
Chapter 0

Regression with measurement error

Introduction

This chapter attempts to accomplish two purposes. First, it is a self-contained introduc-
tion to linear regression with measurement error in the independent variables, suitable as
a supplement to an ordinary regression course. Second, it is an introduction to the study
of structural equation models in general. Without confronting the general formulation at
first, the student will learn why structural equation models are important and see what
can be done with them. Some of the ideas and definitions are repeated later in the book,
so that the theoretical treatment of structural equation modeling does not depend much
on this chapter. On the other hand, the material in this chapter will be used throughout
the rest of the book as a source of examples. It should not be skipped by most readers.

0.1 Regression: Conditional or Unconditional?

Consider the usual version of univariate multiple regression. For i = 1, . . . , n,

Yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βp−1xi,p−1 + εi,

where ε1, . . . εn are independent random variables with expected value zero and common
variance σ2, and xi,1, . . . xi,p−1 are fixed constants. For testing and constructing confidence
intervals, ε1, . . . εn are typically assumed normal.

Alternatively, the regression model may be written in matrix notation, as follows. Let

Y = Xβ + ε, (1)

where X is an n×p matrix of known constants, β is a p×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In; the variance
σ2 > 0 is a constant.

Now please take a step back and think about this model, rather than just accepting
it without question. In particular, think about why the x variables should be constants.
It’s true that if they are constants then all the calculations are easier, but in the typical
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application of regression to observational1 data, it makes more sense to view the inde-
pendent variables as random variables rather than constants. Why? Because if you took
repeated samples from the same population, the values of the independent variables would
be different each time. Even for an experimental study with random assignment of cases
(say dogs) to experimental conditions, suppose that the data are recorded in the order
they were collected. Again, with high probability the values of the independent variables
would be different each time.

So, why are the x variables a set of constants in the formal model? One response is
that the regression model is a conditional one, and all the conclusions hold conditionally
upon the values of the independent variables. This is technically correct, but consider the
reaction of a zoologist using multiple regression, assuming he or she really appreciated
the point. She would be horrified at the idea that the conclusions of the study would be
limited to this particular configuration of independent variable values. No! This sample
was taken from a population, and the conclusions should apply to that population, not
to subsets of the population with these particular values of the independent variables.

At this point you might be a bit puzzled and perhaps uneasy, realizing that you have
accepted something uncritically from authorities you trusted, even though it seems to be
full of holes. In fact, everything is okay this time. It is perfectly all right to apply a
conditional regression model even though the predictors are clearly random. But it’s not
so very obvious why it’s all right, or in what sense it’s all right. This section will give the
missing details. These are skipped in every regression textbook I have seen; I’m not sure
why.

Unbiased Estimation Under the standard conditional regression model (1), it is straight-

forward to show that the vector of least-squares regression coefficients β̂ is unbiased for
β (both of these are p × 1 vectors). This means that it’s unbiased conditionally upon
X = x. In symbols,

E{β̂|X = x} = β.

Using the double expectation formula E{Y } = E{E{Y |X}},

E{β̂} = E{E{β̂|X = x}} = E{β] = β,

since the expected value of a constant is just the constant. This means that estimates
of the regression coefficients from the conditional model are still unbiased, even when the
independent variables are random.

The following observation might make the calculation of expected value a bit clearer.
The outer expected value is with respect to the joint probability distribution of the inde-
pendent variable values – all n vectors of them; think of the n × p matrix X. To avoid

1Observational data are just observed, rather than being controlled by the investigator. For example,
the number of minutes outside per day could be recorded for a sample of dogs. In contrast to observa-
tional data are experimental data, in which the values of the variable in question are controlled by the
investigator. For example, dogs could be randomly assigned to several different values of the variable
“time outside.” Based on this, some dogs would always be taken for longer walks than others.
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unfamiliar notation, suppose they are all continuous, with joint density f(x). Then

E{β̂} = E{E{β̂|X = x}}

=

∫
· · ·
∫
E{β̂|X = x} f(x) dx

=

∫
· · ·
∫

β f(x) dx

= β

∫
· · ·
∫
f(x) dx

= β · 1 = β.

Size α Tests Suppose Model (1) is conditionally correct, and we plan to use an F test.
Conditionally upon the x values, the F statistic has an F distribution when the null
hypothesis is true, but unconditionally it does not. Rather, its distribution is a mixture
of F s, with

Pr{F ∈ A} =

∫
· · ·
∫
Pr{F ∈ A|X = x}f(x) dx.

If the null hypothesis is true and the set A is the critical region for an exact size α F -test,
then Pr{F ∈ A|X = x} = α for every fixed set of independent variable values x. In that
case,

Pr{F ∈ A} =

∫
· · ·
∫
αf(x) dx

= α

∫
· · ·
∫
f(x) dx (2)

= α.

So, the so-called F -test has the correct Type I error rate when the independent variables
are random (assuming the model is conditionally correct), even though the test statistic
does not have an F distribution.

It might be objected that if the independent variables are random and we assume they
are fixed, the resulting estimators and tests might be of generally low quality, even though
the estimators are unbiased and the tests have the right Type I error rate. Now we will
see that given a fairly reasonable set of assumptions, this objection has no merit.

Denoting the independent variable values by X and the dependent variable values by
Y, suppose the joint distribution of X and Y has the following structure. The distribution
of X depends on a parameter vector θ1. Conditionally on X = X, the distribution of
Y depends on a parameter vector θ2, and θ1 and θ2 are not functionally related. For a
standard regression model this means that the distribution of the independent variables
does not depend upon the values of β or σ2 in any way. This is surely not too hard to
believe.

