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Preface to the Second Edition 

In the quarter century that has passed since I first addressed power anal­
ysis (Cohen, 1962), and particularly during the decade that has elapsed since 
the revised edition of this book (1977), the escalation of the literature on 
power analysis has been difficult to keep up with. 

In 1962, I published a survey of the articles in a volume of the Journal of 
Abnormal and Social Psychology from the perspective of their power to de­
tect operationally defined small, medi~m, and large effect sizes [a 
meta-analysis before the term was coined (Bangert-Drowns, 1986)]. I found 
rather poor power, for example, a mean of .48 at the two-tailed .05 level for 
medium effect sizes. 

Since the publication of the first edition (1969), there have been two or 
three dozen power surveys of either particular journals or topical areas, us­
ing its tables and (more or less) the same method. In addition to the 
half -dozen cited in the Preface to the Revised Edition in 1977, which were in 
the fields of counseling psychology, applied psychology, education, speech 
and hearing, and mass communication, there are numerous power surveys in 
many fields, for example: in educational research, in general education 
(Jones & Brewer, 1972), science education (Pennick & Brewer, 1972; Wooley 
& Dawson, 1983), English education (Daly & Hexamer, 1983), physical edu­
cation (Christensen & Christensen, 1977), counselor education (Haase, 
1974), social work education (Orme & Tolman, 1986) medical education 
(Wooley, 1983a), and educational measurement (Brewer & Owen, 1973). 
Power surveys have been done in social work and social intervention re­
search (Crane, 1976; Judd & Kenny, 1981; Orme & Combs-Orme, 1986), in 
occupational therapy (Ottenbacher, 1982), abnormal psychology 

xi 



xii PREFACE TO THE SECOND EDITION 

(Sedlmeier & Gigerenzer, in press), personnel selection (Katzen & Dyer, 
1977), and market research (Sawyer & Ball, 1981). A fairly large number 
have been accomplished in medicine: in clinical trials (Freiman, Chalmers, 
Smith, & Kuebler, 1977; Reed & Slaichert, 1981), public health (Wooley, 
1983b ), gerontology (Levenson, 1980), psychiatry (Roth pearl, Mobs, & 
Davis, 1981), and Australian medicine (Hall, 1982). Even further afield, a 
power survey was done in the field of geography (Bones, 1972). In addition 
to these published surveys, there have come to my attention about a dozen 
unpublished dissertations, research reports, and papers given at profes­
sional meetings surveying power in psychology, sociology, and criminology. 

A corollary to the long neglect of power analysis is a relatively low 
awareness of the magnitude of phenomena in the behavioral sciences (Cohen, 
1965). The emphasis on testing null hypotheses for statistical significance 
(R. A. Fisher's legacy) focused attention on the statistical significance of a 
result and away from the size of the effect being pursued (see Oakes, 1986; 
Gigerenzer, 1987; Chapter 11). A direct consequence of the recent attention 
to power, the last few years have witnessed a series of surveys of effect sizes: 
in social psychology (Cooper & Findlay, 1982), counseling psychology 
(Haase, Waechter, & Solomon, 1982), consumer behavior (Peterson, 
Albaum, & Beltramini, 1985),and market research (Sawyer & Ball, 1981). 

The recent emergence of meta-analysis (Glass, McGaw, & Smith, 1981; 
Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982; Kraemer, 1983) 
has been influenced by power analysis in the adoption of its effect size meas­
ures (Bangert-Drowns, 1986), and in turn, has had a most salutary influence 
on research progress and power analysis by revealing the level, variability, 
and correlates of the effect sizes operating in the areas to which it is applied. 

The literature in power-analytic methodology has burgeoned during this 
period; pertinent references are given throughout this edition. Among the 
many topics here are applied power analysis for: nonstandard conditions 
(e.g., non-normality, heterogeneous variance, range restriction), non­
parametric methods, various multiple comparison procedures, alternative 
methods of combining probabilities, and alternative stabilizing data trans­
formations. There have been several articles offering simplified one-table 
methods of approximate power analysis including my own (1970) (which 
provided the basis for a chapter-length treatment in the Welkowitz, Ewen, & 
Cohen, 1982, introductory statistics text), Friedman (1982), and Kraemer 
(1985). The latter is particularly noteworthy in that it breaks new ground 
methodologically and is oriented toward teaching power analysis. 

In marked contrast to the scene a decade or two ago, the current editions 
of the popular graduate level statistics textbooks oriented to the social and 
biological sciences provide at least some room for power analysis, and in­
clude working methods for the most common tests. 

On the post-graduate front, as the word about power analysis has 
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spread, many "what is it" and "how to do it" articles have appeared in jour­
nals of widely diversified content, ranging from clinical pathology (Arkin, 
1981) through applied psychology (Fagley, 1985) to biological community 
ecology (Toft & Shea, 1983). 

Microcomputer programs for power analysis are provided by Anderson 
(1981), Dallal (1987), and Haase (1986). A program that both performs and 
teaches power analysis using Monte Carlo simulation is about to be pub­
lished (Borenstein, M. & Cohen, J., 1988). 

It would seem that power analysis has arrived. 
Yet recently, two independent investigations have come to my attention 

that give me pause. Rossi, Rossi, and Cottril (in press), using the methods of 
my power survey of the articles in the 1960 volume of the Journal of A bnor­
mal and Social Psychology (Cohen, 1962), performed power surveys of 142 
articles in the 1982 volumes of the direct descendents of that journal, the 
Journal of Personality and Social Psychology and the Journal of Abnormal 
Psychology. When allowance is made for the slightly different (on the aver­
age) operational definitions of small, medium, and large effect sizes of the 
1962 paper, there is hardly any change in power; for example, the mean 
power at the two-tailed .OS level for medium effect sizes of the 1982 articles 
was slightly above 500Jo, hardly different from the 48% in 1960. 

Generally, the power surveys done since 1960 have found power not 
much better than I had. Some fields do show better power, but they are those 
in which subjects are easily come by, so the sample sizes used are larger than 
those in abnormal, personality, and social psychology: in educational re­
search (Pennick & Brewer, 1972; Brewer & Owen, 1973), mass communica­
tion (Chase & Baran, 1976), applied psychology (Chase & Chase, 1975), and 
marketing research (Sawyer & Ball, 1981). However, there is no comparison 
of power over time in these areas. 

Sedlmeier and Gigerenzer (in press) also studied the change in power since 
my 1962 results, using 54 articles in the 1984 volume of the Journal of 
Abnormal Psychology. They, too, found that the average power had not 
changed over the past 24-year period. In fact, when the power of the tests 
using experimentwise significance criteria (not encountered in my 1962 sur­
vey) were included, the median power for medium effects at the .OS level was 
.37. Even more dismaying is the fact that in seven articles, at least one of the 
null hypotheses was the research hypotheses, and the nonsignificance of the 
result was taken as confirmatory; the median power of these tests to detect 
a medium effect at the two-tailed .05 level was .25! In only two of the articles 
surveyed was power mentioned, and in none were there any power calcu­
lations. Sedlmeier and Gigerenzer's conclusion that my 1962 paper (and the 
extensive literature detailed above) "had no effect on actual practice" is 
consistent with the available evidence. 

Yet, I find some solace from the following considerations: First, this may 
be a phenomenon on the abnormal-social-personality area and may not gen-
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eralize to all behavioral-social-biological research areas. Second, to my cer­
tain knowledge, many journal editors and regular referees are quite 
knowledgable about power and make editorial decisions in accordance with 
this knowledge. Third, I am told that some major funding entities require 
power analyses in grant applications. (I've even heard an unlikely story to 
the effect that in one of them there is a copy of this book in every office!) Fi­
nally, the research surveyed by Rossi et al. (in press) and Sedlmeier and 
Gigerenzer (in press), although published in the early 1980's, was mostly 
initiated in the late 1970's. The first edition of this book was not distributed 
untill970. In the light of the fact that it took over three decades for Student's 
t test to come into general use by behavioral scientists, it is quite possible that 
there simply has not been enough time. 

Taking all this into account, however, it is clear that power analysis has 
not had the impact on behavioral research that I (and other right-thinking 
methodologists) had expected. But we are convinced that it is just a matter of 
time. 

This edition has the same approach and organization as its predecessors, 
but has some major changes from the Revised Edition. 

1. A chapter has been added for power analysis in set correlation and 
multivariate methods (Chapter 10). Set correlation is a realization of the 
multivariate general linear model, and incorporates the standard 
multivariate methods (e.g., the multivariate analysis of variance and 
covariance) as special cases. While the standard methods are explicitly treat­
ed, the generality of set correlation offers a unifying framework and 
some new data-analytic possibilities (Cohen, 1982; Cohen & Cohen, 1983; 
Appendix 4). 

2. A new chapter (Chapter 11) considers some general topics in power 
analysis in more integrated form than is possible in the earlier "working" 
chapters: effect size, psychometric reliability, and the efficacy of "qualify­
ing" (differencing and partialling) dependent variables. 

3. The two sets of working tables used for power and sample size deter­
mination in multiple regression and correlation analysis (Chapter 9) have 
been greatly expanded and provide more accurate values for a denser argu­
ment. These tables, derived from the noncentral F distribution, are also used 
for power and sample size determination in set correlation and multivariate 
methods (Chapter 10). 

References have been updated and greatly expanded in keeping with the 
burgeoning increase in the literature of power analysis, and the errors in the 
previous edition, mostly caught by vigilant readers (to whom I offer my grat­
itude), corrected. I am surprised that I had to discover for myself the most 
egregious error of all: this edition does not presume, as did its predecessors, 
that all researchers are male. 

As in the previous editions, I acknowledge the never ending learning pro-
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cess afforded me by my students and consultees, and the continuing and 
unpayable debt of gratitude to my wife Patricia, who read, debated, and 
corrected all the new material despire a heavy workload of her own. 

In their classic paper"Beliefin theLawof Small Numbers," Tversky and 
Kahneman (1971) demonstrated how flawed are the statistical intuitions not 
only of psychologists in general, but even of mathematical psychologists. 
Most psychologists of whatever stripe believe that samples, even small sam­
ples, mirror the characteristics of their parent populations. In effect, they 
operate on the unstated premise that the law of large numbers holds for 
small numbers as well. They also believe that if a result is significant in one 
study, even if only barely so, it will most likely be significant in a replication, 
even if it has only half the sample size of the original. Tversky and Kahneman 
detail the various biases that flow from this "belief in the law of small num­
bers," and note that even if these biases cannot be easily unlearned, ''the ob­
vious precaution is computation. The believer in the law of small numbers 
has incorrect intuitions about significance level, power, and confidence in­
tervals. Significance levels are usually computed and reported, but power 
and confidence limits are not. Perhaps they should be" (p. II 0). 

But as we have seen, too many of our colleagues have not responded to 
Tversky and Kahneman's admonition. It is almost as if they would rather 
follow W. H. Auden's proscription: 

They do so at their peril. 

September, 1987 

Thou shalt not sit 
With statisticians nor commit 
A social science. 

South Wellfleet, Massachusetts 
Jacob Cohen 



Preface to the Revised Edition 

The structure, style, and level of this edition remain as in the original, 
but three important changes in content have been made: 

1. Since the publication of the original edition, multiple regression/ 
correlation analysis has been expanded into a very general and hence versa­
tile system for data analysis, an approach which is uniquely suited to the 
needs of the behavioral sciences (Cohen and Cohen, 1975). A new chapter is 
devoted to an exposition of the major features of this data-analytic system 
and a detailed treatment of power analysis and sample size determination 
(Chapter 9). 

2. The effect size index used for chi-square tests on frequencies and 
proportions (Chapter 7) has been changed from e tow( =Je). This change 
was made in order to provide a more useful range of values and to make the 
operational definitions of "small," "medium," and "large" effect sizes for 
tests of contingency tables and goodness of fit consistent with those for other 
statistical tests (particularly those of Chapters 5 and 6). The formulas have 
been changed accordingly and the 84 look-up tables for power and sample 
size have been recomputed. 

3. The original treatment of power analysis and sample size determina­
tion for the factorial design analysis of variance (Chapter 8) was approximate 
and faulty, yielding unacceptably large overestimation of power for main 
effects and underestimation for interactions. The treatment in this edition is 
materially changed and includes a redefinition of effect size for interactions. 

xvii 
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The new method gives quite accurate results. Further insight into the analysis 
of variance is afforded when illustrative problems solved by the methods of 
this chapter are addressed and solved again by the multiple regression/ 
correlation methods of the new Chapter 9. 

Thus, this edition is substantially changed in the areas for which the 
original edition was most frequently consulted. In addition, here and there, 
some new material has been added (e.g., Section 1.5.5, "Proving" the Null 
Hypothesis) and some minor changes have been made for updating and 
correction. 

In the seven years since the original edition was published, it has received 
considerable use as a supplementary textbook in intermediate level courses in 
applied statistics. It was most gratifying to note that, however slowly, it has 
begun to influence research planning and the content of textbooks in applied 
statistics. Several authors have used the book to perform power-analytic 
surveys of the research literature in different fields of behavioral science, 
among them Brewer (1972) in education (but see Cohen, 1973), Katzer and 
Sodt (1973) and Chase and Tucker (1975) in communication, Kroll and 
Chase (1975) in speech pathology, Chase and Baran (1976) in mass com­
munication, and Chase and Chase (1976) in applied psychology; others are 
in preparation. Apart from their inherent value as methodological surveys, 
they have served to disseminate the ideas of power analysis to different 
audiences with salutary effects on them as both producers and consumers of 
research. It is still rare, however, to find power analysis in research planning 
presented in the introductory methods section of research reports (Cohen, 
1973). 

As in the original edition, I must first acknowledge my students and 
consultees, from whom I have learned so much, and then my favorite col­
league, Patricia Cohen, a constant source of intellectual excitement and much 
more. I am grateful to Patra Lindstrom for the exemplary fashion in which 
she performed the exacting chore of lyping the new tables and manuscript. 

