STA 431s11 Assignment 5

1. Here is a multivariate regression model with no intercept and no measurement error. Independently for i = 1, ..., n,

$$\mathbf{Y}_i = \boldsymbol{\beta} \mathbf{X}_i + \boldsymbol{\epsilon}_i$$

where

 \mathbf{Y}_i is an $q \times 1$ random vector of observable dependent variables, so the regression can be multivariate; there are q dependent variables.

 \mathbf{X}_i is a $p \times 1$ multivariate normal observable random vector; there are p independent variables. \mathbf{X}_i has expected value zero and variance-covariance matrix $\mathbf{\Phi}$, a $p \times p$ symmetric and positive definite matrix of unknown constants.

 β is a $q \times p$ matrix of unknown constants. These are the regression coefficients, with one row for each dependent variable and one column for each independent variable.

 ϵ_i is the error term of the latent regression. It is an $q \times 1$ multivariate normal random vector with expected value zero and variance-covariance matrix Ψ , a $q \times q$ symmetric and positive definite matrix of unknown constants. ϵ_i is independent of \mathbf{X}_i .

- (a) Calculate the variance-covariance matrix of the observable variables. It's a partitioned matrix. Show your work.
- (b) Write down the moment structure equations. These are matrix equations.
- (c) Are the parameters of this model identifiable? Answer Yes or No and prove your answer.
- 2. This question shows what can happen when errors of measurement have a non-zero covariance. Independently for i = 1, ..., n, let

$$Y_i = \beta X_i + \epsilon_i$$

$$W_{i,1} = X_i + e_{i,1}$$

$$W_{i,2} = X_i + e_{i,2},$$

where

- X_i is a normally distributed *latent* variable with mean zero and variance $\phi > 0$
- ϵ_i is normally distributed with mean zero and variance $\psi > 0$
- $e_{i,1}$ is normally distributed with mean zero and variance $\omega_{1,1} > 0$
- $e_{i,2}$ is normally distributed with mean zero and variance $\omega_{2,2} > 0$
- $Cov(e_{i,1}, e_{i,2}) = \omega_{1,2}$. This is the unusual feature (unusual in statistical models maybe not so unusual in reality).
- X_i and ϵ_i are independent of one another.
- X_i is independent of $e_{i,1}$ and $e_{i,2}$
- ϵ_i is independent of $e_{i,1}$ and $e_{i,2}$.

(a) What is the parameter vector $\boldsymbol{\theta}$ for this model?

(b) Does this problem pass the test of the Counting Rule? Answer Yes or No.

- (c) Calculate the variance-covariance matrix of the observable variables. Remember that $Cov(e_{i,1}, e_{i,2}) \neq 0$. Show your work.
- (d) There are 6 covariance structure equations in 6 unknowns. Try to solve them. If you can do it, you have proved that the parameter is identifiable, and you are done.
- (e) If you cannot solve the covariance structure equations, try to prove that the parameter vector is *not* identifiable. To do this, you need a simple numerical example: two different $\boldsymbol{\theta}$ vectors that produce the same $\boldsymbol{\Sigma}$. To make it easier on yourself, let $\beta = 0$ in both vectors. Be sure to give the covariance matrix (a 3×3 matrix of numbers) that is produced by both sets of parameter values. In your example, make sure $|\boldsymbol{\Omega}| > 0$ (a point that is easy to overlook).
- 3. Consider the following simple regression through the origin with measurement error in both the independent and dependent variables. Independently for i = 1, ..., n,

$$\begin{array}{rcl} Y_{i} & = & \beta X_{i} + \epsilon_{i} \\ W_{i,1} & = & X_{i} + e_{i,1} \\ V_{i,1} & = & Y_{i} + e_{i,2} \\ W_{i,2} & = & X_{i} + e_{i,3} \\ V_{i,2} & = & Y_{i} + e_{i,4} \end{array}$$

where

- X_i and Y_i are latent variables
- $X_i \sim N(0, \phi)$
- $\epsilon_i \sim N(0, \psi)$
- $\mathbf{e}_i = (e_{i,1}, e_{i,2}, e_{i,3}, e_{i,4})'$
- X_i , ϵ_i and \mathbf{e}_i are independent of one another
- \mathbf{e}_i is multivariate normal with mean zero and covariance matrix

$$\mathbf{\Omega} = egin{bmatrix} \omega_{1,1} & \omega_{1,2} & 0 & 0 \ \omega_{1,2} & \omega_{2,2} & 0 & 0 \ 0 & 0 & \omega_{3,3} & \omega_{3,4} \ 0 & 0 & \omega_{3,4} & \omega_{4,4} \end{bmatrix}.$$

The pattern of zeros in the covariance matrix of the measurement errors is not arbitrary. It says that $W_{i,1}$ and $V_{i,1}$ form one set of measurements, while $W_{i,2}$ and $V_{i,2}$ form a second set. Measurement errors may be correlated within sets, but not between sets. The two sets of data would be collected at separate times and perhaps by separate methods.

- (a) Calculate the variance-covariance matrix of the observable variables. Be careful; the measurement error terms are not all independent, and the expected value of the product is not always the product of expected values; Look at Ω to tell. Show your work.
- (b) Write down the moment structure equations.
- (c) Are the parameters of this model identifiable? Answer Yes or No and prove your answer.

4. In this problem, $Y_{i,1}$ is the dependent variable of primary interest, while $Y_{i,2}$ and $Y_{i,3}$ are instrumental variables. The point of the question is that the error terms of instrumental variables need not all be independent.

Independently for $i = 1, \ldots, n$,

$$\begin{array}{rcl} Y_{i,1} &=& \beta_{0,1} + \beta_{1,1} X_i + \epsilon_{i,1} \\ Y_{i,2} &=& \beta_{0,2} + \beta_{1,2} X_i + \epsilon_{i,2} \\ Y_{i,3} &=& \beta_{0,3} + \beta_{1,3} X_i + \epsilon_{i,3} \\ W_i &=& X_i + e_i \end{array}$$

where

- $X_i \sim N(\mu_x, \phi)$ is a latent variable
- $e_i \sim N(0, \omega)$
- $\boldsymbol{\epsilon}_i = (\epsilon_{i,1}, \epsilon_{i,2}, \epsilon_{i,3})'$
- X_i , e_i and ϵ_i are independent of one another
- ϵ_i is multivariate normal with mean zero and covariance matrix

$$\boldsymbol{\Psi} = \begin{bmatrix} \psi_{1,1} & \psi_{1,2} & 0\\ \psi_{1,2} & \psi_{2,2} & \psi_{2,3}\\ 0 & \psi_{2,3} & \psi_{3,3} \end{bmatrix}.$$

- (a) What is the parameter vector $\boldsymbol{\theta}$ for this model?
- (b) How many moment structure equations are there. You do not have to say what they are; just give a number. Don't forget the means.
- (c) Does this problem pass the test of the Counting Rule? Answer Yes or No.
- (d) Calculate the variance-covariance matrix of the observable variables. Remember that some covariances between errors are non-zero. Show your work.
- (e) Solving the complete set of moment structure equations can be done¹ but it's a big chore. The primary interest is in the parameter $\beta_{1,1}$. Show that just this parameter is identifiable.

¹Even the intercepts are identifiable from the mean vector μ , because there is no measurement bias term in this model. That's unrealistic, of course.