But please notice that the model just described is not at all limited to linear regression.
It is very general, covering almost any conceivable regression-like method including logistic
regression and other forms of non-linear regression, generalized linear models and the like.
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Because likelihoods are just joint densities or probability mass functions viewed as
functions of the parameter, the notation of Appendix A.4.4 may be stretched just a little
bit to write the likelihood function for the unconditional model (with X random) in terms
of conditional densities as

L(θ1,θ2,x,y) = fθ1,θ2(x,y)

= fθ2(y|x) fθ1(x)

= L2(θ2,x,y)L1(θ1,x) (3)

Now, take the log and partially differentiate with respect to the elements of θ2. The
marginal likelihood L1(θ1,x) disappears, and θ̂2 is exactly what it would have been for a
conditional model.

In this setting, likelihood ratio tests are also identical under conditional and uncon-
ditional models. Suppose the null hypothesis concerns θ2, which is most natural. Note
that the structure of (3) guarantees that the MLE of θ1 is the same under the null and

alternative hypotheses. Letting θ̂0,2 denote the restricted MLE under H0, the likelihood
ratio for the unconditional model is

λ =
L2(θ̂0,2,x,y)L1(θ̂1,x)

L2(θ̂2,x,y)L1(θ̂1,x)

=
L2(θ̂0,2,x,y)

L2(θ̂2,x,y)
,

which again is exactly what it would have been under a conditional model. While this
holds only because the likelihood has the nice structure in (3), it’s a fairly reasonable
assumption.

Thus in terms of both estimation and hypothesis testing, the fact that independent
variables are usually random variables presents no difficulty, regardless of what the distri-
bution of those independent variables may be. On the contrary, the conditional nature of
the usual regression model is a great virtue. Notice that in all the calculations above, the
joint distribution of the independent variables is written in a very general way. It really
doesn’t matter what it is, because it disappears.

It turns out that there is a very serious problem with applying standard regression
methods to observational data2, but it’s not because the independent variables are ran-
dom. It’s because they are random and measured with error.

Exercises 0.1

1. Everybody knows that V ar(Yi) = σ2 for a regression model, but that’s really a
conditional variance. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

2Please notice how radical this claim is. Regression methods are applied to observational data all the
time, and we teach students how to do it in almost every Statistics class where regression is mentioned.
I am saying that this standard practice a very bad idea. It’s not wrong theoretically; the theory is great.
But the applications are almost guaranteed to be misleading. See Section 0 for details.
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where ε1, . . . εn are independent random variables with expected value zero and
common variance σ2, E(Xi,1) = µ1, V ar(Xi,1) = σ2

1, E(Xi,2) = µ2, V ar(Xi,2) = σ2
2,

and Cov(Xi,1, Xi,2) = κ. Calculate V ar(Yi); show your work.

2. Suppose that the model (1) has an intercept. How many integral signs are there in
the second line of (2)? The answer is a function of n and p.

3. The usual univariate multiple regression model with independent normal errors is

Y = Xβ + ε,

where X is an n × p matrix of known constants, β is a p × 1 vector of unknown
constants, and ε is multivariate normal with mean zero and covariance matrix σ2In,
with σ2 > 0 an unknown constant. But of course in practice, the independent
variables are random, not fixed. Clearly, if the model holds conditionally upon the
values of the independent variables, then all the usual results hold, again condition-
ally upon the particular values of the independent variables. The probabilities (for
example, p-values) are conditional probabilities, and the F statistic does not have
an F distribution, but a conditional F distribution, given X = x.

(a) Show that the least-squares estimator β̂ = (X′X)−1X′Y is conditionally unbi-
ased.

(b) Show that β̂ is also unbiased unconditionally.

(c) A similar calculation applies to the significance level of a hypothesis test. Let
F be the test statistic (say for an extra-sum-of-squares F -test), and fc be the
critical value. If the null hypothesis is true, then the test is size α, conditionally
upon the independent variable values. That is, P (F > fc|X = x) = α. Find
the unconditional probability of a Type I error. Assume that the independent
variables are discrete, so you can write a multiple sum.

0.2 Measurement error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel doing the measuring. In fact, very
few of the variables in the typical data set are measured completely without error.

One might think that for experimentally manipulated variables like the amount of drug
administered in a biological experiment, laboratory procedures would guarantee that for
all practical purposes, the amount of drug a subject receives is exactly what you think
it is. But Alison Fleming (University of Toronto Psychology department) pointed out to
me that when hormones are injected into a laboratory rat, the amount injected is exactly
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right, but due to tiny variations in needle placement, the amount actually reaching the
animal’s bloodstream can vary quite a bit. The same thing applies to clinical trials of drugs
with humans. We will see later, though, that the statistical consequences of measurement
error are not nearly as severe with experimentally manipulated variables, assuming the
study is well-controlled in other respects.

Random variables that cannot be directly observed are called latent variables. The ones
we can observe are sometimes called “manifest,” but here they will be called “observed”
or “observable,” which is also a common usage. Upon reflection, it is clear that most of
the time, we are interested in relationships among latent variables, but at best our data
consist only of their imperfect, observable counterparts. One is reminded of the allegory
of the cave in Plato’s Republic, where human beings are compared to prisoners in a cave,
with their heads chained so that they can only look at a wall. Behind them is a fire,
which casts flickering shadows on the wall. They cannot observe reality directly; all they
can see are the shadows.

0.2.1 A simple additive model for measurement error

Measurement error can take many forms. For categorical variables, there is classification
error. Suppose a data file indicates whether or not each subject in a study has ever had
a heart attack. Clearly, the latent Yes-No variable (whether the person has truly had a
heart attack) does not correspond perfectly to what is in the data file, no matter how
careful the assessment is. Mis-classification can and does occur, in both directions.

