
Chapter 6

Multiple Comparisons
(Follow-up Tests)

6.1 A One-way Example

The following is a textbook example taken from Neter et al.’s (1996) Applied
linear statistical models [9]. The Kenton Food Company is interested in
testing the effect of different package designs on sales. Five grocery stores
were randomly assigned to each of four package designs. The package designs
used either three or five colours, and either had cartoons or did not. Because
of a fire in one of the stores, there were only four stores in the 5-colour
cartoon condition.

The dependent variable is sales, defined as number of cases sold. Actually,
there are two independent variables: number of colours and presence versus
absence of cartoons. But we will initially consider package design as a single
categorical independent variable with four values.

Sample Question 6.1.1 If there is a statistically significant relationship
between package design and sales, would we be justified in concluding that
differences in package design caused differences in sales?

Answer to Sample Question 6.1.1 Yes, if the study is carried out prop-
erly. It’s an experimental study.

Sample Question 6.1.2 Is there a problem with external validity here?
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Answer to Sample Question 6.1.2 It’s impossible to tell for sure, but
there easily could be. The behaviour of the sales force would have to be con-
trolled somehow. A double blind would be ideal.

The SAS program kenton.sas does a lot of things, starting with a one-
way ANOVA using proc glm. The strategy will be to first present the entire
program, and then go through it piece by piece and explain what is going on
– with a few major digressions to explain the statistics.

/********************** kenton.sas **************************/

options linesize=79 pagesize=100 noovp formdlim=’ ’;

title ’Kenton Oneway Example From Neter et al.’;

proc format;

value pakfmt 1 = ’3Colour Cartoon’ 2 = ’3Col No Cartoon’

3 = ’5Colour Cartoon’ 4 = ’5Col No Cartoon’;

data food;

infile ’kenton.dat’;

input package sales;

label package = ’Package Design’

sales = ’Number of Cases Sold’;

format package pakfmt.;

/* Define ncolours and cartoon */

if package = 1 or package = 2 then ncolours = 3;

else if package = 3 or package = 4 then ncolours = 5;

if package = 1 or package = 3 then cartoon = ’No ’;

else if package = 2 or package = 4 then cartoon = ’Yes’;

/* Indicator Coding for package: Use 3 at a time */

if package = . then p1 = .; else if package = 1 then p1 = 1;

else p1 = 0;

if package = . then p2 = .; else if package = 2 then p2 = 1;

else p2 = 0;

if package = . then p3 = .; else if package = 3 then p3 = 1;

else p3 = 0;

if package = . then p4 = .; else if package = 4 then p4 = 1;
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else p4 = 0;

/* Basic one-way ANOVA -- well, not very basic */

proc glm;

class package;

model sales = package;

means package;

means package / bon tukey scheffe;

/* Test some custom contrasts */

contrast ’3Colourvs5Colour’ package 1 1 -1 -1;

contrast ’Cartoon’ package 1 -1 1 -1;

contrast ’CartoonDepends’ package 1 -1 -1 1;

/* Test a collection of contrasts */

contrast ’Overall F’ package 1 -1 0 0,

package 0 1 -1 0,

package 0 0 1 -1;

/* Test effects of Colour and Cartoons simultaneously, allowing for

a possible interaction */

contrast ’ColorCartoon’ package 1 1 -1 -1,

package 1 -1 1 -1;

/* Get estimated value of a contrast along with a test (F=t-squared) */

estimate ’3Colourvs5Colour’ package 1 1 -1 -1 / divisor = 2;

proc iml;

title2 ’Table of critical values for all possible Scheffe tests’;

numdf = 3; /* Numerator degrees of freedom for initial test */

dendf = 15; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"}; mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;
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reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

proc reg;

title2 ’Using proc reg and dummy variables’;

model sales = p1 p2 p3;

ncolour: test p1+p2 = p3; /* 3 vs 5 colours */

proc glm;

title2 "Actually it’s a two-way ANOVA";

class ncolours cartoon;

model sales = ncolours|cartoon;

/* The model statement could have been

model sales = ncolours cartoon ncolours*cartoon; */

The proc format statement provides labels for the package designs. Af-
ter reading the data in a routine way, if statements are used to construct the
categorical independent variables ncolours and cartoon. Notice the extra
space in the ’No ’ value of the alphanumeric variable cartoon. At first I
didn’t have a space, and Yes was truncated to Ye.