NEW YORK 
JUNE 1976 

JACOB COHEN 



Preface to the Original Edition 

During my first dozen years of teaching and consulting on applied sta­
tistics with behavioral scientists, I became increasingly impressed with the 
importance of statistical power analysis, an importance which was increased 
an order of magnitude by its neglect in our textbooks and curricula. The case 
for its importance is easily made: What behavioral scientist would view with 
equanimity the question of the probability that his investigation would lead 
to statistically significant results, i.e., its power? And it was clear to me that 
most behavioral scientists not only could not answer this and related ques­
tions, but were even unaware that such questions were answerable. Casual 
observation suggested this deficit in training, and a review of a volume of the 
Journal of Abnormal and Social Psychology (JASP) (Cohen, 1962), supported 
by a small grant from the National Institute of Mental Health (M-5174A), 
demonstrated the neglect of power issues and suggested its seriousness. 

The reason for this neglect in the applied statistics textbooks became 
quickly apparent when I began the JASP review. The necessary materials for 
power analysis were quite inaccessible, in two senses: they were scattered 
over the periodical and hardcover literature, and, more important, their use 
assumed a degree of mathematical sophistication well beyond that of most 
behavioral scientists. 

For the purpose of the review, I prepared some sketchy power look-up 
tables, which proved to be very easily used by the students in my courses at 
New York University and by my research consultees. This generated the 

xix 



XX PREFACE TO THE ORIGINAL EDITION 

idea for this book. A five-year NIMH grant provided the support for the 
program of research, system building, computation, and writing of which 
the present volume is the chief product. 

The primary audience for which this book is intended is the behavioral 
or biosocial scientist who uses statistical inference. The terms "behavioral" 
and "biosocial" science have no sharply defined reference, but are here 
intended in the widest sense and to include the academic sciences of psy­
chology, sociology, branches of biology, political science and anthropology, 
economics, and also various " applied" research fields: clinical psychology 
and psychiatry, industrial psychology, education, social and welfare work, 
and market, political polling, and advertising research. The illustrative prob­
lems, which make up a large portion of this book, have been drawn from 
behavioral or biosocial science, so defined. 

Since statistical inference is a logical-mathematical discipline whose ap­
plications are not restricted to behavioral science, this book will also be useful 
in other fields of application, e.g., agronomy and industrial engineering. 

The amount of statistical background assumed in the reader is quite 
modest: one or two semesters of applied statistics. Indeed, all that I really 
assume is that the reader knows how to proceed to perform a test of statistical 
significance. Thus, the level of treatment is quite elementary, a fact which has 
occasioned some criticism from my colleagues. I have learned repeatedly, 
however, that the typical behavioral scientist approaches applied statistics 
with considerable uncertainty :if not actual nervousness), and requires a 
verbal-intuitive exposition, rich in redundancy and with many concrete 
illustrations. This I have sought to supply. Another feature of the present 
treatment which should prove welcome to the reader is the minimization of 
required computation. The extensiveness of the tables is a direct consequence 
of the fact that most uses will require no computation at all, the necessary 
answers being obtained directly by looking up the appropriate table. 

The sophisticated applied statistician will find the exposition unnecessarily 
prolix and the examples repetitious. He will, however, find the tables useful. 
He may also find interesting the systematic treatment of population effect size, 
and particularly the proposed conventions or operational definitions of 
"small," "medium," and" large" effect sizes defined across all the statistical 
tests. Whatever originality this work contains falls primarily in this area. 

This book is designed primarily as a handbook. When so used, the reader 
is advised to read Chapter l and then the chapter which treats the specific 
statistical test in which he is interested. I also suggest that he read all the 
relevant illustrative examples, since they are frequently used to carry along 
the general exposition. 

The book may also be used as a supplementary textbook in intermediate 
level courses in applied statistics in behavioralfbiosocial science. I have been 
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using it in this way. With relatively little guidance, students at this level 
quickly learn both the concepts and the use of the tables. I assign the first 
chapter early in the semester and the others in tandem with their regular 
textbook's treatment of the various statistical tests. Thus, each statistical test 
or research design is presented in close conjunction with power-analytic con­
siderations. This has proved most salutary, particularly in the attention 
which must then be given to anticipated population effect sizes. 

Pride of place, in acknowledgment, must go to my students and con­
suttees, from whom I have learned much. I am most grateful to the memory 
of the late Gordon Ierardi, without whose encouragement this work would 
not have been undertaken. Patricia Waly and Jack Huber read and construc­
tively criticized portions of the manuscript. I owe an unpayable debt of grati­
tude to Joseph L. Fleiss for a thorough technical critique. Since I did not 
follow all his advice, the remaining errors can safely be assumed to be mine. 
I cannot sufficiently thank Catherine Henderson, who typed much of the text 
and all the tables, and Martha Plimpton, who typed the rest. 

As already noted, the program which culminated in this book was sup­
ported by the National Institute of Mental Health of the Public Health Service 
under grant number MH-06137, which is duly acknowledged. I am also most 
indebted to Abacus Associates, a subsidiary of American Bioculture, Inc., 
for a most generous programming and computing grant which I could draw 
upon freely. 

NEW YORK 
JUNE 1969 

JACOB COHEN 



CHAPTER 

The Concepts of Power Analysis 

The power of a statistical test is the probability that it will yield statis­
tically significant results. Since statistical significance is so earnestly sought 
and devoutly wished for by behavioral scientists, one would think that the 
a priori probability of its accomplishment would be routinely determined 
and well understood. Quite surprisingly, this is not the case. Instead, if we take 
as evidence the research literature, we find evidence that statistical power is 
frequenty not understood and, in reports of research where it is clearly rele­
vant, the issue is not addressed. 

The purpose of this book is to provide a self-contained comprehensive 
treatment of statistical power analysis from an "applied" viewpoint. The 
purpose of this chapter is to present the basic conceptual framework of 
statistical hypothesis testing, giving emphasis to power, followed by the frame­
work within which this book is organized. 

1.1 GENERAL INTRODUCTION 

When the behavioral scientist has occasion to don the mantle of the 
applied statistician, the probability is high that it will be for the purpose of 
testing one or more null hypotheses, i.e., "the hypothesis that the phenome­
non to be demonstrated is in fact absent [Fisher, 1949, p. 13]." Not that he 
hopes to "prove" this hypothesis. On the contrary, he typically hopes to 
"reject" this hypothesis and thus "prove" that the phenomenon in question 
is in fact present. 

Let us acknowledge at the outset the necessarily probabilistic character 
of statistical inference, and dispense with the mocking quotation marks 

1 
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about words like reject and prove. This may be done by requiring that an 
investigator set certain appropriate probability standards for research 
results which provide a basis for rejection of the null hypothesis and hence 
for the proof of the existence of the phenomenon under test. Results from a 
random sample drawn from a population will only approximate the charac­
teristics of the population. Therefore, even if the null hypothesis is, in fact, 
true, a given sample result is not expected to mirror this fact exactly. Before 
sample data are gathered, therefore, the investigator selects some prudently 
small value a (say .01 or .05), so that he may eventually be able to say about 
his sample data, "If the null hypothesis is true, the probability of the ob­
tained sample result is no more than a," i.e. a statistically significant result. 
If he can make this statement, since a is small, he said to have rejected the 
null hypothesis "with an a significance criterion" or "at the a significance lev­
el." If, on the other hand, he finds the probability to be greater than a, he 
cannot make the above statement and he has failed to reject the null hypoth­
esis, or, equivalently finds it "tenable," or "accepts" it, all at the a signifi­
cance level. Note that a is set in advance. 

We have thus isolated one element of this form of statistical inference, 
the standard of proof that the phenomenon exists, or, equivalently, the 
standard of disproof of the null hypothesis that states that the phenomenon 
does not exist. 

Another component of the significance criterion concerns the exact defini­
tion of the nature of the phenomenon's existence. This depends on the details 
of how the phenomenon is manifested and statistically tested, e.g., the 
directionality fnondirectionality ("one tailed"/" two tailed") of the state­
ment ofthe alternative to the null hypothesis. 1 When, for example, the investi­
gator is working in a context of comparing some parameter (e.g., mean, 
proportion, correlation coefficient) for two populations A and B, he can 
define the existence of the phenomenon in two different ways: 

1. The phenomenon is taken to exist if the parameters of A and B differ. 
No direction of the difference, such as A larger than B, is specified, so that 
departures in either direction from the null hypothesis constitute evidence 
against it. Because either tail of the sampling distribution of differences may 
contribute to a, this is usually called a two-tailed or two-sided test. 

2. The phenomenon is taken to exist only if the parameters of A and B 
differ in a direction specified in advance, e.g., A larger than B. In this 

1 Some statistical tests, particularly those involving comparisons of more than two 
populations, are naturally nondirectional. In what immediately follows, we consider those 
tests which contrast two populations, wherein the experimenter ordinarily explicitly 
chooses between a directional and nondirectional statement of his alternate hypothesis. 
See below, Chapters 7 and 8. 
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circumstance, departures from the null hypothesis only in the direction 
specified constitute evidence against it. Because only one tail of the sampling 
distribution of differences may contribute to a, this is usually called a one­
tailed or one-sided test. 

It is convenient to conceive of the significance criterion as embodying both 
the probability of falsely rejecting the null hypothesis, a, and the "sided ness" 
of the definition of the existence of the phenomenon (when relevant). Thus, 
the significance criterion on a two-tailed test of the null hypothesis at the .05 
significance level, which will be symbolized as a 2 = .05, says two things: 
(a) that the phenomenon whose existence is at issue is understood to be 
manifested by any difference between the two populations' parameter values, 
and (b) that thestandardofproofis a sample result that would occur less than 
5% of the time if the null hypothesis is true. Similarly, a prior specification 
defining the phenomenon under study as that for which the parameter value 
for A is larger than that of B (i.e., one-tailed) and the probability of falsely 
rejecting the null is set at .10 would be symbolized as a significance criterion of 
a 1 = .10. The combination of the probability and the sidedness of the test 
into a single entity, the significance criterion, is convenient l;>ecause this 
combination defines in advance the "critkal region," i.e., the range of values 
of the outcome which leads to rejection of the null hypothesis and, perforce, 
the range of values which leads to its nonrejection. Thus, when an investi­
gator plans a statistical test at some given significance criterion, say a 1 = .10, 
he has effected a specific division of all the possible results of his study into 
those which will lead him to conclude that the phenomenon exists (with 
risk a no greater than .10 and a one-sided definition of the phenomenon) and 
those which will not make possible that conclusion. 2 

The above review of the logic of classical statistical inference reduces to a 
null hypothesis and a significance criterion which defines the circumstances 
which will lead to its rejection or nonrejection. Observe that the significance 
criterion embodies the risk of mistakenly rejecting a null hypothesis. The 
entire discussion above is conditional on the truth of the null hypothesis. 

But what if, indeed, the phenomenon does exist and the null hypothesis .is 
false? This is the usual expectation of the investigator, who has stated the 
null hypothesis for tactical purposes so that he may reject it and conclude 
that the phenomenon exists. But, of course, the fact that the phenomenon 
exists in the population far from guarantees a statistically significant result, 

2 The author has elsewhere expressed serious reservations about the use of directional 
tests in psychological research in all but relatively limited circumstances (Cohen, 1965). 
The bases for these reservations would extend to other regions of behavioral science. 
These tests are however of undoubted statistical validity and in common use, so he has 
made full provision for them in this work. 
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i.e., one which warrants the conclusion that it exists, for this conclusion 
depends upon meeting the agreed-upon standard of proof (i.e., significance 
criterion). It is at this point that the concept of statistical power must be 
considered. 

The power of a statistical test of a null hypothesis is the probability that it 
will lead to the reJection of the null hypothesis, i.e., the probability that it will 
result in the conclusion that the phenomenon exists. Given the characteristics 
of a specific statistical test of the null hypothesis and the state of affairs in 
the population, the power of the test can be determined. It clearly represents 
a vital piece of information about a statistical test applied to research data 
(cf. Cohen, 1962). For example, the discovery, during the planning phase of 
an investigation, that the power of the eventual statistical test is low should 
lead to a revision in the plans. As another example, consider a completed 
experiment which led to nonrejection of the null hypothesis. An analysis 
which finds that the power was low should lead one to regard the negative 
results as ambiguous, since failure to reject the null hypothesis cannot have 
much substantive meaning when, even though the phenomenon exists (to 
some given degree), the a priori probability of rejecting the null hypothesis was 
low. A detailed consideration of the use of power analysis in planning investi­
gations and assessing completed investigations is reserved for later sections. 

The power of a statistical test depends upon three parameters: the signi­
ficance criterion, the reliability of the sample results, and the "effect size," 
that is, the degree to which the phenomenon exists. 

1.2 SIGNIFICANCE CRITERION 

The role of this parameter in testing null hypotheses has already been 
given some consideration. As noted above, the significance criterion repre­
sents the standard of proof that the phenomenon exists, or the risk of mis­
takenly rejecting the null hypothesis. As used here, it directly implies the 
"critical region of rejection" of the null hypothesis, since it embodies both 
the probability of a class of results given that the null hypothesis is true (a), as 
well as the definition of the phenomenon's existence with regard to direction­
ality. For power to be defined, its value must be set in advance. 

The significance level, a, has been variously called the error of the first 
kind, the Type I error, and the alpha error. Since it is the rate of rejecting a 
true null hypothesis, it is taken as a relatively small value. It follows then that 
the smaller the value, the more rigorous the standard of null hypothesis 
rejection or, equivalently, of proof of the phenomenon's existence. Assume 
that a phenomenon exists in the population to some given degree. Other 
things equal, the more stringent the standard for proof, i.e., the lower the 
value of a, the poorer the chances are that the sample will provide results 
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which meet this standard, i.e., the lower the power. Concretely, if an investi­
gator is prepared to run only a 1 % risk of false rejection of the null hypothe­
sis, the probability of his data meeting this standard is lower than would 
be the case were he prepared to use the less stringent standard of a 10% risk 
of false rejection. 

The practice of taking a very small ("the smaller the better") then 
results in power values being relatively small. However, the complement of 
the power (l - power), here symbolized as b, is also error, called Type II 
or beta error, since it represents the "error" rate of failing to reject a false 
null hypothesis. Thus it is seen that statistical inference can be viewed as 
weighing, in a manner relevant to the substantive issues of an investigation, 
these two kinds of errors. An investigator can set the risk of false null hy­
pothesis rejection at a vanishingly small level, say a= .001, but in so doing, 
he may reduce the power of his test to .10 (hence beta error probability, b, 
is 1-.10 = .90). Two comments may be made here: 

1. The general neglect of issues of statistical power in behavioral 
science may well result, in such instances, in the investigator's failing to 
realize that the a= .001 value leads in his situation to power= .10, b = .90 
(Cohen, 1962). Presumably, although not necessarily, such a realization 
would lead to a revision of experimental plans, including possibly an upward 
revision of the a level to increase power. 

