
Large-Sample Likelihood Ratio Tests

We will use the following hypothesis-testing framework. The data are Y1, . . . , Yn. The distribu-
tion of these independent and identically distributed random variables depends on the parameter
θ, and we are testing a null hypothesis H0 using a large sample likelihood ratio test.

Y1, . . . , Yn
i.i.d.∼ Pθ, θ ∈ Θ,

H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0,

The data have likelihood function

L(θ) =
n∏

i=1

f(yi; θ),

where f(yi; θ) is the density or probability mass function evaluated at yi.

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the parameter
value for which the likelihood function is greatest, over all θ ∈ Θ. And, let θ̂0 denote the
restricted MLE. The restricted MLE is the parameter value for which the likelihood function is
greatest, over all θ ∈ Θ0. This MLE is restricted by the null hypothesis H0 : θ ∈ Θ0. It should
be clear that L(θ̂0) ≤ L(θ̂), so that the likelihood ratio.

λ =
L(θ̂0)
L(θ̂)

≤ 1.

The likelihood ratio will equal one if and only if the overall MLE θ̂ is located in Θ0. In this case,
there is no reason to reject the null hypothesis.

Usually, the likelihood ratio is strictly less than one. If it’s a lot less than one, then the data
are a lot less likely to have been observed under the null hypothesis than under the alternative
hypothesis; if so, the the null hypothesis is questionable. This is the basis of the likelihood ratio
tests.

If λ is small (close to zero), then ln λ is a large negative number, and −2 ln λ is a big positive
number.

Tests will be based on

G = −2 ln
(

maxθ∈Θ0 L(θ)
maxθ∈Θ L(θ)

)
= −2 ln

(
L(θ̂0)
L(θ̂)

)
= −2 ln L(θ̂0)− [−2 ln L(θ̂)]. (1)

Thus, the test statistic G is the difference between two -2 log likelihood functions. This
means that to carry out a test, you can minimize −2 ln L(θ) twice, first over all θ ∈ Θ, and then
over all θ ∈ Θ0. The test statistic is the difference between the two minimum values.

If the null hypothesis is true, then the test statistic G has, if the sample size is large,
an approximate chisquare distribution, with degrees of freedom equal to the difference of the
dimension of Θ and Θ0. For example, if the null hypothesis is that 4 elements of θ equal zero,
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then the degrees of freedom are equal to 4. More generally, if the null hypothesis imposes k
linear restrictions on θ, then the degrees of freedom equal k.

Think of the usual normal multiple regression model. Here, θ = (β, σ2). Consider the null
hypothesis H0 : Lβ = γ, where L is a k × p matrix. This null hypothesis imposes k linear
restrictions on the parameter, one for each row of L. The dimension of Θ is p+1; the dimension
of Θ0 is p + 1− k.

The p-value associated with the test statistic G is Pr{X > G}, where X is a chisquare ran-
dom variable with k degrees of freedom. If p < α, we reject H0 and call the results “statistically
significant.”

Example Let X1, . . . , Xn1 be a random sample from a Poisson distribution with parameter λ1.
Independently of the X values, let Y1, . . . , Yn2 be a random sample from a Poisson distribution
with parameter λ2. We will test H0 : λ1 = λ2.

The parameter for this problem is θ = (λ1, λ2), and the null hypothesis imposes one linear
restriction on the parameter. So, the degrees of freedom of the large-sample likelihood ratio
chisquare test will equal one.

The likelihood function is

L(θ) =
n1∏
i=1

e−λ1λxi
1

xi!

n2∏
i=1

e−λ2λyi
2

yi!
=

e−n1λ1λ

∑n1
i=1

xi

1∏n1
i=1 xi!

e−n2λ2λ

∑n2
i=1

yi

2∏n2
i=1 yi!

. (2)

Partially differentiating the log (or -2 times the log) with respect to λ1 and setting the result to
zero, we get λ̂1 = x. Similarly, λ̂2 = y. Thus, we get θ̂ = (λ̂1, λ̂2) = (x, y).

Next we need to calculate the restricted MLE. There are two ways to do this, the easy
way and the hard way. The hard way is to set λ1 = λ2 = λ in (2), take the log and start
differentiating with respect to λ. The smart way is to recognize that you’ve already done the
problem once. With λ1 = λ2 = λ, this is just a single random sample from a Poisson distribution
with parameter λ, and the MLE is the sample mean of all the data combined. That is,

λ̂ =
∑n1

i=1 xi +
∑n2

i=1 yi

n1 + n2
=

n1x + n2y

n1 + n2
.

The next step is to calculate the test statistic G as te difference between two -2 log likelihoods.
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