Now we’ll look at what the first proc glm does. The complete proc glm

statement is given above. Here, we will look at it a piece at a time, examining
the output as we go. First, we have

proc glm;

class package;

model sales = package;

The class statement declares package to be categorical. Without it, proc glm

would do a regression with package as a quantitative independent variable.
The main F -test for equality of the four means is
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General Linear Models Procedure

Dependent Variable: SALES Number of Cases Sold

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 588.22105263 196.07368421 18.59 0.0001

Error 15 158.20000000 10.54666667

Corrected Total 18 746.42105263

R-Square C.V. Root MSE SALES Mean

0.788055 17.43042 3.2475632 18.631579

We conclude that package design (or, if the study was poorly controlled,
some variable confounded with package design) caused a difference in sales.
The statement means package; produces mean sales for each value of the
variable package.

Level of ------------SALES------------

PACKAGE N Mean SD

3Col No Cartoon 5 13.4000000 3.64691651

3Colour Cartoon 5 14.6000000 2.30217289

5Col No Cartoon 5 27.2000000 3.96232255

5Colour Cartoon 4 19.5000000 2.64575131

Such a display is essential for seeing what is going on, but it still does
not tell you which means are different from which other means. But before
we lose control and start doing all possible t-tests, consider the following.

6.2 The Curse of a Thousand t-tests

Significance tests are supposed to help screen out random garbage, and help
us ignore “trends” that could easily be due to chance. But all the common
significance tests are designed in isolation, as if each one were the only test
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you would ever be doing. The chance of getting significant results when
nothing is going on may be about 0.05 (more or less, depending on how well
the assumptions are met), but if you do a lot of tests on a data set that
is purely noise (no true relationships between any independent variable and
any dependent variable), the chances of false significance mount up. It’s like
looking for your birthday in tables of stock market prices. If you look long
enough, you will find it.

This problem definitely applies when you have a significant difference
among more than two treatment means, and you want to know which ones are
different from each other. For example, in an experiment with 10 treatment
conditions (this is not an unusually large number, for real experiments), there
are 45 pairwise differences among means.

You have to pity the poor scientist who learns about this and is honest
enough to take this problem seriously (let’s use the term “scientist” gener-
ously to apply to anyone trying to use significance test to learn something
about a data set). On one hand, good scientific practice and common sense
dictate that if you have gone to the trouble to collect data, you should ex-
plore thoroughly and try to learn something from the data. But at the same
time, it appears that some stern statistical entity is scolding you, and saying
that you’re naughty if you peek.

There are two main ways to resolve the dilemma. One is to basically
ignore the problem, while perhaps acknowledging that it is there. According
to this point of view, well, you’re crazy if you don’t explore the data. Maybe
the true significance level for the entire process is greater than 0.05, but still
the use of significance tests is a useful way to decide which results might be
real. Nothing’s perfect; let’s carry on.

The other reaction is to look for ways that significance tests can be mod-
ified to allow for the fact that we’re doing a lot of them. What we want are
methods for holding the chances of false significance to a single low level for
a set of tests, simultaneously. The general term for such methods is multi-
ple comparison procedures. Often, when a significance test (like a one-way
ANOVA) tests several things simultaneously and turns out to be significant,
multiple comparison procedures are used as a second step, to investigate
where the effect came from. In cases like this, the multiple comparisons are
called follow-up tests, or post hoc tests, or sometimes probing.

It is generally acknowledged that multiple comparison methods are often
helpful (even necessary) for following up significant F -tests in order to see
where an effect comes from. There is less agreement on how far the principle
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should be extended. Personally, I like the idea of limiting the chance of false
significance to 0.05 for an entire study – say, for all the tests reported in a
scientific paper, and all the ones that were not reported, too. This is a fairly
radical view, shared by almost no one. But it can work in practice if you have
enough data. More on this later. For now, let’s concentrate on following up
a significant F test in a one-way analysis of variance.

