
Appendix A

Review and Background Material

A.1 Expected Value, Variance and Covariance (Re-

view)

Expected Value Let X be a random variable. If X is continuous, the expected value
is defined as

E(X) =

∫ ∞

−∞
x f

X
(x) dx.

If X is discrete, the formula is

E(X) =
∑
x

x p
X
(x).

Conditional expectation uses these same formulas, only with conditional densities or prob-
ability mass functions.

Let Y = g(X). The change of variables formula (a very big Theorem1) tells us

E(Y ) =

∫ ∞

−∞
y f

Y
(y) dy =

∫ ∞

−∞
g(x) f

X
(x) dx (A.1)

or, for discrete random variables

E(Y ) =
∑
y

y p
Y
(y) =

∑
x

g(x) p
X
(x).

One useful function g(x) is the indicator function for a set A. IA(x) = 1 if x ∈ A,
and IA(x) = 0 if x /∈ A. The expected value of an indicator function is just a probability

1The change of variables formula holds under very general circumstances; see for example Theorem
16.12 in Billingsley’s Probability and measure [2]. It is extremely convenient and easy to apply, because
there is no need to derive the probability distribution of Y . So for example the sets of values where
fX(x) 6= 0 and fY (y) 6= 0 (and therefore the regions over which you are integrating in expression (A.1))
may be different and you don’t have to think about it. Furthermore, the function g(x) is almost arbitrary.
In particular, it need not be differentiable, a condition you would need to prove anything for the continuous
case with ordinary calculus.
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because, for discrete random variables,

E(IA(X)) =
∑
x

IA(x) p
X
(x) =

∑
x∈A

p
X
(x) = P (X ∈ A).

For continuous random variables, something similar happens; multiplication by IA(x)
erases the density for x /∈ A, and integration of the product from zero to infinity is just
integration over the set A, yielding P (X ∈ A).

Another useful function is a conditional expectation. If we write the conditional den-
sity

f
Y |X (y|X) =

f
X,Y

(X, y)

f
X
(X)

with the capital letter X, we really mean it. X is a random variable, not a constant, and
for any fixed y, the conditional density is a random variable. The conditional expected
value is another random variable g(x):

E(Y |X) =

∫ ∞

−∞
y f

Y |X (y|X) dy.

This may be a strange-looking function, but still it is a function, and one can take its
expected value using the change of variables formula A.1.

E(E(Y |X)) =

∫ ∞

−∞
g(x) f

X
(x) dx =

∫ ∞

−∞
E(Y |x) f

X
(x) dx.

Provided |E(Y )| < ∞, order of integration or summation may be exchanged2, and we
have the double expectation formula:

E(Y ) = E(E(Y |X)).

You will prove a slightly more general and useful version as an exercise.
The change of variables formula (A.1) still holds if X is a vector, or even if both X

and Y are vectors, and integration or summation is replaced by multiple integration or
summation. So, for example if X = (X1, X2)

′ has joint density f
X
(x) = f

X1,X2
(x1, x2) and

g(x1, x2) = a1x1 + a2x2,

E(a1X1 + a2X2) =

∫ ∞

−∞

∫ ∞

−∞
(a1x1 + a2x2)fX1,X2

(x1, x2) dx1dx2

= a1

∫ ∞

−∞

∫ ∞

−∞
x1fX1,X2

(x1, x2) dx1dx2 + a2

∫ ∞

−∞

∫ ∞

−∞
x2fX1,X2

(x1, x2) dx1dx2

= a1E(X1) + a2E(X2).

Using this approach, it is easy to establish the linearity of expected value

E

(
m∑
j=1

ajXj

)
=

m∑
j=1

ajE(Xj) (A.2)

2By Fubini’s Theorem.
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and other familiar properties.

The change of variables formula holds if the So, for example, since g(x1, x2, . . . xp) = x3

is one possible function of x1, x2, . . . xp,∫
· · ·
∫
x3 f(x) dx =

∫
· · ·
∫
x3 f(x1, . . . xp) dx1 · · · dxp

= E(X3).

Variance and Covariance Denote E(X) by µ
X
. The variance of X is defined as

V ar(X) = E[(X − µ
X
)2],

and the covariance of X and Y is defined as

Cov(X, Y ) = E[(X − µ
X
)(Y − µ

Y
)].

The correlation between X and Y is

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

Exercises A.1 For Questions 1 through 5, please use integrals or summation. For the
remaining questions, use only expected value signs.

1. Let a be a constant and let X be a random variable, either continuous or discrete
(you choose). Use the change of variables formula A.1 to show that E(a) = a.

2. Use the change of variables formula to prove the linear property given in expres-
sion (A.2). If you assume independence, you get a zero.

3. Let X and Y be discrete random variables, with E(|h(X)|) < ∞. Use the change
of variables formula to prove E(h(X)) = E[E(h(X)|Y )]. Because E(|h(X)|) < ∞,
Fubini’s Theorem says that you are free to exchange order of summation. Is the
result of this problem also true for continuous random variables? Why or why not?

4. Let X and Y be continuous random variables. Prove

P (X ∈ A) =

∫ ∞

−∞
P (X ∈ A|Y = y) f

Y
(y) dy.

This is sometimes called the Law of Total Probability. Is it also true for discrete
random variables? Why or why not? Hint: use indicator functions.
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5. Let X and Y be continuous random variables. Prove that if X and Y are indepen-
dent, E(XY ) = E(X)E(Y ). Draw an arrow to the place in your answer where you
use independence, and write “This is where I use independence.”

6. Show that V ar(X) = E[X2]− µ2
X
.

7. Show that Cov[X,Y ] = E[XY ]− µ
X
µ

Y
.

8. In the following, X and Y are random variables, while a and b are fixed constants.
For each pair of statements below, one is true and one is false (that is, not true
in general). State which one is true, and prove it. Zero marks if you prove both
statements are true, even if one of the proofs is correct.

(a) V ar(aX) = aV ar(X) or V ar(aX) = a2V ar(X)

(b) V ar(aX + b) = a2V ar(X) + b2 or V ar(aX + b) = a2V ar(X)

(c) V ar(a) = 0 or V ar(a) = a2

(d) Cov(X + a, Y + b) = Cov(X, Y ) + ab or Cov(X + a, Y + b) = Cov(X, Y )

(e) V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) or V ar(aX + bY ) = a2V ar(X) +
b2V ar(Y ) + 2abCov(X, Y )

9. Let X1, . . . , Xn be random variables and Y =
∑n

i=1Xi. Derive a general formula for
V ar(Y ) in terms of the variance and covariances of X1, . . . , Xn. Show your work.
Now give the useful special case that applies when X1, . . . , Xn are independent.

10. Let X1, . . . , Xn be independent and identically distributed random variables (the
standard model of a random sample with replacement). Denoting E(Xi) by µ and
V (Xi) by σ2,

(a) Show E[X] = µ; that is, the sample mean is unbiased for µ.

(b) Find V (X).

(c) Show E[S2 = 1
n−1

∑n
i=1(Xi−X)2 = σ2; that is, the sample variance is unbiased

for σ2.

A.2 Matrix Calculations

A.2.1 Basic definitions

A matrix is a rectangular array of numbers. They are usually denoted by boldface letters
like A, while scalars (1×1 matrices) are lower case in italics, like a, b, c. Matrices are also
written by giving their (i, j) element in brackets, like A = [ai,j].

Let A = [ai,j] and B = [bi,j] be n × p matrices of constants, C = [ci,j] be p × q, and
let u and v be scalars (1×1 matrices). Define

Matrix addition: A + B = [ai,j + bi,j]. The matrices must have the same number of
rows and the same number of columns for addition (or subtraction) to be defined.
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Matrix multiplication: AC = [
∑p

k=1 ai,kck,j]. Each element of AC is the inner
product of a row of A and a column of C. Thus, the number of columns in A must
equal the number of rows in C. Even if q = n so that multiplication in both orders
is well defined, in general AC 6= CA.

Scalar multiplication: uA = [u · ai,j]

Transposition: A′ = [aj,i]

Symmetric matrix : A square matrix D is said to be symmetric if D = D′.

Identity matrix : I is a square matrix with ones on the main diagonal and zeros
elsewhere. IC = C and AI = A.

Diagonal matrix : A square matrix D = [di,j] is said to be diagonal if di,j = 0 for
i 6= j.

Triangular matrix : A square matrix D = [di,j] is said to be triangular if di,j = 0 for
i < j or i > j (or both, in which case it is also diagonal).

Distributive laws for matrix and scalar multiplication are easy to establish and are left as
exercises.

A.2.2 Transpose of a product

The transpose of a product is the product of transposes, in the reverse order: (AC)′ =
C′A′.

A.2.3 Linear independence

The idea behind linear independence of a collection of vectors (say, the columns of a
matrix) is that none of them can be written as a linear combination of the others. Formally,
let X be an n×p matrix of constants. The columns of X are said to be linearly dependent
if there exists a p× 1 matrix v 6= 0 with Xv = 0. We will say that the columns of X are
linearly independent if Xv = 0 implies v = 0.

A.2.4 Row and column rank

The row rank of a matrix is the number of linearly independent rows. The column rank is
the number of linearly independent columns. The rank of a matrix is the minimum of the
row rank and the column rank. Thus, the rank of a matrix cannot exceed the minimum
of the number of rows and the number of columns.
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A.2.5 Matrix Inverse

Let A and B be square matrices of the same size. B is said to be the inverse of A and
may be written B = A−1. The definition is AB = BA = I. Thus, there are always two
equalities to establish when you are showing that one matrix is the inverse of another.
Matrix inverses have the following properties, which may be proved as exercises.

• If a matrix inverse exists, it is unique.

• A−1′ = A′−1

• If the scalar u 6= 0, (uA)−1 = 1
u
A−1.

• Suppose that the square matrices A and B both have inverses. Then (AB)−1 =
B−1A−1.

• If A is a p× p matrix, A−1 exists if and only if the rank of A equals p.

Sometimes the following formula for the inverse of a 2× 2 matrix is useful:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(A.3)

In some cases the inverse of the matrix is its transpose. When A′ = A−1, the matrix A
is said to be orthogonal, because the column (row) vectors are all at right angles (zero
inner product). In addition, they all have length one, because the inner product of each
column (row) with itself equals one.

A.2.6 Positive definite matrices

The n× n matrix A is said to be positive definite if

y′Ay > 0

for all n× 1 vectors y 6= 0. It is called non-negative definite (or sometimes positive semi-
definite) if y′Ay ≥ 0. Positive definiteness is a critical property of variance-covariance
matrices.

A.2.7 Determinants

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. The
determinant of A, denoted |A|, is defined as a sum of signed elementary products. An
elementary product is a product of elements of A such that there is exactly one element
from every row and every column. The “signed” part is determined as follows.

Let Sn denote the set of all permutations of the set {1, . . . , n}, and denote such a
permutation by σ = (σ1, . . . , σn). Each permutation may be obtained from (1, . . . , n) by



72 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

a finite number of switches of numbers. If the number of switches required is even (this
includes zero), let sgn(σ) = +1; if it is odd, let sgn(σ) = −1. Then,

|A| =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σi
. (A.4)

Some properties of determinants are:

• |AB| = |A| |B|

• |A′| = |A|

• |A−1| = 1/|A|, and if |A| = 0, A−1 does not exist.

• If A = [ai,j] is triangular, |A| =
∏n

i=1 ai,i. That is, for triangular (including diago-
nal) matrices, the determinant is the product of the elements on the main diagonal.

• Adding a multiple of one row to another row of a matrix, or adding a multiple of a
column to another column leaves the determinant unchanged.

• Exchanging any two rows or any two columns of a matrix multiplies the determinant
by −1.

• Multiplying a single row or column by a constant multiplies the determinant by that
constant, so that |vA| = vn|A|

A.2.8 Eigenvalues and eigenvectors

Let A = [ai,j] be an n× n matrix, so that the following applies to square matrices. A is
said to have an eigenvalue λ and (non-zero) eigenvector x corresponding to λ if

Ax = λx.

Note that λ is a scalar and x 6= 0 is an n×1 matrix, typically chosen so that it has length
one. It is also possible and desirable to choose the eigenvectors so they are mutually
perpendicular (the inner product of any two equals zero).

To solve the eigenvalue equation, write

Ax = λx ⇒ Ax− λx = Ax− λIx = (A− λI)x = 0.

If (A − λI)−1 existed, it would be possible to solve for x by multiplying both sides on
the left by (A− λI)−1, yielding x = 0. But the definition specifies x 6= 0, so the inverse
cannot exist for the definition of an eigenvalue to be satisfied. Since (A − λI)−1 fails to
exist precisely when the determinant |A− λI| = 0, the eigenvalues are the λ values that
solve the determinantal equation

|A− λI| = 0.
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The left-hand side is a polynomial in λ, called the characteristic polynomial. If the matrix
A is real-valued and also symmetric, then all its eigenvalues are guaranteed to be real-
valued — a handy characteristic not generally true of solutions to polynomial equations.
The eigenvectors can also be chosen to be real, and for our purposes they always will be.

One of the many useful properties of eigenvalues is that the determinant is the
product of the eigenvalues:

|A| =
n∏
i=1

λi

A.2.9 Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix A =
[ai,j] may be written

A = PΛP′, (A.5)

where the columns of P (which may also be denoted x1, . . . ,x1) are the eigenvectors of
A, and the diagonal matrix Λ contains the corresponding eigenvalues.

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Because the eigenvectors are orthonormal, P is an orthogonal matrix; that is, PP′ =
P′P = I.

The following shows how to get a spectral decomposition from R.