2. If the investigator proceeds as originally planned, he implies a con­
ception of the relative seriousness of Type I to Type II error (risk of false null 
rejection to risk of false null acceptance) of bfa = .90/.001 = 900 to I, i.e., 
he implicitly believes that mistakenly rejecting the null hypothesis under the 
assumed conditions is 900 times more serious than mistakenly accepting it. 
In another situation, with a = .05, power= .80, and hence b = I - .80 = .20, 
the relative seriousness of Type I to Type II error is bfa = .20/.05 = 4 to I; 
thus mistaken rejection of the null hypothesis is considered four times as 
serious as mistaken acceptance. 

The directionality of the significance criterion (left unspecified in the 
above examples) also bears on the power of a statistical test. When the null 
hypothesis can be rejected in either direction so that the critical significance 
region is in both tails of the sampling distribution of the test statistic (e.g., 
at ratio), the resulting test will have less power than a test at the same a 
level which is directional, provided that the sample result is in the direction 
predicted. Since directional tests cannot, by definition, lead to rejecting the 
null hypothesis in the direction opposite to that predicted, these tests have 
no power to detect such effects. When the experimental results are in the 
predicted direction, all other things equal, a test at level a 1 will have power 
equal for all practical purposes to a test at 2a2• 
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Concretely, if an experiment is performed to detect a difference between 
the means of populations A and 8, say mA and m 8 , in either direction at the 
a2 = .05 significance criterion, under given conditions, the test will have a 
certain power. If, instead, an anticipation of mA greater than m8 leads to a 
test at a1 = .05, this test will have power approximately equal to a two-tailed 
test with a2 = .10, hence greater power than the test at a2 = .05, provided that 
in fact mA is greater than m 8 . If m 8 is greater than mA> the test at a 1 = .05 
has no power, since that conclusion is inadmissible. The temptation to perform 
directional tests because of their greater power at the same a level should be 
tempered by the realization that they preclude finding results opposite to those 
anticipated. There are occasional circumstances where the nature of the 
decision is such that the investigator does not need to know about effects in 
the opposite direction. For example, he will take a certain course of action if 
mA is greater than m8 and not otherwise. If otherwise, he does not need to 
distinguish between their equality and m8 greater than mA- In such infrequent 
instances, one-tailed tests are appropriate (Cohen, 1965, pp. 106-111). 

In the tables in this book, provision is made for tests at the .01, .05, and 
. 10 significance levels. Where a statistical test may ordinarily be performed 
either nondirectionally or directionally, both a2 and a 1 tables are provided. 
Since power for a 1 = .05 is virtually identical with power for a2 = .10, a 
single power table suffices. Similarly, tables for a 1 = .01 provide values for 
a2 = .02, and tables for a 1 = .10 values for a2 = .20; also, tables for a2 = .01 
provide values for a 1 = .005, tables at a 2 = .05 provide values for a1 = .025. 

1.3 RELIABILITY OF SAMPLE RESULTS AND SAMPLE SIZE 

The reliability (or precision) of a sample value is the closeness with 
which it can be expected to approximate the relevant population value. It 
is necessarily an estimated value in practice, since the population value is 
generally unknown. Depending upon the statistic in question, and the 
specific statistical model on which the test is based, reliability may or may not 
be directly dependent upon the unit of measurement, the population value, and 
the shape of the population distribution. However, it is always dependent 
upon the size of the sample. 

For example, one conventional means for assessing the reliability of a 
statistic is the standard error (SE) of the statistic. If we consider the arithmet­

ic mean of a variable X (X), its reliability may be estimated by the standard 
error of the mean, 

SEx= J:· 
where s2 is the usual unbiased estimate (from the random sample) of the 



1.3 RELIABILITY OF SAMPLE RESULTS AND SAMPLE SIZE 7 

population variance of X, and n is the number of independent units in (i.e., 
the size of) the sample. 

Concretely, if a sample of n = 49 cases yields a variance estimate for IQ 
of 196, then the standard error of the mean is given by 

sEx= J5:- = J~6 = 2. 

Thus, sample means based on 49 cases can be expected to have variability 
as measured by their own standard deviation of 2 IQ units. Clearly the greater 
the degree to which means of different samples vary among themselves, the 
less any of them can be relied upon, i.e., the less the reliability of the mean 
of the sample in hand. Note that in this instance reliability depends upon the 
unit of measurement (IQ) and sample size, but not on the value of the popu­
lation mean or (to any material degree) on the shape of the IQ distribution. 

On the other hand, consider the sampling reliability of a product moment 
coefficient of correlation, r. Its standard error is 

I -r 2 
SE = _!'_ 

r vn-1' 

where 
r P = the population value of r, and 
n = the number of paired observations in the sample. 

Note that the reliability of the sample r depends upon the magnitude of 
the (generally unknown) population rP value and n, but not on the units in 
which the correlated variables are measured. 

Not all statistical tests involve the explicit definition of a standard error 
of a sample value, but all do involve the more general conception of sample 
reliability. Moreover, and most important, whatever else sample reliability 
may be dependent upon, it always depends upon the size of the sample. 

The nature of the dependence of reliability upon n is obvious from the 
illustrative formulas, and, indeed, intuitively. The larger the sample size, 
other things being equal, the smaller the error and the greater the reliability 
or precision of the results. The further relationship with power is also 
intuitively evident: the greater the precision of the sample results, other things 
being equal, the greater the probability of detecting a non null state of affairs, 
i.e., the more clearly the phenomenon under test can manifest itself against 
the background of (experimentally irrelevant) variability. Thus, we can 
directly formulate the relationship between sample size and power. As is 
intuitively obvious, increases in sample size increase statistical power, the 
probability of detecting the phenomenon under test. 

Focusing on sample size as an invariant factor in power should not make 
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the researcher lose sight of the fact that other research elements potentially 
under his control also affect power. Random measurement error, be it due 
to psychometric unreliability, observational carelessness, dirty testtubes, or 
any other source, because it increases the variability of the observations 
beyond their necessary" true" variability, also reduces the precision of sample 
results and thus reduces power. In general, anything which reduces the 
variability of observations by the exclusion of sources of variability which 
are irrelevant to the assessment of the phenomenon under study will serve to 
increase power. Experimental design is an area of inquiry wholly devoted 
to the removal of irrelevant sources of variability for the increase of precision 
and therefore for the increase of the statistical power of tests of null hypoth­
eses (cf. Cox, 1958). 

In this book, provision is made for the accomplishment of power analyses 
for the statistical tests associated with the most frequently utilized experimen­
tal designs and their accompanying null hypotheses. Issues such as the effects 
of a given level of random measurement error on power are not explicitly 
provided for. Sample size, the invariant feature of sample precision, is, 
however, a factor in all the power tables. It is used in both of the major kinds 
of analysis tables herein provided; in the power tables, sample size is one of 
the elements used to determine the power of the test, and in the sample size 
tables, it is the dependent variable of the function of the desired level of 
power (in both instances under given conditions of significance criterion and 
population effect size). 

1.4 THE EFFECT SIZE 

To this point, the phenomenon in the population under statistical test 
was considered as either absent (null hypothesis true) or present (null hypoth­
esis false). The absence of the phenomenon implies some specific value for 
a population parameter. For example, in a study to determine whether there 
is a sex difference in incidence of paranoid schizophrenia, the investigator 
may draw a sample of patients bearing that diagnosis from the relevant popu­
lation and determine the proportion of males. The null hypothesis being tested 
is that the population proportion of males is .50, a specific value. 3 •4 Equiva­
lently, we might say that the size of the "effect" of sex on the presence of 

3 The assumption is made here that .50 is the proportion of males in the population 
of interest. 

4 For the sake of simplicity, the null hypothesis is treated in this section for the non­
directional form of the significance criterion. For example, a directional (one-tailed) test 
here that the male proportion is greater than .50 implies a null hypothesis that it is equal 
to or Jess than .50. The reader may supply his own necessary qualifications of the null 
hypothesis for the directional case in each illustration. 
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the diagnosis is zero. In another study concerned with the IQs of children 
born in multiple births, the null hypothesis might be that the multiple birth 
population in question has a mean IQ of 100 (i.e., the general population 
mean), again a specific value, or that the size of effect of being part of a 
multiple birth on IQ is zero. As yet another example of a one-sample test, 
in a study of the construct validity of a neurophysiological measure of intro­
version-extroversion, its product moment r with an accepted questionnaire 
measure for a sample of college students is determined. The null hypothesis 
here is that the population r is zero, or that the effect size of either on the 
other is zero. 

In circumstances where two populations are being compared, the null 
hypothesis usually takes the form "the difference in the value of the rele­
vant parameters is zero," a specific value. Thus, in a consumer survey 
research to determine whether preference for a particular brand A over its 
chief competitor B is related to the income level of the consumer, the null 
hypothesis might be: The difference in median family income of brand A 
and brand B users is zero, or, equivalently, that the size of the effect of 
income on brand preference is zero. Or, in a personnel selection study to 
determine which of two screening tests, A or B, is a better predictor of 
performance ratings (C), the null hypothesis might take the form: The 
difference between population product moment r's of A with C and B with 
Cis zero. 

Statistical tests involving more than two samples test null hypotheses 
that imply the constancy of a parameter over the populations involved. The 
literal statement of the null hypothesis depends upon the specific test involved. 
For example, the F test of the analysis of variance for k 2 2 means has as 
its null hypothesis the proposition that the variance of a set of population 
means is ·zero, a condition that can only obtain when they are equal. Simi­
larly, a test of whether a set of k ~ 2 population proportions are equal can 
be performed by means of the chi-square statistic. The null hypothesis here 
is that the variance of the population proportions equals zero (an exact value), 
a condition which can only obtain when they are all equal. In both of these 
instances we can think of the null hypothesis as the circumstance in which 
differences in the independent variable, the k populations, have no effect 
(have an effect size of zero) on the means or proportions of the dependent 
variable. 

Thus, we see that the absence of the phenomenon under study is expressed 
by a null hypothesis which specifies an exact value for a population para­
meter, one which is appropriate to the way the phenomenon under study is 
manifested. Without intending any necessary implication of causality, it is 
convenient to use the phrase "effect size" to mean "the degree to which 
the phenomenon is present in the population," or "the degree to which the 
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null hypothesis is false." Whatever the manner of representation of a phenom­
enon in a particular research in the present treatment, the null hypothesis 
always means that the effect size is zero. 

By the above route, it can now readily be made clear that when the null 
hypothesis is false, it is false to some specific degree, i.e., the effect size (ES) 
is some specific nonzero value in the population. The larger this value, the 
greater the degree to which the phenomenon under study is manifested. 
Thus, in terms of the previous illustrations: 

I. If the percentage of males in the population of psychiatric patients 
bearing a diagnosis of paranoid schizophrenia is 52%. and the effect is 
measured as a departure from the hypothesized 50%. the ES is 2%; if it is 
60%, the ES is 10%, a larger ES. 

2. If children of multiple births have a population mean IQ of 96, the 
ES is 4 IQ units (or- 4, depending on directionality of significance criterion); 
if it is 92, the ES is 8 (or - 8) IQ units, i.e., a larger ES. 

3. If the population product moment r between neurophysiological and 
questionnaire measures of introversion-extroversion is .30, the ES is .30; if 
th~ r is .60, so is the ES, a larger value and a larger departure from the null 
h) pothesis, which here is r = 0. 

4. If the population of consumers preferring brand A has a median 
annual income $700 higher than that of brand B, the ES is $700. If the 
population median difference and hence the ES is $1000, the effect of income 
on brand preference would be larger. 

Thus, whether measured in one unit or another, whether expressed as a 
difference between two population parameters or the departure of a popu­
lation parameter from a constant or in any other suitable way, the ES can 
itself be treated as a parameter which takes the value zero when the null 
hypothesis is true and some other specific nonzero value when the null hypo­
thesis is false, and in this way the ES serves as an index of degree of departure 
from the null hypothesis. 

The reasons that the above dicussion has proceeded in such redundant 
detail are twofold. On the one hand, ES is in practice a most important 
determinant of power or required sample size or both, and on the other hand, 
it is the least familiar of the concepts surrounding statistical inference among 
practicing behavior scientists. The reason for the latter, in turn, can be found 
in the difference in null hypothesis testing between the procedures of Fisher 
(1949) and those of Neyman and Pearson (1928, 1933). 

The Fisherian formulation posits the null hypothesis as described above, 
i.e., the ES is zero, to which the "alternative" hypothesis is that the ES is 
not zero, i.e., any nonzero value. Without further specification, although 
null hypotheses may be tested and thereupon either rejected or not rejected, 
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no basis for statistical power analysis exists. By contrast, the Neyman­
Pearson formulation posits an exact alternative for the ES, i.e., the exact 
size of the effect the experiment is designed to detect. With an exact alterna­
tive hypothesis or specific nonzero ES to be detected, given the other elements 
in statistical inference, statistical power analysis may proceed. 

Thus, in the previous illustrations, the statements about possible popu­
lation ES values (e.g., "if the population product moment r between neuro­
physiological and questionnaire measures of introversion-extroversion is 
.30, the ES is .30") are statements of alternative hypotheses. 

The relationship between ES and power should also be intuitively evident. 
The larger the ES posited, other things (significance criterion, sample size) 
being equal, the greater the power of the test. Similarly, the relationship 
between ES and necessary sample size: the larger the ES posited, other 
things (significance criterion, desired power) being equal, the smaller the 
sample size necessary to detect it. 

