Structural equation models are extensions of multiple regression

Introduction to Structural Equation Models

Jerry Brunner
Department of Statistics

- Simultaneous equations
- Include latent variables
- DV in one equation can be IV in another

Multiple Regression

$$
Y=\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon
$$

An Extension

A Further Extension

A Longitudinal Model

A Factor Analysis Model

$$
\begin{aligned}
X_{1} & =\lambda_{1} F+e_{1} \\
X_{2} & =\lambda_{2} F+e_{2} \\
X_{3} & =\lambda_{3} F+e_{3} \\
X_{4} & =\lambda_{4} F+e_{4} \\
X_{5} & =\lambda_{5} F+e_{5}
\end{aligned}
$$

Vocabulary: Latent v.s. Manifest,
Endogenous v.s. Exogenous

Notation

- LISREL (Bollen, 1989)
- Classical Factor Analysis (Lawley, 1971)
- LINEQS (Bentier and Weeks, 1980)
- RAM (McArdale, 1980)
- COSAN (McDonald 1978, 1980)

Estimation and Testing

$$
\begin{array}{ll}
& E(X)=E\left(\zeta_{1}\right)=E\left(\zeta_{2}\right)=0 \\
Y_{1}=\gamma X+\zeta_{1} & V(X)=\phi, V\left(\zeta_{1}\right)=\psi_{1}, V\left(\zeta_{2}\right)=\psi_{2} \\
Y_{2}=\beta Y_{1}+\zeta_{2} & X, \zeta_{1}, \zeta_{2} \text { are independent }
\end{array}
$$

Everything is normal

Distribution of the data

$\left[\begin{array}{l}X_{1} \\ Y_{1,1} \\ Y_{1,2}\end{array}\right] \cdots\left[\begin{array}{c}X_{n} \\ Y_{n, 1} \\ Y_{n, 2}\end{array}\right]$ are independent normal with mean zero
and covariance matrix

$$
\begin{gathered}
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\phi & \gamma \phi & \beta \gamma \phi \\
\gamma \phi & \gamma^{2} \phi+\psi_{1} & \beta\left(\gamma^{2} \phi+\psi_{1}\right) \\
\beta \gamma \phi & \beta\left(\gamma^{2} \phi+\psi_{1}\right) & \beta^{2}\left(\gamma^{2} \phi+\psi_{1}\right)+\psi_{2}
\end{array}\right] \\
\boldsymbol{\theta}=\left(\gamma, \beta, \phi, \psi_{1}, \psi_{2}\right)
\end{gathered}
$$

Maximum Likelihood

$$
L(\mu, \Sigma)=|\Sigma|^{-n / 2}(2 \pi)^{-n k / 2} \exp -\frac{n}{2}\left[\operatorname{tr}\left(\widehat{\mathbf{\Sigma}} \Sigma^{-1}\right)+(\overline{\mathbf{x}}-\mu)^{\prime} \mathbf{\Sigma}^{-1}(\overline{\mathbf{x}}-\mu)\right]
$$

Minimize $-2 \ell(\boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{\Sigma}(\boldsymbol{\theta}))$
$=n\left[\log |\boldsymbol{\Sigma}(\boldsymbol{\theta})|+k \log (2 \pi)+\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\right)\right.$

$$
\left.+(\overline{\mathrm{x}}-\boldsymbol{\mu}(\boldsymbol{\theta}))^{\prime} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}(\overline{\mathrm{x}}-\boldsymbol{\mu}(\boldsymbol{\theta}))\right]
$$

Likelihood Ratio Test for Goodness of Fit

$$
\begin{aligned}
G= & -2 \log \frac{L(\overline{\mathbf{X}}, \boldsymbol{\Sigma}(\widehat{\boldsymbol{\theta}}))}{L(\overline{\mathbf{X}}, \widehat{\boldsymbol{\Sigma}})} \\
= & n\left[\log |\boldsymbol{\Sigma}(\widehat{\boldsymbol{\theta}})|+k \log (2 \pi)+\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}(\widehat{\boldsymbol{\theta}})^{-1}\right]\right. \\
& -n[\log | | \widehat{\boldsymbol{\Sigma}} \mid \quad+k \log (2 \pi)+k] \\
= & n\left[\log |\boldsymbol{\Sigma}(\widehat{\boldsymbol{\theta}})|-\log |\widehat{\boldsymbol{\Sigma}}|+\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}(\widehat{\boldsymbol{\theta}})^{-1}-k\right]\right.
\end{aligned}
$$

Chi-square and Z Tests

- "Chisquare" is ($n-1$) times minimum objective function.
- Test nested models by difference between chi-square values
- Z tests are produced by default; Asymptotic Covariance matrix is available
- Likelihood ratio tests perform better

Do it all at once: Minimize

$$
G(\boldsymbol{\theta})=n\left[\log |\boldsymbol{\Sigma}(\boldsymbol{\theta})|-\log |\widehat{\boldsymbol{\Sigma}}|+\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\right)-k\right]
$$

Actually, SAS minimizes the "Objective Function"

$$
\log |\boldsymbol{\Sigma}(\boldsymbol{\theta})|-\log |\widehat{\boldsymbol{\Sigma}}|+\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}\right)-k
$$