> help(eigen)

> A = rbind(c(-10,2),

+ c(2,5)) # Symmetric

> eigenA = eigen(A); eigenA

$values

[1] 5.262087 -10.262087

$vectors

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> det(A)

[1] -54

> prod(eigenA$values)

[1] -54

> Lambda = diag(eigenA$values); Lambda
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[,1] [,2]

[1,] 5.262087 0.00000

[2,] 0.000000 -10.26209

> P = eigenA$vectors; P

[,1] [,2]

[1,] 0.1299328 0.9915228

[2,] 0.9915228 -0.1299328

> P %*% Lambda %*% t(P) # Matrix multiplication

[,1] [,2]

[1,] -10 2

[2,] 2 5

Another way to express the spectral decomposition is

A =
n∑
i=1

λixix
′
i, (A.6)

where again, x1, . . . ,xn are the eigenvectors of A, and λ1, . . . , λn are the corresponding
eigenvalues. It’s a weighted sum of outer (not inner) products of the eigenvectors; the
weights are the eigenvalues.

Continuing the R example, here is x1x
′
1. Notice how the diagonal elements add to

one, as they must.

> eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

[,1] [,2]

[1,] 0.01688253 0.1288313

[2,] 0.12883133 0.9831175

Reproducing (A.6) for completeness,

> prod1 = eigenA$vectors[,1] %*% t(eigenA$vectors[,1])

> prod2 = eigenA$vectors[,2] %*% t(eigenA$vectors[,2])

> eigenA$values[1]

[1] 5.262087

> eigenA$values[1]*prod1 + eigenA$values[2]*prod2

[,1] [,2]

[1,] -10 2

[2,] 2 5

> A

[,1] [,2]

[1,] -10 2

[2,] 2 5
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A.2.10 Real symmetric matrices

For a symmetric n× n matrix A (like a variance-covariance matrix), the eigenvalues are
all real numbers, and the eigenvectors can be chosen to be real, perpendicular (inner
product zero), and of length one. Also, for this important case the following conditions
are equivalent:

• Rows linearly independent

• Columns linearly independent

• Rank = n

• Positive definite

• Non-singular (A−1 exists)

• All eigenvalues are strictly positive

A.2.11 Trace of a square matrix

The trace of a square matrix A = [ai,j] is the sum of its diagonal elements. Write

tr(A) =
n∑
i=1

ai,i.

Properties like tr(A + B) = tr(A) + tr(B) follow immediately from the definition.
Perhaps less obvious is the following. Let A be an r× p matrix and B be a p× r matrix,
so that the product matrices AB and BA are both defined. These two matrices are not
necessarily equal; in fact, they need not even be the same size. But still,

tr(AB) = tr(BA). (A.7)

To see this, write

tr(AB) = tr

([
p∑

k=1

ai,kbk,j

])

=
r∑
i=1

p∑
k=1

ai,kbk,i

=

p∑
k=1

r∑
i=1

bk,iai,k

= tr

([
r∑

k=1

bi,kak,j

])
= tr(BA)
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Notice how the indices of summation have been changed in the line where tr appears for
the second time. This is legitimate, because for example

∑r
i=1 ci and

∑r
k=1 ck both mean

c1 + · · ·+ cr.
Also, from the spectral decomposition (A.6), the trace is the sum of the eigenvalues:

tr(A) =
n∑
i=1

λi.

This follows easily using (A.7), but actually it applies to any square matrix; the matrix
need not be symmetric.

Exercises A.2

1. Which statement is true?

(a) A(B + C) = AB + AC

(b) A(B + C) = BA + CA

(c) Both a and b

(d) Neither a nor b

2. Which statement is true?

(a) a(B + C) = aB + aC

(b) a(B + C) = Ba+ Ca

(c) Both a and b

(d) Neither a nor b

3. Which statement is true?

(a) (B + C)A = AB + AC

(b) (B + C)A = BA + CA

(c) Both a and b

(d) Neither a nor b

4. Which statement is true?

(a) (AB)′ = A′B′

(b) (AB)′ = B′A′

(c) Both a and b

(d) Neither a nor b

5. Which statement is true?
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(a) A′′ = A

(b) A′′′ = A′

(c) Both a and b

(d) Neither a nor b

6. Suppose that the square matrices A and B both have inverses. Which statement is
true?

(a) (AB)−1 = A−1B−1

(b) (AB)−1 = B−1A−1

(c) Both a and b

(d) Neither a nor b

7. Which statement is true?

(a) (A + B)′ = A′ + B′

(b) (A + B)′ = B′ + A′

(c) (A + B)′ = (B + A)′

(d) All of the above

(e) None of the above

8. Which statement is true?

(a) tr(A + B) = tr(A) + tr(B)

(b) tr(A + B) = tr(B) + tr(A)

(c) Both a and b

(d) Neither a nor b

9. Which statement is true?

(a) a tr(B) = tr(aB).

(b) tr(B)a = tr(aB)

(c) Both a and b

(d) Neither a nor b

10. Which statement is true?

(a) (a+ b)C = aC + bC

(b) (a+ b)C = Ca+ Cb

(c) (a+ b)C = C(a+ b)

(d) All of the above
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(e) None of the above

11. Recall that A symmetric means A = A′. Let X be an n by p matrix. Prove that
X′X is symmetric.

12. Recall that an inverse of the matrix A (denoted A−1) is defined by two properties:
A−1A = I and AA−1 = I. Prove that inverses are unique, as follows. Let B and C
both be inverses of A. Show that B = C.

13. Let X be an n by p matrix with n 6= p. Why is it incorrect to say that (X′X)−1 =
X−1X′−1?

14. Suppose that the square matrices A and B both have inverses. Prove that (AB)−1 =
B−1A−1. You have two things to show.

15. Let A be a non-singular square matrix. Prove (A−1)′ = (A′)−1.

16. Using Question 15, prove that the inverse of a symmetric matrix is also symmetric.

17. Let A be a square matrix with the determinant of A (denoted |A|) equal to zero.
What does this tell you about A−1?

18. Let a be an n× 1 matrix of constants. How do you know a′a ≥ 0?

19. In the following, A and B are n×p matrices of constants, C is p× q, D is p×n and
a, b, c are scalars. For each statement below, either prove it is true, or prove that it is
not true in general by giving a counter-example. Small numerical counter-examples
are best. To give an idea of the kind of proof required for most of these, denote
element (i, j) of matrix A by [ai,j].

(a) A + B = B + A

(b) a(B + C) = aB + aC

(c) AC = CA

(d) (A + B)′ = A′ + B′

(e) (AC)′ = C′A′

(f) (A + B)C = AC + BC

(g) (AD)−1 = A−1D−1

20. Let A and B be square matrices of the same size, and A−1 and B−1 both exist.
Show (AB)−1 = B−1A−1.

21. Let A be a square symmetric matrix, and A−1 exists. Show that A−1 is also
symmetric.

22. Show that a matrix inverse is unique. That is, let B and C both be inverses of A;
show B = C.
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23. The trace of a square matrix is the sum of its diagonal elements; we write tr(A).
Let A be r × c and B be c× r. Show tr(AB) = tr(BA).

24. Let a be an n× 1 matrix of constants. How do you know a′a ≥ 0?

25. Recall the spectral decomposition of a square symmetric matrix (For example, a
variance-covariance matrix). Any such matrix Σ can be written as Σ = PΛP′,
where P is a matrix whose columns are the (orthonormal) eigenvectors of Σ, Λ is a
diagonal matrix of the corresponding (non-negative) eigenvalues, and P′P = PP′ = I.

(a) Let Σ be a square symmetric matrix with eigenvalues that are all strictly
positive.

i. What is Λ−1?

ii. Show Σ−1 = PΛ−1P′

(b) Let Σ be a square symmetric matrix, and this time some of the eigenvalues
might be zero.

i. What do you think Λ1/2 might be?

ii. Define Σ1/2 as PΛ1/2P′. Show Σ1/2 is symmetric.

iii. Show Σ1/2Σ1/2 = Σ.

(c) A matrix Σ is said to be non-negative definite (our text calls it positive semi-
definite) if a′Σa ≥ 0 for all vectors a. Show that any symmetric matrix must
be non-negative definite. Can’t; this is wrong! Fix!

(d) The (square) matrix Σ is said to be positive definite if a′Σa > 0 for all vectors
a 6= 0. Show that the eigenvalues of a symmetric positive definite matrix are
all strictly positive. Hint: the a you want is an eigenvector.

(e) Let Σ be a symmetric, positive definite matrix. Putting together a couple of
results you have proved above, establish that Σ−1 exists.

26. Using the spectral decomposition (A.6) and tr(AB) = tr(BA, show that the trace
of a square symmetric matrix is the sum of its eigenvalues.

27. Let X be an n×p matrix of constants. Recall the definition of linear independence.
The columns of X are said to be linearly dependent if there exists v 6= 0 with
Xv = 0. We will say that the columns of X are linearly independent if Xv = 0
implies v = 0.

(a) Show that if the columns of X are linearly dependent, then the columns of
X′X are also linearly dependent.

(b) Show that if the columns of X are linearly dependent, then the rows of X′X
are linearly dependent.

(c) Show that if the columns of X are linearly independent, then the columns of
X′X are also linearly independent.
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(d) Show that if (X′X)−1 exists, then the columns of X are linearly independent.

(e) Show that if the columns of X are linearly independent, then X′X is positive
definite. Does this imply the existence of (X′X)−1? Locate the rule in the text,
and answer Yes or No.

A.3 Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution
is the distribution of the random matrix. Random matrices with just one column (say, p)
may be called random vectors.

A.3.1 Expected Value and Variance-Covariance

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the
p× c random matrix X by [Xi,j],

E(X) = [E(Xi,j)].

Immediately we have natural properties like

E(X + Y) = E([Xi,j] + [Yi,j])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).

Let A = [ai,j] be an r × p matrix of constants, while X is still a p × c random matrix.
Then

E(AX) = E

([
p∑

k=1

ai,kXk,j

])

=

[
E

(
p∑

k=1

ai,kXk,j

)]

=

[
p∑

k=1

ai,kE(Xk,j)

]
= AE(X).

Similar calculations lead E(XB) = E(X)B, where B is a matrix of constants. This yields
the useful formula

E(AXB) = AE(X)B. (A.8)



A.3. RANDOM VECTORS AND MATRICES 81

Variance-Covariance Matrices

Let X be a p × 1 random vector with E(X) = µ. The variance-covariance matrix of X
(sometimes just called the covariance matrix ), denoted by V (X), is defined as

V (X) = E {(X− µ)(X− µ)′} . (A.9)

The covariance matrix V (X) is a p × p matrix of constants. To see exactly what it is,
suppose p = 3. Then

V (X) = E


 X1 − µ1

X2 − µ2

X3 − µ3

 [ X1 − µ1 X2 − µ2 X3 − µ3

]
= E


 (X1 − µ1)

2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)
(X2 − µ2)(X1 − µ1) (X2 − µ2)

2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)

2


=

 E{(X1 − µ1)
2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}

E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)
2} E{(X2 − µ2)(X3 − µ3)}

E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)
2}


=

 V (X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) V (X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) V (X3)

 .
So, the covariance matrix V (X) is a p× p symmetric matrix with variances on the main
diagonal and covariances on the off-diagonals.

The matrix of covariances between two random vectors may also be written in a
convenient way. Let X be a p × 1 random vector with E(X) = µx and let Y be a q × 1
random vector with E(Y) = µy. The p × q matrix of covariances between the elements
of X and the elements of Y is

C(X,Y) = E
{
(X− µx)(Y − µy)

′} .
The following rule is analogous to V ar(aX) = a2 V ar(X) for scalars. Let X be a p×1

random vector with E(X) = µ and V (X) = Σ, while A = [ai,j] is an r × p matrix of
constants. Then

V (AX) = E {(AX−Aµ)(AX−Aµ)′}
= E

{
A(X− µ) (A(X− µ))′

}
= E {A(X− µ)(X− µ)′A′}
= AE{(X− µ)(X− µ)′}A′

= AV (X)A′

= AΣA′ (A.10)
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For scalars, V ar(X + b) = V ar(X), and the same applies to vectors. Covariances are
also unaffected by adding a constant; this amounts to shifting the whole joint distribution
by a fixed amount, which has no effect on relationships among variables. So, the following
rule is “obvious.” Let X be a p × 1 random vector with E(X) = µ and let b be a p × 1
vector of constants. Then V (X + b) = V (X). To see this, note E(X + b) = µ + b and
write

V (X + b) = E {(X + b− (µ + b))(X + b− (µ + b))′}
= E {(X− µ)(X− µ)′}
= V (X) (A.11)

A similar rule apples to C(X + b,Y + c). A direct calculation is not even necessary,
though it is a valuable exercise. Think of stacking X and Y one on top of another, to
form a bigger random vector. Then,

V

[
X
Y

]
=

[
V (X) C(X,Y)

C(X,Y)′ V (Y)

]
.

This is an example of a partitioned matrix – a matrix of matrices. At any rate, it is clear
from (A.11) that adding a stack of constant vectors to the stack of random vectors has no
effect upon the (partitioned) covariance matrix, and in particular no effect upon C(X,Y).

The Centering Rule

Here is a rule that will save a huge amount of effort in this course. When calculating
variances and covariances of linear combinations of random vectors, it is safe to pretend
that all expected values and intercepts equal zero, even when they definitely do not. A
couple of examples will come first, followed by a general formulation.

First, combining formulas (A.10) and (A.11), it is clear that

V (AX + b) = AV (X)A′.

Now the derivation will be repeated assuming E(X) = b = 0. This restriction has no
effect upon the answer.

V (AX + b) = E {AX(AX)′}
= E {AXX′A′}
= AE {XX′}A′

= AV (X)A′ (A.12)

Notice how quick that was, in addition to yielding the right answer. Also notice the final
step, in which E {XX′} was re-expressed as V (X).

Now C(AX + b,CY + d) will be calculated two ways. First, we will let E(X) = µx,
E(Y) = µy, b and d all be possibly non-zero. Then we will do the calculation again
assuming they are all zero, and observe that the answer is the same.
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C(AX + b,CY + d) = E{(AX + b− (Aµx + b))(CY + d− (Cµy + d))′}
= E{(AX−Aµx)(CY −Cµy)

′}
= E{A(X− µx)(C(Y − µy))

′}
= E{A(X− µx)(Y − µy)

′C′}
= AE{(X− µx)(Y − µy)

′}C′

= AC(X,Y)C′

Now let µx = µy = b = d = 0, and do the calculation again.