To this point, the ES has been considered quite abstractly as a parameter 
which can take on varying values (including zero in the null case). In any 
given statistical test, it must be indexed or measured in some defined unit 
appropriate to the data, test, and statistical model employed. In the previous 
illustrations, ES was variously expressed as a departure in percent from 50, 
a departure in IQ units from 100, a product moment r, a difference between 
two medians in dollars, etc. It is clearly desirable to reduce this diversity of 
units as far as possible, consistent with present usage by behavioural scien­
tists. From one point of view, a universal ES index, applicable to all the 
various research issues and statistical models used in their appraisal, would be 
the ideal. Apart from some formidable mathematical-statistical problems in 
the way, even if such an ideal could be achieved, the result would express ES 
in terms so unfamiliar to the researcher in behavioral science as to be self­
defeating. 

However, some generalization is obviously necessary. One cannot pre­
pare a set of power tables for each new measurement unit with which one 
works. That is, the researcher who plans a test for a difference in mean IQs 
must use the same power tables as another who plans a test for a difference in 
mean weights, just as they will use the same tables oft when the research is 
performed. t is a "pure" (dimensionless) number, one free of raw unit, as 
are also, for example, correlation coefficients or proportions of variance. 
Thus, as will be seen in Chapter 2, the ES index for differences between popu­
lation means is standardized by division by the common within-population 
standard deviation (a), i.e., the ES here is not the difference between mean 
"raw" scores, but the difference between mean " ::&:. " standard scores (Hays, 
1981), or the mean difference expressed in within-population uunits. In the F 
test for k ~ 2 population means, the ES also uses such standardized means; 
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in testing "main effects" in the analysis of variance the ES is their standard 
deviation, um, the standard deviation of standardized means (Chapter 8). 

Each test for which power tables are provided thus has a metric-free ES 
index appropriate to it. A higher order of generalization is frequently pos­
sible. Specifically, several ES indices can be translated into the proportion of 
variance (PV) accounted for in the dependent variable. Where this is pos­
sible, it is discussed in the introductory material for the test. Also, each ES 
index chosen usually relates to yet other commonly used indices and these are 
also described in the same place. 

The behavior scientist who comes to statistical power analysis may find 
himself grappling with the problem of what ES to posit as an alternate to 
the null hypothesis, or, more simply, how to answer the questions "How 
large an effect do I expect exists in the population?" He may initially find 
it difficult to answer the question even in general terms, i.e., "small" or 
"large," let alone in terms of the specific ES index demanded. Being forced 
to think in more exact terms than demanded by the Fisherian alternative 
(ES is any nonzero value) is likely to prove salutary. He can call upon theory 
for some help in answering the question and on his critical assessment of 
prior research in the area for further help. When these are supplemented with 
the understanding of the ES index provided in the introductory material to 
the relevant chapter, he can decide upon the ES value to adopt as an alterna­
tive to the null. 

When the above has not provided sufficient guidance, the reader has an 
additional recourse. For each statistical test's ES index, the author proposes, 
as a convention, ES values to serve as operational definitions of the qualitative 
adjectives" small,"" medium," and" large." This is an operation fraught with 
many dangers: The definitions are arbitrary, such qualitative concepts as 
"large" are sometimes understood as absolute, sometimes as relative; and 
thus they run a risk of being misunderstood. 

In justification, several arguments may be offered. It must first be said that 
all conventions are arbitrary. One can only demand of them that they not 
be unreasonable. Also, all conventions may be misused and their conven­
tional status thus abused. For example, the .05 significance criterion, although 
unofficial, has come to serve as a convention for a (minimum) basis for reject­
ing the null hypothesis in most areas of behavioral and biological science. 
Unfortunately, its status as only a convention is frequently ignored; there 
are many published instances where a researcher, in an effort at rectitude, 
fails to report that a much desired null rejection would be possible at the .06 
level but instead treats the problem no differently than he would have had it 
been at the .50 level! Still, it is convenient that "significance" without further 
specification can be taken to mean "significance at no more than the .05 
level." 
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Although arbitrary, the proposed conventions will be found to be reason­
able by reasonable people. An effort was made in selecting these operational 
criteria to use levels of ES which accord with a subjective average of effect 
sizes such as are encountered in behavioral science. " Small " effect sizes must 
not be so small that seeking them amidst the inevitable operation of measure­
ment and experimental bias and lack of fidelity is a bootless task, yet not so 
large as to make them fairly perceptible to the naked observational eye. 
Many effects sought in personality, social, and clinical-psychological research 
are likely to be small effects as here defined, both because of the attenutation 
in validity of the measures employed and the subtlety of the issues frequently 
involved. In contrast, large effects must not be defined as so large that their 
quest by statistical methods is wholly a labor of supererogation, or to use 
Tukey's delightful term "statistical sanctification." That is, the difference in 
size between apples and pineapples is of an order which hardly requires an 
approach via statistical analysis. On the other side, it cannot be defined so as 
to encroach on a reasonable range of values called medium. Large effects are 
frequently at issue in such fields as sociology, economics, and experimental and 
physiological psychology, fields characterized by the study of potent variables 
or the presence of good experimental control or both. 

Since effects are appraised against a background of random variation, 
the control of various sources of variation through the use of improved 
research designs serves to increase effect sizes as they are defined here. A 
simple example of this is a study of sex difference in some defined ability. 
Assume that a difference of 4 score points exists between male and female 
population means, where each population has a standard deviation of 16. 
A research plan which randomly samples the two populations (simple 
randomized design or comparison between two independent means) is 
operating with an ES of 4/16 = .25. Another research plan might proceed by 
comparing means of males and their sisters (comparison of two dependent 
means). Now, these populations can also be assumed to have a mean differ­
ence of 4 score points, but because of the removal of the variation between 
families afforded by this design (or equivalently when allowance is made for 
the brother-sister correlation in the ability), the effective standard deviation 
will be reduced to the fraction vi-=·; of 16, say to 12 (when r between 

siblings= .44}, and the actual ES operating in the situation is 4/12 = .33, 
a larger value than for the simple randomized design. Thus, operative effect 
sizes may be increased not only by improvement in measurement and experi­
mental technique, but also by improved experimental designs. 

Each of the Chapters 2-10 will present in some detail the ES index 
appropriate to the test to which the chapter is devoted. Each will be translated 
into alternative forms, the operational definitions of"small," "medium," and 
"large" will be presented, and examples drawn from various fields will 
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illustrate the test. This should serve to clarify the ES index involved and 
make the methods and tables useful in research planning and appraisal. Fi­
nally, in Chapter 11, Section 11.1 is devoted to a general consideration ot ES 
in the behavioral sciences. 

1.5 TYPES OF POWER ANALYSIS 

Four parameters of statistical inference have been described: power, 
significance criterion (a), sample size (n), and effect size (ES). They are so 
related that any one of them is a function of the other three, which means 
that when any three of them are fixed, the fourth is completely determined. 
This relationship makes formally possible four types of power analysis; in 
each, one of these parameters is determined as a function of the other three 
(Cohen, 1965, pp. 97-101). 

1.5.1 POWER AS A FUNCTION OF a, ES, AND n. The preceding material 
has been largely oriented toward the type of analysis in which, given the 
specification of a, ES, and n, power is determined. For example, an investi­
gator plans a test of the significance of a product moment r at a 2 = .05 using 
n = 30 cases. The ES he wishes to detect is a population r of .40. Given these 
specifications, he finds (by the methods of Section 3.3 in Chapter 3) that power 
equals .61. He may then decide to change his specifications to increase power. 

Such analyses are usefully performed as part of research planning. 
They can also be performed on completed studies to determine the power 
which a given statistical test had, as in the power survey of the studies in 
a volume of the Journal of Abnormal and Social Psychology (Cohen, 1962). 
In each of Chapters 2-10, the power tables (numberd B.3.A., where B is the 
chapter number and A indexes the significance criterion) are designed for 
this type of analysis. The sections designated B.3 discuss and illustrate the 
use of these tables. 

1.5.2 n AS A FUNCTION OF ES, a, AND PoWER. When an investigator 
anticipates a certain ES, sets a significance criterion a, and then specifies 
the amount of power he desires, the n which is necessary to meet these 
specifications can be determined. This (second) type of power analysis must 
be at the core of any rational basis for deciding on the sample size to be 
used in an investigation (Cohen, 1965, pp. 97-99). For example, an investi­
gator wishes to have power equal to .80 to detect a population r of .40 (the 
ES) at a2 = .05. By the methods described in Section 3.4 in Chapter 3, he 
finds that he must haven = 46 cases to meet these specifications. (A discussion 
of the basis for specifying desired power and the use of power = .80 as a 
convention will be found in Section 2.4 of Chapter 2.) 

This major type of power analysis is discussed and illustrated in the 
Sections B.4 (where B indexes the chapter numbers 2-8). Each of these 
sections contain sample size tables (numbered B.4.A) from which, given a, 



1.5 TYPES OF POWER ANALYSIS IS 

the ES, and desired power, the n is determined. A slightly different approach 
to n determination is employed in Chapters 9 and 10. 

1.5.3 ES AS A FUNCTION OF a, n, AND POWER. A third type of power 
analysis is of less general utility than the first two, but may nevertheless be 
quite useful in special circumstances (Cohen, 1970). Here, one finds the ES 
which one can expect to detect for given a, n, and with specified power. For 
example, an investigator may pose the question, "For a significance test of a 
product moment rat a2 = .05 with a sample of n = 30, what must the popula­
tion r (the ES) be if power is to be .80, i.e., what is the detectable ES for these 
specifications?" The answer, obtainable by backward interpolation (in Table 
3.3.5) is that the population r must be approximately .48. Were his n equal to 
46, the detectable ES would be r = .40. 

This form of power analysis may be conventionalized for use in compari­
sons of research results as in literature surveys (Cohen, 1965, p. 100). One 
can define, as a convention, a comparative detectable effect size (CDES) as 
that ES detectable at a2 = .05 with power = .50 for then used in the statistical 
test. So defined, the CDES is an inverse measure of the sensitivity of the 
test, expressed in the appropriate ES unit. 

· This type of power analysis is not discussed in detail in the ensuing 
chapters. However, when readers have become familiar with the use of the 
tables, they will find that it can be accomplished for all of the statistical tests 
discussed by backward interpolation in the power tables, or when it proves 
more convenient, in the sample size tables. 

1.5.4 a AS A FuNCTION OF n, PowER, AND ES. The last type of power 
analysis answers the question, "What significance level must I use to detect a 
given ES with specified probability (power) for a fixed given n?" Consider 
an investigator whose anticipated ES is a population r of .30, who wishes 
power to be . 75, and who as an n of 50, which she cannot increase. These 
specifications determine the significance criterion he must use, which can 
be found (by rough interpolation between subtables in Table 3.4.1) to be 
about a 1 =·.os, or a 2 = .15). 

This type of analysis is very uncommon, at least partly because of the 
strength of the significance criterion convention, which makes investigators 
loath to consider "large" values of a. We have seen that this frequently 
means tolerating (usually without knowing it) large values of b, i.e., low 
power. When power issues are brought into consideration, some circum­
stances may dictate unconventionally large a criteria (Cohen, 1965, p. 99ff). 

This type of power analysis i_s not, as such, further discussed in Chapters 
2-10, although it is indirectly considered in some of the examples. When the 
reader has become familiar with the tables, it can be accomplished for all 
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the statistical tests discussed in this book by interpolation between subtables 
of the sample size tables (B.4.A), or when more convenient, between power 
tables (B.3.A), within the range provided for a, i.e., a2 : .0 1-.20, and a 1 : 

.005-.10. 
In summary, four types of power analysis have been described. This book 

is designed primarily to facilitate two of these, the solutions for power and 
for sample size. It is also possible, but with less ease, to accomplish the other 
two, solution for ES and for a, by means of backward interpolation in the 
tables. 

1.5.5 "PROVING" THE NULL HYPOTHESIS. Research reports in the 
literature are frequently flawed by conclusions that state or imply that the 
null hypothesis is true. For example, following the finding that the difference 
between two sample means is not statistically significant, instead of properly 
concluding from this failure to reject the null hypothesis that the data do 
not warrant the conclusion that the population means differ, the writer 
concludes, at least implicitly, that there is no difference. The latter conclusion 
is always strictly invalid, and is functionally invalid as well unless power is 
high. The high frequency of occurrence of this invalid interpretation can be 
laid squarely at the doorstep of the general neglect of attention to statistical 
power in the training of behavioral scientists. 

What is really intended by the invalid affirmation of a null hypothesis is not 
that the population ES is literally zero, but rather that it is negligible, or 
trivial. This proposition may be validly asserted under certain circumstances. 
Consider the following: for a given hypothesis test, one defines a numerical 
value I (for iota) for the ES, where i is so small that it is appropriate in the 
context to consider it negligible (trivial, inconsequential). Power (l - b) is 
then set at a high value, so that b is relatively small. When, additionally, a is 
specified, n can be found. Now, if the research is performed with this nand it 
results in nonsignificance, it is proper to conclude that the population ES is 
no more than i, i.e., that it is negligible; this conclusion can be offered as 
significant at the b level specified. In much research, " no" effect (difference, 
correlation) functionally means one that is negligible;" proof" by statistical 
induction is probabilistic. Thus, in using the same logic as that with which we 
reject the null hypothesis with risk equal to a, the null hypothesis can be 
accepted in preference to that which holds that ES = i with risk equal to b. 
Since i is negligible, the conclusion that the population ES is not as large as i 
is equivalent to concluding that there is ''no" (nontrivial) effect. This comes 
fairly close and is functionally equivalent to affirming the null hypothesis 
with a controlled error rate (b), which, as noted above, is what is actually 
intended when null hypotheses are incorrectly affirmed (Cohen, 1965, pp. 
100-101; Cohen, 1970). (See Illustrative Examples 2.9, 3.5, 6.8, and 9.24.) 
(Also, see Fowler, 1985.) 
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This statistically valid basis for extracting positive conclusions from "nega­
tive findings" may not be of much practical help to most investigators. If, for 
example, one considers a population r = .10 as negligigle (hence, i), and plans 
a test of the null hypothesis (at a2 = .05) for power = .95 (b = .05) to detect 
i, one discovers that then required is 1294; for power = .90 (b = .10), the 
required n = 1047; and for power = .80 (b = .20), n = 783 (Table 3.4.1). 
For the much more liberal specification of r = .20 as i, the test (at a2 = .05) 
for power = . 95 (b = .05) requires n = 319; for power = . 90 (b = .10) requires 
n = 259, and even for power = .80 (b = .20), the required n = 194 (Table 
3.4.1). Thus, relatively large sample sizes are necessary to establish the negli­
gibility of an ES. But if nothing else, this procedure at least makes explicit what 
it takes to say or imply from a failure to reject the null hypothesis that there is 
no (nontrivial) correlation or difference between A and B. 