Here, we will put classification error aside because it is technically very difficult, and
focus on a very simple form of measurement error that applies to continuous variables.
There is a latent random variable X that cannot be observed, and a little random shock
e that pushes X up or down, producing an observable random variable W . That is,

W = X + e (4)

Let’s say E(X) = µ, E(e) = 0, V ar(X) = σ2
X , V ar(e) = σ2

e , and Cov(X, e) = 0. Because
X and e are uncorrelated,

V ar(W ) = V ar(X) + V ar(e) = σ2
X + σ2

e .

So, it is impossible to tell how much of the variance in the observable variable W comes
from variation in the true quantity of interest, and how much comes from random noise.

In psychometric theory3, the reliability4 of a measurement is defined as the squared
correlation of the true score with the observed score. Here the “true score” is X and the

3Psychometric theory is the statistical theory of psychological measurement. The bible of psychometric
theory is Lord and Novick’s (1968) classic Statistical theories of mental test scores [4]. It is not too
surprising that measurement error would be acknowledged and studied by psychologists. A large sector
of psychological research employs “measures” of hypothetical constructs like neuroticism or intelligence
(mostly paper-and-pencil tests), but no sensible person would claim that true value of such a trait is
exactly the score on the test. It’s true there is a famous quote “Intelligence is whatever an intelligence
test measures.” I have tried unsuccessfully to track down the source of this quote, and I now suspect that
it is just an illustration of a philosophic viewpoint called Logical Positivism (which is how I first heard
it), and not a serious statement about intelligence measurement.

4Reliability has a completely unrelated meaning in survival analysis, and I believe yet another meaning
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“observed score” is W . Recalling the definition of a correlation,

Corr(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
,

we have the reliability of the measurement W equal to

ρ =

(
Cov(X,W )

SD(X)SD(W )

)2

=

(
σ2
X√

σ2
X

√
σ2
X + σ2

e

)2

=
σ4
X

σ2
X(σ2

X + σ2
e)

=
σ2
X

σ2
X + σ2

e

. (5)

That is, the reliability of a measurement is the proportion of the measurement’s variance
that comes from the true quantity being measured, rather than from measurement error.

A reliability of one means there is no measurement error at all, while a reliability of zero
means the measurement is pure noise. In the social sciences, reliabilities above 0.9 could be
called excellent, from 0.8 to 0.9 good, and from 0.7 to 0.8 acceptable. Frequently, responses
to single questions have reliabilities that are much less than this. To see why reliability
depends on the number of questions that measure the latent variable, see Exercise 7 at
the end of this section.

Since reliability represents quality of measurement, estimating it is an important goal.
Using the definition directly is seldom possible. Reliability is the squared correlation
between a latent variable and its observable counterpart, but by definition, values of the
latent variable cannot be observed. This means another approach is needed.

On rare occasions and perhaps with great expense, it may be possible to obtain perfect
or near-perfect measurements on a subset of the sample; the term gold standard is some-
times applied to such measurements. In that case, the reliability of the usual measurement
can be estimated by a squared sample correlation between the usual measurement and
the gold standard measurement. But even measurements that are called gold standard
are seldom truly free of measurement error. Consequently, reliabilities that are estimated
by correlating imperfect gold standards and ordinary measurements are biased downward:
See Exercise 4 at the end of this section.

Test-retest reliability Suppose that it is possible to make the measurement of W
twice, in such a way that the errors of measurement are independent on the two occasions.
We have

W1 = X + e1

W2 = X + e2,

in statistical quality control.
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where E(X) = µ, V ar(X) = σ2
X , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and X, e1
and e2 are all independent. Because V ar(e1) = V ar(e2), W1 and W2 are called equivalent
measurements. That is, they are contaminated by error to the same degree.

It turns out that the correlation between W1 and W2 is exactly equal to the reliability,
and this opens the door to reasonable methods of estimation. The calculation (like many
throughout this course) is greatly simplified by the following fact. Calculating variances
and covariances can be greatly simplified by assuming that all expected values are zero, even
though they may not be. The answer will be the same. For the proof, see formula (A.11)
and the discussion that follows in Section A.3.1 of Appendix A.

So, assuming without loss of generality that µ = 0,

Corr(W1,W2) =
Cov(W1,W2)

SD(W1)SD(W2)

=
E(W1W2)√

σ2
X + σ2

e

√
σ2
X + σ2

e

=
E(X + e1)(X + e2)

σ2
X + σ2

e

=
E(X2) + 0 + 0 + 0

σ2
X + σ2

e

=
σ2
X

σ2
X + σ2

e

, (6)

which is the reliability.

The calculation above is the basis of test-retest reliability5, in which the reliability of
a measurement such as an educational or psychological test is estimated by the sample
correlation between two independent administrations of the test. That is, the test is given
twice to the same sample of individuals, ideally long enough apart so they forget how they
answered the first time.

Correlated measurement error Notice that if participants remembered their wrong
answers or lucky guesses from the first time they took an educational test and just gave
the same answer the second time, the result would be a positive correlation between the
measurement errors e1 and e2. This would mess everything up. Throughout this course we
will return again and again to the issue of correlated errors of measurement. For now, just
notice how careful planning of the data collection (in this case, the time lag between the
two administrations of the test) can eliminate or at least reduce the correlation between

5Closely related to test-retest reliability is alternate forms reliability, in which you correlate two
equivalent versions of the test. In split-half reliability, you split the items of the test into two equivalent
subsets and correlate them. There are also internal consistency estimates of reliability based on corre-
lations among items. Assuming independent errors of measurement for split half reliability and internal
consistency reliability is largely a fantasy.
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errors of measurement. In general, the best way to take care of correlated measurement
error is with good research design.