C(AX + b,CY + d) = E{(AX(CY)′}
= E{(AXY′C′}
= AE{XY′}C′

= AC(X,Y)C′ (A.13)

Notice that the two answers are identical, and also notice how much simpler the
calculation is when all expected values and intercepts are assumed zero. Again, the final
step is to re-express E{XY′} as C(X,Y).

To state the centering rule precisely, let X1, . . . ,Xm be random vectors, and let
A1, . . . ,Am be constant matrices, each having r rows. The number of columns in these
constant matrices may vary, as long as the product AjXj can be formed for j = 1, . . . ,m.
Finally, let b be an r × 1 matrix of constants. Then a linear combination of X1, . . . ,Xm

is defined by
L = A1X1 + · · ·+ AmXm + b. (A.14)

The Centering Rule says that to calculate V (L) or C(L1,L2), one may follow these steps:

1. Set all expected values to zero, and also set constants like b (intercepts) to zero.

2. Calculate V (L) = E(LL′) or C(L1,L2) = E(L1L
′
2).

3. Re-write expressions like E(XjX
′
j) as V (Xj). Re-write expressions like E(XiX

′
j) as

C(Xi,Xj).

Sometimes people write things like “Assuming without loss of generality that E(X) =
0 . . . ” This confused me deeply the first time I saw it as a student, but it’s right. There
is no loss of generality because you would get the same answer by assuming the expected
value to be non-zero. But it only applies to linear combinations. Let formula (A.14) be
your guide.

As another example of how helpful this strategy can be, consider the calculation of
V (AX + BY), where X is a p× 1 random vector with E(X) = µx, Y is a q × 1 random
vector with E(Y) = µy, A is an r × p matrix of constants, and B is an r × q matrix of
constants. So, X and Y don’t have to be the same size, but AX and BY are both r × 1
so they can be added.
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Assuming without loss of generality that µx = µy = 0 (see why this is okay?),

V (AX + BY) = E(AX + BY)(AX + BY)′

= E(AX + BY)(X′A′ + Y′B′)

= E(AXX′A′ + AXY′B′ + BYX′A′ + BYY′B′)

= AE(XX′)A′ + AE(XY′)B′ + BE(YX′)A′ + BE(YY′)B′)

= AV (X)A′ + AC(X,Y)B′ + BC(Y,X)A′ + BV (Y)B′

= AV (X)A′ + BV (Y)B′ + AC(X,Y)B′ + (AC(X,Y)B′)
′
.

This is the analogue of V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ). The
calculation would have been much uglier if we carried Aµx + Bµy along, but the result
would have been the same.

It may be worth pointing out that the trick of assuming expected values zero applies
to scalar variance-covariance calculations too. For example, let

Y = β0 + β1X + ε

W = λ1X + δ1

V = λ2Y + δ2,

where β0, β1, λ1 and λ2 are constants, V ar(X) = φ, V ar(ε) = σ2, V ar(δ1) = ω1, V ar(δ2) =
ω2, and X, ε, δ1 and δ2 are all independent. The job is to calculate Cov(W,V ). Assuming
without loss of generality that E(X) = E(ε) = E(δ1) = E(δ2) = β0 = 0,

Cov(W,V ) = E{WV }
= E{(λ1X + δ1)(λ2Y + δ2)}
= E{(λ1X + δ1)(λ2(β1X + ε) + δ2)}
= E{λ1λ2β1X

2 + λ1λ2Xε+ λ1Xδ2 + λ2β1δ1X + δ1δ2}
= λ1λ2β1E{X2}+ λ1λ2E{X}E{ε}+ λ1E{X}E{δ2}

+ λ2β1E{δ1}E{X}+ E{δ1}E{δ2}
= λ1λ2β1E{X2}+ 0 + 0 + 0 + 0

= λ1λ2β1V ar(X)

= λ1λ2β1φ.

This calculation looks messier than it really is, because every little detail is shown. To
repeat the lesson one last time, calculating variances and covariances of linear combina-
tions is significantly easier when intercepts and expected values are assumed to be zero,
and the final answer is the same — provided the final substitution step is not omitted.

Exercises A.3.1

1. Let X and Y be random matrices of the same dimensions. Show E(X + Y) =
E(X) + E(Y). Recall the definition E(Z) = [E(Zi,j)].
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2. Let X be a random matrix, and B be a matrix of constants. Show E(XB) = E(X)B.
Recall the definition AB = [

∑
k ai,kbk,j].

3. If the p× 1 random vector X has variance-covariance matrix Σ and A is an m× p
matrix of constants, prove that the variance-covariance matrix of AX is AΣA′.
Start with the definition of a variance-covariance matrix:

V (Z) = E(Z− µz)(Z− µz)
′.

4. If the p× 1 random vector X has mean µ and variance-covariance matrix Σ, show
Σ = E(XX′)− µµ′.

5. Let the p × 1 random vector X have mean µ and variance-covariance matrix Σ,
and let c be a p × 1 vector of constants. Find V (X + c). Show your work. This
is important because it tells us we can always pretend the mean equals zero when
calculating covariance matrices.

6. Let X be a p× 1 random vector with mean µx and variance-covariance matrix Σx,
and let Y be a q × 1 random vector with mean µy and variance-covariance matrix

Σy. Recall that C(X,Y) is the p× q matrix C(X,Y) = E
(
(X− µx)(Y − µy)

′).
(a) What is the (i, j) element of C(X,Y)?

(b) Find an expression for V (X+Y) in terms of Σx, Σy and C(X,Y). Show your
work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p× 1 vector of constants and d be a q× 1 vector of constants. Find
C(X + c,Y + d). Show your work.

A.3.2 The Multivariate Normal Distribution

The p × 1 random vector X is said to have a multivariate normal distribution, and we
write X ∼ N(µ,Σ), if X has (joint) density

f(x) =
1

|Σ| 12 (2π)
p
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
,

where µ is p× 1 and Σ is p× p symmetric and positive definite. Positive definite means
that for any non-zero p× 1 vector a, we have a′Σa > 0.

• Since the one-dimensional random variable Y =
∑p

i=1 aiXi may be written as Y =
a′X and V ar(Y ) = V (a′X) = a′Σa, it is natural to require that Σ be positive
definite. All it means is that every non-zero linear combination of X values has a
positive variance.

• Σ positive definite is equivalent to Σ−1 positive definite.
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The multivariate normal reduces to the univariate normal when p = 1. Other properties
of the multivariate normal include the following.

1. E(X) = µ

2. V (X) = Σ

3. If c is a vector of constants, X + c ∼ N(c + µ,Σ)

4. If A is a matrix of constants, AX ∼ N(Aµ,AΣA′)

5. All the marginals (dimension less than p) of X are (multivariate) normal, but it is
possible in theory to have a collection of univariate normals whose joint distribution
is not multivariate normal.

6. For the multivariate normal, zero covariance implies independence. The multivariate
normal is the only continuous distribution with this property.

7. The random variable (X − µ)′Σ−1(X − µ) has a chi-square distribution with p
degrees of freedom.

8. After a bit of work, the multivariate normal likelihood may be written as

L(µ, Σ) = |Σ|−n/2(2π)−np/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)′Σ−1(x− µ)

}
, (A.15)

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)′ is the sample variance-covariance matrix (it

would be unbiased if divided by n− 1).

Exercises A.3.2

1. Let X1 be Normal(µ1, σ
2
1), and X2 be Normal(µ2, σ

2
2), independent of X1. What is

the joint distribution of Y1 = X1 +X2 and Y2 = X1 −X2? What is required for Y1

and Y2 to be independent?

2. Let X = (X1, X2, X3)
′ be multivariate normal with

µ =

 1
0
6

 and Σ =

 1 0 0
0 2 0
0 0 1

 .
Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint distribution of Y1 and Y2.

3. Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, where σ2 > 0 is a constant. In the following, it may be helpful to recall
that (A−1)′ = (A′)−1.

(a) What is the distribution of Y?
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(b) The maximum likelihood estimate (MLE) of β is β̂ = (X′X)−1X′Y. What is
the distribution of β̂? Show the calculations.

(c) Let Ŷ = Xβ̂. What is the distribution of Ŷ? Show the calculations.

(d) Let the vector of residuals e = (Y − Ŷ). What is the distribution of e? Show
the calculations. Simplify both the expected value (which is zero) and the
covariance matrix.

4. Prove the formula (A.15) for the multivariate normal likelihood. Show all the cal-
culations.

5. Prove that for any positive definite Σ, the likelihood (A.15) is maximized when
x = µ. How do you know this maximum must be unique? Cite the necessary
matrix facts from Section A.2 of this Appendix.

A.4 Maximum Likelihood

We will use the following framework for estimation and inference. The data areD1, . . . , Dn

(the letter D stands for data). The distribution of these independent and identically
distributed random variables depends on the parameter θ, which is an element of the
parameter space Θ. That is,

D1, . . . , Dn
i.i.d.∼ Pθ, θ ∈ Θ.

Both the data values and the parameter may be vectors, even though they are not written
in boldface. The data have likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di.

A.4.1 Some Very Basic Math

I have noticed that a major obstacle for many students when doing likelihood calculations
is a set of basic mathematical operations they actually know. But the mechanics are rusty,
or the notation used in Statistics is troublesome. So, with sincere apologies to those who
don’t need this, here are some basic rules. Feel free to skip this.

• The distributive law: a(b+ c) = ab+ ac. You may see this in a form like

θ

n∑
i=1

xi =
n∑
i=1

θxi
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• Power of a product is the product of powers: (ab)c = ac bc. You may see this in a
form like (

n∏
i=1

xi

)α

=
n∏
i=1

xαi

• Multiplication is addition of exponents: abac = ab+c. You may see this in a form
like

n∏
i=1

θe−θxi = θn exp(−θ
n∑
i=1

xi)

• Powering is multiplication of exponents: (ab)c = abc. You may see this in a form
like

(eµt+
1
2
σ2t2)n = enµt+

1
2
nσ2t2

• Log of a product is sum of logs: ln(ab) = ln(a) + ln(b). You may see this in a form
like

ln
n∏
i=1

xi =
n∑
i=1

lnxi

• Log of a power is the exponent times the log: ln(ab) = b ln(a). You may see this in
a form like

ln(θn) = n ln θ

• The log is the inverse of the exponential function: ln(ea) = a. You may see this in
a form like

ln

(
θn exp(−θ

n∑
i=1

xi)

)
= n ln θ − θ

n∑
i=1

xi

Exercises A.4.1

1. Choose the correct answer.

(a)
∏n

i=1 e
xi =

i. exp(
∏n

i=1 xi)

ii. enxi

iii. exp(
∑n

i=1 xi)

(b)
∏n

i=1 λe
−λxi =

i. λe−λ
nxi

ii. λne−λnxi

iii. λn exp(−λ
∑n

i=1 xi)

iv. λn exp(−nλ
∑n

i=1 xi)

v. λn exp(−λn
∑n

i=1 xi)
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(c)
∏n

i=1 a
b
i =

i. nab

ii. anb

iii. (
∏n

i=1 ai)
b

(d)
∏n

i=1 a
bi =

i. nabi

ii. anbi

iii.
∑n

i=1 a
bi

iv. a
∏n

i=1 bi

v. a
∑n

i=1 bi

(e)
(
eλ(et−1)

)n
=

i. neλ(et−1)

ii. enλ(et−1)

iii. eλ(ent−1)

iv. enλ(et−n)

(f)
(∏n

i=1 e
−λxi

)2
=

i. e−2nλxi

ii. e−2λ
Pn

i=1 xi

iii. 2e−λ
Pn

i=1 xi

2. True, or False?

(a)
∑n

i=1
1
xi

= 1Pn
i=1 xi

(b)
∏n

i=1
1
xi

= 1Qn
i=1 xi

(c) a
b+c

= a
b

+ a
c

(d) ln(a+ b) = ln(a) + ln(b)

(e) ea+b = ea + eb

(f) ea+b = eaeb

(g) eab = eaeb

(h)
∏n

i=1(xi + yi) =
∏n

i=1 xi +
∏n

i=1 yi

(i) ln(
∏n

i=1 a
b
i) = b

∑n
i=1 ln(ai)

(j)
∑n

i=1

∏n
j=1 aj = n

∏n
j=1 aj

(k)
∑n

i=1

∏n
j=1 ai =

∑n
i=1 a

n
i

(l)
∑n

i=1

∏n
j=1 ai,j =

∏n
j=1

∑n
i=1 ai,j

3. Simplify as much as possible.
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(a) ln
∏n

i=1 θ
xi(1− θ)1−xi

(b) ln
∏n

i=1

(
m
xi

)
θx(1− θ)m−xi

(c) ln
∏n

i=1
e−λλxi

xi!

(d) ln
∏n

i=1 θ(1− θ)xi−1

(e) ln
∏n

i=1
1
θ
e−xi/θ

(f) ln
∏n

i=1
1

βαΓ(α)
e−xi/βxα−1

i

(g) ln
∏n

i=1
1

2ν/2Γ(ν/2)
e−xi/2x

ν/2−1
i

(h) ln
∏n

i=1
1

σ
√

2π
e−

(xi−µ)2

2σ2

(i)
∏n

i=1
1

β−αI(α ≤ xi ≤ β) (Express in terms of the minimum and maximum y1

and yn.)

A.4.2 Point Estimation

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the parameter
value for which the likelihood function is greatest, over all θ ∈ Θ. Because the log is
an increasing function, maximizing the likelihood is equivalent to maximizing the log
likelihood, which will be denoted

`(θ) = lnL(θ).

In elementary situations where the support of the distribution does not depend on
the parameter, you get the MLE by closing your eyes, differentiating the log likelihood,
setting the derivative to zero, and solving for θ. Then if you are being careful, you carry
out the second derivative test; if `′′(θ̂) < 0, the log likelihood is concave down at your
answer, and you have found the maximum.

This is all very well, and you will be asked to do it in some of the exercises. But in this
course, as in much of applied statistics, you will find that you can write the log likelihood
and differentiate it easily enough, but when you set the derivatives to zero, you obtain
a set of equations that are impossible to solve explicitly. This means that the problem
needs to be solved numerically. That is, you use a computer to calculate the value of
the log likelihood for a set of parameter values, and you search until you have found the
biggest one.

