
Chapter 2

First set of tools: SAS running
under unix (including linux)

The SAS language is the same regardless of what hardware you use or what operating
system is running on the hardware. SAS programs are simple text files that can be trans-
ported from one machine to another with minimal difficulty. In this course, everything
will be illustrated with SAS running under the unix operating system, but it’s not a prob-
lem even if the next place you go only has PCs. The adjustment to SAS-PC should be
fast and fairly painless.

2.1 Unix

Unix is a line-oriented operating system. Well, there’s X-windows (a graphical shell that
runs on top of unix), but we won’t bother with it. Basically, you type a command, press
Enter, and unix does something for (or to) you. It may help to think of unix as DOS on
steroids, if you remember DOS. The table below has all the unix commands you will need
for this course. Throughout, fname stands for the name of a file.

22

A Minimal Set of unix Commands

exit Logs you off the system: ALWAYS log off before leaving!

passwd Lets you change your password. Recommended.

man command name Online help: explains command name, (like man sort).

ls Lists names of the files in your directory.

less fname Displays fname on screen, one page at a time. Spacebar for next page, q to
quit.

lpr fname Prints hard copy on a laser printer. lpr stands for line printer. These physical
devices no longer exist in most installations.

rm fname Removes fname, erasing it forever.

cp fname1 fname2 Makes a copy of fname1. The new copy is named fname2.

mv fname1 fname2 Moves (renames) fname1

emacs fname Starts the emacs text editor, editing fname (can be new file).

R Gets you into the R implementation of the S environment.

sas fname Executes SAS commands in the file fname.sas, yielding fname.log and (if
no fatal errors) fname.lst.

ps Shows active processes

kill -9 # Kills process (job) number #. Sometimes you must do this when you can’t log
off because there are stopped jobs. Use ps to see the job numbers.

mail yourname@yourisp.com < fname Email a file to yourself. Very handy for get-
ting files to your home computer for printing.

curl URL > fname A URL is a Web address. This command is intended to help you
get a copy of the source code of Web pages. But when the web page contains just
a data file, as it sometimes does in this course, this is a great way to get a copy of
the data. Copy the URL from your browser, like this.
curl http://fisher.utstat.toronto.edu/~brunner/429f07/code_n_data/drp.dat > drp.dat

This really is a minimal set of commands. The unix operating system is extremely
powerful, and has an enormous number of commands. You can’t really see the power
from the minimal set above, but you can see the main drawback from the standpoint of
the new user. Commands tend to be terse, consisting of just a few keystrokes. They make
sense once you are familiar with them (like ls for listing the files in a directory, or rm for
remove), but they are hard to guess. The man command (short for manual) gives very

23

accurate information, but you have to know the name of the command before you can
use man to find out about it.

Just for future reference, here are a few more commands that you may find useful, or
otherwise appealing.

A Few More unix Commands

mkdir dirname Makes a new sub-directory (like a folder) named dirname. You can
have sub-directories within sub-directories; it’s a good way to organize your work.

cp fname dirname Copies the file fname into the directory dirname.

cd dirname Short for Change Directory. Takes you to the sub-directory dirname.

cd .. Moves you up a directory level.

cd Moves you to your main directory from wherever you are.

ls > fname Sends the output of the ls command to the file fname instead of to the
screen.

cat fname Lists the whole file on your screen, not one page at a time. It goes by very
fast, but usually you can scroll back up to see the entire file, if it’s not too long.

cat fname1 fname2 > fname3 Concatenates fname1 and fname2 (sticks them to-
gether) and re-directs the output to fname3

grep ERROR cartoon1.log Searches for the string ERROR in the file cartoon1.log.
Echos each line containing the string. Silent if ERROR does not occur. Case
sensitive.

alias chk ”grep ERROR *.log ; grep WARN *.log” Makes a new command called
chk. It checks for the string ERROR and the string WARN in any log file.

cal Displays a calendar for this month

cal 1 3002 Displays a calendar for January 3002.

unset noclobber Are you tired of being asked if you really want to remove or overwrite
a file?

rm fname1 fname2 Remove both

rm -f fname Remove without asking for confirmation, this time only.

alias rm ”rm -f” rm now means rm -f.

rm -r dirname Remove the directory, and everything in it recursively.

R –vanilla < fname1 > fname2 Execute the S language commands in fname1, send-
ing output to fname2. Run in “plain vanilla” mode.

