
1

################## matpow.R #################################
source("matpow.R") #
Then use the functions matpow1 & 2 interactively. #
Notice that the matpow functions depend on fpow2 below. #

fpow2 <- function(r,q,effsize,wantpow=0.80,alpha=0.05)

Power for the general multiple regression model, testing H0: C Beta = h #
r is the number of beta parameters #
q Number rows in the C matrix = numerator df #
effsize is ncp/n, a squared distance between C Beta and h #
wantpow is the desired power, default = 0.80 #
alpha is the significance level, default = 0.05 #

 {
 pow <- 0 ; nn <- r+1 ; oneminus <- 1 - alpha
 while(pow < wantpow)
 {
 nn <- nn+1
 phi <- nn * effsize
 ddf <- nn-r
 pow <- 1 - pf(qf(oneminus,q,ddf),q,ddf,phi)
 }#End while
 fpow2 <- nn
 fpow2 # Returns needed n
 } # End of function fpow2

matpow1 <- function(C,eff,f,wantpow=0.80,alpha=0.05)
H0: C Mu = 0
Mu is r x 1
C is q x r contrast matrix
eff is vector of effects (non-zero h) in sd units, length r
f is vector of RELATIVE sample sizes, all non-negative

 {
 f <- f/sum(f)
 if(min(f)<=0) stop("Cell sample sizes must all be positive.")
 kore <- solve(C%*%diag(1/f)%*%t(C))
 effsize <- t(eff)%*%kore%*%eff
 q <- dim(C)[1] ; r <- dim(C)[2]
cat("r,q,effsize,wantpow,alpha = ",r,q,effsize,wantpow,alpha,"\n")
 matpow1 <- fpow2(r,q,effsize,wantpow,alpha)
 matpow1
 } # End of function matpow1

2

matpow2 <- function(C,mu,f,wantpow=0.80,alpha=0.05)
H0: C Mu = 0
Mu is r x 1, in SD units
C is q x r contrast matrix
eff is vector of effects (non-zero h) in sd units, length r
f is vector of RELATIVE sample sizes, all non-negative

 {
 f <- f/sum(f)
 if(min(f)<=0) stop("Cell sample sizes must all be positive.")
 eff <- C%*%mu
 kore <- solve(C%*%diag(1/f)%*%t(C))
 effsize <- t(eff)%*%kore%*%eff
 q <- dim(C)[1] ; r <- dim(C)[2]
 matpow1 <- fpow2(r,q,effsize,wantpow,alpha)
 matpow1
 } # End of function matpow2

First try the two-sample t-test. Want sample size to detect a diff of 1/2 SD, with probability 0.80, with

sample sizes equal. Answer should be n=128, or 64 per group. First I pasted the 3 functions in, and

then:

>
> cmat <- rbind(c(1,-1))
> diff <- 0.5
> relsampsizes <- c(1,1)
> matpow1(cmat,diff, relsampsizes) # Use defaults of 0.80 power and the 0.05 level
[1] 128
>

>
> # What would happen if the first group had twice as many subjects as the second?
> relsampsizes <- c(2,1)
> matpow1(cmat,diff, relsampsizes)
[1] 144
> 144/3
[1] 48
> # Okay, n1 = 96 and n2 = 48
>

It might be more convenient to specify population means, but they must be in SD units.

>
> realmeans <- c(0,.5) ; cmat <- rbind(c(1,-1)) ; relsampsizes <- c(1,1)
> matpow2(cmat,realmeans, relsampsizes)
[1] 128
>

3

Now suppose we have an A by B (2 by 3) factorial design, and we are focusing on the main effect for B.

Say the difference between marginal means 1 and 2 is one SD unit, and there is no difference between

marginal means 2 and 3. We want to detect this with probability 0.90 at the 0.05 level. As usual, all

sample sizes will be equal.

 BACTERIA TYPE
 TEMP 1 2 3
 1 mu11 mu12 mu13
 2 mu21 mu22 mu23

It is easiest to write the contrast matrix as

 1 -1 0 1 -1 0
 0 1 -1 0 1 -1

But watch out. The alternative we want to detect is

½ (mu11+mu21) – ½ (mu12+mu22) = 1, therefore mu11 + mu21 - mu12 - mu22 = 2

Recall matpow1 <- function(C,eff,f,wantpow=0.80,alpha=0.05)

>
> cmat <- rbind(c(1, -1, 0, 1, -1, 0),
+ c(0, 1, -1, 0, 1, -1))
> truth <- c(2,0) # Note the two
> relsampsizes <- c(1,1,1,1,1,1) # Equal
> matpow1(cmat,truth,relsamplesizes,0.90)
Error in matpow1(cmat, truth, relsamplesizes, 0.9) :
 object "relsamplesizes" not found
> matpow1(cmat,truth,relsampsizes,0.90)
[1] 61
> # About n=10 per group. Could make it n=11 to be safe.
>

Would this be easier?

>
> trumean <- c(1,0,0,1,0,0)
> # Use same cmat and relsampsizes
> matpow2(C=cmat,mu=trumean,f= relsampsizes,wantpow=0.90)
[1] 61
>