But how do you search? It’s easy in one or two dimensions, but structural equation
models can easily involve dozens, scores or even hundreds of parameters. It’s a bit like
being dropped by helicopter onto a mountain range, and asked to find the highest peak
blindfolded. All you can do is walk uphill. The gradient is the direction of steepest
increase, so walk that way. How big a step should you take? That’s a good question.
When you come to a place where the surface is level, or approximately level, stop. How
level is level enough? That’s another good question. Once you find a “level” place, you
can check to see if the surface is concave down there. If so, you’re at a maximum. Is it
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the global maximum (the real MLE), or just a local maximum? It’s usually impossible
to tell for sure. You can get the helicopter to drop you in several different places fairly
far apart, and if you always arrive at the same maximum you will feel more confident
of your answer. But it could still be just a local maximum that is easy to reach. The
main thing to observe is that where you start is very important. Another point is that
for realistically big problems, you need high-grade, professionally written software.

The following example is one that you can do by hand, though maybe not with your
eyes closed. But it will serve to illustrate the basic ideas of numerical maximum likelihood.

Example A.4.2.1

Let D1, . . . , Dn be a random sample from a normal distribution with mean θ and variance
θ2. A sample of size 50 yields:

5.85 -15.02 -13.24 -1.63 -0.07 -2.40 -3.02 -3.19 -5.16 0.79 -1.03 -10.69

-12.96 -4.55 0.57 -7.94 -6.80 2.95 -9.01 -9.33 -11.93 -7.13 10.34 -1.01

-4.18 -1.30 -7.56 -1.25 -4.64 -4.88 -4.06 -1.91 -1.81 -6.92 -13.27 -5.52

4.40 -12.17 -4.55 -5.82 -0.81 -19.28 -4.97 -7.78 -5.07 -5.45 -4.27 -4.98

-9.56 -9.33

Find the maximum likelihood estimate of θ. You only need an approximate value; one
decimal place of accuracy will do.

Again, this is a problem that can be solved explicitly by differentiation, and the reader
is invited to give it a try before proceeding. Have the answer? Is it still the same day you
started? Now for the numerical solution. First, write the log likelihood as

`(θ) = ln
n∏
i=1

1

|θ|
√

2π
e−

(di−θ)2

2θ2

= −n ln |θ| − n

2
ln(2π)−

∑n
i=1 d

2
i

2θ2
+

∑n
i=1 di
θ

− n

2
.

We will do this in R. The data are in a file called norm1.data. Read it. Remember
that > is the R prompt.

> D <- scan("norm1.data")

Read 50 items

Now define a function to compute the log likelihood.

loglike1 <- function(theta) # Assume data are in a vector called D

{

sumdsq <- sum(D^2); sumd <- sum(D); n <- length(D)

loglike1 <- -n * log(abs(theta)) - (n/2)*log(2*pi) - sumdsq/(2*theta^2) +

sumd/theta - n/2

loglike1 # Return value of function

} # End definition of function loglike1
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Just to show how the function works, compute it at a couple of values, say θ = 2 and
θ = −2.

> loglike1(2)

[1] -574.2965

> loglike1(-2)

[1] -321.7465

Negative values of the parameter look more promising, but it is time to get systematic.
The following is called a grid search. It is brutal, inefficient, and usually effective. It is
too slow to be practical for large problems, but this is a one-dimensional parameter and
we are only asked for one decimal place of accuracy. Where should we start? Since the
parameter is the mean of the distribution, it should be safe to search within the range of
the data. Start with widely spaced values and then refine the search. All we are doing
is to calculate the log likelihood for a set of (equally spaced) parameter values and see
where it is greatest. After all, that is the idea behind the MLE.

> min(D); max(D)

[1] -19.28

[1] 10.34

> Theta <- -20:10

> cbind(Theta,loglike1(Theta))

Theta

[1,] -20 -211.5302

[2,] -19 -208.6709

[3,] -18 -205.6623

[4,] -17 -202.4911

[5,] -16 -199.1423

[6,] -15 -195.6002

[7,] -14 -191.8486

[8,] -13 -187.8720

[9,] -12 -183.6580

[10,] -11 -179.2022

[11,] -10 -174.5179

[12,] -9 -169.6565

[13,] -8 -164.7513

[14,] -7 -160.1163

[15,] -6 -156.4896

[16,] -5 -155.6956

[17,] -4 -162.7285

[18,] -3 -193.8796

[19,] -2 -321.7465

[20,] -1 -1188.0659

[21,] 0 NaN

[22,] 1 -1693.1659
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[23,] 2 -574.2965

[24,] 3 -362.2463

[25,] 4 -289.0035

[26,] 5 -256.7156

[27,] 6 -240.6729

[28,] 7 -232.2734

[29,] 8 -227.8888

[30,] 9 -225.7788

[31,] 10 -225.0279

First, we notice that at θ = 0, the log likelihood is indeed Not a Number. For this
problem, the parameter space is all the real numbers except zero – unless one wants to
think of a normal random variable with zero variance as being degenerate at µ; that is,
P (D = µ) = 1. (In his case, what would the data look like?)

But the log likelihood is greatest around θ = −5. We are asked for one decimal place
of accuracy, so,

> Theta <- seq(from=-5.5,to=-4.5,by=0.1)

> Loglike <- loglike1(Theta)

> cbind(Theta,Loglike)

Theta Loglike

[1,] -5.5 -155.5445

[2,] -5.4 -155.4692

[3,] -5.3 -155.4413

[4,] -5.2 -155.4660

[5,] -5.1 -155.5487

[6,] -5.0 -155.6956

[7,] -4.9 -155.9136

[8,] -4.8 -156.2106

[9,] -4.7 -156.5950

[10,] -4.6 -157.0767

[11,] -4.5 -157.6665

> thetahat <- Theta[Loglike==max(Loglike)]

> # Theta such that Loglike is the maximum of Loglike

> thetahat

[1] -5.3

To one decimal place of accuracy, the maximum is at θ = −5.3. It would be easy to refine
the grid and get more accuracy, but that will do. This is the last time we will see our
friend the grid search, but you may find the approach useful in homework.

Now let’s do the search in a more sophisticated way, using R’s nlm (non-linear mini-
mization) function. 3 The nlm function has quite a few arguments; try help(nlm). The

3The nlm function is good but generic. See Numerical Recipes for a really good discussion of routines
for numerically minimizing a function. They also provide source code. The Numerical Recipes books have
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ones you always need are the first two: the name of the function, and a starting value (or
vector of starting values, for multiparameter problems).

Where should we start? Since the parameter equals the expected value of the distribu-
tion, how about the sample mean? It is often a good strategy to use Method of Moment
estimators as starting values for numerical maximum likelihood. Method of Moments
estimation is reviewed in Section ??.

One characteristic that nlm shares with most optimization routines is that it likes to
minimize rather than maximizing. So we will minimize the negative of the log likelihood
function. For this, it is necessary to define a new function, loglike2.

> mean(D)

[1] -5.051

> loglike2 <- function(theta) { loglike2 <- -loglike1(theta); loglike2 }

> nlm(loglike2,mean(D))

$minimum

[1] 155.4413

$estimate

[1] -5.295305

$gradient

[1] -1.386921e-05

$code

[1] 1

$iterations

[1] 4

By default, nlm returns a list with four elements; minimum is the value of the function
at the point where it reaches its minimum, estimate is the value at which the minimum
was located; that’s the MLE. Gradient is the slope in the direction of greatest increase;
it should be near zero. Code is a diagnosis of how well the optimization went; the value
of 1 means everything seemed okay. See help nlm for more detail.

We could have gotten just the MLE with

> nlm(loglike2,mean(D))$estimate

[1] -5.295305

That’s the answer, but the numerical approach misses some interesting features of the
problem, which can be done with paper and pencil in this simple case. Differentiating the

versions for the Pascal, Fortran and Basic languages as well as C. This is a case where a book definitely
delivers more than the title promises. It may be a cookbook, but it is a very good cookbook written by
expert Chemists.
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log likelihood separately for θ < 0 and θ > 0 to get rid of the absolute value sign, and
then re-uniting the two cases since the answer is the same, we get

`′(θ) = −n
θ

+

∑n
i=1 d

2
i

θ3
−
∑n

i=1 di
θ2

.

Setting `′(θ) = 0 and re-arranging terms, we get

nθ2 + (
n∑
i=1

di)θ − (
n∑
i=1

d2
i ) = 0.

Of course this expression is not valid at θ = 0, because the function we are differentiating
is not even defined there. The quadratic formula yields two solutions:

−
∑n

i=1 di ±
√

(
∑n

i=1 di)
2 + 4n

∑n
i=1 d

2
i

2n
=

1

2

(
−d±

√
d

2
+ 4

∑n
i=1 d

2
i

n

)
, (A.16)

where d is the sample mean.
Let’s calculate these for the given data.

> meand <- mean(D) ; meandsq <- sum(D^2)/length(D)

> (-meand + sqrt(meand^2 + 4*meandsq) )/2

[1] 10.3463

> (-meand - sqrt(meand^2 + 4*meandsq) )/2

[1] -5.2953

The second solution is the one we found with the numerical search. What about the other
one? Is it a minimum? Maximum? Saddle point? The second derivative test will tell us.
The second derivative is

`′′(θ) =
n

θ2
− 3

∑n
i=1 d

2
i

θ4
+

2
∑n

i=1 di
θ3

.

Substituting A.16 into this does not promise to be much fun, so we will be content with
a numerical answer for this particular data set. Call the first root t1 and the second one
(our MLE) t2.

> t1 <- (-meand + sqrt(meand^2 + 4*meandsq) )/2 ; t1

[1] 10.3463

> t2 <- (-meand - sqrt(meand^2 + 4*meandsq) )/2 ; t2

[1] -5.2953

> n <- length(D)

> # Now calculaate second derivative at t1 and t2

> n/t1^2 - 3*sum(D^2)/t1^4 + 2*sum(D)/t1^3

[1] -0.7061484

> n/t2^2 - 3*sum(D^2)/t2^4 + 2*sum(D)/t2^3

[1] -5.267197



96 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

The second derivative is negative in both cases; they are both local maxima! Which peak
is higher?

> loglike1(t1)

[1] -224.9832

> loglike1(t2)

[1] -155.4413

So the maximum we found is higher, which makes sense because it’s within the range of
the data. But we only found it because we started searching near the correct answer.

Let’s plot the log likelihood function, and see what this thing looks like. We know
that because the natural log function goes to minus infinity as its (positive) argument
approaches zero, the log likelihood plunges to −∞ at θ = 0. A plot would look like a
giant icicle and we would not be able to see any detail where it matters. So we will zoom
in by limiting the range of the y axis. Here is the R code.

Theta <- seq(from=-15,to=20,by=0.25); Theta <- Theta[Theta!=0]

Loglike <- loglike1(Theta)

# Check where to break off the icicle

max(Loglike); Loglike[Theta==-3]; Loglike[Theta==3]

plot(Theta,Loglike,type=’l’,xlim=c(-15,20),ylim=c(-375,-155),

xlab=expression(theta),ylab="Log Likelihood")

# This is how you get Greek letters.

Here is the picture. You can see the local maxima around θ = −5 and θ = 10, and also
that the one for negative θ is a higher.

Presumably we would have reached the bad answer if we had started the search in a
bad place. Let’s try starting the search at θ = +3.

> nlm(loglike2,3)

$minimum

[1] 283.7589

$estimate

[1] 64.83292

$gradient

[1] 0.701077

$code

[1] 4

$iterations

[1] 100
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Figure A.1: Log Likelihood for Example A.4.2.1
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What happened?! The answer is way off, nowhere near the positive root of 10.3463. And
the minimum (of minus the log likelihood) is over 283, when it would have been 224.9832
at θ = 10.3463.

What happened was that the slope of the function was very steep at our starting value
of θ = 3, so nlm took a huge step in a positive direction. It was too big, and landed in
a nearly flat place. Then nlm wandered around until it ran out of its default number
of iterations (notice iterations=100). The exit code of 4 means maximum number of
iterations exceeded.

It should be better if we start close to the answer, say at θ = 8.

> nlm(loglike2,8)

$minimum

[1] 224.9832

$estimate

[1] 10.34629

$gradient

[1] -4.120564e-08

$code

[1] 1

$iterations

[1] 6
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That’s better. The moral of this story is clear. Good starting are very important.
Now let us look at an example of a multi-parameter problem where an explicit formula

for the MLE is impossible, and numerical methods are required.

Example A.4.2.2

Let D1, . . . , Dn be a random sample from a Gamma distribution with parameters
α > 0 and β > 0. The probability density function is

f(x;α, β) =
1

βαΓ(α)
e−x/βxα−1

for x > 0, and zero otherwise. Here is a random sample of size n = 50. For this example,
the data are simulated using R, with known parameter values α = 2 and β = 3. The seed
for the random, number generator is set so the pseudo-random numbers can be recovered
if necessary.

> set.seed(3201); alpha=2; beta=3

> D <- round(rgamma(50,shape=alpha, scale=beta),2); D

[1] 20.87 13.74 5.13 2.76 4.73 2.66 11.74 0.75 22.07 10.49 7.26 5.82 13.08

[14] 1.79 4.57 1.40 1.13 6.84 3.21 0.38 11.24 1.72 4.69 1.96 7.87 8.49

[27] 5.31 3.40 5.24 1.64 7.17 9.60 6.97 10.87 5.23 5.53 15.80 6.40 11.25

[40] 4.91 12.05 5.44 12.62 1.81 2.70 3.03 4.09 12.29 3.23 10.94

> mean(D); alpha*beta

[1] 6.8782

[1] 6

> var(D); alpha*beta^2

[1] 24.90303

[1] 18

The parameter vector θ = (α, β), and the parameter space Θ is the first quadrant of
R2.

