are there. You do not have to say what they are; just give a number. Don't forget the means.
- (c) Does this problem pass the test of the Counting Rule? Answer Yes or No.
- (d) Calculate the variance-covariance matrix of the observable variables. Remember that some covariances between errors are non-zero. Show your work.
- (e) Solving the complete set of moment structure equations can be done² but it's a big chore. The primary interest is in the parameter $\beta_{1,1}$. Show that just this parameter is identifiable.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code may be found at In Appendix A and at the end of Chapter 0 in the textbook:

http://www.utstat.toronto.edu/~brunner/openSEM

²Even the intercepts are identifiable from the mean vector μ , because there is no measurement bias term in this model. That's unrealistic, of course.