1.6 SIGNIFICANCE TESTING 

Although the major thrust of this work is power analysis, a simple rela­
tionship between power and significance made it relatively simple in the 
computation of the power tables to provide an aid to significance testing 
which users of this handbook may find convenient. Generally, we can define 
the effect size in the sample (ESs) using sample statistics in the same way as 
we define it for the population, and a statistically significant ESs is one which 
exceeds an appropriate criterion value. For most of the power tables, these 
criterion values for significance of the sample ES (for the given a significance 
criterion and n) are provided in the second column of the power tables under 
the symbol for the ES for that test with subscript c (for criterion), e.g., 
d., for the t test on means. 

1. 7 PLAN OF CHAPTERS 2-10 

Each of the succeeding chapters presents a different statistical test. They 
are similarly organized, as follows: 

Section I. The test is introduced and its uses described. 

Section 2. The ES index is described and discussed in detail. 

Section 3. The characteristics of the power tables and the method of 
their use are described and illustrated with examples. 

Section 4. The characteristics of the sample size tables and the method 
of their use are described and illustrated with examples. 

Section 5. In Chapters 2-6 and 8, the use of the power tables for signifi­
cance tests is described and illustrated with examples. 



CHAPTER 2 

The t Test for Means 

2.1 INTRODUCTION AND USE 

The arithmetic mean is by far the most frequently used measure of 
location by behavioral scientists, and hypotheses about means the most 
frequently tested. The tables have been designed to render very simple the 
procedure for power analysis in the case where two samples, each ofn cases, 
have been randomly and independently drawn from normal populations, 
and the investigator wishes to test the null hypothesis that their respective 
population means are equal, H 0 : rnA - rna = 0 (Hays, I 973, p. 408f; Edwards, 
1972, p. 86), referred to below as Case 0. The test is the t test for independent 
means. The tables can also be used to analyze power for (a) the t test on means 
of two independent samples when nA :F na (Case 1), (b) an approximate t test 
on the means of independent samples when a A :Faa (Case 2), (c) a one-sample 
t test of the null hypothesis that a population mean equals some specified 
value, H0 :m = c (Case 3) (Hays, 1981, p. 279), and (d) the t test on the means 
of dependent samples, i.e., paired values (Case 4) (Hays, 1981, pp. 296-298; 
Edwards, 1972, p. 247f). These latter four applications will be discussed below. 
following consideration of the (Case 0) t test for independent means drawn 
from equally varying populations and based on equal size samples. Finally, 
the tables can also be used for significance testing, as detailed in Section 2.5. 

In the formal development of the t distribution for the difference between 
two independent means, the assumption is made that the populations sampled 
are normally distributed and that they are of homogeneous (i.e., equal) 
variance. Moderate departures from these assumptions, however, have 
generally negligible effects on the validity of both Type I and Type II error 
calculations. This is particularly true for nondirectional tests and as sample 
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sizes increase above 20 or 30 cases. The only noteworthy exception to the 
above is under the condition of substantially unequal variances together 
with substantially unequal sample sizes (whether small or large). Summaries 
of the evidence in regard to the "robustness" of the t (and F) test is provided 
by Scheffe (1959, Chapter 10), and in less technical terms, by Cohen (1965, 
pp. 114-116). See also Boneau ( 1960, 1962). 

2.2 THE EFFECT SIZE INDEX: d 

As noted above (Section 1.4), we need a "pure" number, one free of our 
original measurement unit, with which to index what can be alternately 
called the degree of departure from the null hypothesis of the alternate 
hypothesis, or the ES (effect size) we wish to detect. This is accomplished by 
standardizing the raw effect size as expressed in the measurement unit of 
the dependent variable by dividing it by the (common) standard deviation 
of the measures in their respective populations, the latter also in the original 
measurement unit. For the two independent samples case, this is simply 

(2.2.1) 

for the directional (one-tailed) case, and 

d = lmA -mal (2.2.2) 
a 

for the nondirectional (two-tailed) case, 

where d = ES index fort tests of means in standard unit, 
m", m 8 =population means expressed in raw (original measurement) 

unit, and 
a = the standard deviation of either population (since they are 

assumed equal). 

The use of d is not only a necessity demanded by the practical require­
ments of table making, but proves salutary in those areas of the behavioral 
sciences where raw units are used which are quite arbitrary or lack meaning 
outside the investigation in which they are used, or both. Consider, for ex­
ample, the question whether religious groups A and B differ in their favor­
ableness toward the United Nations. The latter may well be indexed by an 
ad hoc attitude scale which yields a score expressed in points, such that 
the more points the more favorable the attitude. The absolute size of a 
point is a consequence of arbitrariness in the decisions made by the investi­
gator, and/or in the scale construction method, and/or in the writing or selec­
tion of the items. If the A population has a mean of 280 and the B popula­
tion a mean of 270, the question "How large is the effect?" can only be 
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answered with "ten points," a generally unsatisfactory answer in the ab­
sence of a basis for answering the necessarily following question, "Well, 
how large is a point?" 

d provides an answer to such questions by expressing score distances in 
units of variability. If, in the above situation, the common within-popula­
tion standard deviation is a= 100 scale points, 

d= mA-m8 = 280-270 = ~ = 1 
(1 100 100 . ' 

i.e., the means differ by a tenth of a standard deviation. Since both numera­
tor and denominator are expressed in scale units, these "cancel out," and 
d is a pure number (here a ratio), freed of dependence upon any specific 
unit of measurement. 

On the other hand, consider the circumstance when a = 5 rather than 
100. Now, 

10 
d=s-=2.0, 

i.e., the means differ by two standard deviations. This is obviously a much 
larger difference than is d =.I. 

But how large are each of these differences, and how much larger is the 
second than the first? There are various ways the values of d may be under­
stood. 

2.2.1 d AS PERCENT NONOVERLAP: THE U MEASURES. If we maintain 
the assumption that the populations being compared are normal and with 
equal variability, and conceive them further as equally numerous, it is possible 
to define measures of nonoverlap (U) associated with d which are intuitively 
compelling and meaningful. As examples: 

I. When d = 0, and therefore either population distribution is perfectly 
superimposed on the other, there is 100% overlap or 0% nonoverlap, 
hence U 1 = 0. In such a circumstance, the highest 50% of population B 
exceeds the lowest 50% of population A. We designate as U 2 (50% in this 
example), a second percentage measure of nonoverlap, the percentage in 
the B population that exceeds the same percentage in the A population. 
Finally, as third measure of nonoverlap, U 3, we take the percentage of the 
A population which the upper half of the cases of the B population exceeds. 
When d = 0, U 3 = 50.0%. 

2. When d = .I as in the above example, the distribution of the popula­
tion with the larger mean, B, is almost superimposed on A, but with some 
slight excess, i.e., some nonoverlap. U 1 here equals 7.7%, that is, 7.7% of 
the area covered by both populations combined is not overlapped. For U 2 , 



ll 2 THE t TEST FOR MEANS 

the value is 52.0%, i.e., the highest 52.0% of the B population exceeds 
the lowest 52.0% of the A population. For U 3 , the value is 54.0%, i.e., the 
upper 50% of population B exceeds 54.0% of the values in the A popula­
tion. 

3. When we posited the smaller a ( = 5), we found d = 2.0. U 1 then 
equals 81.1 %. the amount of combined area not shared by the two popula­
tion distributions. In this case, the highest 84.1% of the B population 
exceeds the lowest 84.1% of the A population, thus U 2 = 84.1 %. Finally, 
the upper half of the B population exceeds 97.7% of the A population, so 
that U 3 = 97.7%. 

Table 2.2.1 

Equivalents of d 

d u, u2 u., r r2 

0 0.0% 50.0% 50.0% .ooo .ooo 
.1 7.7 52.0 S!t.O .050 .002 
.2 1ft.7 Slt.O 57.9 .100 .010 
.3 21.) 56.0 61.8 .lft8 .022 
.ft 27.ft 57.9 65.5 .196 .038 
.5 33.0 59.9 69.1 .2ft) .059 

.6 38.2 61.8 72.6 .287 .083 

.7 ft).O 63.7 75.8 .3)0 .109 

.8 lt7.ft 65.5 78.8 .371 .138 

.9 S1.6 67 ... 81.6 ... 10 .168 
t.o ss ... 69.1 81o.1 ..... 7 .200 

I .1 58.9 70.9 86 ... ... 82 .232 
1.2 62.2 72.6 88.s .SI .. .265 
1.3 6S.3 7'-.2 90.3 .s .. s .297 
l.lt 611. I 75.8 91.9 .5n .329 
1.5 70.7 77.3 93.3 .600 .360 

1.6 73.1 78.8 91t.5 .625 .390 
1.7 75.ft 80.2 95.5 .61t8 .ft19 
1.8 77.4 81.6 96.ft .669 .ltlt8 
1.9 79.ft 82.9 97.1 .689 .ft7ft 
2.0 81.1 81t.1 97.7 .707 .500 

2.2 81t.3 86.ft 98.6 • 7ft0 .548 
2.1t 87.0 88.5 99.2 .768 .590 
2.6 89.3 90.3 99.5 .793 .628 
2.8 91.2 91.9 99.7 .81ft .662 
3.0 92.8 93.3 99.9 .832 .692 

3.2 !)lt.2 91t.5 99.9 .SitS .719 
).It 95.3 95.5 • .862 .7ft3 
3.6 96.3 96.ft * .87ft • 76ft 
3.8 97.0 97.1 * .ass .783 
lt.O 97.7 97.7 * .891+ .Boo 

* Gr•t• tNn 99.95 
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The reader is free to use whichever of these U measures he finds most 
meaningful to him in the context of his application. They are simply related 
to d and each other through the cumulative normal distribution. If d is 
taken as a deviate in the unit normal curve and P as the percentage of the 
area (population of cases) falling below a given normal deviate, then 

(2.2.3) u3 = Pd, 

(2.2.4) u2 = Pd/2 

(2.2.5) U - 2Pd/2- I 2U2 -I 
1- = 

pd/2 u2 
Table 2.2.1 presents U~> U 2 , and U3 for values of d =.I (.I) 2.0 (.2) 

4.0. Its use will be illustrated after we have considered two other bases for 
the understanding of d. 

2.2.2 d IN TERMS OF CORRELATION AND PROPORTION OF VARIANCE. 

Membership in the A or in the B population may be considered to be a 
simple dichotomy or a two point scale. Scoring it, for example, 0 for member­
ship in A and l for membership in B (the values assigned are immaterial), 
one can express the relationship between population membership and any 
other variable as a Pearson product-moment correlation coefficient (r). 
Each member in the two populations may be characterized by a pair of 
variables, the "score" on population membership (X) and the value of the 
other variable (Y), and the r between X and Y can then be found by any of 
the usual computing formulas for r (Hays, 1973, p. 63lf; Cohen & Cohen, 
1975, pp. 32-35), or more readily as the point biserial r (Cohen & Cohen, 
1975, p. 35ff). Investigators may prefer to think of effect sizes for mean 
differences in terms of r's, rather than d's, and they are related by 

(2.2.6) 

Formula (2.2.6) is appropriately used when the A and B populations are 
such that they can be conceived as equally numerous. This will usually be 
the case when A and B represent some experimental manipulation (e.g., the 
presence or absence of a stimulus, or two different sets of instructions), 
or some abstract property (e.g., high versus low anxiety level, or native 
versus foreign speaker), as well as when the dichotomy represents real and 
equally numerous populations, as is the case (at least approximately) with 
males and females. The case of equally numerous populations is the usual 
one. This is the case assumed for the values of r given in Table 2.2.1. 

When, however, the populations are concrete and unequal collections of 
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cases, the inequality should figure in the assessment of the degree of relation­
ship (e.g., finally diagnosed schizophrenics versus others on a diagnostic 
psychological test). The more general formula for r should then be used: 

d 
r = -...,.....,..,.......,--,-.,.-

v'd2+ (1/pq)' 
(2.2.7) 

where p =proportion of A's in combined A and B populations, and 
q = I - p (i.e., proportion of B's). 

[The reader will note that when p =q = .5, formula (2.2.7) reduces to 
formula (2.2.6).] 

Once a difference between population means of A and B can be expressed 
as r, it can also and usually most usefully be expressed as r 2 , the proportion 
of the total variance (PV) of Y in the combined A and B populations as­
sociated with or accounted for by population membership (X = 0 or .I). 

Table 2.2.1 present values of both rand r 2 equivalent to d for the case 
where equally numerous populations are assumed. If the means of two 
equally numerous populations on a variable Y differ by d = 1.0, then popu­
lation membership relates toY with r = .447, and r 2 = .200 of the combined 
population variance in Y is associated with A versus B membership (X). 

2.2.3 "SMALL," "MEDIUM," AND "LARGE" d VA LUES. When working 
with a variable Y which has been well studied, the selection of an effect size 
expressed in d offers no particular difficulty. On the one hand, estimates of 
the within-population a are readily at hand and the number of raw points 
difference between A and B population means to be detected (or to serve as 
an alternate hypothesis to the null) arise naturally out of the content of 
the inquiry. Thus, a psychologist studying the effects of treatment in phenyl­
pyruvic mental deficiency will likely have an estimate of the a of IQ in such a 
population (e.g., a= 12.5) and be able to posit an interest in detecting a mean 
difference between treated and untreated cases of, say, 10 IQ points. Thus, 
he goes directly to d = 10/12.5 = .8. Similarly, an anthropologist studying 
social class differences in height in a preliterate culture would have an esti­
mated a of height, for example, 2.5 in., and would posit the mean difference he 
was seeking to detect between two social class populations, say 2 in. He, too, 
could then find his difference expressed as d = 2/2.5, which (also) equals .8. 

But consider now the frequently arising circumstance where the variable 
Y is a new measure for which previously collected data or experience are 
sparse or even nonexistent. Take, for example, an especially constructed 
test of learning ability appropriate for use with phenylpyruvic mental 
deficients. The investigator may well be satisfied with the relevance of the 
test to his purpose, yet may have no idea of either what the a is or how 
many points of difference on Y between means of treated and untreated 
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populations he can expect. Thus, he has neither the numerator (rnA- m 8) 
nor the denominator {a) needed to compute d. 