Θ = {(α, β) : α > 0, β > 0}

The log likelihood is

`(α, β) = ln
n∏
i=1

1

βαΓ(α)
e−di/βdα−1

i

= ln

β−nα Γ(α)−n exp(− 1

β

n∑
i=1

di)

(
n∏
i=1

di

)α−1


= −nα ln β − ln Γ(α)− 1

β

n∑
i=1

di + (α− 1)
n∑
i=1

ln di.



A.4. MAXIMUM LIKELIHOOD 99

The next step would be to partially differentiate the log likelihood with respect to α and
β, set both partial derivatives to zero, and solve two equations in two unknowns. But
even if you are confident that the gamma function is differentiable (it is), you will be
unable to solve the equations. It has to be done numerically.

Define an R function for the minus log likelihood. Notice the lgamma function, a direct
numerical approximation of ln Γ(α). The plan is to numerically minimize the minus log
likelihood function over all (α, β) pairs, for this particular set of data values.

> # Gamma minus log likelihood: alpha=a, beta=b

> gmll <- function(theta,datta)

+ {

+ a <- theta[1]; b <- theta[2]

+ n <- length(datta); sumd <- sum(datta); sumlogd <- sum(log(datta))

+ gmll <- n*a*log(b) + n*lgamma(a) + sumd/b - (a-1)*sumlogd

+ gmll

+ } # End function gmll

Where should the numerical search start? One approach is to start at reasonable esti-
mates of α and β — estimates that can be calculated directly rather than by a numerical
approximation. As in Example A.4.2.1, Method of Moments estimators are a convenient,
high-quality choice.

For a gamma distribution, E(D) = αβ and V ar(D) = αβ2. So,

α =
E(D)2

V ar(D)
and β =

V ar(D)

E(D)
.

Replacing population moments by sample moments and writing
∼
α and

∼
β for the resulting

Method of Moments estimators, we obtain

∼
α=

D
2

S2
D

and
∼
β=

S2
D

D
,

where D is the sample mean and S2
D is the sample variance. For these data, the Method

of Moments estimates are reasonably close to the correct values of α = 2 and β = 3, but
they are not perfect. Parameter estimates are not the same as parameters!

> momalpha <- mean(D)^2/var(D); momalpha

[1] 1.899754

> mombeta <- var(D)/mean(D); mombeta

[1] 3.620574

Now for the numerical search. This time, we will request that the nlm function return
the Hessian at the place where the search stops. The Hessian is defined as follows.
Suppose we are minimizing a function g(θ1, . . . , θk) – say, a minus log likelihood. The
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Hessian is a k × k matrix of mixed partial derivatives. It may be written in terms of its
(i, j) element s

H =

[
∂2g

∂θi∂θj

]
. (A.17)

When the determinant of the Hessian matrix is positive at a point, the function is concave
up there. It’s like a second derivative test.

In the following, notice how the nlm function assumes that the first argument of the
function being minimized is a vector of arguments over which we should minimize, and
any other arguments (in this case, the name of the data vector) can be specified by name
in the nlm function call.

> gammasearch = nlm(gmll,c(momalpha,mombeta),hessian=T,datta=D); gammasearch

$minimum

[1] 142.0316

$estimate

[1] 1.805930 3.808674

$gradient

[1] 2.847002e-05 9.133932e-06

$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

$code

[1] 1

$iterations

[1] 6

> det(gammasearch$hessian)

[1] 55.96605

The nlm object gammasearch is a linked list. The item minimum is the value of the minus
log likelihood function where the search stops. The item estimate is the point at which
the search stops, so α̂ = 1.805930 and β̂ = 3.808674. The gradient is(

− ∂`

∂α
,− ∂`

∂β

)′
.

Besides being the direction of steepest decrease, it’s something that should be zero at the
MLE. And indeed it is, give or take a bit of numerical inaccuracy.
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The Hessian at the stopping place is in gammasearch$hessian. Its determinant is
positive, something that nlm checks too. So we have a minimum. Finally, code=1 means
normal termination of the search, and iterations=6 means the function took 6 steps
downhill to reach its target.

It is very helpful to have the true parameter values α = 2 and β = 3 for this example.
α̂ = 1.8 seems pretty close, while and β̂ = 3.8 seems farther off. This is a reminder of
how informative confidence intervals and tests can be.

The Invariance Principle

The Invariance Principle of maximum likelihood estimation says that the MLE of a func-
tion is that function of the MLE. An example comes first, followed by formal details.

Example A.4.2.3

Let D1, . . . , Dn be a random sample from a Bernoulli distribution (1=Yes, 0=No) with
parameter θ, 0 < θ < 1. The parameter space is Θ = (0, 1), and the likelihood function is

L(θ) =
n∏
i=1

θdi(1− θ)1−di = θ
Pn

i=1 di(1− θ)n−
Pn

i=1 di .

Differentiating the log likelihood with respect to θ, setting the derivative to zero and
solving yields the usual estimate θ̂ = d, the sample proportion.

Now suppose that instead of the probability, we write this model in terms of the odds
of Di = 1, a re-parameterization that is often useful in categorical data analysis. Denote
the odds by θ′. The definition of odds is

θ′ =
θ

1− θ
= g(θ). (A.18)

As θ ranges from zero to one, θ′ ranges from zero to infinity. So there is a new parameter
space: θ′ ∈ Θ′ = (0,∞).

To write the likelihood function in terms of θ′, first solve for θ, obtaining

θ =
θ′

1 + θ′
= g−1(θ′).

The likelihood in terms of θ′ is then

L(g−1(θ′)) =
θ′

Pn
i=1 di

(1 + θ′)n
. (A.19)

At this point one could differentiate the log of (A.19) with respect to θ′, set the
derivative to zero, and solve for θ′. The point of the invariance principle is that this is
unnecessary. The maximum likelihood estimator of g(θ) is g(θ̂), so one need only look
at (A.18) and write

θ̂′ =
θ̂

1− θ̂
=

d

1− d
.
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It is sometimes convenient to parameterize a statistical model in more than one way. The
invariance principle can save a lot of work in practice, because it says that you only have
to maximize the likelihood function once. It is useful theoretically too.

In Example A.4.2.3, the likelihood function has only one maximum and the function
g linking θ′ to θ′ is one-to-one, which is why we can write g−1. This is the situation where
the invariance principle is clearest and most useful. Here is a proof.

Let the parameter θ (which could be a vector even though it is not in bold face) be an
element of the parameter space Θ, and let the function g : Θ → Θ′ be one-to-one, where
Θ′ = {θ′ : θ′ = g(θ), θ ∈ Θ}. The meaning of g one-to-one is that there exists a function
g−1 : Θ′ → Θ such that g−1(g(θ)) = θ for all θ ∈ Θ.

As usual, denote the likelihood function by L(θ). In addition, suppose it has a unique

maximum at θ̂ ∈ Θ, so that for all θ ∈ Θ with θ 6= θ̂, L(θ) < L(θ̂). Now,

L(g−1(g(θ))) = L(g−1(θ′)), θ′ ∈ Θ′.

Maximizing L(g−1(θ′)) over all θ′ ∈ Θ′ yields θ̂′ satisfying L(g−1(θ̂′)) ≥ L(g−1(θ′))4 for all
θ′ ∈ Θ′. Because θ′ ∈ Θ′, there exists θ ∈ Θ with g(θ) = θ′. The objective is to show that

this θ equals θ̂.
Suppose on the contrary that θ 6= θ̂. Then L(g−1(θ̂′)) = L(θ) ≥ L(θ̂). But the

maximum over Θ is unique; i.e., L(θ̂) > L(θ). This contradiction establishes θ = θ̂,
completing the proof.

Exercises A.4.2

1. For each of the following distributions, derive a general expression for the Maximum
Likelihood Estimator (MLE). You don’t have to do the second derivative test. Then
use the data to calculate a numerical estimate.

(a) p(x) = θ(1− θ)x for x = 0, 1, . . ., where 0 < θ < 1. Data: 4, 0, 1, 0, 1, 3,

2, 16, 3, 0, 4, 3, 6, 16, 0, 0, 1, 1, 6, 10. Answer: 0.2061856

(b) f(x) = α
xα+1 for x > 1, where α > 0. Data: 1.37, 2.89, 1.52, 1.77, 1.04,

2.71, 1.19, 1.13, 15.66, 1.43 Answer: 1.469102

(c) f(x) = τ√
2π
e−

τ2x2

2 , for x real, where τ > 0. Data: 1.45, 0.47, -3.33, 0.82,

-1.59, -0.37, -1.56, -0.20 Answer: 0.6451059

(d) f(x) = 1
θ
e−x/θ for x > 0, where θ > 0. Data: 0.28, 1.72, 0.08, 1.22,

1.86, 0.62, 2.44, 2.48, 2.96 Answer: 1.517778

2. Let X1, . . . , X5 be a random sample from a Gamma distribution with parameters
α > 0 and β = 1. That is, the density is

f(x;α) =
1

Γ(α)
e−xxα−1

4Actually the maximum over Θ′ is unique. The proof of this will be left as an exercise.
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for x > 0, and zero otherwise.

The five data values are 2.06, 1.08, 0.96, 1.32, 1.53. Find an approximate numerical
value of the maximum likelihood estimate of α. Your final answer is one number.
For this question you will hand in a one-page printout. On the back, you will write
a brief explanation of what you did.

3. For each of the following distributions, try to derive a general expression for the
Maximum Likelihood Estimator (MLE). Then, use R’s nlm function to obtain the
MLE numerically for the data supplied for the problem. The data are in a separate
HTML document, because it saves a lot of effort to copy and paste rather than typing
the data in by hand, and PDF documents can contain invisible characters that mess
things up. NOTE! Put them here as well as in assignment HTML document.

(a) f(x) = 1
π[1+(x−θ)2]

for x real, where −∞ < θ <∞.

(b) f(x) = 1
2
e−|x−θ| for x real, where −∞ < θ <∞.

(c) f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, where α > 0 and β > 0.

For each distribution, be able to state (briefly) why differentiating the log likelihood
and setting the derivative to zero does not work. For the computer part, bring to
the quiz one sheet of printed output for each of the 3 distributions. The three sheets
should be separate, because you may hand only one of them in. Each printed page
should show the following, in this order.

• Definition of the function that computes the likelihood, or log likelihood, or
minus log likelihood or whatever.

• How you got the data into R – probably a scan statement.

• Listing of the data for the problem.

• The nlm statement and resulting output.

4. Let Y = Xβ + ε, where X is an n×p matrix of known constants, β is a p×1 vector
of unknown constants, and ε is multivariate normal with mean zero and covariance
matrix σ2In, with σ2 > 0 an unknown constant.

(a) What is the distribution of Y? There is no need to show any work.

(b) Assuming that the columns of X are linearly independent, show that the max-
imum likelihood estimate of β is β̂ = (X′X)−1X′Y . Don’t use derivatives.
The trick is to add and subtract β̂, distribute the expected value, and simplify.
Does your answer apply for any value of σ2? Why or why not?

(c) Given the MLE of β, find the MLE of σ2. Show your work. This time you
may differentiate.
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A.4.3 Interval Estimation and Testing

All the tests and confidence intervals here are based on large-sample approximations,
primarily the Central Limit Theorem. See Appendix ?? for basic definitions and results.
They are valid as the sample size n → ∞, but frequently perform well for samples that
are only fairly large. How big is big enough? This is a legitimate question, and the honest
answer is that it depends upon the distribution of the data. In practice, people often just
apply these tools almost regardless of the sample size, because nothing better is available.
Some do it with their eyes closed, some squint, and some have their eyes wide open.

The basic result comes from the research of Abraham Wald (give a source) in the 1950s.

As the sample size n increases, the distribution of the maximum likelihood estimator θ̂n
approaches a multivariate normal with expected value θ and variance-covariance matrix
Vn(θ). It is quite remarkable that anyone could figure this out, given that it includes
cases like the Gamma, where no closed-form expressions for the maximum likelihood
estimators are possible. The theorem in question is not true for every distribution, but it
is true if the distribution of the data is not too strange. The precise meaning of “not too
strange” is captured in a set of technical conditions called regularity conditions. Volume
2 of Kendall’s advanced theory of statistics [7] is a good textbook source for the details.

If θ is a k × 1 matrix, then Vn(θ) is a k × k matrix, called the asymptotic covariance
matrix of the estimators. It’s not too surprising that it depends on the parameter θ,
and it also depends on the sample size n. Using the asymptotic covariance matrix, it is
possible to construct a variety of useful tests and confidence intervals.

Fisher Information

The fact that Vn(θ) depends on the unknown parameter will present no problem; substi-

tuting θ̂n for θ yields an estimated asymptotic covariance matrix. So consider the form
of the matrix V.

Think of a one-parameter maximum likelihood problem, where we differentiate the log
likelihood, set the derivative to zero and solve for θ; the solution is θ̂. The log likelihood
will be concave down at θ̂, but the exact way it looks will depend on the distribution
as well as the sample size. In particular, it could be almost flat at θ̂, or it could be
nearly a sharp peak, with extreme downward curvature. In the latter case, clearly the log
likelihood is more informative about θ. It contains more information. One of the many
good ideas of R. A. F. Fisher was that the second derivative reflects curvature, and and
can be viewed as a measure of the information provided by the sample data. It is called
the Fisher Information in his honour.

Now with increasing sample size, nearly all log likelihood functions acquire more and
more downward curvature at the MLE. This makes sense – more data provide more
information. But how about the information from just one observation? If you look at
the second derivative of the log likelihood function,

∂2`

∂θ2
=

∂2

∂θ2
ln

n∏
i=1

f(di; θ) =
n∑
i=1

∂2

∂θ2
ln f(di; θ),
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you see that it is the sum of n quantities. Each observation is contributing a piece
to the downward curvature. But how much? Well, it depends on the particular data
value xi. But the data are a random sample, so in fact the contribution is a random
quantity: ∂2

∂θ2
ln f(Xi; θ). How about the information one would expect an observation

to contribute? Okay, take the expected value. Finally, note that because the curvature
is down at the MLE, the quantity we are discussing is negative. But we want to call
this “information,” and it would be nicer if it were a positive number, so higher values
meant more information. Okay, multiply by −1. This leads to the definition of the Fisher
Information in a single observation:

I(θ) = E

[
− ∂2

∂θ2
ln f(Di; θ)

]
. (A.20)

The information is the same for i = 1, . . . , n, and the Fisher Information in the entire
sample is just nI(θ).

