
Chapter 5

Logistic Regression

In logistic regression, there is a categorical dependent variables, often coded
1=Yes and 0=No. Many important phenomena fit this framework. The
patient survives the operation, or does not. The accused is convicted, or is
not. The customer makes a purchase, or does not. The marriage lasts at
least five years, or does not. The student graduates, or does not.

As usual, we assume that there is a huge population, with a sizable sub-
population at each x value or configuration of x values. And as in ordinary
regression, we want a regression surface that consists of the estimated sub-
population mean (conditional expected value) at each x value or configuration
of x values. It turns out that for any dependent variable coded zero or one,
this conditional mean is exactly the conditional probability that Y = 1 given
that set of x values. Again, for binary data, the population mean is just the
probability of getting a one. And since it’s a probability, it must lie between
zero and one inclusive.

Consider the scatterplot of a single quantitative independent variable and
a dependent variable Y equal to zero or one. The left panel of Figure 5.1
shows what happens when we fit a least squares line to such data. It may
be reasonable in some sense, but because it is sometimes less than zero and
sometimes greater than one, it can’t be a probability and it’s not yielding a
sensible estimate of the conditional population mean. However, the logistic
regression curve in the right panel stays nicely between zero and one. And like
the least-squares line, it indicates a positive relationship for this particular
data set.
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Figure 5.1: Scatterplots with a binary dependent variable

● ●● ● ● ●●●

●

●●●●● ●●

●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●●●

●●

●

●

●●

●●

●

●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

● ●●●●

●

●●●●●●●● ●● ● ●

3 4 5 6 7 8

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

Y

Least Squares Line

● ●● ● ● ●●●

●

●●●●● ●●

●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●●●

●●

●

●

●●

●●

●

●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

● ●●●●

●

●●●●●●●● ●● ● ●

3 4 5 6 7 8

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

Y

Logistic Regression Curve

5.1 A linear model for the log odds

The logistic regression curve arises from an indirect representation of the
probability of Y = 1 for a given set of x values. Representing the probability
of an event by π (it’s a probability, not 3.14159. . .), we define the odds of the
event as

Odds =
π

1− π
.

Implicitly, we are saying the odds are π
1−π

“to one.” That is, if the probability

of the event is π = 2/3, then the odds are 2/3
1/3

= 2, or two to one. Instead of
saying the odds are 5 to 2, we’d say 2.5 to one. Instead of saying 1 to four,
we’d say 0.25 to one.

The higher the probability, the greater the odds. And as the probability of
an event approaches one, the denominator of the odds approaches zero. This
means the odds can be anything from zero to an arbitrarily large positive
number. Logistic regression adopts a regression-like linear model not for
the probability of the event Y = 1 nor for the odds, but for the log odds.
By log we mean the natural or Napierian log, designated by ln on scientific
calculators – not the common log base 10. Here are a few necessary facts
about the natural log function.

• Figure 5.2 shows that the natural log increases from minus infinity
when the odds are zero, to zero when the odds equal one (fifty-fifty),

Chapter 5: Page 2



Figure 5.2: Graph of the natural log function
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and then it keeps on increasing as the odds rise, but more and more
slowly.

• The fact that the log function is increasing means that if P (A) > P (B),
then Odds(A) > Odds(B), and therefore ln(Odds(A)) > ln(Odds(B)).
That is, the bigger the probability, the bigger the log odds.

• Notice that the natural log is only defined for positive numbers. This is
usually fine, because odds are always positive or zero. But if the odds
are zero, then the natural log is either minus infinity or undefined – so
the methods we are developing here will not work for events of proba-
bility exactly zero or exactly one. What’s wrong with a probability of
one? You’d be dividing by zero when you calculated the odds.
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• The natural log is the inverse of exponentiation, meaning that ln(ex) =
eln(x) = x, where e is the magic non-repeating decimal number 2.71828. . . .
The number e really is magical, appearing in such seemingly diverse
places as the mathematical theory of epidemics, the theory of com-
pound interest, and the normal distribution.

• The log of a product is the sum of logs: ln(ab) = ln(a) + ln(b), and
ln(a

b
) = ln(a) − ln(b). This means the log of an odds ratio is the

difference between the two log odds quantities.

To get back to the main point, we adopt a linear regression model for the
log odds of the event Y = 1. Keeping the notation consistent with ordinary
regression, we have p− 1 independent variables, and the population model is

ln

(
P (Y = 1)

P (Y = 0)

)
= β0 + β1x1 + . . . + βp−1xp−1.

The interpretation of regression coefficients is similar to what we have
seen in ordinary regression. β0 is the intercept in the log odds world. It’s the
log odds of Y = 1 when all independent variables equal zero. And βk is the
increase in log odds of Y = 1 when xk is increased by one unit, and all other
independent variables are held constant.

This is on the scale of log odds. But frequently, people choose to think
in terms of plain old odds rather than log odds. Skipping a bit of algebra
that is not too difficult but really not the point of this course, we have this
conclusion: When xk is increased by one unit, and all other independent
variables are held constant, the odds of Y = 1 are multiplied by eβk . That is,
eβk is an odds ratio — the ratio of the odds of Y = 1 when xk is increased by
one unit, to the odds of Y = 1 when everything is left alone. As in ordinary
regression, we speak of “controlling” for the other variables.

