STA429/1007 F 2004 Handout 15

Unidentified Models with SAS



/* path2a.sas */
options linesize=79 noovp formdlim='_';
title 'STA429f04 Path 2a: Non-identified Simple Regression with Meas Error';
title2 'Just try to fit the model';

data path1;
     infile 'path2.dat';
     input x1 x2 y;

proc calis cov pshort;   /* Analyze the covariance matrix (Default is corr) */
     var x1 y;           /* Manifest vars are in the data set */
     lineqs              /* Simultaneous equations, separated by commas */
            y =  b F + e1,
            x1 = F + e2;
     std                  /* Variances (not standard deviations) */
            F = sigsqF,   /* Optional starting values in parentheses */
            e1 = sigsqe1,
            e2 = sigsqe2;
     bounds 0.0 < sigsqF,
            0.0 < sigsqe1,
            0.0 < sigsqe2;


/* path2b.sas */
options linesize=79 noovp formdlim='_';
title 'STA429f04 Path 2b: Identified Simple Regression with Meas Error';
title2 'Test H0: b=0';

data path1;
     infile 'path2.dat';
     input x1 x2 y;

proc calis cov;          /* Analyze the covariance matrix (Default is corr) */
     title3 'Full model';
     var x1 x2 y;          /* Manifest vars are in the data set */
     lineqs              /* Simultaneous equations, separated by commas */
            y =  b F + e1,
            x1 = F + e2,
            x2 = F + e3;
     std                  /* Variances (not standard deviations) */
            F = sigsqF,   /* Optional starting values in parentheses */
            e1 = sigsqe1,
            e2 = sigsqe,
            e3 = sigsqe;
     bounds 0.0 < sigsqF,
            0.0 < sigsqe,
            0.0 < sigsqe1;

proc calis cov;          /* Analyze the covariance matrix (Default is corr) */
     title3 'Reduced model';
     var x1 x2 y;        /* Manifest vars are in the data set */
     lineqs              /* Simultaneous equations, separated by commas */
            y =  b F + e1,
            x1 = F + e2,
            x2 = F + e3;
     std                  /* Variances (not standard deviations) */
            F = sigsqF,   /* Optional starting values in parentheses */
            e1 = sigsqe1,
            e2 = sigsqe,
            e3 = sigsqe;
     bounds 0.0 < sigsqF,
            0.0 < sigsqe,
            0.0 < sigsqe1;
     lincon b=0;


_______________________________________________________________________________

      STA429f04 Path 2a: Non-identified Simple Regression with Meas Error     1
                           Just try to fit the model
                                               00:07 Thursday, December 2, 2004

                              The CALIS Procedure
           Covariance Structure Analysis: Pattern and Initial Values

                            LINEQS Model Statement


                       Matrix      Rows    Columns    ------Matrix Type-------

Term 1            1    _SEL_          2          5    SELECTION
                  2    _BETA_         5          5    EQSBETA        IMINUSINV
                  3    _GAMMA_        5          3    EQSGAMMA
                  4    _PHI_          3          3    SYMMETRIC


                          The 2 Endogenous Variables

    Manifest        x1  y
    Latent


                          The 3 Exogenous Variables

    Manifest
    Latent          F
    Error           e1  e2

_______________________________________________________________________________

      STA429f04 Path 2a: Non-identified Simple Regression with Meas Error     2
                           Just try to fit the model
                                               00:07 Thursday, December 2, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                       Levenberg-Marquardt Optimization

                         Scaling Update of More (1978)

                   Parameter Estimates                    4
                   Functions (Observations)               3
                   Lower Bounds                           3
                   Upper Bounds                           0

                              Optimization Start

Active Constraints                   0  Objective Function        0.0765191703
Max Abs Gradient Element  12.435221312  Radius                    452.22765911


                                                                        Actual
                                                      Max Abs             Over
         Rest    Func      Act    Objective  Obj Fun Gradient             Pred
 Iter    arts   Calls      Con     Function   Change  Element  Lambda   Change

    1       0       2        0   4.49913E-6   0.0765   0.1639       0    1.309
    2*      0       3        0   1.5469E-13 4.499E-6 0.000031 111E-16    1.002
    3       0       4        0            0 1.55E-13 1.28E-10       0    1.000

                             Optimization Results

Iterations                           3  Function Calls                       5
Jacobian Calls                       4  Active Constraints                   0
Objective Function                   0  Max Abs Gradient Element  1.280183E-10
Lambda                               0  Actual Over Pred Change   0.9998970626
Radius                    0.0002251807

GCONV2 convergence criterion satisfied.