The Sample Test-retest Reliability Again, suppose it is possible to measure a vari-
able of interest twice, in such a way that the errors of measurement are uncorrelated
and have equal variance. Then the reliability may be estimated by doing this for a ran-
dom sample of individuals. Let X1, . . . , Xn be a random sample of latent variables (true
scores), with E(Xi) = µ and V ar(Xi) = σ2

X . Independently for i = 1, . . . , n, let

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2,

where E(ei,1) = E(ei,2) = 0, V ar(ei,1) = V ar(ei,2) = σ2
e , and Xi, ei,1 and ei,2 are all inde-

pendent for i = 1, . . . , n. Then the sample correlation between the pairs of measurements
is

Rn =

∑n
i=1(Wi,1 −W 1)(Wi,2 −W 2)√∑n

i=1(Wi,1 −W 1)2

√∑n
i=1(Wi,2 −W 2)2

=

∑n
i=1Wi,1Wi,2 − nW 1W 2√∑n

i=1W
2
i,1 − nW

2

1

√∑n
i=1W

2
i,2 − nW

2

2

=
( 1
n

∑n
i=1Wi,1Wi,2) − W 1W 2√

( 1
n

∑n
i=1W

2
i,1)−W

2

1

√
( 1
n

∑n
i=1W

2
i,2)−W

2

2

, (7)

where the subscript on the sample correlation coefficient Rn emphasizes that it is a func-
tion of the sample size n. By the Strong Law of Large Numbers (see Appendix A.5), we
have the following:

1

n

n∑
i=1

Wi,1Wi,2
a.s.→ E(Wi,1Wi,2) = Cov(Wi,1,Wi,2) + E(Wi,1)E(Wi,2) = σ2

X + µ2

W 1
a.s.→ E(Wi,1) = µ

W 2
a.s.→ E(Wi,2) = µ

1

n

n∑
i=1

W 2
i,1

a.s.→ E(W 2
i,1) = V ar(Wi,1) + (E{Wi,1})2 = σ2

X + σ2
e + µ2

1

n

n∑
i=1

W 2
i,2

a.s.→ E(W 2
i,2) = V ar(Wi,2) + (E{Wi,2})2 = σ2

X + σ2
e + µ2.
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Now, since Rn is a continuous function of the various sample moments in (7) and almost
sure convergence can be treated like an ordinary limit,

Rn
a.s.→ σ2

X + µ2 − µ2√
σ2
X + σ2

e + µ2 − µ2
√
σ2
X + σ2

e + µ2 − µ2

=
σ2
X

σ2
X + σ2

e

= ρ.

So Rn is a strongly consistent estimator of the reliability. That is, for a large enough
sample size, Rn will get arbitrarily close to the true reliability, and this happens with
probability one. Notice that this was a limits problem and not a variance-covariance
computation, so there was no assumption of zero expected values – even though the limit
calculation also works out for that restricted case.

Exercises 0.2.1

1. Calculate expression (5) for the reliability, showing the details that were skipped.
The point of this question (besides exercising your variance-covariance muscles and
keeping you busy so you don’t have a personal life) is to see whether you feel
comfortable assuming µ = 0 even though it may not be.

2. In a study of diet and health, suppose we want to know how much snack food each
person eats, and we “measure” it by asking a question on a questionnaire. Surely
there will be measurement error, and suppose it is of a simple additive nature. But
we are pretty sure people under-report how much snack food they eat, so a model
like (4) with E(e) = 0 is hard to defend. Instead, let

W = ν +X + e,

where E(X) = µ, E(e) = 0, V ar(X) = σ2
X , V ar(e) = σ2

e , and Cov(X, e) = 0 The
unknown constant ν could be called measurement bias. Calculate the reliability of
W for this model. Is it the same as (5), or does ν 6= 0 make a difference?

3. Continuing Exercise 2, suppose that two measurements of W are available.

W1 = ν1 +X + e1

W2 = ν2 +X + e2,

where E(X) = µ, V ar(X) = σ2
T , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and
X, e1 and e2 are all independent. Calculate Corr(W1,W2). Does this correlation
still equal the reliability?

4. Let X be a latent variable, W = X + e1 be the usual measurement of X with error,
and G = X + e2 be a measurement of X that is deemed “gold standard,” but of
course it’s not completely free of measurement error. It’s better than W in the sense
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that 0 < V ar(e2) < V ar(e1), but that’s all you can really say. This is a realistic
scenario, because nothing is perfect. Accordingly, let

W = X + e1

G = X + e2,

where E(X) = µ, V ar(X) = σ2
X , E(e1) = E(e2) = 0, V ar(e1) = σ2

1, V ar(e2) = σ2
2

and that X, e1 and e2 are all independent of one another. Prove that the squared
correlation between W and G is strictly less than the reliability. Show your work.

The idea here is that the squared population correlation6 between an ordinary mea-
surement and an imperfect gold standard measurement is strictly less than the actual
reliability of the ordinary measurement. If we were to estimate such a squared cor-
relation by the corresponding squared sample correlation, all we would be doing is
estimating a quantity that is not the reliability. On the other hand, we would be
estimating a lower bound for the reliability — and this could be reassuring if it is a
high number.

5. In this continuation of Exercise 4, show what happens when you calculate the
squared sample correlation between a usual measurement and an imperfect gold
standard. It’s just what you would think.