In the Kenton package design data, there are 4 treatment conditions, and
6 potential pairwise comparisons. The next line in the SAS program,

means package / bon tukey scheffe;

requests three kinds of multiple comparison tests for all pairwise differences
among means.

6.2.1 Bonferroni

The Bonferroni method is very general, and extends far beyond pairwise
comparisons of means. It is a simple correction that can be applied when
you are performing multiple tests, and you want to hold the chances of false
significance to a single low level for all the tests simultaneously. It applies
when you are testing multiple sets of independent variables, multiple depen-
dent variables, or both.

The Bonferroni correction consists of simply dividing the desired signifi-
cance level (that’s α, the maximum probability of getting significant results
when actually nothing is happening, usually α = 0.05) by the number of
tests. In a way, you’re splitting the alpha equally among the tests you do.

For example, if you want to perform 5 tests at joint significance level 0.05,
just do everything as usual, but only declare the results significant at the joint
0.05 level if one of the tests gives you p < 0.01 (0.01=0.05/5). If you want to
perform 20 tests at joint significance level 0.05, do the individual tests and
calculate individual p-values as usual, but only believe the results of tests
that give p < 0.0025 (0.0025=0.05/20). Say something like “Protecting the
20 tests at joint significance level 0.05 by means of a Bonferroni correction,
the difference in reported liking between worms and spinach soufflé was the
only significant food category effect.”

The Bonferroni correction is conservative. That is, if you perform 20
tests, the probability of getting significance at least once just by chance is
less than or equal to 0.0025 – almost always less. The big advantages of the
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Bonferroni approach are simplicity and flexibility. It is the only way I know
to analyze quantitative and categorical dependent variables simultaneously.

The main disadvantages of the Bonferroni approach are

1. You have to know how many tests you want to perform in advance, and
you have to know what they are. In a typical data analysis situation,
not all the significance tests are planned in advance. The results of one
test will give rise to ideas for other tests. If you do this and then apply
a Bonferroni correction to all the tests that you happened to do, it no
longer protects all the tests simultaneously. On the other hand, you
could randomly split your data into an exploratory sample and a repli-
cation sample. Test to your heart’s content on the first sample. Then,
when you think you know what your results are, perform only those
tests on the replication sample, and protect them simultaneously with
a Bonferroni correction. This could be called ”Bonferroni-protected
cross-validation.” It sounds good, eh?

2. The Bonferroni correction can be too conservative, especially when the
number of tests becomes large. For example, to simultaneously test
all 780 correlations in a 40 by 40 correlation matrix at joint α = 0.05,
you’d only believe correlations with p < 0.0000641 = 0.05/780.

Is this “too” conservative? Well, with n = 200 in that 40 by 40 example,
you’d need r = 0.27 for significance (compared to r = .14 with no
correction). With n = 100 you’d need r = .385, or about 14.8% of one
variable explained by another single variable. Is this too much to ask?
You decide.

6.2.2 Tukey

This is Tukey’s Honestly Significant Difference (HSD) method. It is not his
Least Significant Different (LSD) method, which has a better name but does
not really get the job done. Tukey tests apply only to pairwise differences
among means in ANOVA. It is based on a deep study of the probability dis-
tribution of the difference between the largest sample mean and the smallest
sample mean, assuming the population means are in fact all equal.

• If you are interested in all pairwise differences among means and noth-
ing else, and if the sample sizes are equal, Tukey is the best (most
powerful) test, period.
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• If the sample sizes are unequal, the Tukey tests still get the job of
simultaneous protection done, but they are a bit conservative. When
sample sizes are unequal, Bonferroni or Scheff can sometimes be more
powerful.

6.2.3 Scheffé

Suppose there are p treatments (groups, values of the categorical independent
variable, whatever you want to call them). A contrast is a special kind
of linear combination of means in which the weights add up to zero. A
population contrast has the form

` = a1µ1 + a2µ2 + · · ·+ apµp

where a1 + a2 + · · · + ap = 0. The case where all of the a values are zero
is uninteresting, and is excluded. A population contrast is estimated by a
sample contrast:

L = a1Y 1 + a2Y 2 + · · ·+ apY p.