As in ordinary regression, categorical independent variables may be repre-
sented by collections of dummy variables, and interactions by product terms.
But be a little cautious; parallel slopes on the log odds scale translates to
proportional odds – like the odds of Y = 1 for Group 1 are always 1.3 times
the odds of Y = 1 for Group, regardless of the value of x. And product terms
measure departure from proportional odds. As for what is happening on the
scale of raw probability, that is difficult to put into words. All in all, the
meaning of interactions between quantitative and categorical independent
variables is a little strange in logistic regression.
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The linear model for the log odds of Y = 1 is equivalent to a distinctly
non-linear model for the probability of Y = 1. Actually, it’s a conditional
probability, given the values of the independent variables.

P (Y = 1|x1, . . . , xp−1) =
eβ0+β1x1+...+βp−1xp−1

1 + eβ0+β1x1+...+βp−1xp−1
(5.1)

Formula (5.1) can be quite handy for producing a predicted probability of
Y = 1 based on sample data. One simply replaces the population regression
coefficients by their estimates. This brings us to the topic of estimation.

5.2 Parameter Estimation by Maximum like-

lihood

Using formula 5.1, it is possible to calculate the probability of observing the
data we did observe, given any set of β values. One of R. A. Fisher’s many
good suggestions was to take as our estimates of β0, β1 and so forth, those
values that made the probability of getting the data we actually observed as
large as possible. Viewed as a function of the parameter values, the probabil-
ity that we will get the data we actually did get is called the likelihood. The
parameter values that make this thing as big as possible are called maximum
likelihood estimates.

Figure 5.3 is a picture of this for one independent variable. The β0, β1

values located right under the peak is our set of maximum likelihood esti-
mates. Of course it’s hard to visualize in higher dimension, but the idea is
the same.

In regular regression, maximum likelihood estimates are identical to least
squares estimates, but not here (though they are close for large samples).
Also, the β̂ quantities can be calculated by an explicit formula for regular
regression, while for logistic regression they need to be found numerically.
That is, a program like SAS must calculate the likelihood function for a bunch
of sets of β values, and somehow find the top of the mountain. Numerical
routines for maximum likelihood estimation essentially march uphill until
they find a place where it is downhill in every direction. Then they stop.

For some statistical methods, the place you find this way could be a
so-called “local maximum,” something like the top of a foothill. You don’t
know you’re not at the top of the highest peak, because you’re searching
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Figure 5.3: Graph of the Likelihood Function for Simple Logistic Regression
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blindfolded, just walking uphill and hoping for the best. Fortunately, this
cannot happen with logistic regression. There is only one peak, and no
valleys. Start anywhere, walk uphill, and when it levels off you’re at the
top. This is true regardless of the particular data values and the number of
independent variables.

5.3 Chi-square tests

As in regular regression, you can test hypotheses by comparing a full, or
unrestricted model to a reduced, or restricted model. Typically the reduced
model is the same as the full, except that’s it’s missing one or more indepen-
dent variables. But the reduced model may be restricted in other ways, for
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example by setting a collection of regression coefficients equal to one another,
but not necessarily equal to zero.

There are many ways to test hypotheses in logistic regression; most are
large-sample chi-square tests. Two popular ones are likelihood ratio tests
and Wald tests.

5.3.1 Likelihood ratio tests

Likelihood ratio tests are based on a direct comparison of the likelihood
of the observed data assuming the full model to the likelihood of the data
assuming the reduced model. Let LF stand for the maximum probability
(likelihood) of the observed data under the full model, and LR stand for
the maximum probability of the observed data under the reduced model.
Dividing the latter quantity by the former yields a likelihood ratio: LR

LF
. It

is the maximum probability of obtaining the sample data under the reduced
model (null hypothesis), relative to the maximum probability of obtaining
the sample data under the null hypothesis under the full, or unrestricted
model.

As with regular regression, the model cannot fit the data better when it
is more restricted, so the likelihood of the reduced model is always less than
the likelihood of the full model. If it’s a lot less – that is, if the observed
data are a lot less likely assuming the reduced model than assuming the full
model – then this is evidence against the null hypothesis, and perhaps the
null hypothesis should be rejected.

Well, if the likelihood ratio is small, then the natural log of the likelihood
ratio is a big negative number, and minus the natural log of the likelihood
ratio is a big positive number. So is twice minus the natural log of the
likelihood ratio. It turns out that if the null hypothesis is true and the
sample size is large, then the quantity

G = −2 ln
(LR

LF

)
has an approximate chi-square distribution, with degrees of freedom equal to
the number of non-redundant restrictions that the null hypothesis places on
the set of β parameters. For example, if three regression coefficients are set
to zero under the null hypotheses, the degrees of freedom equal three.
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5.3.2 Wald tests

You may recall that the Central Limit Theorem says that even when data
come from a non-normal distribution, the sampling distribution of the sample
mean is approximately normal for large samples. The Wald tests are based
on a kind of Central Limit Theorem for maximum likelihood estimates. Un-
der very general conditions that include logistic regression, a collection of
maximum likelihood estimates has an approximate multivariate normal dis-
tribution, with means approximately equal to the parameters, and variance
covariance matrix that has a complicated form, but can be calculated (or
approximated as a by-product of the most common types of numerical max-
imum likelihood).

This was discovered and proved by Abraham Wald, and is the basis of
the Wald tests. It is pretty remarkable that he was able to prove this even
for maximum likelihood estimates with no explicit formula. Wald was quite
a guy. Anyway, if the null hypothesis is true, then a certain sum of squares of
the maximum likelihood estimates has a large sample chi-square distribution.
The degrees of freedom are the same as for the likelihood ratio tests, and for
large enough sample sizes, the numerical values of the two tests statistics get
closer and closer.

SAS makes it convenient to do Wald tests and inconvenient to do most
likelihood ratio tests, so we’ll stick to the Wald tests in this course.
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