6. Suppose we have two equivalent measurements with uncorrelated measurement er-
ror:

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
X , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e ,
and X, e1 and e2 are all independent. What if we were to measure the true score
X by adding the two imperfect measurements together? Would the result be more
reliable?

(a) Let S = W1+W2. Calculate the reliability of S. Is there any harm in assuming
µ = 0?

(b) Suppose you take k independent measurements (in psychometric theory, these
would be called equivalent test items). What is the reliability of S =

∑k
i=1Wi?

Show your work.

(c) What happens as the number of measurements k →∞?

6When we do Greek-letter calculations, we are figuring out what is happening in the population from
which a data set might be a random sample.
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7. Suppose we have two equivalent measurements with correlated measurement error:

W1 = X + e1

W2 = X + e2,

where E(X) = µ, V ar(X) = σ2
X , E(e1) = E(e2) = 0, V ar(e1) = V ar(e2) = σ2

e , and
e1 and e2 are all independent of X but Cov(e1, e2) = κ. Calculate Corr(W1,W2);
show your work. What is the relationship of your answer to the reliability if κ > 0
(which is typical of correlated measurement error)? The point of this question is
that correlated measurement errors are more the rule than the exception in practice,
and it’s poison.

0.3 The consequences of ignoring measurement error

in regression

This section will show what happens in multiple regression when measurement error in the
independent variables is ignored. It turns out that measurement error in the dependent
variable is a less serious problem, and will be dealt with later.

0.3.1 One Independent Variable

Example 0.3.1.1 Independently for i = 1, . . . , n,

Yi = β0 + β1Xi + εi

Wi = Xi + ei,

where V ar(Xi) = σ2
X , V ar(ei) = σ2

e , and Xi, ei, εi are all independent.
Unfortunately, the independent variable Xi canot be observed; it is a latent variable.

So instead Wi is used in its place, and the data analyst fits the naive model

Yi = β0 + β1Wi + εi.

Under the naive model, the least squares estimate β̂1 is

β̂1 =

∑n
i=1(Wi −W )(Yi − Y )∑n

i=1(Wi −W )2

=
σ̂w,y
σ̂2
w

a.s.→ Cov(W,Y )

V ar(W )

= β1

(
σ2
X

σ2
X + σ2

e

)
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That is when the fuzzy independent variable Wi is used instead of the real thing, β̂1

converges to the true regression coefficient, but multiplied by the reliability. That it
it’s biased, even as the sample size approaches infinity, but biased toward zero because
reliability is between zero and one. More discussion is needed here.

• No asymptotic bias when β = 0

• No inflation of Type I error rate

• Loss of power when β 6= 0

Measurement error just makes relationship seem weaker than it is. This seems reassuring,
but watch out!

0.3.2 Two Independent Variables

In this version there are two independent variables measured with error.

Example 0.3.2.1 Independently for i = 1, . . . , n,

Yi = β0 + β1Xi,1 + β2Xi,2 + εi

Wi,1 = Xi,1 + ei,1

Wi,2 = Xi,2 + ei,2,

where where E(Xi,1) = µ1, E(Xi,2) = µ2, E(εi) = E(ei,1) = E(ei,2) = 0, V ar(εi) = σ2,
V ar(ei,1) = ω1, V ar(ei,2) = ω2, the errors εi, ei,1 and ei,2 are all independent, Xi,1 is
independent of εi, ei,1 and ei,2, Xi,2 is independent of εi, ei,1 and ei,2, and

V ar

[
Xi,1

Xi,1

]
=

[
φ11 φ12

φ12 φ22

]
.

Again, because the actual indepenent varibles Xi,1 and Xi,2 are latent variables that cannot
be observed, Wi,1 and Wi,2 are used in their place. The data analyst fits the naive model

Yi = β0 + β1Wi,1 + β2Wi,2 + εi.

The interest is in testing the relationship of X2 to Y controlling for X1. The null
hypothesis is H0 : β2 = 0. When this null hypothesis is true, we have

β̂2
a.s.→ β1φ1,2ω1

(φ1,1 + ω1)(φ2,2 + ω2)

=

(
ω1

φ1,1 + ω1

)(
β1φ1,2

φ2,2 + ω2

)
Combined with estimated standard error going almost surely to zero, Get t statistic

for H0 : β2 = 0 going to plus/minus infinity, and p-value going almost Surely to zero,
unless
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• There is no measurement error in W1, or

• There is no relationship between X1 and Y , or

• There is no correlation between X1 and X2.

And, anything that increases V ar(W2) will decrease the bias.

0.3.3 A large scale simulation study

This was covered in lecture.

0.4 Modeling measurement error

It is clear that ignoring measurement error in regression can yield conclusions that are
very misleading. But as soon as we try building measurement error into the statistical
model, we encounter a technical issue that must be dealt with almost at every turn:
parameter identifiability. For comparison, first consider a regression model without mea-
surement error, where everything is nice. This is not quite the standard model, because
the independent variables are random variables. General principles arise right away, so
definitions will be prvided as we go.

0.4.1 Unconditional regression without measurement error

Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (8)

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi and εi are independent.

Under this model the pairs (Xi, Yi) are bivariate normal, with

E

(
Xi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx

β0 + β1µx

)
,

and variance covariance matrix

V

(
Xi

Yi

)
= Σ = [σi,j] =

[
φ β1φ
β1φ β2

1φ+ ψ

]
.
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Definition 0.4.1 Moments of a distribution are quantities such E(X), E(Y 2), V ar(X),
E(X2Y 2), Cov(X, Y ), and so on.