NOTE: Covariance matrix for the estimates is not full rank.


NOTE: The variance of some parameter estimates is zero or some parameter
      estimates are linearly related to other parameter estimates as shown in
      the following equations:



  sigsqF     =        -283260   +          21760   *   b          -
                                 170.062427   *   sigsqe1    +       1.000000
                                *   sigsqe2

_______________________________________________________________________________

      STA429f04 Path 2a: Non-identified Simple Regression with Meas Error     3
                           Just try to fit the model
                                               00:07 Thursday, December 2, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit Function                                          0.0000
         Goodness of Fit Index (GFI)                           1.0000
         GFI Adjusted for Degrees of Freedom (AGFI)                 .
         Root Mean Square Residual (RMR)                       0.0000
         Parsimonious GFI (Mulaik, 1989)                      -1.0000
         Chi-Square                                            0.0000
         Chi-Square DF                                             -1
         Pr > Chi-Square                                            .
         Independence Model Chi-Square                         0.0013
         Independence Model Chi-Square DF                           1
         RMSEA Estimate                                        0.0000
         RMSEA 90% Lower Confidence Limit                           .
         RMSEA 90% Upper Confidence Limit                           .
         ECVI Estimate                                         0.0000
         ECVI 90% Lower Confidence Limit                            .
         ECVI 90% Upper Confidence Limit                            .
         Probability of Close Fit                                   .
         Bentler's Comparative Fit Index                            .
         Normal Theory Reweighted LS Chi-Square                0.0000
         Akaike's Information Criterion                        2.0000
         Bozdogan's (1987) CAIC                                6.2983
         Schwarz's Bayesian Criterion                          5.2983
         McDonald's (1989) Centrality                          0.9975
         Bentler & Bonett's (1980) Non-normed Index                 .
         Bentler & Bonett's (1980) NFI                         1.0000
         James, Mulaik, & Brett (1982) Parsimonious NFI       -1.0000
         Z-Test of Wilson & Hilferty (1931)                         .
         Bollen (1986) Normed Index Rho1                            .
         Bollen (1988) Non-normed Index Delta2                 0.0013
         Hoelter's (1983) Critical N                                .

_______________________________________________________________________________

      STA429f04 Path 2a: Non-identified Simple Regression with Meas Error     4
                           Just try to fit the model
                                               00:07 Thursday, December 2, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                  Manifest Variable Equations with Estimates


                 x1      =   1.0000 F       +  1.0000 e2
                 y       =  13.0408*F       +  1.0000 e1
                                    b


                       Variances of Exogenous Variables

                       Variable Parameter      Estimate

                       F        sigsqF        0.0005993
                       e1       sigsqe1         3.01230
                       e2       sigsqe2         2.97844



_______________________________________________________________________________

      STA429f04 Path 2a: Non-identified Simple Regression with Meas Error     5
                           Just try to fit the model
                                               00:07 Thursday, December 2, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

            Manifest Variable Equations with Standardized Estimates


                 x1      =   0.0142 F       +  0.9999 e2
                 y       =   0.1809*F       +  0.9835 e1
                                    b


                         Squared Multiple Correlations

                                     Error         Total
                    Variable      Variance      Variance    R-Square

               1    x1             2.97844       2.97904    0.000201
               2    y              3.01230       3.11421      0.0327



/* factor1.sas*/
options linesize=79 noovp formdlim='_';
title 'Three-variables and one factor using LINEQS';

data chain3;
        infile 'chain.dat';
        input y1 y2 y3;

proc calis cov pshort;
        title2 'Unidentified model';
        var y1 y2 y3;           /* Manifest vars are in the data set */

        lineqs
                y1 = L1 F + e1, /* L stands for Loading */
                y2 = L2 F + e2,
                y3 = L3 F + e3;

        std                     /* Variances not standard deviation */
                e1 = sige1,
                e2 = sige2,
                e3 = sige3,
                F  = 1;

        bounds
               -1.0 <= L1 <= 1.0,  /* Because the loadings are correlations */
               -1.0 <= L2 <= 1.0,
               -1.0 <= L3 <= 1.0;