By setting a1 = 1, a2 = −1, and the rest of the a values to zero we get
L = Y 1 − Y 2, so it’s easy to see that any pairwise difference is a contrast.
Also, the average of one set of means minus the average of another set is a
contrast.

The initial F test for equality of p means can be viewed as a simultaneous
test of p− 1 contrasts. For example, suppose there are four treatments, and
the null hypothesis of the initial test is H0 : µ1 = µ2 = µ3 = µ4. The table
gives the a1, a2, a3, a4 values for three contrasts; if all three contrasts equal
zero then the four population means are equal, and vice versa.

a1 a2 a3 a4

1 -1 0 0
0 1 -1 0
0 0 1 -1

The way you read this table is

µ1 - µ2 = 0
µ2 - µ3 = 0

µ3 - µ4 = 0
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Clearly, if µ1 = µ2 and µ2 = µ3 and µ3 = µ4, then µ1 = µ2 = µ3 = µ4,
and if µ1 = µ2 = µ3 = µ4, then µ1 = µ2 and µ2 = µ3 and µ3 = µ4. The
simultaneous F test for the three contrasts is 100% equivalent to a one-way
ANOVA; it yields the same F statistic, the same degrees of freedom, and the
same p-value.

There is always more than one way to set up the contrasts to test a
given hypothesis. Staying with the example of testing differences among
four means, we could have specified

a1 a2 a3 a4

1 0 0 -1
0 1 0 -1
0 0 1 -1

so that all the means are equal to the last one. These contrasts (differences
between means) are actually equal to the regression coefficients in a multiple
regression with indicator dummy variables, in which the last category is the
reference category. But no matter how you set up collection of contrasts, if
you do it correctly you always get the same answer.

The Scheffé tests allow testing whether any contrast (or set of contrasts)
of treatment means differs significantly from zero, with the tests for all possi-
ble contrasts simultaneously protected at the same significance level, usually
0.05.

When asked for Scheffé follow-ups to a one-way ANOVA, SAS tests all
pairwise differences between means, but there are infinitely many more con-
trasts in the same family that it does not do — and they are all jointly
protected against false significance at the 0.05 level.

It’s a miracle. You can do infinitely many tests, all simultaneously pro-
tected. You do not have to know what they are in advance. It’s an license
for unlimited data fishing, at least within the class of contrasts of treatment
means. And you can test up to p − 1 contrasts simultaneously if you wish.
They are all part of the same family.

Two more miracles:

• If the initial one-way ANOVA is not significant, it’s impossible for any
of the Scheffé follow-ups to be significant. This is not quite true of
Bonferroni or Tukey.

• If the initial one-way ANOVA is significant, there must be a single con-
trast that is significantly different from zero. It may not be a pairwise
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difference, you may not think of it, and if you do find one it may not
be easy to interpret, but there is at least one out there. Well, actu-
ally, there are infinitely many, but they may all be extremely similar
to one another. Incidentally, if you test any collection of contrasts that
includes a contrast that is significantly different from zero by a Scheffé
test, then the Scheffé test for the collection will be significant too.

Given all this, clearly it is helpful to be able to test any set of contrast you
wish. As you will see below, the contrast statement of proc glm lets you
do it easily. For now, let’s assume that you have done an initial F test for
differences among p treatment means, it’s statistically significant, and also
you can get F tests for any contrast of collection of contrasts you specify.

As usual, the F tests for contrasts (which are sometimes optimistically
called “planned comparisons”) are designed in a vacuum, as if each one were
the only test you would ever do on your data. But you can convert them into
Scheffé follow-ups to the initial test by using a different critical value (Recall
that if a test statistic is greater than the critical value, it’s significant).

Suppose that the follow-up test you want to do involves s contrasts; for
a test of a single difference between means or some other single contrast,
s = 1. Compute the usual F statistic for testing the contrast, and compare
it to a modified critical value that we will call FS−crit; the S is for Scheffé.
The formula for FS−crit is

FS−crit =
p− 1

s
Fcrit, (6.1)

where Fcrit is the critical value for the initial test — the one you are following
up. You reject the null hypothesis and declare your Scheffé test significant if
F > FS−crit.