Definition 0.4.2 Moment structure equations are a set of equations expressing moments
of the distribution of the data in terms of the model parameters. If the moments involed are
limited to variances and covariances, the moment structure equations are called covariance
structure equations.

For the regression Model (8), the moments structure equations are

µ1 = µx (9)

µ2 = β0 + β1µx

σ1,1 = φ

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

Here, the moments are the elements of the mean vector µ, and the unique elements of
the covariance matrix Σ. This is a system of 5 equations in five unknowns, and may be
readily be solved to yield

µx = µ1 (10)

β0 = µ2 −
σ1,2

σ1,1

µ1

β1 =
σ1,2

σ1,1

φ = σ1,1

ψ = σ2,2 −
σ2

1,2

σ1,1

.

The existence of this nice solution is quite revealing. It tells us that the parameters of
the normal regression Model (8) stand in a one-to-one-relationship with the mean and
covariance matrix of the bivariate normal distribution posessed by the observable data.
In fact, the two sets of parameter values are 100% equivalent; they are just different ways
of expressing the same thing. For some purposes, the parameterization represented by
the regression model may be more informative.

This finding extends to multivariate multiple regression – that is, to linear regression
with multiple independent variables and multiple dependent variables. Setting this aside
for the present, let us admit that Xi is probably measured with error in Model (8).

0.4.2 A first try at including measurement error

The following is basically the true model of Example 0.3.1.1, with everything normally
distributed. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (11)

Wi = ν +Xi + ei,
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where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei is normally distributed with mean zero and variance ω > 0

• Xi, ei, εi are all independent.

The intercept term ν could be called “measurement bias.” If Xi is true amount of exercise
per week and Wi is reported amount of exercise per week, ν is the average amount by
which people exaggerate.

Data from Model (11) are just the pairs (Wi, Yi) for i = 1, . . . , n. The true independent
variable Xi is a latent variable whose value cannot be known exactly. The model implies
that the (Wi, Yi) are independent bivariate normal with

E

(
Wi

Yi

)
= µ =

(
µ1

µ2

)
=

(
µx + ν

β0 + β1µx

)
,

and variance covariance matrix

V

(
Wi

Yi

)
= Σ = [σi,j] =

[
φ+ ω β1φ
β1φ β2

1φ+ ψ

]
.

There is a big problem here, and the moment structure equations reveal it.

µ1 = µx + ν (12)

µ2 = β0 + β1µx

σ1,1 = φ+ ω

σ1,2 = β1φ

σ2,2 = β2
1φ+ ψ.

It is impossible to solve these five equations for the seven model parameters7. That is, even
with perfect knowledge of the probability distribution of the data (for the multivariate
normal, that means knowing µ and Σ, period), it would be impossible to know the model
parameters.

To make the problem clearer, look at the table below. It shows two diferent set of
parameter values θ1 and θ2 that both yield the same mean vector and covariance matrix,
and hence the exact same distribution of the observable data.

µx β0 ν β1 φ ω ψ
θ1 0 0 0 1 2 2 3
θ2 0 0 0 2 1 3 1

7That’s a strong statement, and a strong Theorem is coming.
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Both θ1 and θ2 imply a bivariate normal distribution with mean zero and covariance
matrix

Σ =

[
4 2
2 5

]
,

and thus the same distribution of the sample data.
No matter how large the sample size, it will be impossible to decide between θ1 and

θ2, because they imply exactly the same probability distribution of the observable data.
The problem here is that the parameters of Model (11) are not identifiable. This calls for
a brief discussion of identifiability, a topic to which we shall return again and again.

0.4.3 Parameter Identifiability

Definition 0.4.3 A Statistical Model is a set of assertions that partly8 specify the prob-
ability distribution of a set of observable data.

Definition 0.4.4 Suppose a statistical model implies D ∼ Pθ,θ ∈ Θ. If no two points in
Θ yield the same probability distribution, then the parameter θ is said to be identifiable.
On the other hand, if there exist θ1 and θ2 in Θ with Pθ1 = Pθ2, the parameter θ is not
identifiable.

Theorem 1 If the parameter vector is not identifiable, consistent estimation for all points
in the parameter space is impossible.

In Figure 1, θ1 and θ2 are two distinct sets of parameter values for which the distribu-
tion of the observable data is the same. Let Tn be a estimator that is consistent for both

Figure 1: Two parameters values yielding the same probability distribution

Consistent Estimation is 
Impossible 

θ1 and θ2. What this means is that if θ1 is the correct parameter value, eventually as n
increases, the probability distribution of Tn will be concentrated in the circular neighbor-
hood around θ1. And if θ1 is the correct parameter value, it the probability distribution
will be concentrated around θ2.

But the probability distribution of the data, and hence of Tn (a function of the data)
is identical for θ1 and θ2. This means that for a large enough sample size, most of Tn’s

8Suppose that the distribution is assumed known except for the value of a parameter vector θ. So the
distribution is “partly” specified.
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probability distribution must be concentrated in the neighborhood around θ1, and it must
be concentrated in the neighborhood around θ2. This is impossible, since the two regions
do not overlap, and there can be no such consistent estimator Tn.

Theorem 1 says why parameter identifiability is so important. Without it, even an
infinite amount of data cannot reveal the values of the parameters.

In the discussion of model identification, the definitions are in terms of the distribution
of the observable data. But we will be using a multivariate normal model, for which the
distribution of the observable data corresponds exactly to the pair (µ,Σ). That means
that in practice, the parameter vector is identifiable if it can be recovered from µ and Σ,
and most of the time it will be “recovered” by solving the moment structure equations,
or at least verifying that a solution exists. Why does this work? Because if the parameter
vector is a function of the moments (which correspond to the distribution of the data),
then it is impossible for two different parameter values to yield the same distribution,
because functions produce only one value of their arguments.