/* Now define functions of the parameters, functions that I am going to
constrain in the nlincon statement. First name them and give (initial)
numerical values. */

       parameters vy1 vy2 vy3 (1.);
                  vy1 = sige1 + L1**2;
                  vy2 = sige2 + L2**2;
                  vy3 = sige3 + L3**2;

       nlincon vy1 = 1, vy2 = 1 , vy3 = 1;

proc calis cov pshort;
        title2 'Identified model 1';
        var y1 y2 y3;           /* Manifest vars are in the data set */

        lineqs
                y1 = L1 F + e1, /* L stands for Loading */
                y2 = L2 F + e2,
                y3 = L3 F + e3;

        std                     /* Variances not standard deviation */
                e1 = sige1,
                e2 = sige2,
                e3 = sige3,
                F  = 1;

        bounds
                0.0 <= L1 <= 1.0,  /* Make L1 Positive */
               -1.0 <= L2 <= 1.0,
               -1.0 <= L3 <= 1.0;

/* Now define functions of the parametes, functions that I am going to
constrain in the nlincon statement. First name them and give (initial)
numerical values. */

       parameters vy1 vy2 vy3 (1.);
                  vy1 = sige1 + L1**2;
                  vy2 = sige2 + L2**2;
                  vy3 = sige3 + L3**2;

       nlincon vy1 = 1, vy2 = 1 , vy3 = 1;

proc calis cov pshort;
        title2 'Identified model 2';
        var y1 y2 y3;           /* Manifest vars are in the data set */

        lineqs
                y1 = L1 F + e1, /* L stands for Loading */
                y2 = L2 F + e2,
                y3 = L3 F + e3;

        std                     /* Variances not standard deviation */
                e1 = sige1,
                e2 = sige2,
                e3 = sige3,
                F  = 1;

        bounds
               -1.0 <= L1 <= 1.0,
               -1.0 <= L2 <= 1.0,
                0.0 <= L3 <= 1.0; /* Make L3 Positive */

/* Now define functions of the parametes, functions that I am going to
constrain in the nlincon statement. First name them and give (initial)
numerical values. */

       parameters vy1 vy2 vy3 (1.);
                  vy1 = sige1 + L1**2;
                  vy2 = sige2 + L2**2;
                  vy3 = sige3 + L3**2;

       nlincon vy1 = 1, vy2 = 1 , vy3 = 1;




_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 1
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
           Covariance Structure Analysis: Pattern and Initial Values

                            LINEQS Model Statement


                       Matrix      Rows    Columns    ------Matrix Type-------

Term 1            1    _SEL_          3          7    SELECTION
                  2    _BETA_         7          7    EQSBETA        IMINUSINV
                  3    _GAMMA_        7          4    EQSGAMMA
                  4    _PHI_          4          4    SYMMETRIC


                          The 3 Endogenous Variables

    Manifest        y1  y2  y3
    Latent


                          The 4 Exogenous Variables

    Manifest
    Latent          F
    Error           e1  e2  e3

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 2
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

    NOTE: Initial point was changed to be feasible for boundary and linear
                                 constraints.

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 3
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                        Dual Quasi-Newton Optimization

                Modified VMCWD Algorithm of Powell (1978, 1982)

          Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
                  Lagrange Multiplier Update of Powell(1982)

                Parameter Estimates                          6
                Functions (Observations)                     6
                Lower Bounds                                 3
                Upper Bounds                                 3
                Nonlinear Constraints                        3
                Nonlinear Equality Constraints               3

                              Optimization Start

Objective Function        0.9685074192  Maximum Constraint        0.0001388008
                                        Violation
Maximum Gradient of the   0.7932665457
Lagran Func


                                                                     Maximum
                                                                    Gradient
                                                                     Element
                                          Maximum Predicted           of the
                 Function    Objective Constraint  Function    Step Lagrange
  Iter  Restarts    Calls     Function  Violation Reduction    Size Function

     1         0       15      0.47335     0.6293    0.4388   1.000    0.974
     2         0       16      0.59895     0.1015    0.1114   1.000    0.259
     3         0       17      0.56294     0.0149    0.0730   1.000    0.216
     4         0       19      0.54488     0.0107    0.0319   0.479   0.0374
     5         0       20      0.56087   0.000218  0.000237   1.000   0.0170
     6         0       21      0.56071   0.000036   0.00126   1.000   0.0154
     7*        0       22      0.55802    0.00121   0.00192   1.000   0.0318
     8         0       24      0.55762    0.00114   0.00285   0.306   0.0361
     9*        0       25      0.54663    0.00744    0.0212   1.000   0.0597
    10         0       26      0.55637   0.000432   0.00193   1.000   0.0260
    11         0       27      0.55373    0.00212   0.00224   1.000   0.0108
    12*        0       28      0.54473    0.00911    0.0184   1.000   0.0359
    13         0       29      0.55374   0.000046   0.00104   1.000   0.0167
    14*        0       30      0.54887    0.00482   0.00810   1.000   0.0153
    15*        0       31      0.55153    0.00134   0.00237   1.000   0.0252
    16         0       32      0.55271   0.000019  0.000038   1.000  0.00244
    17         0       33      0.55272   4.118E-7  3.859E-7   1.000  0.00012