You can do as many of these tests as you want easily, using SAS and a
small table of FS−crit critical values. You can make the table you need with
proc iml. This is illustrated in the example below; the code can easily be
modified to suit any problem. Or, you can use a textbook table of the F
distribution and a calculator.

Please take another look at Formula (6.1). Notice that multiplying by
the number of means (minus one) is a kind of penalty for the richness of
the infinite family of tests you could do, while dividing by the number of
contrasts you’re testing reduces the penalty because you’re looking for some-
thing bigger. As soon as Mr. Scheffé discovered these tests, people started
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complaining that the penalty was very severe, and it was too hard to get
significance. In my opinion, what’s remarkable is not that a license for un-
limited fishing is expensive, but that it’s for sale at all. You can pay for it
by increasing the sample size.

When sample sizes are unequal, SAS presents follow-up tests for pairwise
differences between means in the form of confidence intervals. If the 95% con-
fidence interval does not include zero, the test (Bonferroni, Tukey or Scheffé)
is significant at 0.05. Since all three types of follow-up test point to exactly
the same conclusions for these data, only the Scheffé will be reproduced here.

General Linear Models Procedure

Scheffe’s test for variable: SALES

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 15 MSE= 10.54667

Critical Value of F= 3.28738

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

PACKAGE Confidence Between Confidence

Comparison Limit Means Limit

5Col No Cartoon - 5Colour Cartoon 7.700 0.859 14.541 ***

5Col No Cartoon - 3Colour Cartoon 12.600 6.150 19.050 ***

5Col No Cartoon - 3Col No Cartoon 13.800 7.350 20.250 ***

5Colour Cartoon - 5Col No Cartoon -7.700 -14.541 -0.859 ***

5Colour Cartoon - 3Colour Cartoon 4.900 -1.941 11.741

5Colour Cartoon - 3Col No Cartoon 6.100 -0.741 12.941

3Colour Cartoon - 5Col No Cartoon -12.600 -19.050 -6.150 ***

3Colour Cartoon - 5Colour Cartoon -4.900 -11.741 1.941

3Colour Cartoon - 3Col No Cartoon 1.200 -5.250 7.650

3Col No Cartoon - 5Col No Cartoon -13.800 -20.250 -7.350 ***

3Col No Cartoon - 5Colour Cartoon -6.100 -12.941 0.741

3Col No Cartoon - 3Colour Cartoon -1.200 -7.650 5.250

Notice that the critical value for the initial test (Fcrit, not FS−crit) for per-
forming more tests is conveniently provided.

This pairwise confidence interval format is not so easy to look at, even if
the significant differences are indicated by “***.” For one thing, each com-
parison is given twice, once in each direction. For another, the actual means
are not printed, just the differences between means. It helps to re-arrange
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the means from lowest to highest. This next display is not part of the SAS
output; it’s SAS output edited with a word processor.

Level of ------------SALES------------

PACKAGE N Mean SD

5Col No Cartoon 5 27.2000000 3.96232255

5Colour Cartoon 4 19.5000000 2.64575131

3Colour Cartoon 5 14.6000000 2.30217289

3Col No Cartoon 5 13.4000000 3.64691651

Now we see that the 5-colour No Cartoon treatment is significantly differ-
ent from each of the others, which are not significantly different from each
other. That’s the kind of package design they should use; from a marketing
standpoint, we’re done. But let’s look at some more follow-up tests anyway.