24

Printing files at home This is a question that always comes up. Almost surely, the
printer connected to your printer at home is not directly connected to the university
network. If you want to do something like print your SAS output at home, you have to
transfer the file on the unix machine to the hard drive of your home computer, and print
it from there. One way is to use some kind of sftp (secure file transfer protocol) tool to
get the file in question onto your hard drive. For short files, you can also use the less

or cat command to list the file on your screen, select it with your mouse, copy it, paste
it to a word processing document, and print it from there. It is a good idea to use a
fixed-width font like Courier, and not the Times or Times Roman font. Everything will
be lined up better.

Perhaps easiest of all is to email yourself the file. This is illustrated in the first set of
unix commands. To repeat, mail yourname@yourisp.com < fname .

2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs as well as
on bigger computers, it is truly the last of the great old mainframe statistical packages.
The first beta release was in 1971, and the SAS Institute, Inc. was spun off from North
Carolina State University in 1976, the year after Bill Gates dropped out of Harvard. This
is a serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency is beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related to
the fact that it was designed to run in a batch-oriented mainframe environment. So, for
example, the SAS Institute has tried hard to make SAS an “interactive” program, but
the interface still basically file and text oriented, not graphical.

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

• The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software
tries to follow. You create this file with a text editor like emacs. The command file
contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command

25

file is called reading1.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .log. So for example,
when SAS executes the commands in reading1.sas, it writes a log file named
reading1.log.

• The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .lst — so, for example,
running SAS on the command file reading1.sas will produce reading1.lst as well
as reading1.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence
of a list file does not mean there were no errors; it just means that SAS was able to
do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. In this text, all the examples will be run from the
unix command line. In my view, this way is simplest and also the best way to start. Also,
it is by far the easiest way to use SAS from home, assuming that SAS is running on a
remote server and not your home computer.

The following illustrates a simple SAS run. The unix prompt is YesMaster >, indi-
cating that unix is waiting for a command. You unix prompt will probably be different.
Initially, there are just two files in the directory, the program file reading1.sas and the
raw data file drp.dat. First we see what files we have with ls, then run SAS, and then
ls agaain to see that SAS has created two additional files.

YesMaster > ls

drp.dat reading1.sas

YesMaster > sas reading1

YesMaster > ls

drp.dat reading1.log reading1.lst reading1.sas

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

26

• Most SAS commands belong either in data step or in a proc step; they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to at least one raw data file, telling SAS where to
look for the data. It specifies variable names and labels, and provides instructions about
how to read the data; for example, the data might be read from fixed column locations.
Variables from the raw data file can be modified, and new variables can be created.

Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
here, but it makes sense when the amount of processing in a data step is large relative
to the speed of the computer. As an extreme example, one of my colleagues uses SAS
to analyze data from Ontario hospital admissions; the data files have millions of cases.
Typically, it takes around 20 hours of CPU time on a very strong unix machine just to
read the data and create a SAS data set. The resulting file, hundreds of gigabytes in size,
is saved to disk, and then it takes just a few minutes to carry out each analysis. You
wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc standard can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the most noticeable exception is proc format, which is used to provide labels for
the values of categorical variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data set as input, and write the results (summary statistics, values of test statistics,

27

p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.

2.2.4 A First Example: reading1.sas

Earlier, we ran SAS on the file reading1.sas, producing reading1.log and reading1.lst.
Now we will look at reading1.sas in some detail. This program is very simple; it has
just one data step and two proc steps. It’s based on a study in which one group of grade
school students received a special reading programme, and a control group did not. After
a couple of months, all students were given a reading test. We’re just going to get basic
descriptive statistics (not even a t-test), but first take a look at the raw data file. You’d
do this with the unix less command.

Actually, it’s so obvious that you should look at your data that it is seldom mentioned.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. This is so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

Anyway, here is the file drp.dat, with the middle and end cut out to save space.

Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading1.sas.

28

/******************* reading1.sas **********************/

options linesize=79 noovp formdlim=’_’;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc freq;

tables group;

proc means;

var score;

Here are some detailed comments about reading1.sas.

• The first line is a comment. Anything between a /* and */ is a comment, and
will be listed on the log file but otherwise ignored by SAS. Comments can appear
anywhere in a program. You are not required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end them with
*/. In the case of reading1.sas, leaving off the */ (or typing * by mistake) would
cause the whole program to be treated as a comment. It would generate no errors,
and no output — because as far as SAS would be concerned, you never requested
any. A longer program would eventually exceed the default length of a comment (it’s
some large number of characters) and SAS would end the “comment” for you. At
exactly that point (probably in the middle of a command) SAS would begin parsing
the program. Almost certainly, the first thing it examined would be a fragment of
a legal command, and this would cause an error. The log file would say that the
command caused an error, and not much else. It would be very confusing, because
probably the command would be okay, and there would be no indication that SAS
was only looking at part of it.