                             Optimization Results

Iterations                          17  Function Calls                      35
Gradient Calls                      20  Active Constraints                   4
Objective Function        0.5527247315  Maximum Constraint        4.1183614E-7
                                        Violation

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 4
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                             Optimization Results

Maximum Projected         0.0001202793  Value Lagrange Function   0.5527249264
Gradient
Maximum Gradient of the   0.0001179179  Slope of Search Direction -3.859116E-7
Lagran Func

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-6 range.


WARNING: There are 4 active constraints at the solution.  The standard errors
         and Chi-Square test statistic assume the solution is located in the
         interior of the parameter space and hence do not apply if it is
         likely that some different set of inequality constraints could be
         active.


NOTE: The degrees of freedom are increased by the number of active constraints
      (see Dijkstra, 1992). The number of parameters in calculating fit
      indices is decreased by the number of active constraints. To turn off
      the adjustment, use the NOADJDF option.


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 5
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit Function                                          0.5527
         Goodness of Fit Index (GFI)                           0.7842
         GFI Adjusted for Degrees of Freedom (AGFI)            0.6763
         Root Mean Square Residual (RMR)                       0.6535
         Parsimonious GFI (Mulaik, 1989)                       1.0456
         Chi-Square                                          109.9922
         Chi-Square DF                                              4
         Pr > Chi-Square                                       <.0001
         Independence Model Chi-Square                         65.979
         Independence Model Chi-Square DF                           3
         RMSEA Estimate                                        0.3649
         RMSEA 90% Lower Confidence Limit                      0.3079
         RMSEA 90% Upper Confidence Limit                      0.4253
         ECVI Estimate                                         0.5732
         ECVI 90% Lower Confidence Limit                       0.4184
         ECVI 90% Upper Confidence Limit                       0.7662
         Probability of Close Fit                              0.0000
         Bentler's Comparative Fit Index                      -0.6830
         Normal Theory Reweighted LS Chi-Square              186.5728
         Akaike's Information Criterion                      101.9922
         Bozdogan's (1987) CAIC                               84.7990
         Schwarz's Bayesian Criterion                         88.7990
         McDonald's (1989) Centrality                          0.7672
         Bentler & Bonett's (1980) Non-normed Index           -0.2622
         Bentler & Bonett's (1980) NFI                        -0.6671
         James, Mulaik, & Brett (1982) Parsimonious NFI       -0.8895
         Z-Test of Wilson & Hilferty (1931)                    8.7988
         Bollen (1986) Normed Index Rho1                      -0.2503
         Bollen (1988) Non-normed Index Delta2                -0.7101
         Hoelter's (1983) Critical N                               19

WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s).


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 6
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                  Manifest Variable Equations with Estimates


                   y1      =   0.1006*F     +  1.0000 e1
                                      L1
                   y2      =  -0.3740*F     +  1.0000 e2
                                      L2
                   y3      =  -1.0000*F     +  1.0000 e3
                                      L3


                       Variances of Exogenous Variables

                       Variable Parameter      Estimate

                       F                        1.00000
                       e1       sige1           0.98989
                       e2       sige2           0.86015
                       e3       sige3        -4.215E-11



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 7
                              Unidentified model
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

            Manifest Variable Equations with Standardized Estimates


                   y1      =   0.1006*F     +  0.9949 e1
                                      L1
                   y2      =  -0.3740*F     +  0.9274 e2
                                      L2
                   y3      =  -1.0000*F     +  1.0000 e3
                                      L3


                         Squared Multiple Correlations

                                     Error         Total
                    Variable      Variance      Variance    R-Square

               1    y1             0.98989       1.00000      0.0101
               2    y2             0.86015       1.00000      0.1398
               3    y3          -4.215E-11       1.00000      1.0000



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 8
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
           Covariance Structure Analysis: Pattern and Initial Values

                            LINEQS Model Statement


                       Matrix      Rows    Columns    ------Matrix Type-------

Term 1            1    _SEL_          3          7    SELECTION
                  2    _BETA_         7          7    EQSBETA        IMINUSINV
                  3    _GAMMA_        7          4    EQSGAMMA
                  4    _PHI_          4          4    SYMMETRIC


                          The 3 Endogenous Variables

    Manifest        y1  y2  y3
    Latent


                          The 4 Exogenous Variables

    Manifest
    Latent          F
    Error           e1  e2  e3

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                 9
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

    NOTE: Initial point was changed to be feasible for boundary and linear
                                 constraints.