It is precisely at this point in the apparent dilemma that the utility of 
the d concept comes to the fore. It is not necessary to compute d from a 
posited difference between means and an estimated standard deviation; one 
can posit d directly. Thus, if the investigator thinks that the effect of his 
treatment method on learning ability in phenylpyruvia is small, he might 
posit ad value such as .2 or .3. If he anticipates it to be large, he might posit 
d as .8 or 1.0. If he expects it to be medium (or simply seeks to straddle 
the fence on the issue), he might select some such value as d = .5. 

The terms "small," "medium," and "large" are relative, not only to 
each other, but to the area of behavioral science or even more particularly 
to the specific content and research method being employed in any given 
investigation (see Sections 1.4 and 11.1). In the face of this relativity, there is 
a certain risk inherent in offering conventional operational definitions for 
these terms for use in power analysis in as diverse a field of inquiry as be­
havioral science. This risk is nevertheless accepted in the belief that more 
is to be gained than lost by supplying a common conventional frame of 
reference which is recommended for use only when no better basis for esti­
mating the ES index is available. 

SMALL EFFECT SIZE: d = .2. In new areas of research inquiry, effect 
sizes are likely to be small (when they are not zero!). This is because the 
phenomena under study are typically not under good experimental or 
measurement control or both. When phenomena are studied which cannot 
be brought into the laboratory, the influence of uncontrollable extraneous 
variables(" noise") makes the size of the effect small relative to these (makes 
the "signal" difficult to detect). 

The implication of d = .2 as the operational definition of a small differ­
ence between means can be seen in Table 2.2.1. When d = .2, normally 
distributed populations of equal size and variability have only 14.7% of 
their combined area which is not overlapped (U 1 ). If B is the population 
with the larger mean and A the other, the highest 54% of the B population 
exceeds the lowest 54% of the A population (U 2 ). Our third measure of 
nonoverlap (U3 ) indicates that 57.9% of the A population is exceeded by 
the mean (or equivalently the upper half) of the B population. 

From the point of view of correlation and maintaining the idea of equally 
numerous populations, d = .2 means that the (point biserial) r between 
population membership (A vs. B) and the dependent variable Y is .100, 
and r 2 is accordingly .010. The latter can be interpreted as meaning that 
population membership accounts for I% of the variance of Y in the com­
bined A and B populations. 

The above sounds indeed small (but see Section 11.2). Yet it is the order of 
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magnitude of the difference in mean IQ between twins and nontwins, the lat­
ter being the larger (Husen, 1959). It is also approximately the size of the dif­
ferencein mean height between 15- and 16-year-oldgirls (i.e., .5 in. where the 
o is about 2.1 ). Other examples of small effect sizes are adult sex differences 
on the Information and Picture Completion Subtests of the Wechsler Adult 
Intelligence Scale, favoring men, while a difference favoring women on the 
Digit Symbol Test which is twice as large (Wechsler, 1958, p. 147). 

MEDIUM EFFECT SIZE: d = .5. A medium effect size is conceived as 
one large enough to be visible to the naked eye. That is, in the course of 
normal experience, one would become aware of an average difference in 
IQ between clerical and semiskilled workers or between members of pro­
fessional and managerial occupational groups (Super, 1949, p. 98). 

In terms of measures of nonoverlap (Table 2.2.1 ), ad = .5 indicates that 
33.0% ( =U 1) of the combined area covered by two normal equal-sized 
equally varying populations is not overlapped; that (where m 8 >rnA) 59.9% 
( = U 2 ) of the B population exceeds 59.9% of the A population; finally, 
that the upper half of the B population exceeds 69.1% ( = U3) of the A 
population. 

In terms of correlation, d = .5 means a point biserial r between popula­
tion membership (A vs. B) and a dependent variable Y of .243. Thus, .059 
( = r 2) of theY variance is "accounted for" by population membership. 

Expressed in the above terms, the reader may feel that the effect size desig­
nated medium is too small. That is, an amount not quite equal to 6% of 
variance may well not seem large enough to be called medium. But d = .5 
is the magnitude of the difference in height between 14- and 18-year-old 
girls (about I in. where u = 2). As noted above, it represents the difference in 
mean IQ between clerical and semiskilled workers and between professionals 
and managers (about 8 points where u = 15). It is also the difference in 
means on the World War II General Classification Test for enlisted men 
who had been teachers versus those who had been general clerks (Harrell 
and Harrell, 1945, pp. 231-232). Depending on his frame of reference, the 
reader may consider such differences either small or large. We are thus 
reminded of the arbitrariness of this assignment of quantitative operational 
definitions to qualitative adjectives. See Section 11.2. 

LARGE EFFECT SIZE: d = .8. When our two populations are so separ­
ated as to make d = .8, almost half (U 1 = 47.4%) of their areas are not 
overlapped. U 2 = 65.5 %, i.e., the highest 65.5% of the B population exceeds 
the lowest 65.5% of the A population. As a third measure, the mean or 
upper half of the B population exceeds the lower 78.8% ( = U3) of the A 
population. 

The point biserial r here equals .371, and r 2 thus equals .138. 
Behavioral scientists who work with correlation coefficients (such as, for 
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example, educational psychologists) do not ordinarily consider an r of .371 
as large. Nor, in that frame of reference, does the writer. Note however that 
it is the .8 separation between means which is being designated as large, 
not the implied point biserial r. Such a separation, for example, is represented 
by the mean IQ difference estimated between holders of the Ph.D. degree 
and typical college freshmen, or between college graduates and persons with 
only a 50-50 chance of passing in an academic high school curriculum 
(Cronbach, 1960, p. 174). These seem like grossly perceptible and therefore 
large differences, as does the mean difference in height between 13- and IS­
year-old girls, which is of the same size (d = .8). 

2.3 POWER TABLES 

The power tables are used when, in addition to the significance criterion 
and ES, the sample size is also specified; the tables then yield power values. 
Their major use will then be post hoc, i.e., to find the power of a test after 
the experiment has been performed. They can, of course, also be used in 
experimental planning by varying n (orES or a or all these) to see the conse­
quences to power of such alternatives. 

2.3.1 CASE 0: a A = a 8 , nA = n8 . The power tables are designed to yield 
power values for the t test for the difference between the means of two 
independent samples of equal size drawn from normal populations having 
equal variances (Case 0). They are described for such use below, and in a 
later section for other conditions (Cases l-4). Tables list values for a, d, 
andn: 

I. Significance Criterion, a. There are tables for the following values of 
a: a 1 = .01, a 1 = .05, a 1 = .10; a2 = .01, a2 =.05, a2 = .10, where the sub­
scripts refer to one- and two-tailed tests. Since power at a 1 is to an adequate 
approximation equal to power at a2 = 2a1 for power greater than (say) .10, 
one can also use the tables for power at a2 = .02 (from the table for a 1 = .01 ), 
a2 = .20 (from a 1 = .10), a 1 = .005 (from a2 = .01}, and a 1 = .025 (from 
a2 = .05). 

2. Effect Size, ES. It will be recalled that in formula (2.2.1) the index d 
was defined for one-tailed tests as 

where the alternate hypothesis specifies that m8 >rnA> and u is the common 
within-population standard deviation (i.e., uA = u8 = u). 



28 2 THE t TEST FOR MEANS 

Table 2.3.1 

Power oft test of m1 = m1 at a 1 = .01 

d 

n d .10 c 
.20 .30 .40 .so .60 .70 .ao 1.00 1.20 1.40 

a 1.31 02 03 04 OS 08 12 14 19 30 43 57 
9 1.22 02 03 04 06 09 13 16 22 35 .. , 63 

10 1.14 02 03 04 07 10 lit Ia 25 Ito 55 70 
11 1.08 02 03 OS 07 11 IS 21 za ItS 61 76 
12 1.02 02 03 05 08 12 17 23 31 49 66 al 
13 .98 02 03 OS 08 13 19 26 34 53 71 as ,,. .94 02 03 06 09 lit 20 28 38 57 75 8a 

IS .90 02 04 06 10 IS 22 31 41 61 79 90 
16 .a7 02 04 06 10 16 24 34 .... 64 az 92 
17 .Sit 02 04 07 11 Ia 26 36 lt7 68 as 94 
Ia .al 02 04 07 12 19 27 3a .. , 71 a7 95 
19 .79 02 04 07 13 20 29 Ito 51 74 a, 96 

20 .n 02 04 08 13 21 30 42 54 76 91 97 
21 .7S 02 OS 08 14 22 32 .... 56 79 93 98 
22 .73 02 OS 08 IS 23 )It 46 59 al 94 98 
23 .71 02 OS 09 IS 24 36 Ita 61 83 95 99 
2ft .70 02 OS 09 16 2S 37 so 64 as 95 99 

2S .68 02 OS 10 17 27 39 53 66 87 96 99 
26 .67 02 05 10 17 28 .. , 55 68 89 97 99 
27 .65 02 05 10 Ia 29 42 57 70 90 97 * za .64 02 OS 11 19 30 .... 59 72 91 98 
29 .63 02 06 II 19 31 46 60 74 92 98 

30 .62 03 06 11 20 32 48 62 75 93 99 
31 .61 03 06 12 21 )It so 64 77 94 99 
32 .60 03 06 12 22 35 51 66 79 94 99 
33 .59 03 06 13 22 36 52 67 80 95 99 
34 .sa 03 06 13 23 37 53 69 81 95 99 

3S .s7 03 07 13 24 ,a ss 70 a, 96 * 36 .s& 03 07 lit 25 ItO S6 72 8lt 96 
37 .ss 03 07 14 26 41 sa 73 as 97 
3a .ss 03 07 IS 26 42 60 75 86 97 
39 .54 03 07 1S 27 43 61 76 a7 98 

4o .s3 03 07 IS za 4S 62 7a 88 98 
lt2 .sz 03 08 16 30 47 64 80 90 98 .... .SI 03 08 17 31 49 67 az 91 99 
46 .49 03 08 Ia 33 Sl 69 83 93 99 
4a .4a 03 08 19 34 53 71 as 94 99 
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Table 2.3.1 (continued) 

d 

n d .10 .20 .30 .liD .so .60 .70 .eo 1.00 1.20 1.110 
c 

so .117 03 09 20 36 ss 73 87 95 99 * * 
52 .1+6 03 09 21 37 57 75 88 95 * Sli .lis 01! 10 21 39 59 77 90 96 
56 .lis OS 10 22 Ito 61 79 91 97 
58 .1+11 05 10 23 Ill 62 81 92 97 

60 .113 OS II 211 113 611 82 93 98 
611 .112 05 11 26 116 68 es ,.. 98 
68 .liD 05 12 27 119 71 87 96 99 
72 .39 OS 12 29 52 711 89 97 99 
76 .38 05 13 31 55 76 91 97 99 

80 .37 05 111 33 57 78 92 98 * 811 .36 06 15 311 60 81 ,.. 99 
88 .3S 06 16 36 62 83 95 99 
92 .35 06 16 38 611 es 96 99 
96 .311 06 17 39 66 86 96 99 

100 .n 06 18 111 69 88 97 * 120 .30 07 21 119 77 93 99 
1110 .28 07 25 57 811 96 * 160 .26 07 29 63 89 98 
180 .25 08 33 69 93 99 

200 .23 09 37 75 95 * 250 .21 11 lt6 811 98 
300 .19 13 ss 91 99 
350 .18 16 61 9S * ltoo .16 18 69 97 
II SO .16 20 75 98 

SOD .15 22 80 99 
600 .13 27 87 * 700 .12 32 92 
800 .12 37 95 
900 .11 112 97 

1000 .10 116 98 

* P- v•lues below this pofnt •re gr•ter tNn .995. 
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Table 2.3.2 

Power of I lest of m1 = m: at a1 ,. .05 

d 

" de .10 .20 .]0 .Ito .so .60 .70 .ao 1.00 1.20 1.1to 

a .88 07 10 13 19 25 31 ]a lt6 61 7ft as 
9 .a2 07 11 15 20 27 ]It .. , so 66 79 aa 

10 .78 08 11 16 22 29 ]6 Its 53 70 a] 91 
11 .7ft 08 12 17 23 31 39 Ita 57 7lt 86 ,.. 
12 .70 08 12 Ja 25 33 .. , 51 60 77 a9 96 
13 .67 08 13 Ja 26 , .. .... Sit 6] 80 91 97 , .. .61t 08 13 ,, 27 36 lt6 57 66 a] 93 98 

IS .62 08 13 20 2a 38 lt8 59 69 as ,. 98 
16 • 60 09 , .. 21 30 ItO Sl 62 72 a7 95 " 17 .sa 09 lit 22 ]I lt2 53 6lt 71t a9 " " 18 .s6 09 IS 22 32 It] ss " 76 90 97 " 19 .ss 09 15 2] 33 ItS S7 6a 78 92 9a * 
20 .53 09 15 21t ]It lt6 59 70 ao 93 98 
21 .52 09 16 25 36 Ita 60 72 a2 ,.. 