• The next two lines (the options statement and the title statement) exist outside
the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for
several physical lines in the program file (for example, see the label statement).
Spacing, indentation, breaking up s statement into several lines of text – these are
all for the convenience of the human reader, and are not part of the SAS syntax.

• By far the most common error in SAS programming is to forget the semi-colon.
When this happens, SAS tries to interpret the following statement as part of the

29

one you forgot to end. This often causes not one error, but a cascading sequence
of errors. The rule is, if you have an error and you do not immediately understand
what it is, look for a missing semi-colon. It will probably be before the portion of
the program that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a chain
reaction of errors (if the program is long enough for it to cause any error messages
at all). If you have a lot of errors in your log file, fix the first one and don’t waste
time trying to figure out the others. Some or all of them may well disappear.

• options linesize=79 noovp formdlim=’_’;

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters across.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.

• The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the word that caused the error.
It does this by going back and overprinting the offending word with a series of
“underscores” (characters). On many printers this works, but when you try to
look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no

overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you’re running SAS from the unix command line
and looking at your log files with the less command or the cat command, you will
probably find the noovp option to be helpful.

• The formdlim=’_’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The underscore
(the one specified here) causes a solid line to be printed instead of going to a new
sheet of paper.

• title This is optional, but recommended. The material between the single quotes
will appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

30

• data reading; This begins the data step, specifying that the name of the SAS data
set being created is “reading.” The names of data sets are arbitrary, but you should
make them informative.

• infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and “Control”) must
be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

• label Provide descriptive labels for the variables; these will be used to label the
output, usually in very nice way. Labels can be quite useful, especially when you’re
trying to remember what you did a while ago. Notice how this statement extends
over two physical lines.

• proc freq; Now the first proc step begins. We want a frequency distribution of
group, to see how many students are in each group. It is always a good idea to
look at frequency distributions of your categorical variables, including quantitative
variables taking on just a few values.

• tables is obligatory. It is followed by a list of variables for which you want to see ta-
bles. Proc freq can also give you joint frequency distributions, or cross-tabulations,
along with chisquare tests for association between categorical variables.

• proc means; This is the second proc step. We want the mean, standard deviation
and so on for reading score. It is always a good idea to look at means and standard
deviations of your quantitative variables. By default, proc means gives you the
minimim and maximum too, which can alert you to outliers and errors in the data.

• var is obligatory. It is followed by a list of the variables for which you want to see
means.

31

reading1.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program
— in this case, reading1.sas. If there were syntax errors in the program, this is where
the error messages would appear. The less command lets you look at a file one page at
a time. Press the space bar for the next page, or q to quit.

YesMaster > less reading1.log

1 The SAS System

09:27 Saturday, October 27, 2057

NOTE: Copyright (c) 1999-2001 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 8.2 (TS2M0)

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987

001.

NOTE: This session is executing on the SunOS 5.9 platform.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

real time 0.02 seconds

cpu time 0.03 seconds

1 /******************* reading.sas **********************/

2

3 options linesize=79 noovp formdlim=’_’ nodate;

4 title ’More & McCabe (1993) textbook t-test Example 7.8’;

5

6 data reading;

7 infile ’drp.dat’;

8 input group $ score;

9 label group = ’Get Directed Reading Programme?’

10 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/u/brunner/442s08/text/drp.dat,

32

Owner Name=brunner,Group Name=dos,

Access Permission=rw-r--r--,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

real time 1.44 seconds

cpu time 0.02 seconds

11 proc freq;

12 tables group;

NOTE: There were 44 observations read from the data set WORK.READING.

NOTE: The PROCEDURE FREQ printed page 1.

NOTE: PROCEDURE FREQ used:

real time 1.50 seconds

cpu time 0.02 seconds

13 proc means;

14 var score;

15

^L2 The SAS System

NOTE: There were 44 observations read from the data set WORK.READING.

NOTE: The PROCEDURE MEANS printed page 2.

NOTE: PROCEDURE MEANS used:

real time 0.22 seconds

cpu time 0.02 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

real time 4.79 seconds

cpu time 0.09 seconds

reading1.lst Here is the list file. Notice that the title specified in the title state-
ment appears at the top. Then we get statistical output — in this case, the frequency
distribution and table of means etc..