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                10
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                        Dual Quasi-Newton Optimization

                Modified VMCWD Algorithm of Powell (1978, 1982)

          Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
                  Lagrange Multiplier Update of Powell(1982)

                Parameter Estimates                          6
                Functions (Observations)                     6
                Lower Bounds                                 3
                Upper Bounds                                 3
                Nonlinear Constraints                        3
                Nonlinear Equality Constraints               3

                              Optimization Start

Objective Function        0.9685074192  Maximum Constraint        0.0001388008
                                        Violation
Maximum Gradient of the   0.7932665457
Lagran Func


                                                                     Maximum
                                                                    Gradient
                                                                     Element
                                          Maximum Predicted           of the
                 Function    Objective Constraint  Function    Step Lagrange
  Iter  Restarts    Calls     Function  Violation Reduction    Size Function

     1         0       15      0.47335     0.6293    0.4388   1.000    0.974
     2         0       16      0.59895     0.1015    0.1114   1.000    0.259
     3         0       17      0.56294     0.0149    0.0730   1.000    0.216
     4         0       19      0.54488     0.0107    0.0319   0.479   0.0374
     5         0       20      0.56087   0.000218  0.000237   1.000   0.0170
     6         0       21      0.56071   0.000036   0.00126   1.000   0.0154
     7*        0       22      0.55802    0.00121   0.00192   1.000   0.0318
     8         0       24      0.55762    0.00114   0.00285   0.306   0.0361
     9*        0       25      0.54663    0.00744    0.0212   1.000   0.0597
    10         0       26      0.55637   0.000432   0.00193   1.000   0.0260
    11         0       27      0.55373    0.00212   0.00224   1.000   0.0108
    12*        0       28      0.54473    0.00911    0.0184   1.000   0.0359
    13         0       29      0.55374   0.000046   0.00104   1.000   0.0167
    14*        0       30      0.54887    0.00482   0.00810   1.000   0.0153
    15*        0       31      0.55153    0.00134   0.00237   1.000   0.0252
    16         0       32      0.55271   0.000019  0.000038   1.000  0.00244
    17         0       33      0.55272   4.118E-7  3.859E-7   1.000  0.00012

                             Optimization Results

Iterations                          17  Function Calls                      35
Gradient Calls                      20  Active Constraints                   4
Objective Function        0.5527247315  Maximum Constraint        4.1183614E-7
                                        Violation

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                11
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                             Optimization Results

Maximum Projected         0.0001202793  Value Lagrange Function   0.5527249264
Gradient
Maximum Gradient of the   0.0001179179  Slope of Search Direction -3.859116E-7
Lagran Func

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-6 range.


WARNING: There are 4 active constraints at the solution.  The standard errors
         and Chi-Square test statistic assume the solution is located in the
         interior of the parameter space and hence do not apply if it is
         likely that some different set of inequality constraints could be
         active.


NOTE: The degrees of freedom are increased by the number of active constraints
      (see Dijkstra, 1992). The number of parameters in calculating fit
      indices is decreased by the number of active constraints. To turn off
      the adjustment, use the NOADJDF option.


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                12
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit Function                                          0.5527
         Goodness of Fit Index (GFI)                           0.7842
         GFI Adjusted for Degrees of Freedom (AGFI)            0.6763
         Root Mean Square Residual (RMR)                       0.6535
         Parsimonious GFI (Mulaik, 1989)                       1.0456
         Chi-Square                                          109.9922
         Chi-Square DF                                              4
         Pr > Chi-Square                                       <.0001
         Independence Model Chi-Square                         65.979
         Independence Model Chi-Square DF                           3
         RMSEA Estimate                                        0.3649
         RMSEA 90% Lower Confidence Limit                      0.3079
         RMSEA 90% Upper Confidence Limit                      0.4253
         ECVI Estimate                                         0.5732
         ECVI 90% Lower Confidence Limit                       0.4184
         ECVI 90% Upper Confidence Limit                       0.7662
         Probability of Close Fit                              0.0000
         Bentler's Comparative Fit Index                      -0.6830
         Normal Theory Reweighted LS Chi-Square              186.5728
         Akaike's Information Criterion                      101.9922
         Bozdogan's (1987) CAIC                               84.7990
         Schwarz's Bayesian Criterion                         88.7990
         McDonald's (1989) Centrality                          0.7672
         Bentler & Bonett's (1980) Non-normed Index           -0.2622
         Bentler & Bonett's (1980) NFI                        -0.6671
         James, Mulaik, & Brett (1982) Parsimonious NFI       -0.8895
         Z-Test of Wilson & Hilferty (1931)                    8.7988
         Bollen (1986) Normed Index Rho1                      -0.2503
         Bollen (1988) Non-normed Index Delta2                -0.7101
         Hoelter's (1983) Critical N                               19

WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s).


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                13
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                  Manifest Variable Equations with Estimates


                   y1      =   0.1006*F     +  1.0000 e1
                                      L1
                   y2      =  -0.3740*F     +  1.0000 e2
                                      L2
                   y3      =  -1.0000*F     +  1.0000 e3
                                      L3


                       Variances of Exogenous Variables

                       Variable Parameter      Estimate

                       F                        1.00000
                       e1       sige1           0.98989
                       e2       sige2           0.86015
                       e3       sige3        -4.215E-11



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                14
                              Identified model 1
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

            Manifest Variable Equations with Standardized Estimates


                   y1      =   0.1006*F     +  0.9949 e1
                                      L1
                   y2      =  -0.3740*F     +  0.9274 e2
                                      L2
                   y3      =  -1.0000*F     +  1.0000 e3
                                      L3


                         Squared Multiple Correlations

                                     Error         Total
                    Variable      Variance      Variance    R-Square

               1    y1             0.98989       1.00000      0.0101
               2    y2             0.86015       1.00000      0.1398
               3    y3          -4.215E-11       1.00000      1.0000



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                15
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
           Covariance Structure Analysis: Pattern and Initial Values

                            LINEQS Model Statement


                       Matrix      Rows    Columns    ------Matrix Type-------

Term 1            1    _SEL_          3          7    SELECTION
                  2    _BETA_         7          7    EQSBETA        IMINUSINV
                  3    _GAMMA_        7          4    EQSGAMMA
                  4    _PHI_          4          4    SYMMETRIC


                          The 3 Endogenous Variables

    Manifest        y1  y2  y3
    Latent


                          The 4 Exogenous Variables

    Manifest
    Latent          F
    Error           e1  e2  e3

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                16
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

    NOTE: Initial point was changed to be feasible for boundary and linear
                                 constraints.

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                17
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                        Dual Quasi-Newton Optimization

                Modified VMCWD Algorithm of Powell (1978, 1982)

          Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
                  Lagrange Multiplier Update of Powell(1982)

                Parameter Estimates                          6
                Functions (Observations)                     6
                Lower Bounds                                 3
                Upper Bounds                                 3
                Nonlinear Constraints                        3
                Nonlinear Equality Constraints               3

                              Optimization Start

Objective Function        1.5265896183  Maximum Constraint        0.0000825999
                                        Violation
Maximum Gradient of the   2.5393371004
Lagran Func


                                                                     Maximum
                                                                    Gradient
                                                                     Element
                                          Maximum Predicted           of the
                 Function    Objective Constraint  Function    Step Lagrange
  Iter  Restarts    Calls     Function  Violation Reduction    Size Function

     1         0       18      0.29691     0.5188    1.0001   0.589    1.456
     2         0       19      0.58904     0.0472    0.0692   1.000    0.579
     3         0       20      0.57891    0.00570    0.0749   1.000    0.391
     4         0       21      0.53572     0.0204    0.0377   1.000    0.161
     5         0       22      0.55329    0.00168   0.00360   1.000   0.0143
     6         0       23      0.55507   9.889E-6  0.000030   1.000  0.00784
     7'        0       24      0.55506   2.856E-6  0.000498   1.000  0.00725
     8*        0       25      0.55406   0.000736   0.00103   1.000   0.0185
     9         0       27      0.55380   0.000777   0.00309   0.207   0.0213
    10         0       29      0.55343   0.000916   0.00337   0.100   0.0227
    11         0       31      0.55312   0.000999   0.00309   0.100   0.0216
    12         0       33      0.55288    0.00104   0.00253   0.100   0.0193
    13         0       35      0.55267    0.00107   0.00199   0.111   0.0162
    14         0       37      0.55248    0.00108   0.00152   0.127   0.0123
    15         0       39      0.55233    0.00107   0.00152   0.150  0.00791
    16*        0       40      0.54817    0.00500   0.00937   1.000   0.0387
    17         0       41      0.55276   0.000080  0.000149   1.000   0.0216
    18         0       42      0.55268   0.000080  0.000089   1.000  0.00785
    19         0       43      0.55272   1.923E-6  4.318E-6   1.000  0.00050
    20         0       44      0.55272   1.375E-8   8.01E-9   1.000  0.00004