Testing Contrasts The proc glm in kenton.sas continues

/* Test some custom contrasts */

contrast ’3Colourvs5Colour’ package 1 1 -1 -1;

contrast ’Cartoon’ package 1 -1 1 -1;

contrast ’CartoonDepends’ package 1 -1 -1 1;

/* Test a collection of contrasts */

contrast ’Overall F’ package 1 -1 0 0,

package 0 1 -1 0,

package 0 0 1 -1;

/* Test effects of Colour and Cartoons simultaneously, allowing for

a possible interaction */

contrast ’ColorCartoon’ package 1 1 -1 -1,

package 1 -1 1 -1;

The syntax for specifying a contrast goes: The word contrast, a label for the
test in single or double quotes (this will appear in the output), the name of
the independent variable, the coefficients of the contrast (the a values), and
a semicolon to end the statement. If you are testing more than one contrast
simultaneously, put a comma after the first one, repeat the independent
variable name, and give another set of coefficients. The last contrast ends
with a semi-colon instead of a comma. As the example shows, you can do as
many tests as you like.
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6.2.4 Proper Follow-ups

We will describe a set of tests as proper follow-ups to to an initial test if

1. The null hypothesis of the initial test logically implies the null hypothe-
ses of all the tests in the follow-up set.

2. All the tests are jointly protected against Type I error (false signifi-
cance) at a known significance level, usually α = 0.05.

The first property requires explanation. First, consider that the Tukey tests,
which are limited to pairwise differences between means, automatically sat-
isfy this, because if all the population means are equal, then each pair is
equal to each other. But it’s possible to make mistakes with Bonferroni and
Scheffé if you’re not careful.

Here’s why the first property is important. Suppose the null hypothesis
of a follow-up test does follow logically from the null hypothesis of the initial
test. Then, if the null hypothesis of the follow-up is false (there’s really
something going on), then the null hypothesis of the initial test must be
incorrect too, and this is one way in which the initial null hypothesis is false.
Thus if we correctly reject the follow-up null hypothesis, we have uncovered
one of the ways in which the initial null hypothesis is false. In other words,
we have (partly, perhaps) identified where the initial effect comes from.

On the other hand, if the null hypothesis of a potential follow-up test
is not implied by the null hypothesis of the initial test, then the truth or
untruth of the follow-up null hypothesis does not tell us anything about the
null hypothesis of the initial test. They are in different domains. For example,
suppose we conclude 2µ1 is different from 3µ2. Great, but if we want to know
how the statement µ1 = µ2 = µ3 might be wrong, it’s irrelevant.

If you stick to testing contrasts as a follow-up to a one-way ANOVA,
you’re fine. This is because if a set of population means are all equal, then
any contrast of those means is equal to zero. That is, the null hypothesis
of the initial test automatically implies the null hypotheses of any potential
follow-up test, and everything is okay. Furthermore, if you try to specify a
linear combination that is not a contrast with the contrast statement of
proc glm, SAS will just say something like NOTE: CONTRAST SOandSO is

not estimable in the log file. There is no other error message or warning;
the test just does not appear in your list file.

If you really want a linear combination that is not a contrast, use the
estimate statement. It will give the sample value of any linear combination
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of treatment means, along with a t-test for whether the linear combination is
significantly different from zero. Here’s output from the estimate statement
in kenton.sas:

Standard

Parameter Estimate Error t Value Pr > |t|

3Colourvs5Colour -9.35000000 1.49705266 -6.25 <.0001

Note t2 = F immediately below.

6.2.5 Converting Tests for Contrasts into Scheffé tests

Here is the output from the contrast statements.

Contrast DF Contrast SS Mean Square F Value Pr > F

3Colourvs5Colour 1 411.4000000 411.4000000 39.01 <.0001

Cartoon 1 49.7058824 49.7058824 4.71 0.0464

CartoonDepends 1 93.1882353 93.1882353 8.84 0.0095

Overall F 3 588.2210526 196.0736842 18.59 <.0001

ColorCartoon 2 479.5888889 239.7944444 22.74 <.0001

By ordinary one-at-a-time F tests, all the tests are significant. But let’s
treat them as Scheffé tests. To do this, we need the FS−crit critical values
for s = 1, 2 and 3. Actually we don’t need one for s = 3, because by (6.1),
it’s the same as the critical value of the initial test. And in fact, any test of
p − 1 non-redundant contrasts is equivalent to the initial one-way ANOVA,
always.

It’s easy to get the FS−crit values from proc iml. The following code is
written carefully so that you can use it for any problem by just modifying
the vales of numdf and dendf (and maybe alpha if you don’t want to use
0.05).
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proc iml;

title2 ’Table of critical values for all possible Scheffe tests’;

numdf = 3; /* Numerator degrees of freedom for initial test (p-1) */

dendf = 15; /* Denominator degrees of freedom for initial test (n-p) */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

Here is the output.