" 22 .51 09 16 26 37 50 62 7ft a] 95 " 23 .so 10 16 26 ]a 51 6lt 76 as 96 " 2ft .lt8 10 17 27 39 53 66 77 86 " " 25 .lt7 10 17 2a ItO Sit 67 79 aa 97 " 26 .lt6 10 18 28 lt1 ss 69 ao a9 97 * 27 .lt6 10 Ja 29 lt2 57 70 a2 90 ,a 
2a .Its 10 Ia ]0 lt3 58 72 a] 90 98 
29 ..... 10 19 ]0 .... 59 73 Bit 91 98 

30 .It] 10 19 31 lt6 61 7lt as 92 " 31 ... 2 10 19 32 lt7 62 76 86 " " 32 ... 2 11 20 33 Ita 6] 77 87 93 " 33 .... 11 20 33 .. , 6lt 7a 88 ,.. 
" ]It .Ito 11 20 ]It so 66 79 a9 95 " 35 .Ito 11 21 ]It so 67 ao a9 95 " ]6 ·" 11 21 35 51 68 at 90 " " 37 .39 11 21 36 52 69 a2 91 " * ]a .]a 11 22 36 53 70 83 91 " 39 .]a 11 22 37 Sit 71 Bit 92 97 

ItO .37 11 22 38 55 72 8lt 93 97 
lt2 .]6 12 23 39 57 7ft 86 ,.. ,. 
.... .]5 12 2ft Ito 59 75 a7 95 98 
lt6 .]5 12 2ft .. , 60 77 ., 95 " lt8 .]It 12 25 It] 62 79 90 " " 
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Table 2.3.2 (continued} 

cl 

II clc .10 .20 .30 ... o .so .60 .70 .10 1.00 1.20 .... o 

so • 33 12 26 .... 63 ao 91 97 " * * * 52 .33 13 26 ItS 6S al 92 97 " Sit .32 13 27 lt6 66 a3 93 98 " 56 .31 13 2a lt7 6a 8ft 93 98 " sa .31 13 2a .. , 69 as ,.. 98 * 
60 .30 13 29 so 70 86 95 98 

"' .29 lit 30 52 73 88 " 99 
68 .2a ... 31 Sit 75 90 97 99 
72 .2a IS 33 56 77 91 97 " 76 .27 IS 31t sa 79 92 98 * 
80 .26 IS 35 60 at 93 98 
8ft .26 16 36 61 a2 ,.. 99 
aa .25 16 37 63 8ft 95 99 
92 .2 .. 17 3a 6S as 96 99 

" .2 .. 17 .. 0 66 a7 96 99 

100 .23 17 ... 68 88 97 * 120 .21 19 lt6 75 93 99 
litO .20 21 51 80 95 99 
160 .18 23 56 as 97 * 180 .17 21t 60 88 98 

200 .16 26 "' 91 99 
250 .IS 30 72 96 * 300 .13 ,.. 79 98 
350 .12 37 8ft 99 
.. 00 .12 It I 88 * .. so .II .... 91 

soo .10 lt7 93 
600 .10 53 97 
700 .09 59 98 
aoo .oa 6lt 99 
900 .08 68 * 1000 .07 72 

* P-r v.lues below this pofnt ere gr•ter then .99S. 
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Table 2.3.3 

Power oft test of m1 = m2 at a 1 = .10 

d 

n d .10 .20 .30 .r.o c .50 .60 .70 .eo 1.00 1.20 1.1to 

8 .67 13 18 21t 30 37 ..,. S3 60 74 as 92 
9 .63 lit 19 2S 32 39 lt7 S6 64 78 88 ,.. 

10 .S9 ... 19 26 31t lt2 so S9 67 81 91 96 
11 .s1 lit 20 27 3S ..,. S3 62 70 Bit 93 97 
12 .sr. IS 21 28 37 46 56 65 73 87 ,.. 98 
13 .52 IS 21 29 38 48 58 68 76 89 96 99 
lit .so IS 22 30 ItO so 61 70 79 90 97 " IS .48 IS 23 31 lt2 52 63 72 81 92 97 99 
16 .46 16 23 32 lt3 Sit 6S 7S 83 93 98 * 17 .Its 16 24 33 ..,. S6 67 76 8ft ,.. 98 
18 ·" 16 24 34 46 S8 69 78 86 9S 99 
19 .42 16 25 3S 47 S9 70 80 87 96 99 

20 .41 16 2S 36 48 61 72 82 89 97 99 
21 .Ito 17 26 37 so 62 74 83 90 97 99 
22 .)9 17 26 38 51 64 75 8ft 91 98 * 23 .38 17 27 39 S2 6S 77 86 92 98 
24 .38 17 27 Ito S3 67 78 87 93 98 

2S .37 17 28 ... 55 68 79 88 ,.. 99 
26 .36 18 28 ... 56 69 80 89 9ft 99 
27 .35 18 29 42 57 70 82 90 95 99 
28 .35 18 29 lt3 58 72 83 91 95 99 
29 .3ft 18 30 ..,. 59 73 8ft 91 96 99 

30 .33 18 30 ItS 60 74 as 92 96 99 
31 .33 19 31 ItS 61 75 86 93 97 * 32 .32 19 31 46 62 76 86 93 97 
33 .32 19 32 47 63 77 87 9ft 97 
34 .31 19 32 ItS 64 78 88 9ft 98 

35 .31 19 33 48 6S 79 89 95 98 
36 .30 19 33 49 66 80 89 95 98 
37 .30 20 33 so 66 80 90 96 98 
38 .30 20 3lt Sl 67 81 91 96 99 
39 .29 20 3lt 51 68 82 91 96 99 

ItO .29 20 35 52 69 83 92 97 99 
42 .28 20 35 53 70 8ft 93 97 99 ..,. .28 21 36 ss 72 as ,.. 98 99 
46 .27 21 37 56 73 86 ,.. 98 99 
48 .26 21 38 57 75 88 9S 98 * 
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Table 2.3.3 (continued} 

d 

----·-
n de .10 .20 .30 .•o .so .&o .70 .80 1.00 1.20 I.IJO 
-------

so .2& 22 39 58 7& 89 9& 99 • • • • 
52 .25 22 39 59 77 90 9& 99 
SIJ .25 22 IJO &I 78 90 97 99 
5& .21J 22 ... &2 80 91 97 99 
58 .21J 23 42 &3 81 92 97 99 

&o .24 23 42 &It 82 93 98 99 
&It • 23 24 .... && 83 94 98 • 
&8 .22 2lt ItS &8 as 95 99 
72 .21 25 47 70 87 9& 99 
7& .21 25 48 71 88 9& 99 

so .20 2& 49 73 89 97 99 
Sit .20 2& 51 74 90 97 • 
88 .19 27 52 7& 91 98 
92 .19 27 53 77 92 98 
9& .19 28 SIJ 79 93 99 

100 .18 29 ss 80 9't 99 
120 .17 31 &o 85 9& • 140 .IS 33 &s 89 98 
1&0 .14 35 &9 92 99 
180 .14 37 73 94 99 

200 ·" 39 7& 9& • 
250 .11 .... 83 98 
300 .10 lt8 88 99 
350 • 10 52 91 • 400 .09 ss 94 
450 .09 59 9& 

500 .08 &2 97 
&oo .07 &7 99 
700 .07 72 99 
800 .o& 7& * 900 .o& 80 

1000 .o& 83 

* Power values below thfs point are greater than .995. 
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Table 2.3.4 

Power oft test of m 1 = m2 at a, = .01 

d 

------------------
n de .10 .20 .30 .Ito .so .60 .70 .80 1.00 1.20 1.1to 

8 l.lt9 01 02 02 03 OS 07 09 12 21 33 46 
9 1.38 01 02 02 olt OS o8 II IS 25 39 Sit 

10 1.28 01 02 03 olt 06 09 12 17 29 ItS 61 
II 1.21 01 02 03 olt 07 10 lit 20 33 so 67 
12 I.IS 01 02 03 OS 07 II 16 22 38 ss 72 
13 1.10 01 02 03 OS 08 12 18 25 42 61 77 , .. t.os 01 02 03 06 09 lit 20 27 46 65 81 

IS 1.01 01 02 olt 06 10 IS 22 30 so 70 as 
16 .97 01 02 olt 07 II 16 Zit 33 Sit 73 88 
17 .9'+ 01 02 olt 07 12 18 26 35 57 77 90 
18 .91 01 02 Olt 08 12 19 28 38 61 80 92 
19 .88 01 02 OS 08 13 21 30 Itt 64 83 9lt 

20 • 86 01 02 OS 09 , .. 22 32 .... 67 8s 9S 
21 .83 01 03 OS 09 IS 24 34 46 70 87 96 
22 .81 01 03 OS 10 16 25 36 49 73 89 97 
23 .79 01 03 06 10 17 27 38 51 75 91 98 
2ft .78 01 03 06 II 18 28 ItO Sit 78 92 98 

25 .76 01 03 06 I 1 19 30 lt2 56 80 93 99 
26 .71t 01 03 06 12 20 31 .... 58 82 95 99 
27 .73 01 03 07 12 21 33 lt6 60 8lt 95 99 
28 .71 02 03 07 13 22 34 lt8 63 85 96 99 
29 .70 02 03 07 lit 23 36 50 65 87 97 * 
30 .69 02 03 07 lit 21t 37 52 66 88 97 
31 .68 02 Olt 08 15 25 39 sit 68 89 98 
32 .66 02 olt 08 15 26 ItO 56 70 91 98 
33 .6S 02 olt 08 16 27 42 57 72 92 98 
34 .64 02 Olt 08 17 28 lt3 59 7ft 92 99 

3S .63 02 olt 09 17 30 ItS 61 75 93 99 
36 .62 02 Oft 09 18 31 46 62 77 9lt 99 
37 .62 02 olt 09 18 32 48 64 78 95 99 
38 .61 02 olt 10 19 33 49 66 80 9S 99 
39 .60 02 olt 10 20 34 50 67 81 96 * 
ItO .59 02 olt 10 20 35 52 68 82 96 
42 .sa 02 OS 11 22 37 ss 71 8lt 97 .... .56 02 OS 12 23 39 57 7lt 86 98 
lt6 .ss 02 OS 12 21t Itt 60 76 88 98 
lt8 .sit 02 05 13 26 lt3 62 78 90 99 
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Table 2.3.4 (continued) 

---------- -------------------
d 

----·- -----------
n d c .10 .20 .30 .40 .so .60 .70 .so 1.00 1.20 1.40 
---· -------

so .53 02 06 ,,. 27 45 64 81 91 99 * * 52 .51 02 06 14 28 47 67 82 92 99 
S4 .so 02 06 IS 30 49 69 84 93 99 
S6 .so 02 06 16 31 51 71 86 94 * ss .49 02 06 16 32 53 73 87 95 

60 .48 02 07 17 34 55 75 88 96 
64 .46 02 07 18 36 58 78 91 97 
68 .45 02 o8 20 39 62 81 93 98 
72 .44 02 o8 21 42 65 84 94 98 
76 .42 03 09 23 44 68 86 95 99 

80 .41 03 09 24 47 71 88 96 99 
84 .40 03 10 26 50 74 90 97 99 
88 .39 03 10 27 52 76 91 98 * 92 .38 03 11 29 S4 78 93 98 
96 .38 03 11 30 57 80 94 99 

100 .37 03 12 32 59 82 9S 99 
120 .34 04 IS 39 69 90 98 * 140 .31 04 18 47 77 94 99 
160 .29 OS 21 54 84 97 * 180 .27 OS 25 60 88 98 

200 .26 06 29 66 92 99 
250 .23 07 36 78 97 * 300 .21 09 4S 86 99 
350 .20 10 53 92 * 400 .18 12 60 95 
4SO .17 14 66 97 

soo .16 16 72 98 
600 .1 s 20 81 * 700 .14 24 88 
800 • 13 28 92 
900 .12 33 95 

1000 .12 37 97 

* Power values below thfs pofnt are greater than .995. 
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Table 2.3.5 

Power of t test of m1 = m, at a2 = .05 

d 

n de .10 .20 .)0 .Ito .so .60 .70 .so 1.00 1.20 1.1to 

8 1.07 OS 07 09 11 IS 20 2S )I 46 60 73 
9 1.00 OS 07 09 12 16 22 28 3S Sl 6S 79 

10 .94 06 07 10 1) 18 Zit )I 39 S6 71 Bit 
11 .89 06 07 10 lit 20 26 )It It) 61 76 a7 
12 .as 06 08 11 IS 21 28 37 46 6S ao 90 
13 .81 06 08 11 16 23 31 ItO so 69 a) 93 
lit .78 06 08 12 17 25 33 It) 53 72 a6 9lt 

IS .75 06 08 12 .a 26 3S ItS S6 75 88 96 
16 .72 06 08 1) 19 28 37 48 59 78 90 97 
17 .70 06 09 13 20 29 39 51 62 80 92 9a 
Ia .68 06 09 lit 21 31 ltl 53 6lt 8) 9lt 98 
19 .66 06 09 IS 22 32 It) ss 67 as 9S 99 

20 .64 06 09 IS 23 33 ItS sa 69 a7 96 99 
21 .62 06 10 16 24 3S lt7 60 71 aa 97 99 
22 .61 06 10 16 2S 36 49 62 73 90 97 99 
23 .59 06 10 17 26 )a Sl 6lt 7S 91 98 * 2ft .sa 06 10 17 27 39 S3 66 77 92 98 

25 .S7 06 II t8 28 Itt ss 68 79 93 99 
26 .56 06 11 t9 29 lt2 56 69 80 9lt 99 
27 .ss 06 II 19 30 It) sa 71 82 95 99 
28 .sit 07 11 20 31 ItS 59 73 83 96 99 
29 .53 07 12 20 32 46 61 74 as 96 99 

30 .sz 07 12 21 33 lt7 63 76 a6 97 * 31 .51 07 12 21 )It lt9 6lt 77 87 97 
32 .so 07 12 22 3S so 6S 78 88 98 
33 .49 07 13 22 36 Sl 67 ao 89 98 
)It .ItS 07 13 23 37 53 68 al 90 98 

35 .Ita 07 13 23 38 sit 70 az 91 98 
36 .47 07 13 Zit 39 ss 71 a) 92 99 
37 .46 07 lit 25 39 S6 72 8lt 92 99 
)a .46 07 lit 25 ItO 57 73 as 93 99 
39 .Its 07 lit 26 Itt sa 74 a6 9lt 99 

Ito .Its 07 lit 26 lt2 60 75 87 9lt 99 
lt2 .It) 07 IS 27 ltlt 62 77 89 95 99 
ltlt .lt2 07 IS za 46 6lt 79 90 96 * lt6 .It I 08 16 30 ItS 66 a. 91 97 
ItS .It I 08 16 31 lt9 6a a) 92 97 
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Table 2.3.5 (continued) 

d 

--------
n d .10 c 

.20 .30 .40 .so .60 .70 .80 1.00 1.20 1.40 
·--·~----

so .40 08 17 32 so 70 84 93 98 * * * 52 .39 08 17 34 51 71 86 94 98 
S4 .38 08 18 34 53 73 87 95 98 
S6 .37 08 Ia 3S ss 74 aa 96 99 
sa .37 08 19 36 57 76 a9 96 99 