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                18
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                             Optimization Results

Iterations                          20  Function Calls                      46
Gradient Calls                      23  Active Constraints                   4
Objective Function        0.5527249205  Maximum Constraint        1.3749371E-8
                                        Violation
Maximum Projected         0.0000425824  Value Lagrange Function   0.5527249249
Gradient
Maximum Gradient of the    0.000041746  Slope of Search Direction -8.009844E-9
Lagran Func

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.


WARNING: There are 4 active constraints at the solution.  The standard errors
         and Chi-Square test statistic assume the solution is located in the
         interior of the parameter space and hence do not apply if it is
         likely that some different set of inequality constraints could be
         active.


NOTE: The degrees of freedom are increased by the number of active constraints
      (see Dijkstra, 1992). The number of parameters in calculating fit
      indices is decreased by the number of active constraints. To turn off
      the adjustment, use the NOADJDF option.


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                19
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit Function                                          0.5527
         Goodness of Fit Index (GFI)                           0.7842
         GFI Adjusted for Degrees of Freedom (AGFI)            0.6763
         Root Mean Square Residual (RMR)                       0.6535
         Parsimonious GFI (Mulaik, 1989)                       1.0456
         Chi-Square                                          109.9923
         Chi-Square DF                                              4
         Pr > Chi-Square                                       <.0001
         Independence Model Chi-Square                         65.979
         Independence Model Chi-Square DF                           3
         RMSEA Estimate                                        0.3649
         RMSEA 90% Lower Confidence Limit                      0.3079
         RMSEA 90% Upper Confidence Limit                      0.4253
         ECVI Estimate                                         0.5732
         ECVI 90% Lower Confidence Limit                       0.4184
         ECVI 90% Upper Confidence Limit                       0.7662
         Probability of Close Fit                              0.0000
         Bentler's Comparative Fit Index                      -0.6830
         Normal Theory Reweighted LS Chi-Square              186.5722
         Akaike's Information Criterion                      101.9923
         Bozdogan's (1987) CAIC                               84.7990
         Schwarz's Bayesian Criterion                         88.7990
         McDonald's (1989) Centrality                          0.7672
         Bentler & Bonett's (1980) Non-normed Index           -0.2622
         Bentler & Bonett's (1980) NFI                        -0.6671
         James, Mulaik, & Brett (1982) Parsimonious NFI       -0.8895
         Z-Test of Wilson & Hilferty (1931)                    8.7988
         Bollen (1986) Normed Index Rho1                      -0.2503
         Bollen (1988) Non-normed Index Delta2                -0.7101
         Hoelter's (1983) Critical N                               19

WARNING: The central parameter matrix _PHI_ has probably 1 zero eigenvalue(s).


_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                20
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                  Manifest Variable Equations with Estimates


                   y1      =  -0.1006*F     +  1.0000 e1
                                      L1
                   y2      =   0.3740*F     +  1.0000 e2
                                      L2
                   y3      =   1.0000*F     +  1.0000 e3
                                      L3


                       Variances of Exogenous Variables

                       Variable Parameter      Estimate

                       F                        1.00000
                       e1       sige1           0.98988
                       e2       sige2           0.86015
                       e3       sige3        -4.215E-11



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                21
                              Identified model 2
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

            Manifest Variable Equations with Standardized Estimates


                   y1      =  -0.1006*F     +  0.9949 e1
                                      L1
                   y2      =   0.3740*F     +  0.9274 e2
                                      L2
                   y3      =   1.0000*F     +  1.0000 e3
                                      L3


                         Squared Multiple Correlations

                                     Error         Total
                    Variable      Variance      Variance    R-Square

               1    y1             0.98988       1.00000      0.0101
               2    y2             0.86015       1.00000      0.1399
               3    y3          -4.215E-11       1.00000      1.0000



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                22
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
           Covariance Structure Analysis: Pattern and Initial Values

                            FACTOR Model Statement


                        Matrix    Rows    Columns    ------Matrix Type-------

 Term 1            1    _F_          3          1    GENERAL
                   2    _P_          1          1    SYMMETRIC
 Term 2            3    _U_          3          3    SYMMETRIC