Surprisingly often, whether a set of parameter values can be recovered from the mo-
ments depends on where in the parameter space those values are located. That is, the
parameter vector may be identifiable at some points but not others.

Definition 0.4.5 The parameter is said to be identifiable at a point θ0 if no other point
in Θ yields the same probability distribution as θ0.

If the parameter is identifiable at at every point in Θ, it is identifiable.
It is possible for individual parameters (or other functions of the parameter vector) to

be identifiable even when the entire parameter vector is not.

Definition 0.4.6 Let g(θ) be a function of the parameter vector. If g(θ0) 6= g(θ) implies
Pθ0 6= Pθ for all θ ∈ Θ, then the function g(θ) is said to be identifiable at the point θ0.

For example, let D1, . . . , Dn be i.i.d. Poisson random variables with mean λ1 + λ2,
where λ1 > 0 and λ1 > 0. The parameter is the pair θ = (λ1, λ2). The parameter is not
identifiable because any pair of λ values satisfying λ1 + λ2 = c will produce exactly the
same probability distribution. Notice also how maximum likelihood estimation will fail
in this case; the likelihood function will have a ridge, a non-unique maximum along the
line λ1 + λ2 = D, where D is the sample mean. The function g(θ) = λ1 + λ2, of course,
is identifiable.

The failure of maximum likelihood for the Poisson example is very typical of situations
where the parameter is not identifiable. Collections of points in the parameter space yield
the same probability distribution of the observable data, and hence identical values of
the likelihood. Usually these form connected sets of infinitely many points, and when
a numerical likelihood search reaches such a higher-dimensional ridge or plateau, the
software checks to see if it’s a maximum, and complains loudly because the maximum
is not unique. The complaints might take unexpected forms, like a statement that the
Hessian has negative eigenvalues. But in any case, maximum likelihood estimation fails.

The idea of a function of the parameter vector covers a lot of territory. It includes
individual parameters and sets of parameters, as well as things like products and ratios of
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parameters. Look at the moment structure equations (12) that come from the regression
Model (11). If σ1,2 = 0, this means β1 = 0, because φ is a variance, and is greater than
zero. Also in this case ψ = σ2,2 and β0 = µ2. So, the function g(θ) = (β0, β1, ψ) is
identifiable at all points in the parameter space where β1 = 0.

Recall how for the regression Model (11), the moment structure equations (12) consist
of five equations in seven unknown parameters. It was shown by a numerical example
that there were two different sets of parameter values that produced the same mean vector
and covariance matrix, and hence the same distribution of the observable data. Actually,
infinitely many parameter values produce the same distribution, and it happens because
there are more unknowns than equations. Theorem 2 is a strictly mathematical theorem9

that provides the necessary details.

Theorem 2 Let

y1 = f1(x1, . . . , xp)

y2 = f2(x1, . . . , xp)
...

...

yq = fq(x1, . . . , xp),

where x = (x1, . . . , xp)
′ ∈ Rp and y = (y1, . . . , yq)

′ ∈ Rq. If the functions f1, . . . , fq are
analytic (posessing a Taylor expansion) and p > q, the set of x values where the system
has a unique solution occupies at most a set of volume zero in Rp.

The following corollary to Theorem 2 is the fundamental necessary condition for pa-
rameter identifiability. It will be called the Counting Rule.

Rule 1 Suppose identifiability is to be decided based on a set of moment structure equa-
tions. If there are more parameters than equations, the parameter vector is identifiable on
at most a set of volume zero in the parameter space.

When the data are multivariate normal (and this will be the assumption throughout
most of the course), then the distribution of the sample data corresponds exactly to the
mean vector and covariance matrix, and to say that a parameter value is identifiable means
that is can be recovered from elements of the mean vector and covariance matrix. Most
of the time, that involves trying to solve the moment structure equations or covariance
structure equations for the model parameters.

0.4.4 Double measurement

Suppose we had a second, independent measurement of the independent variable; “inde-
pendent” means that the measurment errors are statistically independent of one another.

9The core of the proof may be found in Appendix 5 of Fisher (1966).
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Perhaps the two measurements are taken at different times, using different instruments
or methods. Then we have the following model. Independently for i = 1, . . . , n, let

Yi = β0 + β1Xi + εi (13)

Wi,1 = ν1 +Xi + ei,1

Wi,2 = ν2 +Xi + ei,2,

where

• Xi is normally distributed with mean µx and variance φ > 0

• εi is normally distributed with mean zero and variance ψ > 0

• ei,1 is normally distributed with mean zero and variance ω1 > 0

• ei,2 is normally distributed with mean zero and variance ω2 > 0

• Xi, ei,1, ei,1 and εi are all independent.

The model implies that the triples (Wi,1,Wi,2, Yi) are independent multivarate normal
with

E

 Wi,1

Wi,1

Yi

 = µ =

 µ1

µ2

µ3

 =

 µx + ν1

µx + ν2

β0 + β1µx

 ,

and variance covariance matrix

V

 Wi,1

Wi,1

Yi

 = Σ = [σi,j] =

 φ+ ω1 φ β1φ
φ+ ω2 β1φ

β2
1φ+ ψ

 .
Here are some comments.

• There are now nine moment structure equations in nine unknown parameters. This
model passes the test of the Counting Rule, meaning that identifiability is possible,
but not guaranteed.

• Notice that the model dictates σ1,3 = σ2,3. This model-induced constraint upon Σ
is testable. If H0 : σ1,3 = σ2,3 is rejected, this calls the correctness of the model
into question. Philosophers of science agree that falsifiability – the possibility that
a scientific model can be challenged by empirical data – is a very good thing.