It was clear that Fisher was onto something good, because for many problems where
the variance of θ̂ can be calculated exactly, it is one divided by the Fisher Information.
Subsequently Cramér and Rao discovered the Cramér-Rao Inequality, which says that for
any statistic T that is an unbiased estimator of θ,

V ar(T ) ≥ 1

nI(θ)
.

That’s impressive, because to have a small variance is a great property in an estimator;
it means precise estimation. The Cramér-Rao inequality tells us that in terms of variance,
one cannot do better than an unbiased estimator whose variance equals one over the Fisher
Information, and many MLEs do that. Subsequently, Wald5 showed that (under some
regularity conditions) as n → ∞, the variances of maximum likelihood estimators in

general attain the Cramér-Rao lower bound. Thus, to learn the asymptotic variance of θ̂,
you do not need an explicit formula for θ̂. All you need is the Fisher Information. Also,
in terms of variance nothing can beat maximum likelihood estimation, at least for large
sample. So one needs a good reason to choose anything else, if the distribution of the
data is known so you can write down the likelihood.

Calculating the expected value in (A.20) is often not too hard because taking the log
and differentiating twice results in some simplification; it’s a source of many fun homework
problems. But still it can be a chore, especially for multiparameter problems, which will
be taken up shortly. For larger sample sizes, the Law of Large Numbers (Appendix ??)
guarantees that the expected value can be approximated quite well by a sample mean, so
that

I(θ) = E

[
− ∂2

∂θ2
ln f(D1; θ)

]
≈ 1

n

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ).

This is sometimes called the observed Fisher Information.

5Need a reference
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Multiplying the observed Fisher Information by n to get the approximate information
in the entire sample yields

n∑
i=1

− ∂2

∂θ2
ln f(Di; θ) =

∂2

∂θ2

n∑
i=1

− ln f(Di; θ) =
∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ)

)
.

That’s just the second derivative of the minus log likelihood.
The parameter θ is unknown, so to get the estimated Fisher Information in the whole

sample, substitute θ̂. The result is

∂2

∂θ2

(
− ln

n∏
i=1

f(Di; θ̂)

)
.

That’s the second derivative of minus the log likelihood, evaluated at the maximum like-
lihood estimate. And, it’s a function of the sample data that is not a function of any
unknown parameters; in other words it is a statistic. If you have already carried out the
second derivative test to check that you really had a maximum, all you need to do to
estimate the variance of θ̂ is take the reciprocal of the second derivative and multiply by
−1. It is truly remarkable how neatly this all works out.

Generalization to the multivariate case is very natural. Now the parameter is θ =
(θ1, . . . , θk)

′ and the Fisher Information Matrix is a k × k matrix of (expected) mixed
partial derivatives, defined by

I(θ) =

[
−E

(
∂2

∂θi∂θj
f(D1; θ)

)]
,

where the boldface Di is an acknowledgement that the data might also be multivariate.
In the estimated observed Fisher Information evaluated at the MLE (which will simply

be called the “Fisher Information Matrix” unless other wise noted), expected value is

replaced by a sample mean and θ is replaced by θ̂. The formula is

J (θ̂) =

[
∂2

∂θi∂θj

(
− ln

n∏
q=1

f(Dq; θ̂)

)]
=

[
∂2

∂θi∂θj

(
−`(θ̂)

)]
. (A.21)

In the one-dimensional case, one over the estimated Fisher Information is the (esti-
mated) asymptotic variance of the maximum likelihood estimator. In the multi-parameter
case, the Fisher Information is a matrix, and the estimated asymptotic variance-covariance
matrix is its inverse. Denoting the estimated asymptotic covariance matrix by V̂n, we
have

V̂n = J (θ̂n)
−1. (A.22)

Now comes the really good part. Comparing Formula (A.21) for the Fisher Information
to Formula (A.17) for the Hessian, we see that they are exactly the same. And the Hessian

evaluated at θ̂ is a by-product of the numerical search6.

6At least for generic numerical minimization routines like R’s nlm. Some specialized methods like
iterative proportional fitting of log-linear models and Fisher scoring (iteratively re-weighted least squares)
for generalized linear models maximize the likelihood indirectly and do not require calculation of the
Hessian.
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So to get the asymptotic covariance matrix, minimize minus the log likelihood, tell the
software to give you the Hessian, and calculate the inverse by computer. The theoretical
story may be a bit long here, but what you have to do in practice is quite simple.

Continuing with the Gamma distribution Example A.4.2.2, the Hessian is

> gammasearch$hessian

[,1] [,2]

[1,] 36.68932 13.127271

[2,] 13.12727 6.222282

and the asymptotic covariance is just

> Vhat = solve(gammasearch$hessian); V

[,1] [,2]

[1,] 0.1111796 -0.2345577

[2,] -0.2345577 0.6555638 .

The diagonal elements of V̂ are the estimated variances of the sampling distributions
of α̂ and β̂ respectively, and their square roots are the standard errors.

> SEalphahat = sqrt(Vhat[1,1]); SEbetahat = sqrt(Vhat[2,2])

In general, let θ denote an element of the parameter vector, let θ̂ be its maximum likelihood
estimator, and let the standard error of θ̂ be written Sbθ. Then Wald’s central Limit
Theorem for maximum likelihood estimators tells us that

Z =
θ̂ − θ

Sbθ (A.23)

has an approximate standard normal distribution. In particular, for the Gamma example

Z1 =
α̂− α

Sbα and Z2 =
β̂ − β

Sbβ
may be treated as standard normal.

Confidence Intervals

These quantities may be used to produce both tests and confidence intervals. For example,
a 95% confidence interval for the parameter θ is obtained as follows.

0.95 ≈ Pr{−1.96 ≤ Z ≤ 1.96}

= Pr

{
−1.96 ≤ θ̂ − θ

Sbθ ≤ 1.96

}
= Pr

{
θ̂ − 1.96Sbθ ≤ θ ≤ θ̂ + 1.96Sbθ

}
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This could also be written θ̂ ± 1.96Sbθ .
If you are used to seeing confidence intervals with a

√
n and wondering where it went,

recall that SX = S√
n
. The

√
n is also present in the confidence interval for θ, but it is

embedded in Sbθ.
Here are the 95% confidence intervals for the Gamma distribution example:

> alphahat = gammasearch$estimate[1]; betahat = gammasearch$estimate[2]

> Lalpha = alphahat - 1.96*SEalphahat; Ualpha = alphahat + 1.96*SEalphahat

> Lbeta = betahat - 1.96*SEbetahat; Ubeta = betahat + 1.96*SEbetahat

> cat("\nEstimated alpha = ",round(alphahat,2)," 95 percent CI from ",

+ round(Lalpha,2)," to ",round(Ualpha,2), "\n\n")

Estimated alpha = 1.81 95 percent CI from 1.15 to 2.46

> cat("\nEstimated beta = ",round(betahat,2)," 95 percent CI from ",

+ round(Lbeta,2)," to ",round(Ubeta,2), "\n\n")

Estimated beta = 3.81 95 percent CI from 2.22 to 5.4

Notice that while the parameter estimates may not seem very accurate, the 95% confidence
intervals do include the true parameter values α = 2 and β = 3.

Z-tests

The standard normal variable in (A.23) can be used to form a Z-test of H0 : θ = θ0 using

Z =
θ̂ − θ0

Sbθ .

So for example, suppose the data represent time intervals between events occurring in
time, and we wonder whether the events arise from a Poisson process. In this case the
distribution of times would be exponential, which means α = 1. To test this null hypoth-
esis at the 0.05 level,

> Z = (alphahat-1)/SEalphahat; Z

[1] 2.417046

> pval = 2*(1-pnorm(abs(Z))); pval # Two-sided test

[1] 0.01564705

So, the null hypothesis is rejected, and because the value is positive, the conclusion is
that the true value of α is greater than one7.

When statistical software packages display this kind of large-sample Z-test, they usu-
ally just divide θ̂ by its standard error, testing the null hypothesis H0 : θ = 0. For
parameters like regression coefficients, this is usually a good generic choice.

7The following basic question arises from time to time. Suppose a null hypothesis is rejected in favour
of a two-sided alternative. Are we then “allowed” to look at the sign of the test statistic and conclude
that θ < θ0 or θ > θ0, or must we just be content with saying θ 6= θ0? The answer is that directional
conclusions are theoretically justified as well as practically desirable. Think of splitting up the two-
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Wald Tests

The approximate multivariate normality of the MLE can be used to construct a larger class
of hypothesis tests for linear null hypotheses. A linear null hypothesis sets a collection of
linear combinations of the parameters to zero. Suppose θ = (θ1, . . . , θk)

′ is a k× 1 vector.
A linear null hypothesis can be written

H0 : Cθ = h,

where C is an r × k matrix of constants, with rank r, r ≤ k. As an example let θ =
(θ1, . . . θ7)

′, and the null hypothesis is

θ1 = θ2, θ6 = θ7,
1

3
(θ1 + θ2 + θ3) =

1

3
(θ4 + θ5 + θ6) .

This may be expressed in the form Cθ = h as follows:

 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1
1 1 1 −1 −1 −1 0




θ1

θ2

θ3

θ4

θ5

θ6

θ7


=

 0
0
0

 .

Recall from Appendix A.3.2 that if X ∼ Nk(µ,Σ), and C is an r× k constant matrix
of rank r, then

CX ∼ Nr(Cµ,CΣC′)

and

(CX−Cµ)′(CΣC′)−1(CX−Cµ) ∼ χ2(r).

Similar facts hold asymptotically — that is approximately, as the sample size n ap-
proaches infinity. Because (approximately) θ̂n ∼ Nk(θ, V̂n),

Cθ̂n ∼ Nr(Cθ,CV̂nC
′)

sided level α test (call it the overall test) into two one-sided tests with significance level α/2. The null
hypotheses of these tests are H0,a : θ ≤ θ0 and H0,b : θ ≥ θ0. Exactly one of these null hypotheses will be
rejected if and only if the null hypothesis of the overall test is rejected, so the set of two one-sided tests
is fully equivalent to the overall two-sided test. And directional conclusions from the one-sided tests are
clearly justified.

On a deeper level, notice that the null hypothesis of the overall test is the intersection of the null
hypotheses of the one-sided tests, and its critical region (rejection region) is the union of the critical
regions of the one-sided tests. This makes the two one-sided tests a set of union-intersection multiple
comparisons, which are always simultaneously protected against Type I error at the significance level of
the overall test. Performing the two-sided test and then following up with a one-sided test is very much
like following up a statistically significant ANOVA with Scheffeé tests. Indeed, Scheffé tests are another
example of union-intersection multiple comparisons. See [3] for details.
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and
(Cθ̂n −Cθ)′(CV̂nC

′)−1(Cθ̂n −Cθ) ∼ χ2(r).

So, if H0 : Cθ = h is true, we have the Wald test statistic

Wn = (Cθ̂n − h)′(CV̂nC
′)−1(Cθ̂n − h) ∼ χ2(r), (A.24)

where again,

V̂n = J (θ̂)−1 =

[
∂2

∂θi∂θj

(
−`(θ̂)

)]−1

.

Here is a test of H0 : α = β for the Gamma distribution example. A little care must
be taken to ensure that the matrices in (A.24) are the right size.

> # H0: C theta = 0 is that alpha = beta <=> alpha-beta=0

> # Name C is used by R

> CC = rbind(c(1,-1)); is.matrix(CC); dim(CC)

[1] TRUE

[1] 1 2

> thetahat = as.matrix(c(alphahat,betahat)); dim(thetahat)

[1] 2 1

> W = t(CC%*%thetahat) %*% solve(CC%*%Vhat%*%t(CC)) %*% CC%*%thetahat

> W = as.numeric(W) # it was a 1x1 matrix

> pval2 = 1-pchisq(W,1)

> cat("Wald Test: W = ", W, ", p = ", pval2, "\n")

Wald Test: W = 3.245501 , p = 0.07161978

We might as well define a function to do Wald tests in general. In the function
WaldTest, the null hypothesis is Lθ = h, but that’s just because the name C is used by
R for contrasts. The function returns a pair of quantities, the Wald test statistic and the
p-value.

> WaldTest = function(L,thetahat,h=0) # H0: L theta = h

+ {

+ WaldTest = numeric(2)

+ names(WaldTest) = c("W","p-value")

+ dfree = dim(L)[1]

+ W = t(L%*%thetahat-h) %*% solve(L%*%Vhat%*%t(L)) %*% (L%*%thetahat-h)

+ W = as.numeric(W)

+ pval = 1-pchisq(W,dfree)

+ WaldTest[1] = W; WaldTest[2] = pval

+ WaldTest

+ } # End function WaldTest

Here is the same test of H0 : α = β done immediately above, just to test out the
function. Notice that the default value of h in H0 : Lθ = h is zero, so it does not have to
be specified. The matrix CC has already been created, and the computed values are the
same as before, naturally.
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> WaldTest(CC,as.matrix(c(alphahat,betahat)))

W p-value

3.24550127 0.07161978

Here is a test of H0 : α = 2, β = 3, which happen to be the true parameter values.
The null hypothesis is not rejected.

> C2 = rbind(c(1,0),

+ c(0,1) )

> WaldTest(C2,as.matrix(c(alphahat,betahat)),c(2,3))

W p-value

1.3305497 0.5141322

Finally, here is a test of H0 : α = 1, which was done earlier with a Z-test.

> WaldTest(t(c(1,0)),as.matrix(c(alphahat,betahat)),1)

W p-value

5.84210645 0.01564708

> Z; pval

[1] 2.417045

[1] 0.01564708

> Z^2

[1] 5.842106

The results of the Wald and Z tests are identical, with Wn = Z2. In general, suppose the
matrix C in H0 : Cθ = h has just a single row, and that row contains one 1 in position
j and all the rest zeros. Take a look at Formula (A.24) for the Wald test statistic. Pre-

multiplying by C in CV̂n picks out row j of V̂n, and post-multiplying by C′ picks out
column j of the result, so that CV̂nC

′ = v̂j,j, and inverting it puts it in the denominator.

