STA 413F2011 Assignment 9

Please read pages 319-325 in Section 6.2; Example 6.2.4 may be familiar, but note the additional details.

For this assignment, let X_1, \ldots, X_n be a random sample from a *discrete* distribution with probability mass function $p(x; \theta), \theta \in \Omega$. The probability mass function possesses derivatives of all orders at the true parameter value θ_0 . The support of the distribution is a finite set A, so that

$$\sum_{x \in A} p(x;\theta) = 1.$$

The set A does not depend on θ . In some of the questions below, X (without a subscript) is a random variable from this distribution.

- 1. Does the Binomial distribution fit the description of $p(x;\theta)$? How about the Poisson?
- 2. Answer True or False and justify your answer:

$$\frac{\partial^2}{\partial \theta^2} \sum_{x \in A} p(x; \theta) = \sum_{x \in A} \frac{\partial^2}{\partial \theta^2} p(x; \theta).$$

- 3. Let the score random variable $S = \frac{\partial}{\partial \theta} \ln p(X; \theta)$. Show E(S) = 0.
- 4. Show $Var(S) = I(\theta)$, where

$$I(\theta) = -E\left(\frac{\partial^2}{\partial\theta^2}\ln p(X;\theta)\right).$$

- 5. Let X_1, \ldots, X_n be a random sample from $p(x; \theta)$, let $Y = u(X_1, \ldots, X_n)$ have expected value $E(Y) = k(\theta)$, and let $Z = \sum_{i=1}^n S_i$.
 - (a) Prove $k'(\theta) = E(YZ)$.
 - (b) What is E(Z)?
 - (c) What is Cov(Y, Z)?
 - (d) What is Corr(Y, Z)?
 - (e) Using the fact that the absolute value of a correlation cannot be greater than one (proved in lecture but not requested here), establish the Cramér-Rao inequality of Theorem 6.2.1.
 - (f) Give a lower bound for the variance of any unbiased estimator of θ , based on a random sample from this distribution.
- 6. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter λ . Find the MLE of λ . Is it efficient? Answer Yes or No and prove your answer.
- 7. Let X_1, \ldots, X_n be a random sample from a Binomial distribution with parameters 4 and θ . Find the MLE of θ . Is it efficient? Answer Yes or No and prove your answer.
- 8. Do Exercises 6.2.1, 6.2.2, 6.2.7 and 6.2.8.