Simple Regression with measurement Error

$$
V(\xi)=\phi, V(\zeta)=\psi, V(\delta)=\theta_{\delta}
$$

The Model is not Identified

$$
\begin{gathered}
\boldsymbol{\theta}=\left(\gamma, \phi, \theta_{\delta}, \psi\right) \\
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1,1} & \sigma_{1,2} \\
& \sigma_{2,2}
\end{array}\right]=\left[\begin{array}{cc}
\phi+\theta_{\delta} & \gamma \phi \\
& \gamma^{2} \phi+\psi
\end{array}\right]
\end{gathered}
$$

Model Identification

$$
\begin{aligned}
\theta & \in \Theta \\
\mathbf{D} & \sim P_{\theta}=g(\theta) \in \mathcal{P} \\
g: \Theta & \rightarrow \mathcal{P}
\end{aligned}
$$

If the function g is one to one, then the model is identified.

Unconstrained (Exploratory)
Factor Analysis

Consistent Estimation is Impossible

Suppose $\theta_{1} \neq \theta_{2}$ with $P_{\theta_{1}}=P_{\theta_{2}}$

To prove model identification

- Show that the parameter can be recovered from the distribution of the observed data.
- In practice, recover it from the moments (usually, the covariance matrix).
- Sometimes, only a function of the parameter is identified.

Solve the identifying equations

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1,1} & \sigma_{1,2} & \sigma_{1,3} \\
& \sigma_{2,2} & \sigma_{2,3} \\
& & \sigma_{3,3}
\end{array}\right]=\left[\begin{array}{ccc}
\phi & \gamma \phi & \beta \gamma \phi \\
& \gamma^{2} \phi+\psi_{1} & \beta\left(\gamma^{2} \phi+\psi_{1}\right) \\
& & \beta^{2}\left(\gamma^{2} \phi+\psi_{1}\right)+\psi_{2}
\end{array}\right]
$$

For $\boldsymbol{\theta}=\left(\gamma, \beta, \phi, \psi_{1}, \psi_{2}\right)$

Remember the example

$\boldsymbol{\Sigma}=\left[\begin{array}{ccc}\phi & \gamma \phi & \beta \gamma \phi \\ \gamma \phi & \gamma^{2} \phi+\psi_{1} & \beta\left(\gamma^{2} \phi+\psi_{1}\right) \\ \beta \gamma \phi & \beta\left(\gamma^{2} \phi+\psi_{1}\right) & \beta^{2}\left(\gamma^{2} \phi+\psi_{1}\right)+\psi_{2}\end{array}\right]$

An Identified model can be

- Just-Identified (saturated): Same number of parameters and identifying equations
- Over-identified: More equations than unknowns

Identification Rules

- A necessary condition for all Models
- Sufficient conditions for models with just observed variables
- Sufficient conditions for measurement models (factor analysis)
- Sufficient conditions for combined models

Observed variable models

$$
\mathbf{Y}=\beta \mathbf{Y}+\Gamma \mathbf{X}+\zeta
$$

Identified if $\operatorname{Cov}(\mathbf{X}, \boldsymbol{\zeta})=\mathbf{0}$ and

- $\boldsymbol{\beta}=\mathbf{0}$ (Regression model), or
- Model is Recursive, and $\operatorname{Var}(\boldsymbol{\zeta})$ is diagonal

Parameter Count

- The number of parameters must be no more than the number of unique elements in the covariance matrix of the observed variables.
- Necessary for all models

Recursive means no Feedback Loops

- Like this

- Not this

A just-identified, Nonrecursive Model

Rules for Confirmatory Factor Analysis

- Three-indicator rules
- Two-indicator rules

Measurement Models (Confirmatory Factor Analysis)

"Pick a Scale" for each factor

- F is obesity
- X_{1} is percent body fat from immersion
- X_{2} is triceps skin fold
- X_{3} is Body Mass Index

$$
\left.\begin{array}{rl}
X_{1} & =\lambda_{1} F+e_{1} \\
X_{2} & =\lambda_{2} F+e_{2} \longrightarrow e_{1} \\
X_{3} & =\lambda_{3} F+e_{3}
\end{array} \quad \begin{array}{rl}
X_{1} & =X_{2}
\end{array}\right)=\lambda_{2} F+e_{2}, ~ X_{3}=\lambda_{3} F+e_{3} .
$$

Three-indicator rules

- At least three variables per factor
- Each variable caused by only one factor
- Errors uncorrelated with factors and with each other
- Pick a scale for each factor
- No restrictions on $\operatorname{Var}(\mathbf{F})$

Combined Models

- Consider the latent part of the model as a model for observed variables. Verify identification.
- Consider the measurement part of the model as a confirmatory factor analysis, ignoring structure in $\operatorname{Var}(\mathbf{F})$. Verify identification.

Two-Indicator Rules

- At least two variables per factor
- Each variable caused by only one factor
- Errors uncorrelated with factors and with each other
- Pick a scale for each factor
- At least one non-zero off-diagonal element in each row of $\operatorname{Var}(\mathbf{F})$

Fixing up non-identified models

- Negotiation
- Deeper study may be rewarded
- "Model" is not identified.
- Consider identification before collecting data!

Further Issues

- Normality
- Numerical problems
- Sample size
- Categorical data

Software

- LISREL, EQS, RAM
- Mplus
- Stata
- R
- AMOS (Graphical interface)
- SAS proc calis