In the numerator, (Cθ̂n − h)′(Cθ̂n − h) = (θ̂j − θj,0)
2, so that Wn = Z2. Thus, squaring

a large-sample Z-test gives a Wald chisquare test with one degree of freedom.

A.4.4 Likelihood Ratio Tests

Likelihood ratio tests fall into two categories, exact and large-sample. The main examples
of exact likelihood ratio tests include are the standard F -tests and t-tests associated with
regression and the analysis of variance for normal data. Here, we concentrate on the
large-sample likelihood ratio tests. Like the Wald tests, they are very flexible and are
distributed approximately as chi-square under the null hypothesis for large samples. In
fact, they are asymptotically equivalent to the Wald test under H0, meaning that if the
null hypothesis is true, the difference between the likelihood ratio statistic and the Wald
statistic goes to zero in probability as the sample size approaches infinity.

Since the Wald and likelihood ratio tests are equivalent, does it matter which one you
use? The answer is that usually, Wald tests and likelihood ratio tests lead to the same
conclusions and their numerical values are close. But the tests are only equivalent as
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n→∞. When there is a meaningful difference, the likelihood ratio tests usually perform
better, especially in terms of controlling Type I error rate for relatively small sample
sample sizes.

Table A.1 below contains the most extreme example I know. For a particular structural
equation model with normal data (details don’t matter for now), ten thousand data sets
were randomly generated so that the null hypothesis was true. This was done for several
sample sizes: n = 50, 100, 250, 500 and 1, 000. Using each of the 50,000 resulting data
sets, the null hypothesis was tested with a Wald test and a likelihood ratio test at the
α = 0.05 significance level. If the asymptotic results held, we would expect both tests to
reject H0 500 times at each sample size.

Table A.1: Wald versus likelihood ratio: Type I error in 10,000 simulated datasets

n
Test 50 100 250 500 1000
Wald 1180 1589 1362 0749 0556

Likelihood Ratio 0330 0391 0541 0550 0522

So for this deliberately nasty example, the Wald test requires n = 1, 000 before it
settles down to something like the theoretical 0.05 significance level. The likelihood ratio
test needs n = 250, and for smaller sample sizes it is conservative, with a Type I error
rate somewhat lower than 0.058. In general, when the Wald and likelihood ratio tests
have a contest of this sort, it is usually a draw. When there is a winner, it is always the
likelihood ratio test, but the margin of victory is seldom as large as this.

Consider the following hypothesis-testing framework. The data are D1, . . . , Dn. The
distribution of these independent and identically distributed random variables depends
on the parameter θ, and we are testing a null hypothesis H0 using a large sample likelihood
ratio test.

D1, . . . , Dn
i.i.d.∼ Dθ, θ ∈ Θ,

H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0,

The data have likelihood function

L(θ) =
n∏
i=1

f(di; θ),

where f(di; θ) is the density or probability mass function evaluated at di.

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the pa-

rameter value for which the likelihood function is greatest, over all θ ∈ Θ. And, let θ̂0

8This suggests that the power will not be wonderful for smaller sample sizes, in this example. But
keeping Type I error rates below 0.05 is the first priority.
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denote the restricted MLE. The restricted MLE is the parameter value for which the like-
lihood function is greatest, over all θ ∈ Θ0. This MLE is restricted by the null hypothesis
H0 : θ ∈ Θ0. It should be clear that L(θ̂0) ≤ L(θ̂), so that the likelihood ratio.

λ =
L(θ̂0)

L(θ̂)
≤ 1.

The likelihood ratio will equal one if and only if the overall MLE θ̂ is located in Θ0. In
this case, there is no reason to reject the null hypothesis.

Suppose that the likelihood ratio is strictly less than one. If it’s a lot less than one,
then the data are a lot less likely to have been observed under the null hypothesis than
under the alternative hypothesis, and the null hypothesis is questionable. This is the basis
of the likelihood ratio tests.

If λ is small (close to zero), then ln(λ) is a large negative number, and −2 lnλ is a
large positive number.

Tests will be based on

G = −2 ln

(
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

)
= −2 ln

(
L(θ̂0)

L(θ̂)

)
= −2 lnL(θ̂0)− [−2 lnL(θ̂)]

= 2
(
−`(θ̂0)− [−`(θ̂)]

)
. (A.25)

Thus, the test statistic G is the difference between two −2 log likelihood functions.
This means that to carry out a test, you can minimize −`(θ) twice, first over all θ ∈ Θ,
and then over all θ ∈ Θ0. The test statistic is the difference between the two minimum
values, multiplied by two.

If the null hypothesis is true, then the test statistic G has, if the sample size is large,
an approximate chisquare distribution, with degrees of freedom equal to the difference
of the dimension of Θ and Θ0. For example, if the null hypothesis is that 4 elements
of θ equal zero, then the degrees of freedom are equal to 4. More generally, if the null
hypothesis imposes r linear restrictions on θ (as in H0 : Cθ = h), then the degrees of
freedom equal r. Another way to obtain the degrees of freedom is by counting the equal
signs in the null hypothesis.

Think of a multiple regression model with p regression coefficients. Here, θ = (β, σ2).
Consider the null hypothesisH0 : Lβ = γ, where L is an r×pmatrix. This null hypothesis
imposes r linear restrictions on the parameter, one for each row of L. The dimension of
Θ is p+ 1; the dimension of Θ0 is p+ 1− r. The degrees of freedom equal r.

The p-value associated with the test statistic G is Pr{X > G}, where X is a chisquare
random variable with r degrees of freedom. If p < α, we reject H0 and call the results
“statistically significant.” The standard choice is α = 0.05.



114 APPENDIX A. REVIEW AND BACKGROUND MATERIAL

To illustrate the likelihood ratio tests, consider (one last time) the Gamma distribution
Example A.4.2.2. For comparison, the likelihood ratio method will be used test the same
three null hypotheses that were tested earlier using Wald tests. They are

• H0 : α = 1

• H0 : α = β

• H0 : α = 2, β = 3

For H0 : α = 1, the restricted parameter space is Θ0 = {(α, β) : α = 1, β > 0}.
Because the Gamma distribution with α = 1 is exponential, the restricted MLE is θ̂0 =
(1, d). It is more informative, though, to use numerical methods.

To maximize the likelihood function (or minimize minus the log likelihood) over Θ0,
it might be tempting to impose the restriction on θ, simplify the log likelihood, and write
the code for a new function to minimize. But this strategy is not recommended. It’s time
consuming, and mistakes are possible. In the R work shown below, notice how the function
gmll1 is just a “wrapper” for the unrestricted minus log likelihood function gmll. It is a
function of β (and the data, of course), but all it does is call gmll with α set to one and
β free to vary.

> gmll1 <- function(b,datta) # Restricted gamma minus LL with alpha=1

+ { gmll1 <- gmll(c(1,b),datta)

+ gmll1

+ } # End of function gmll1

> mean(D) # Resticted MLE of beta, just to check

[1] 6.8782

The next step is to invoke the nonlinear minimization function nlm. The second
argument is a (vector of) starting value(s). Starting the search at β = 1 turns out to be
unfortunate.

> gsearch1 <- nlm(gmll1,1,datta=D); gsearch1

$minimum

[1] 282.6288

$estimate

[1] 278.0605

$gradient

[1] 0.1753689

$code

[1] 4

$iterations

[1] 100
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The answer g1search$estimate=278.0605 is way off the correct answer of d = 6.8782, it
took 100 steps, and the exit code of 4 means the function ran out of the default number
of iterations. Starting at the unrestricted β̂ works better.

> gsearch1 <- nlm(gmll1,betahat,datta=D); gsearch1

$minimum

[1] 146.4178

$estimate

[1] 6.878195

$gradient

[1] -1.768559e-06

$code

[1] 1

$iterations

[1] 7

That’s better. Good starting values are important! Now the test statistic is easy to
calculate.

> G = 2 * (gsearch1$minimum-gammasearch$minimum); pval = 1-pchisq(G,df=1)

> G; pval

[1] 8.772448

[1] 0.003058146

Let us carry out the other two tests, and then compare the Wald and likelihood ratio test
results together in a table.

For H0 : α = β, the restricted parameter space is Θ0 = {(α, β) : α = β > 0}.

> gmll2 <- function(ab,datta) # Restricted gamma minus LL with alpha=1

+ { gmll2 <- gmll(c(ab,ab),datta)

+ gmll2

+ } # End of function gmll2

> abstart = (alphahat+betahat)/2

> gsearch2 <- nlm(gmll2,abstart,datta=D); gsearch2

Warning messages:

1: NaNs produced in: log(x)

2: NA/Inf replaced by maximum positive value

$minimum

[1] 144.1704

$estimate
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[1] 2.562369

$gradient

[1] -4.991384e-07

$code

[1] 1

$iterations

[1] 4

> G = 2 * (gsearch2$minimum-gammasearch$minimum); pval = 1-pchisq(G,df=1)

> G; pval

[1] 4.277603

[1] 0.03861777

This seems okay; it only took 4 iterations and the exit code of 1 is a clean bill of health.
But the warning messages are a little troubling. Probably they just indicate that the
search tried a negative parameter value, outside the parameter space. The R function
nlminb does minimization with bounds. Let’s try it.

> gsearch2b <- nlminb(start=abstart,objective=gmll2,lower=0,datta=D); gsearch2b

$par

[1] 2.562371

$objective

[1] 144.1704

$convergence

[1] 0

$message

[1] "relative convergence (4)"

$iterations

[1] 5

$evaluations

function gradient

7 8

Since nlminb gives almost the same restricted α̂ = β̂ = 2.5624 (and no warnings), the
warning messages from nlm were probably nothing to worry about.

Finally, for H0 : α = 2, β = 3 the restricted parameter space Θ0 is a single point and
no optimization is necessary. All we need to do is calculate the minus log likelihood there.
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> G = 2 * (gmll(c(2,3),D)-gammasearch$minimum); pval = 1-pchisq(G,df=1)

> G; pval

[1] 2.269162

[1] 0.1319713

The top panel of Table A.2 shows the Wald and likelihood ratio tests that have been
done on the Gamma distribution data. But this is n = 50 and the asymptotic equivalence
of the tests has barely begun to show. In the lower panel, the same tests were done for
a sample of n = 200, formed by adding another 150 cases to the original data set. The
results are typical; the χ2 values are much closer except where they are far out on the
tails, and both test lead to the same conclusions (though not always to the truth).

Table A.2: Tests on data from a gamma distribution with α = 2 and β = 3

n = 50
Wald Likelihood Ratio

H0 χ2 p-value χ2 p-value
α = 1 5.8421 0.0156 8.7724 0.0031
α = β 3.2455 0.0762 4.2776 0.0386
α = 2, β = 3 1.3305 0.5141 2.2692 0.1320

n = 200
α = 1 34.1847 5.01e-09 58.2194 2.34e-14
α = β 0.9197 0.3376 0.9664 0.3256
α = 2, β = 3 1.5286 0.4657 1.2724 0.2593

Exercises A.4.4

1. Let Y1, . . . , Yn be a random sample from a distribution with density f(y) = 1
θ
e−

y
θ

for y > 0, where the parameter θ > 0. We are interested in testing H0 : θ = θ0.

(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic G =

−2 log `(
bbθ)

`(bθ) .
(e) A sample of size n = 100 yields Y = 1.37 and S2 = 1.42. One of these

quantities is unnecessary and just provided to irritate you. Well, actually it’s
a mild substitute for reality, which always provides you with a huge pile of
information you don’t need. Anyway, we want to test H0 : θ = 1. You can do
this with a calculator. When I did it a long time ago I got G = 11.038.
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(f) At α = 0.05, the critical value of chisquare with one degree of freedom is
3.841459. Do you reject H0? Answer Yes or No.

2. The label on the peanut butter jar says peanuts, partially hydrogenated peanut oil,
salt and sugar. But we all know there is other stuff in there too. In the United
States, the Food and Drug administration requires that a shipment of peanut butter
be rejected if it contains an average of more than 8 rat hairs per pound (well, I’m
not sure if it’s exactly 8, but let’s pretend). There is very good reason to assume
that the number of rat hairs per pound has a Poisson distribution with mean λ,
because it’s easy to justify a Poisson process model for how the hairs get into the
jars. We will test H0 : λ = λ0.

(a) What is Θ?

(b) What is Θ0?

(c) What is Θ1?

(d) Derive a general expression for the large-sample likelihood ratio statistic.

(e) We sample 100 1-pound jars, and observe a sample mean of Y = 8.57. Should
we reject the shipment? We want to test H0 : λ = 8. What is the value of
G? You can do this with a calculator. When I did it a long time ago I got
G = 3.97.

(f) Do you reject H0 at α = 0.05? Answer Yes or No.

(g) Do you reject the shipment of peanut butter? Answer Yes or No.

3. The normal distribution has density

f(y) =
1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
.

Find an explicit formula for the MLE of θ = (µ, σ2). This example is in practically
every mathematical statistics textbook, so the full solution is available. But please
try it yourself first.

4. Write an R function that performs a large-sample likelihood ratio test ofH0 : σ2 = σ2
0

for data from a single normal random sample. The function should take the sample
data and σ2

0 as input, and return 3 values: G, the degrees of freedom, and the p-
value. Run your function on the data in var.dat, testing H0 : σ2 = 2; see link to
the data on the course web page.

For this question, you need to bring a printout with a listing of your function
(showing how it is defined), and also part of an R session showing execution of the
function, and the resulting output.

5. For k samples from independent normal distributions, the usual one-way analysis of
variance tests equality of means assuming equal variances. Now you will construct
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a large-sample likelihood ratio test for equality of means, except that you will not
assume equal variances. Write an R function to do it.