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                23
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                       Levenberg-Marquardt Optimization

                         Scaling Update of More (1978)

                   Parameter Estimates                    6
                   Functions (Observations)               6

                              Optimization Start

Active Constraints                   0  Objective Function        0.0496168138
Max Abs Gradient Element  0.2356045213  Radius                               1


                                                                        Actual
                                                      Max Abs             Over
         Rest    Func      Act    Objective  Obj Fun Gradient             Pred
 Iter    arts   Calls      Con     Function   Change  Element  Lambda   Change

    1       0       2        0      0.03439   0.0152   0.2565       0    0.316
    2       0       3        0      0.00263   0.0318   0.1734       0    1.104
    3       0       4        0   4.97854E-7  0.00263  0.00268       0    1.050
    4       0       5        0            0 4.979E-7 2.071E-8       0    1.001

                             Optimization Results

Iterations                           4  Function Calls                       6
Jacobian Calls                       5  Active Constraints                   0
Objective Function                   0  Max Abs Gradient Element  2.0706604E-8
Lambda                               0  Actual Over Pred Change   1.0006655111
Radius                    0.0023771506

GCONV2 convergence criterion satisfied.

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                24
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

         Fit Function                                          0.0000
         Goodness of Fit Index (GFI)                           1.0000
         GFI Adjusted for Degrees of Freedom (AGFI)                 .
         Root Mean Square Residual (RMR)                       0.0000
         Parsimonious GFI (Mulaik, 1989)                       0.0000
         Chi-Square                                            0.0000
         Chi-Square DF                                              0
         Pr > Chi-Square                                       <.0001
         Independence Model Chi-Square                         65.979
         Independence Model Chi-Square DF                           3
         RMSEA Estimate                                        0.0000
         RMSEA 90% Lower Confidence Limit                           .
         RMSEA 90% Upper Confidence Limit                           .
         ECVI Estimate                                         0.0615
         ECVI 90% Lower Confidence Limit                            .
         ECVI 90% Upper Confidence Limit                            .
         Probability of Close Fit                                   .
         Bentler's Comparative Fit Index                       1.0000
         Normal Theory Reweighted LS Chi-Square                0.0000
         Akaike's Information Criterion                        0.0000
         Bozdogan's (1987) CAIC                                0.0000
         Schwarz's Bayesian Criterion                          0.0000
         McDonald's (1989) Centrality                          1.0000
         Bentler & Bonett's (1980) Non-normed Index                 .
         Bentler & Bonett's (1980) NFI                         1.0000
         James, Mulaik, & Brett (1982) Parsimonious NFI        0.0000
         Z-Test of Wilson & Hilferty (1931)                         .
         Bollen (1986) Normed Index Rho1                            .
         Bollen (1988) Non-normed Index Delta2                 1.0000
         Hoelter's (1983) Critical N                                .

WARNING: The central parameter matrix _U_ has probably 1 negative
         eigenvalue(s).

                      Estimated Parameter Matrix _P_[1:1]
                                Identity Matrix
                             Constant Model Matrix



_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                25
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                      Estimated Parameter Matrix _F_[3:1]
                            Lower Triangular Matrix

                                           FACT1

                               y1        -0.1096
                                           [_F1]

                               y2         0.4147
                                           [_F2]

                               y3         1.2479
                                           [_F3]

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                26
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                      Estimated Parameter Matrix _U_[3:3]
                                Diagonal Matrix

                            UVAR1          UVAR2          UVAR3

                y1         0.9880              0              0
                            [_U1]

                y2              0         0.8280              0
                                           [_U2]

                y3              0              0        -0.5574
                                                          [_U3]

_______________________________________________________________________________

                  Three-variables and one factor using LINEQS                27
                              Try it with Factor
                                              22:55 Wednesday, December 1, 2004

                              The CALIS Procedure
         Covariance Structure Analysis: Maximum Likelihood Estimation

                          Standardized Factor Loadings

                                          FACT1

                                y1      -0.1096
                                y2       0.4147
                                y3       1.2479


                         Squared Multiple Correlations

                                     Error         Total
                    Variable      Variance      Variance    R-Square

               1    y1             0.98799       1.00000      0.0120
               2    y2             0.82801       1.00000      0.1720
               3    y3            -0.55736       1.00000      1.5574

                      Factor Score Regression Coefficients

                                          FACT1

                                y1       0.0705
                                y2      -0.3182
                                y3       1.4222