• For those model parameters appearing in the covariance matrix, the additional
measurement of the independent variable appears to have done the trick. It is
striaghtforward to solve for the parameters φ, β1, ω1, ω2 and ψ in terms of σi,j values.
Thus, these parameters are identifiable.
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• On the other hand, the additional measurement did not help with the means and
intercepts at all. Even assuming β1 known because it can be recovered from Σ, the
remaining three linear equations in four unknowns have infinitely many solutions.
There are still infinitely many solutions if ν1 = ν2.

Maximum likelihood for the parameters in the covariance matrix would work, except that
the lack of unique values for µx, ν1, ν2 and β0 would mess things up. The solution is to
re-parameterize the model, absorbing µx + ν1 into a parameter called µ1, µx + ν2 into a
parameter called µ2, and β0 + β1µx into a parameter called µ3. The parameters in µ lack
meaning and interest10, but we can estimate them with Xn and focus on the parameters
in the covariance matrix.

Here is the multivariate normal likelihood from Appendix A.3.2, simplified so that
it’s clear that it depends on the data only through the MLEs Xn and Σ̂. This is just a
reproduction of expression (A.15).

L(µ, Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)′Σ−1(x− µ)

}
,

Notice how for any positive definite Σ, the likelihood is maximized when µ = x, and in
that case the last term just disappears, leaving us free to conduct inference on the model
parameters in Σ.

Exercises 0.4

1. Let X1, . . . , Xn be a random sample from a normal distribution with mean θ1 and
variance θ2 + θ3, where −∞ < θ1 < ∞, θ2 > 0 and θ3 > 0. Are the prameters of
this model identifiable? Answer Yes or No and prove your answer. This is fast.

2. Let X1, . . . , Xn be a random sample from a normal distribution with mean θ and
variance θ2, where −∞ < θ < ∞. Is θ identifiable? Answer Yes or No and justify
your answer. This is even faster than the last one.

3. Recall the invariance principle of maximum likelihood estimation. Let the param-
eter of a model be θ1, and θ2 = g(θ1); then θ̂2 = g(θ̂1). For models where Σ is not
restricted by the model (that is, for “saturated” models) and θ = g(Σ), one can

use the invariance principle to obtain θ̂ in closed form, with no need for numerical
approximation.

So, consider the simple regression model

Y = βX + ε,

where β is an unknown constant, X ∼ N(0, φ), ε ∼ N(0, ψ) and the random vari-
ables X and ε are independent. X and Y are observable variables.

10If Xi is true amount of exercise, µx is the average amount of exercise in the population; it’s very
meaningful. Also, the quantity ν1 is interesting; it’s the average amount people exaggerate how much
they exercise using Questionnaire One. But when you add these two interesting quantities together, you
get garbage. The parameter µ in the re-paramterized model is a garbage can.
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(a) What is the parameter vector θ for this model? It has three elements.

(b) What is the distribution of the data vector (X, Y )′? Of course the expected
value is zero; obtain the covariance matrix in terms of θ values. Show your
work.

(c) Now solve three equations in three unknowns to express the three elements of
θ in terms of σi,j values. This gives you the function g in θ = g(Σ).

(d) Are the parameters of this model identifiable? Answer Yes or No and state
how you know.

(e) For a sample of size n, give the MLE Σ̂. Your answer is a matrix containing
three scalar formulas (or four formulas, if you write down the same thing for
σ̂1,2 and σ̂2,1). Write your answer in terms of Xi and Yi quantities. You are
not being asked to derive anything. Just translate the matrix MLE into scalar
form.

(f) Obtain the formula for γ̂ and simplify. Show your work.

(g) Give the formula for φ̂.

(h) Obtain the formula for ψ̂ and simplify. Show your work.

4. Here is a multivariate regression model with no intercept and no measurement error.
Independently for i = 1, . . . , n,

Yi = βXi + εi

where

Yi is an m× 1 random vector of observable dependent variables, so the regres-
sion can be multivariate; there are m dependent variables.

Xi is a p× 1 observable random vector; there are p independent variables. Xi

has expected value zero and variance-covariance matrix Φ, a p× p symmetric
and positive definite matrix of unknown constants.

β is an m × p matrix of unknown constants. These are the regression coef-
ficients, with one row for each dependent variable and one column for each
independent variable.

εi is the error term of the latent regression. It is an m× 1 random vector with
expected value zero and variance-covariance matrix Ψ, an m ×m symmetric
and positive definite matrix of unknown constants. εi is independent of Xi.

Are the parameters of this model identifiable? Show your work.

5. Consider the following simple regression through the origin with measurement error
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in both the independent and dependent variables. Independently for i = 1, . . . , n,

Yi = βXi + εi

Wi,1 = Xi + ei,1

Wi,2 = Xi + ei,2

Vi = Yi + ei,3

where Xi and Yi are latent variables, εi, ei,1, ei,2, ei,3 and Xi and are independent
normal random variables with expected value zero, V ar(Xi) = φ, V ar(εi) = ψ,
and V ar(ei,1) = V ar(ei,2) = V ar(ei,3) = ω. The regression coefficient β is a fixed
constant. The observable variables are Wi,1,Wi,1 and Vi.

(a) Are the parameters of this model identifiable? Answer Yes or No and prove
your answer.

(b) Is just the parameter β (a function of the parameter vector) identifiable?

(c) Suppose we were to re-parameterize the model by letting σ2 = ψ + ω. Would
the re-parametrized model be identified? Does this seem like a good idea?
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