Input to the function should be the sample data, in the form of a matrix. The first
column should contain group membership (the independent variable). It is okay
to assume that the unique values in this column are the integers from 1 to k. The
second column should contain values of the normal random variates – the dependent
variable.

The function should return 3 values: G, the degrees of freedom, and the p-value.
Run your function on the sample in kars.dat; see link to the data on the course
web page. This data set shows country of origin and gas mileage for a sample of
automobiles.

6. Let X1, . . . ,Xn be a random sample from a multivariate normal population with
mean µ and variance-covariance matrix Σ. Using the MLEs

µ̂ = X and Σ̂ =
1

n

n∑
i=1

(Xi −X)(Xi −X)′,

derive the large-sample likelihood ratio test G for testing whether the components
of the random vectors Xi are independent. That is, we want to test whether Σ is
diagonal. It is okay to use material from the class notes without proof.

7. Using R, write a program to compute the test you derived in the preceding question.
Your program should return 3 values: G, the degrees of freedom, and the p-value.
Run it on the sample in fourvars.dat; see link to the data on the course web page.
Bring a printout listing your program and illustrating the run on fourvars.dat. Of
course it would be nice if your program were general, but it is not required. Note
that for this problem, numerical maximum likelihood is not needed. Both your
restricted and your unrestricted MLEs can and should be in explicit form.

A.5 Large Sample Theory (Preliminary)

For this part, it helps to start by going down to the basement and taking a look at the
foundations of the building. There is an underlying sample space Ω, consisting of sample
points ω ∈ Ω9. The specific nature of a point ω in applications depends on what is being
observed. For example, if we were observing whether a single individual is male or female,
Ω might be {F,M}. If we selected a pair of individuals and observed their genders in
order, Ω might be {(F, F ), (F,M), (M,F ), (M,M)}. If we selected n individuals and just
counted the number of females, Ω might be {0, . . . , n}. For limits problems, the points in
Ω are infinite sequences.

9Throughout most of this book, Ω is a covariance matrix. The symbol will briefly have its usual
meaning here, just for the discussion of almost sure convergence
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Let A be a class of subsets of Ω (that is, a set of events), and let P be a probability
function that assigns numbers betweeen zero and one inclusive to the elements of A. A
random variable X = X(ω) is a function that maps Ω into some other space, typically
R or Rk. Think of taking a measurement: if Ω is a set of students, X(ω) might be the
cumulative grade point average of student ω.

Suppose the random variable X maps Ω into the set of real numbers R. Then X
induces a probability measure on a class10 B of subsets of R, by means of

Pr{X ∈ B} = P({ω ∈ Ω : X(ω) ∈ B})

for B ∈ B.
Suppose we have a sample of data X1(ω), . . . , Xn(ω), and we calculate a function of

the sample data T = T (X1, . . . , Xn). For example T could be a statistic like the sample
mean X. It is helpful to write T = Tn(ω), to indicate that T is a random variable (a
function from Ω into R) that depend upon the sample size n.

Frequently it is useful to let n→∞, because when the sequence T1, T2, . . . converges,
it is an indication of what happens when the sample is large enough. But this is not just a
sequence of numbers; it is a sequence of functions. Several different types of convergence
are meaningful.

A.5.1 Modes of Convergence

Throughout, let T1, T2, . . . be a sequence of random variables, and let T be another random
variable. It is quite possible and often useful for T = T (ω) to be a constant — that
is, a constant function of ω. In that case T is a “degenerate” random variable, with
P{T = c} = 1 for some constant c.

Almost Sure Convergence

We say that Tn converges almost surely to T , and write Tn
a.s.→ if

P{ω : lim
n→∞

Tn(ω) = T (ω)} = 1.

That is, except possibly for ω ∈ A with P(A) = 0, Tn(ω) converges to the random variable
T (ω) like an ordinary limit, and all the usual rules apply — for example, the limit of a
continuous function is the continous function of the limit, L’Hôpital’s rule and so on.
Almost sure convergence is also called convergence with probability one, or sometimes
strong convergence.

Almost sure convergence may be the most technically “advanced” mode of conver-
gence, but it is also perhaps the easiest to work with, because you treat the sequence
T1, T2, . . . like numbers, find the limit, and then mention that the result applies “except
possibly on a set of probability zero.”

The main entry point to establishing almost sure convergence is the Strong Law of
Large Numbers, which involves almost sure convergence to a constant. Let X1, . . . Xn be

10I’m thinking of the Borel σ-algebra, but there is no need to go that far.
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independent and identically distributed random variables with expected value µ. Denote
the sample mean as usual by Xn = 1

n

∑n
i=1Xi. The Strong Law of Large Numbers (SLLN)

says

Xn
a.s.→ µ. (A.26)

The only condition required for this to hold is the existence of the expected value.

Let X1, . . . Xn be independent and identically distributed random variables; let X be
a general random variable from this same distribution, and Y = g(X). The change of
variables formula (A.1) can be combined with the Strong Law of Large Numbers to write

1

n

n∑
i=1

g(Xi) =
1

n

n∑
i=1

Yi
a.s.→ E(Y ) = E(g(X)). (A.27)

This means that sample moments converge almost surely to population moments:

1

n

n∑
i=1

Xk
i
a.s.→ E(Xk)

It even yields rules like

1

n

n∑
i=1

U2
i ViW

3
i
a.s.→ E(U2VW 3).

Convergence in Probability

We say that Tn converges in probability to T , and write Tn
P→ if for all ε > 0,

lim
n→∞

P{|Tn − T | < ε} = 1.

Convergence in proability is implied by almost sure convergence, so correponding to the
Strong Law of Large Numbers is the Weak Law of Large Numbers (WLLN). Let X1, . . . Xn

be independent and identically distributed random variables with expected value µ. Then
the sample mean converges in probability to µ:

Xn
P→ µ. (A.28)

A change of variables rule like expression (A.27) holds, and sample moments converge
in probability to population moments. These rules follow from the corresponding facts
about almost sure convergence.

Another way of establishing convergence in probability to a constant without using
the definition is the Variance Rule. Let θ be a constant. Then if limn→∞E(Tn) = θ and

limn→∞ V ar(Tn) = 0, it follows that Tn
P→ θ. But convergence in probability does not

imply the conditions of the Variance Rule.
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Convergence in Distribution

Denote the cumulative distribution functions of T1, T2, . . . by F1(t), F2(t), . . . respectively,
and denote the cululative distribution function of T by F (t). We say that Tn converges

in distribution to T , and write Tn
d→ T if for every point t at which F is continuous,

lim
n→∞

Fn(t) = F (t).

The main entry point to convergence in distribution is the Central Limit Theorem.
X1, . . . Xn be independent and identically distributed random variables with mean µ and
variance σ2. Then

Zn =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

In applications, the sample standard deviation may be substituted for σ, and the result
still holds.

A useful tool is provided by the univariate delta method11. Let
√
n(Xn− θ)

d→ X, and
let g(x) be a function with g′(θ) 6= 0 and g′′(x) continuous at x = θ. Then

√
n(g(Xn)− g(θ))

d→ g′(θ)X.

In particular,
√
n(g(Xn)− g(µ))

d→ Y ∼ N(0, g′(µ)2σ2).

Connections among the Modes of Convergence

• Tn
a.s.→ T ⇒ Tn

P→ T ⇒ Tn
d→ T .

• If a is a constant, Tn
d→ a⇒ Tn

P→ a.

A.5.2 Consistency

For this application, T1, T2, . . . are not just random variables: They are statistics12 that

estimate some parameter θ. The statistic Tn is said to be consistent for θ if Tn
P→ θ for

all θ ∈ Θ.
Let us take a closer look at this important concept. Using the definition of convergence

in probability, saying that Tn is consistent for θ means that for any tiny positive constant
ε, no matter how tiny,

lim
n→∞

P{|Tn − θ| < ε} = 1.

So, take an arbitrarily small interval around the true parameter value. For any given
sample size n, a certain amount of the probability distribution of Tn falls between θ − ε
and θ+ ε. Consistency means that in the limit, all the probability falls in this interval, no

11The delta method is named after the way it is proved; it uses Taylor’s theorem, and the “delta” part
is connected to the definition of a derivative. We will just use it.

12A statistic is a function of the sample data that does not depend functionally upon any unknown
parameter. That is, symbol for the parameter does not appear in the formula for the statistic.
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matter how small the interval is. Basically, consistency is saying that for a large enough
sample size, the statistic (estimator) will probably be close to parameter it is estimating
— regardless of how strict your definitions of “probably” and “close” might be.

Even better than ordinary consistency is strong consistency, which means Tn
a.s.→ θ.

Instead of saying Tn will probably be close to θ, strong consistency says that for a large
enough sample size, the probability that it will be close equals one. Because almost
sure convergence implies convergence in probability, strong consistency implies ordinary
consistency.

One last remark is that while consistency is an important property in an estimator, in
a way it is the least we should expect. Consistency means that with an infinite amount
of data, we would know the truth. If this is not the case, something is seriously wrong13.

Exercises A.5.2

1. Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter
λ, and let X be a general random variable with that distribution. You know that
E(X) = V ar(X) = λ; there is no need to prove it.

From the Strong Law of Large Numbers, it follows immediately that Xn is strongly
consistent for λ. Let

λ̂ =

∑n
i=1(Xi −Xn)

2

n− 4
.

Is λ̂ also consistent for λ? Answer Yes or No and prove your answer.

2. Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters
3 and θ. That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find a reasonable estimator of θ, and prove that it is strongly
consistent. Where you get your estimator does not really matter, but please state
how you thought of it.

3. Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ 1/2

√
2π

e−
τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1X
2
i

.

Is τ̂ consistent for τ? Answer Yes or No and prove your answer. Hint: You can
just write down E(X2) by inspection. This is a very familiar distribution; have
confidence!

13In structural equation models, a parameter that is not identifiable cannot be estimated consistently.
This is why model identification is such an important topic.
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4. Independently for i = 1, . . . , n, let

Yi = βXi + εi,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
X , V ar(εi) = σ2

ε , and εi is independent of
Xi. Let

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

Is β̂ consistent for β? Answer Yes or No and prove your answer.

5. LetX1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0.
That is, the density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ consistent for θ? Answer Yes or No and prove your
answer.

A.5.3 Convergence of random vectors

1. Definitions (All quantities in boldface are vectors in Rm unless otherwise stated )

? Tn
a.s.→ T means P{ω : limn→∞Tn(ω) = T(ω)} = 1.

? Tn
P→ T means ∀ε > 0, limn→∞ P{||Tn −T|| < ε} = 1.

? Tn
d→ T means for every continuity point t of FT, limn→∞ FTn(t) = FT(t).

2. Tn
a.s.→ T ⇒ Tn

P→ T ⇒ Tn
d→ T.

3. If a is a vector of constants, Tn
d→ a ⇒ Tn

P→ a.

4. Strong Law of Large Numbers (SLLN): Let X1, . . .Xn be independent and identi-
cally distributed random vectors with finite first moment, and let X be a general
random vector from the same ditribution. Then Xn

a.s.→ E(X).

5. Central Limit Theorem: Let X1, . . . ,Xn be i.i.d. random vectors with expected
value vector µ and covariance matrix Σ. Then

√
n(Xn−µ) converges in distribution

to a multivariate normal with mean 0 and covariance matrix Σ.

6. Slutsky Theorems for Convergence in Distribution:

(a) If Tn ∈ Rm, Tn
d→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
d→ f(T).

(b) If Tn
d→ T and (Tn −Yn)

P→ 0, then Yn
d→ T.
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(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
d→ T and Yn

d→ c, then(
Tn

Yn

)
d→
(

T
c

)
7. Slutsky Theorems for Convergence in Probability:

(a) If Tn ∈ Rm, Tn
P→ T and if f : Rm → Rq (where q ≤ m) is continuous except

possibly on a set C with P (T ∈ C) = 0, then f(Tn)
P→ f(T).

(b) If Tn
P→ T and (Tn −Yn)

P→ 0, then Yn
P→ T.

(c) If Tn ∈ Rd, Yn ∈ Rk, Tn
P→ T and Yn

P→ Y, then(
Tn

Yn

)
P→
(

T
Y

)
8. Delta Method (Theorem of Cramér, Ferguson p. 45): Let g : Rd → Rk be such that

the elements of ġ(x) =
[
∂gi

∂xj

]
k×d

are continuous in a neighborhood of θ ∈ Rd. If Tn

is a sequence of d-dimensional random vectors such that
√
n(Tn − θ)

d→ T, then
√
n(g(Tn) − g(θ))

d→ ġ(θ)T. In particular, if
√
n(Tn − θ)

d→ T ∼ N(0,Σ), then
√
n(g(Tn)− g(θ))

d→ Y ∼ N(0, ġ(θ)Σġ(θ)′).

Exercises A.5

1.

2.

A.6 Method of Moments (Very Preliminary)

Let the joint distribution of the data X1, . . . , Xn depend on the parameters θ1, . . . θr.
Following standard notation, we define the kth sample moment as

m′
k =

1

n

n∑
i=1

Xk
i

Clearly, E(m′
k) is a function of θ1, . . . θr. So pick r values of k, and write the system

of equations

E(m′
k1

) = g1(θ1, . . . θr)

...

E(m′
kr

) = gr(θ1, . . . θr)

Once this has been done, follow these steps.
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1. Remove the expected values on the left hand side of the equations.

2. Add hats to the θ values on the right hand side.

3. Solve for the Θ̂ values. These are the Method of Moments (MOM) estimators.

Here are some comments.

• If the data are a random sample (independent and identically distributed) then
E(m′

k) = µ′k, and we have the usual Method of Moments estimators.

• Of course it does not matter if you solve the equations first and then put the hats
on, or if you do it the other way around.

• You can hope that the values of k are just 1, . . . , r, but there is no guarantee. In
particular, if the distribution of the Xi values is symmetric about zero, then all the
odd-numbered moments are zero, and only even values of k will be useful.

• If the data are not a random sample (think regression), don’t depend on formulas
like E(X) = µ; they were derived for the i.i.d. case, and might not be correct. Do
the calculation.

Exercises A.6

1.

2.
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