Handout 1.5: Proportion of remaining variation for the Grades data

```
/********************** grades2.sas ***********************************
options linesize=79 noovp formdlim=' ';
title 'Predicting First-Year GPA from SAT Scores';
title2 'Test quadratic terms, calculate explained variation';
data sat;
    infile 'grades.data' firstobs=2 ; /* Skipping the header on line 1 */
    input id verbal math gpa;
    sat = verbal+math;
    v2 = verbal**2;
    m2 = math**2;
    label gpa = 'First-year GPA'
            sat = 'Total SAT score'
            v2 = 'Verbal Squared'
            m2 = 'Math Squared';
proc reg;
    model gpa = verbal v2 math m2;
    V2andM2: test v2=m2=0; /* Meaning: Test this null hypothesis about the
                corresponding regression coefficients */
/* Calculate proportion of remaining variation with proc iml. First do the
contribution of v2 and m2, in two ways. The model with just verbal and math
had an R-squared of 0.116054 (from grades.lst). With verbal-squared and
math-squared, get R-squared = 0.1408 */
proc iml;
    title3 'Calculate explained variation 2 ways';
    print "Proportion of remaining variation explained by V2 and M2";
    a1 = (0.1408-0.116054)/(1-0.116054); print al;
    /* Now the formula based on the F statistic*/
    n = 200 ; p = 5 ; s=2 ; F = 2.81;
    a2 = s*f / (n - p + s*F); print a2;
/* Controlling for the other variables, what proportion of the remaining
variation does verbal explain? For a test of one variable, F = t-squared. */
proc iml;
    title3 'Proportion of remaining variation from a t statistic';
    print "Proportion of remaining variation explained by verbal";
    T = 2.13; F = T**2;
    n = 200 ; p = 5 ; s = 1 ;
    a = s*f / (n - p + s*F); print a;
```


grades2.lst

Predicting First-Year GPA from SAT Scores
Test quadratic terms, calculate explained variation
22:08 Sunday, October 7, 2007

	```The REG Procedure Model: MODEL1 Dependent Variable: gpa First-year GPA Analysis of Variance```					
Source	DF	Sum of Squares	Mean Square	F	Value	$\mathrm{Pr}>\mathrm{F}$
Model	4	9.43549	2.35887		7.99	<. 0001
Error	195	57.58451	0.29531			
Corrected Total	199	67.02000				


Root MSE	0.54342	R-Square	0.1408
Dependent Mean	2.63000	Adj R-Sq	0.1232
Coeff Var	20.66235		


Variable	Parameter Estimates					
	Label	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	Intercept	1	1.71058	3.08521	0.55	0.5799
verbal		1	0.01310	0.00614	2.13	0.0341
v2	Verbal Squared	1	-0.00000912	0.00000515	-1.77	0.0783
math		1	-0.01247	0.00806	-1.55	0.1235
m2	Math Squared	1	0.00001056	0.00000625	1.69	0.0926

Predicting First-Year GPA from SAT Scores
Test quadratic terms, calculate explained variation
22:08 Sunday, October 7, 2007
The REG Procedure
Model: MODEL1
Test V2andM2 Results for Dependent Variable gpa

Source	DF	Mean   Square	F Value	Pr $>$ F
Numerator	2	0.82878	2.81	0.0629
Denominator	195	0.29531		

Predicting First-Year GPA from SAT Scores

Proportion of remaining variation explained by V2 and M2

## A1

### 0.0279949

A2
0.0280132
/dos/brunner/429f07/grades > sas grades2 ; cat grades2.lst ; chk

Predicting First-Year GPA from SAT Scores
Test quadratic terms, calculate explained variation
22:12 Sunday, October 7, 2007

	```The REG Procedure Model: MODEL1 Dependent Variable: gpa First-year GPA Analysis of Variance```			F		
Source	DF	Sum of Squares	Mean Square		Value	$\mathrm{Pr}>\mathrm{F}$
Model	4	9.43549	2.35887		7.99	<.0001
Error	195	57.58451	0.29531			
Corrected Total	199	67.02000				

Root MSE	0.54342	R-Square	0.1408
Dependent Mean	2.63000	Adj R-Sq	0.1232
Coeff Var	20.66235		

Variable	Parameter Estimates					
	Label	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	Intercept	1	1.71058	3.08521	0.55	0.5799
verbal		1	0.01310	0.00614	2.13	0.0341
v2	Verbal Squared	1	-0.00000912	0.00000515	-1.77	0.0783
math		1	-0.01247	0.00806	-1.55	0.1235
m2	Math Squared	1	0.00001056	0.00000625	1.69	0.0926

Test quadratic terms, calculate explained variation
22:12 Sunday, October 7, 2007
The REG Procedure
Model: MODEL1
Test V2andM2 Results for Dependent Variable gpa

Source	Mean SF			
Sumare	F Value	Pr $>$ F		
Numerator	2	0.82878	2.81	0.0629
Denominator	195	0.29531		

Predicting First-Year GPA from SAT Scores
Test quadratic terms, calculate explained variation Calculate explained variation 2 ways 22:12 Sunday, October 7, 2007

Proportion of remaining variation explained by V2 and M2

A1
0.0279949

A2
0.0280132

Predicting First-Year GPA from SAT Scores
Test quadratic terms, calculate explained variation
Proportion of remaining variation from a t statistic
22:12 Sunday, October 7, 2007
Proportion of remaining variation explained by verbal

A
0.0227371