33

YesMaster > less reading1.lst

More & McCabe (1993) textbook t-test Example 7.8 1

The FREQ Procedure

Get Directed Reading Programme?

Cumulative Cumulative

group Frequency Percent Frequency Percent

Control 23 52.27 23 52.27

Treatmen 21 47.73 44 100.00

More & McCabe (1993) textbook t-test Example 7.8 2

The MEANS Procedure

Analysis Variable : score Degree of Reading Power Test Score

N Mean Std Dev Minimum Maximum

--

44 46.2727273 15.2351546 10.0000000 85.0000000

--

YesMaster >

YesMaster > mail jerry@cia.gov < reading1.log

YesMaster > mail jerry@cia.gov < reading1.lst

YesMaster > exit

The output is pretty self-explanatory, except the last bit. Once you finish running a SAS
job, your log and list files reside on a hard drive attached to unix machine, not your home
computer. If you are using a computer in a computer lab on campus, you can probably
print to a printer in the lab with the lpr command, like lpr reading1.lst. lpr is short
for line printer; you have never seen one.

To print from home, it is easiest to email yourself a copy of the files you want to print.
At the unix prompt, type mail, then your email address, then a < sign, and then the
name of the file you want to mail. The less than sign is unix redirection. It says send the
file that way – that is, use the file as input to the mail command.

34

Where did the data file and the program file come from? In the preceding
example, we started with drp.dat and reading1.sas already in existence. But they
didn’t come from nowhere. Initially, there is nothing at all in the directory. Your first job
is to create a copy of the raw data file. One way is to type it in, but we will assume that
the data file already exists, and you just need to upload it. In this course, all the data
files will be on the Web, and you will use the unix curl command as illustrated below.

Curl is a cute way to “C” the “URL.” Get the unix prompt in one window (probably
using PuTTY), and open a Web browser in another window. Navigate to the data file, and
then select the entire Web address (URL). Choose Copy from the Edit menu, and then
click on the window with the unix prompt.

At the unix prompt, you type curl, then a space, then paste in the URL. In PuTTY,
you paste by clicking the right mouse button. Then you type another space, a greater
than sign (>) and the name of the new file you want to create, which is usually just the
name of the data file, like poverty.data. Then press Enter, and in a flash the data file
is in your directory. This process is illustrated below.

YesMaster > ls

YesMaster > curl http://fisher.utstat.toronto.edu/~brunner/429f07/code_n_data/

text/drp.dat > drp.dat

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 660 100 660 0 0 85859 0 --:--:-- --:--:-- --:--:-- 0

YesMaster > ls

drp.dat

The URL was so long that the curl command wrapped to the next line. This usually
happens; just keep typing. Once you have your data file, take a look at it a page at a
time by typing less drp.dat. Space bar for another page, q for quit. We’ll examine the
data file in the next section.

Next one needs to create a SAS program by typing it in. The emacs text editor is
recommended. At the unix prompt, you type emacs, then a space, then the name of a file.
You will go into a full-screen editing mode. It’s somewhat like Notepad in Windows, but
much more powerful and with no mouse. If the file already exists in the directory where
you are, you are editing that file. If no file of that name exists yet, you have created it,
but it’s empty until you start typing.

My suggestion is that when you’re still new to this, you go to a quiet place and write
out your SAS program on a piece of paper before sitting down at the computer, using
examples from lecture and this document as models.

35

YesMaster > emacs reading1.sas

(Now you type in your program and then exit emacs)

YesMaster > ls

drp.dat reading1.sas

Now you’re ready to go. Here is an outline of the whole process.

• Get a copy of the data file with curl.

• Look at the data file with less or cat.

• Edit the data file with emacs if necessary.

• Create the program file by typing it into emacs. It is a good idea to copy-paste bits
of my code or your own code from earlier jobs, but of course you are not allowed to
look at your classmates’ work at all, much less copy it.

• Run SAS.

• Look at the log file. If there are errors or warnings, edit the program or the data
file and run SAS again. Repeat as necessary.

• When there are no more errors or warnings, look at the list file. Some mistakes
are apparent in the list file (statistical output), but do not cause error or warning
messages. If necessary, edit the program or the data file and run SAS again.

• When everything is okay, email the log and list files to yourself and print them.

2.2.5 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns not aligned. Here
are the first few lines.

36