Kenton Oneway Example From Neter et al. 8

Table of critical values for all possible Scheffe tests

13:35 Friday, March 16, 2007

Initial test has 3 and 15 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 9.8621463

2 4.9310732

3 3.2873821

For the one-degree-of-freedom tests (single contrasts) we need F > 9.86
for significance. This means 3Colourvs5Colour is significant, but Cartoon

153



and CartoonDepends are not, even though CartoonDepends has a p-value of
0.0095 by the one-at-a-time test. ColourCartoon is also significant, because
22.74 > 4.93. And of course Overall F is significant; it’s the initial test.

6.2.6 Extensions

This section provides a brief but very powerful extension of the Scheffé tests
to multiple regression, and Scheffé-like tests for logistic regression.

Multiple Regression

Suppose the initial hypothesis is that d regression coefficients all are equal
to zero. We will follow up the initial test by testing whether s linear combi-
nations of these regression coefficients are different from zero; s ≤ d. Notice
that now we are testing linear combinations, not just contrasts. If a set of
coefficients are all zero, then any linear combination (weighted sum) of the
coefficients is also zero. Thus the null hypotheses of the follow-up tests are im-
plied by the null hypotheses of the initial test. As in the case of Scheffé tests
for contrasts in one-way ANOVA, using an adjusted critical value guarantees
simultaneous protection for all the follow-up tests at the same significance
level as the initial test. This means we have proper follow-ups.

The formula for the modified critical value is

FS−crit =
d

s
Fcrit, (6.2)

where again, the null hypothesis of the initial test is that d regression coef-
ficients are all zero, and the null hypothesis of the follow-up test is that s
linear combinations of those coefficients are equal to zero.

For convenience, here is the proc iml code to produce a table of adjusted
critical values.
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proc iml;

title2 ’Scheffe tests for Regression: Critical values’;

numdf = 3; /* Numerator degrees of freedom for initial test (d) */

dendf = 15; /* Denominator degrees of freedom for initial test (n-d-1) */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of linear combos in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has " numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

The Scheffé tests for contrasts in a one-way ANOVA are special cases of this,
because anything you can do with factorial analysis of variance, you can do
with dummy variable regression. It’s very convenient with test statements
in proc reg.

Logistic Regression

For logistic regression, there are Scheffé-like followups called union-intersection
tests. The true Scheffé tests are a special kind of union-intersection method
that applies to the (multivariate) normal linear model. Scheffé tests have
one property that is not true of union-intersection follow-ups in general: the
guaranteed existence of a significant one-degree-of-freedom test. This is tied
to geometric properties of the multivariate normal distribution.

Just as in normal regression, the suppose that the initial null hypothesis
is that d coefficients in the logistic regression model are all equal to zero.
Suppose the initial hypothesis is that d regression coefficients all are equal
to zero. We will follow up by testing whether s linear combinations of these
regression coefficients are different from zero; s ≤ d. There is no adjustment.
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The critical value for the follow-up tests is exactly that of the initial
test: a chi-square with d degrees of freedom. This principle applies
to both likelihood ratio and Wald tests. In fact, it is true of likelihood ratio
and Wald tests in general, not just in logistic regression.

Bibliographic citation

If you want to report the use of union-intersection tests or Scheffé tests for
regression, or even Scheffé tests for more than one contrast in a one-way
design, you will have difficulty finding it in any published Statistics text.
Like Scheffé’s original 1953 article [13], they almost universally stick to single
contrasts. And it’s usually not too helpful to cite unpublished material like
this document.

Hochberg and Tamhane’s (1987) monograph Multiple comparison proce-
dures [7] is a good source for the tests of multiple linear combinations in
regression, of which the tests of contrasts presented here are a special case.
It’s not very readable to non-statisticians, though. The same can be said
of Gabriel’s (1969) article [6], which is the primary source for the union-
intersection follow-ups. But you can just trust me and cite them anyway.
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