60 .36 oa 19 37 sa 77 90 97 99 
64 .35 09 20 39 61 ao 92 9a 99 
6a .34 09 21 41 64 82 93 9a * 72 .33 09 22 43 66 as 94 99 
76 .32 09 23 45 69 86 95 99 

ao .31 10 24 47 71 sa 96 99 
84 .30 10 25 49 73 90 97 99 
a a .30 10 26 51 75 91 9a * 92 .29 10 27 52 77 92 9a 
96. .29 11 2a 54 79 93 99 

100 .2a 11 29 56 ao 94 99 
120 .26 12 34 64 87 97 * 140 .24 13 3a 71 92 99 
160 .22 14 43 76 95 99 
180 .21 16 47 al 97 * 
200 .20 17 51 as 9a 
250 .1!! 20 61 92 99 
300 .l!i 23 69 96 * 350 .1 5 26 75 9a 
400 .14 29 a1 99 
4SO .13 32 as 99 

soo .12 35 as * 600 .11 41 93 
700 .10 46 96 
aoo .10 52 9a 
900 .09 56 99 

1000 .09 61 99 

* Power values below this point are greater than .995. 
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Table2.3.6 

Power oft test of m1 = mz at ilz = .10 

d 

n de .10 .20 .30 .40 .so .60 .70 .so 1.00 1.20 1.40 

8 .88 11 12 1S 20 25 31 38 46 61 74 as 
9 .82 11 13 16 21 27 34 42 so 66 79 89 

10 .78 11 13 17 22 29 37 4S S3 70 83 92 
11 .74 11 13 18 24 31 39 48 S7 74 86 ,. 
12 .70 11 14 19 2S 33 42 Sl 60 77 89 96 
13 .67 11 14 19 26 34 44 S4 63 so 91 97 
14 .64 11 14 20 27 36 46 S7 66 83 93 98 

1S .62 11 IS 21 29 38 49 S9 69 ss ,. 98 
16 .60 11 1S 21 30 40 Sl 62 72 87 9S " 17 .sa 11 IS 22 31 42 S3 64 74 89 96 " 18 .s6 11 16 23 32 43 ss 66 76 90 97 " 19 .ss 11 16 24 33 4S S7 68 78 92 98 * 
20 .s3 12 16 24 3S 47 S9 70 so 93 98 
21 .52 12 17 25 36 48 61 72 82 ,. 99 
22 .Sl 12 17 26 37 so 62 74 83 95 " 23 .so 12 17 26 38 51 64 76 as 96 99 
24 .48 12 18 27 39 53 66 77 86 96 " 25 .47 12 18 28 40 S4 67 79 88 97 " 26 .46 12 18 29 41 55 69 80 89 97 * 27 .46 12 19 29 42, 57 70 82 90 98 
28 .4S 12 19 30 44 sa 72 83 90 98 
29 .44 12 19 31 4S S9 73 84 91 98 

30 .43 12 20 31 46 61 74 as 92 99 
31 .42 13 20 32 47 62 76 86 93 99 
32 .42 13 20 33 48 63 77 87 93 99 
33 .41 13 21 33 49 64 78 88 ,. 99 
34 .40 13 21 34 50 66 79 89 95 " 35 .40 13 21 3S S1 67 80 89 9S 99 
36 .39 13 22 3S 52 68 81 90 96 99 
37 .39 13 22 36 52 69 82 91 96 * 38 .38 13 22 37 53 70 83 91 96 
39 .38 13 23 37 54 71 84 92 97 

40 .37 13 23 38 55 72 84 93 97 
42 .36 13 24 39 57 74 86 ,. 98 
44 .3S 14 24 40 58 75 87 95 98 
46 .3S 14 25 41 60 77 89 95 " 48 .34 14 25 43 62 79 90 96 " 
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Table 2.3.6 (continued} 

-----------· 
d 

n de .10 .20 .30 .40 .so .60 .70 .so 1.00 1.20 1.40 

so .33 14 26 .... 63 80 91 97 99 * * * 52 .)3 Ill 27 ItS 6S 81 92 97 99 
511 .32 Ill 27 116 66 83 93 98 99 
56 .31 IS 28 117 68 811 93 98 99 
sa .31 IS 29 49 69 as 94 98 * 
60 .30 IS 29 so 70 86 95 98 
611 .29 IS 30 52 73 88 96 99 
68 .28 16 32 54 75 90 97 99 
72 .28 16 33 56 77 91 97 99 
76 .27 16 34 ss 79 92 98 * 
80 .26 17 35 60 81 93 98 
84 .26 17 36 61 82 94 98 
88 .25 17 37 63 84 95 99 
92 .211 18 39 65 ss 96 99 
96 .24 18 110 66 87 96 99 

100 .23 18 Ill 68 88 97 99 
120 .21 20 46 75 93 99 * 140 .20 22 Sl 80 95 99 
160 .18 23 56 as 97 * 180 .17 25 60 88 98 

200 .16 26 611 91 99 
250 .Is 30 72 96 * 300 .13 34 79 98 
350 .12 37 84 99 
400 • 12 41 88 * 4SO ·" .... 91 

soo .10 117 93 
600 • 10 53 97 
700 .09 59 98 
800 .oa 611 99 
900 .oa 68 * 1000 .07 72 

* Power values below this point ere greeter than .995. 
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For two-tailed tests [formula (2.2.2)], 

d-lmA-mal 
- ' (J 

2 THE t TEST FOR MEANS 

where the alternate hypothesis specifies only that mA =1= m 8 • 

Provision is made ford = .10 (.10) .80 (.20) 1.40. Conventional definitions 
of ES have been offered above, as follows: 

small: d= .20, 
medium: d= .50, 

large: d = .80. 

3. Sample Size, n. This is the size of each of the two samples being 
compared. Provision is made for n = 8 {I) 40 (2) 60 (4) 100 (20) 200 (50) 
500 (1 00) 1000. 

The values in the body of the table are the power of the test times 100, 
i.e., the percentage of tests carried out under the given conditions which will 
result in the rejection of the null hypothesis. The values are rounded to the 
nearest unit, and they are generally accurate to within ± 1 as tabled (i.e., 
to within .01). 

Illustrative Examples 

2.1 An experimental psychologist designs a study to appraise the effect 
of opportunity to explore a maze without reward on subsequent maze 
learning in rats. Random samples of 30 cases each are drawn from the 
available supply and assigned to an experimental (E) group which is given 
an exploratory period and a control (C) group, which is not. Following 
this, the 60 rats are tested and the number of trials needed to reach a cri­
terion of two successive errorless runs is determined. The (nondirectional) 
null hypothesis is I mE - me I = 0. She anticipates that the ES would be 
such that the highest 600Jo of one population would exceed the lowest 60% of 
the other, i.e., U2 = 60% (Section 2.2). Referring to Table 2.2.1, she finds 
that U 2 = 59.9% is equivalent to our conventional definition of a medium 
effect: d = .50. That is, the alternative hypothesis is that the population 
means differ by half a within-population standard deviation. The significance 
criterion is a 2 = .05. What is the power of the test? Summarizing the speci­
fications, 

a 2 = .05, d=.50, ne =nc =n = 30. 

In Table 2.3.5 (for a 2 = .05), for column d = .50 and row n = 30, power 
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equals .47. Thus, for the given sample sizes and using the a 2 = .05 signifi­
cance criterion, the investigator does not quite have a fifty-fifty chance of 
detecting d = .50. 

The choice of d need not have proceeded by asserting the expectation 
that the ES was "medium" and using the conventional d = .5 value. Experi­
ence with the subjects and the maze in question or reference to the literature 
may have provided the experimenter with an estimate of the within­
population standard deviation of trials scores, a (say 2.8), and theory or 
intuition may have suggested a specific value for the experimental effect, 
I me - mE I ( = 2 trials, let us say). She would then use the explicit formula 
(2.2.2), 

d= lmt-mzl=2=.71. 
CT 2.8 

In this case, in Table 2.3.5 with n = 30 as before but now with 
d = . 70, power is found to be . 76 (or by linear interpolation for d = . 71, 
power = . 77). 

It can also be argued that, given a theory, the psychologist would probably 
predict the direction of the difference, say me> mE (i.e., the animals profit 
from their exploratory experience) and that therefore a directional test 
should be used. In this case, Table 2.3.2 for a 1 = .05 would be used, with 
the results 

for "medium" d = .50: 
for explicit d (from (2.2.1)) = .71: 

n=30, 
n=30, 

power= .61, 
power= .86. 

As described above (Chapter I, Section 1.2), power is greater for direc­
tional tests than nondirectional tests, other things equal, provided that the 
experimental results are in the anticipated direction. Experimenters are in an 
embarassing position when they obtain large experimental effects in the un­
anticipated direction (Cohen, 1965, pp. 106-111). 

This example was chosen, in part, to point out that the frequently selec­
ted sample size of 30 does not provide adequate power at the conventional 
a 2 = .05 against a medium ES, which is frequently as large as can reasonably 
be expected. Only when a large (d = .80) ES can be anticipated, for n = 30 
at a 2 = .05, is .power as high as most investigators would wish, in this in­
stance .86 (from Table 2.3.5). When a small (d = .20) ES is anticipated, for 
n = 30, a 2 = .05, power is only .12 (Table 2.3.5)-probably not worth the 
effort involved in performing the experiment. 

2.2 A psychiatric investigator, in pursuing certain endocrinological 
factors implicated in schizophrenia, performs an experiment in which urine 
samples of 500 schizophrenics and 500 comparable normals are analyzed 
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for a certain relevant metabolic product which is approximately normally 
distributed with homogeneous variability. Since the implicated endocrino­
logical factor is only indirectly related to the metabolic product in the urine 
and perhaps for other reasons, he anticipates only a small ES, specifically 
that d = .20. He selects the conservative significance criterion of a2 = .01. 
What is the power of his t test? Summarizing the specifications: 

d=.20, 

In Table 2.3.4 (for a2 = .01), for column d = .20, row n = 500, power 
=.72. 

Were he to be satisfied with the less stringent a2 = .05 significance 
criterion, he would find (from Table 2.3.5) power equal to .88. Note that 
rather large samples are required to detect small effects (at least as we have 
conventionally defined them). Ordinarily, the investigator seeking to detect 
a small effect will hardly be able to afford the luxury of a stringent signifi­
cance criterion such as a= .01. He may well want to consider increasing his 
Type I (a) error risk to perhaps .10 in order to keep the magnitude of his 
Type II (b) error risk from becoming so large as to make the experiment 
uninformative in the likely event of a nonsignificant difference. Naturally, 
the increase in a is made before, not after, the data are collected. 

2.3.2 CASE 1 : nA # n8 , u A = u8 • The power tables will yield useful 
approximate values when, from the two normal equally varying populations, 
samples of different sizes are drawn. In such cases, compute the harmonic 
mean ofnA and n8 , 

(2.3.1) 

and in the n column of the table, find n'. 
Power values found under these conditions will be underestimates. 1 How­

ever, within the values for n available in the table when nA/n8 is between .5 
and 2.0, the true value will generally be within .01 of the tabled value. 
Further, once n' is large (say greater than 25), even far greater discrepancies 
between nA and n8 will result in trivially small underestimates. 2 

The fact that nA is not equal to n8 will not effect the validity of the interpre­
tation of d in terms of the U and r measures of Section 2.2, provided we 
continue to conceive of the populations as equally numerous, although the 
samples are of unequal n. 

1 This is because the table is treating the t test for n as based on df = 2n' - 2, when 
there are actually df =nA + n8 - 2, a larger value. 

z This is because of the speed with which the t distribution with df >SO approaches 
that with df = oo, i.e., the normal distribution. 



2.3 POWER TABLES 43 

Dlustrative Example 

2.3 In a psychological service center, cases are assigned by an essen­
tially random process to different psychotherapeutic techniques, a "standard" 
technique (A) and one featuring some innovation (B). After a period of 
time, 90 cases have been treated by Method A and 60 cases by Method B. 
The investigators wish to determine whether the new method (B) is better 
than the old (A), using final staff conference consensus ratings of improve­
ment as the criterion. They posits an ES such that, with the B population 
higher, about 40% ( = U 1) of the area covered by both population distri­
butions would not overlap (see Chapter 2, Section 2.2). From Table 2.2.1, 
he finds that U 1 = 38.2% is equivalent to d = .6. The statement of the problem 
implies a directional test, since presumably they are indifferent to the possi­
bility that B is worse than A. (Recall that the null hypothesis here is mA :S 

m8 , thus that B worse than A is indistinguishable from B = A.) Accord­
ingly, they use a one-tailed test, with, say the a 1 = .05 significance criterion. 
Thus, the specifications are 

a 1 = .05, d = .6 (U 1 = 38.2%), nA = 90 =1= 60 = na 

With unequal n, he finds [from (2.3.1 )] 

n' = 2nA na = 2(90) (60) = 10800 = n. 
nA+n8 90+60 150 

(Note that n', the harmonic mean, is smaller than the arithmetic mean, 
which is (90 + 60)/2 = 75.) 

In Table 2.3.2 (for a 1 = .05), column d = .6, row n = 72, he finds power 
equal to .97 (a trivially small underestimate). 

Note that had they performed a nondirectional test which would have 
permitted the conclusion that B was worse than A, power (Table 2.3.5 for a2 

= .05) would have been .94. Power is less, but at this level not much less; 
they might consider the possibility of reaching the conclusion that B is worse 
than A worth the small loss of power. 

2.3.3. CASE 2: aA =l=aa, "" = n8 • For normal populations of unequal 
variance, the formula for t does not follow the tabled values fort, that is, 
this condition constitutes a "failure of the assumptions" (or more properly 
conditions) under which t is generated. However, there is ample evidence 
for the robustness of the t test despite moderate failure of this assumption 
provided that sample sizes are about equal (Scheffe, 1959; Cohen, 1965). 
Approximations to the true power values which are adequate for most 
purposes are available by using the tables in the ordinary way. 

It should be kept in mind that when u A =I= u8 , the definition of d will be 
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slightly modified. Since there is no longer a common within-population a, 

d is defined as above (formulas (2.2.1) and (2.2.2)), but instead of a in the 
denominator, the formula requires the root mean square of aA and a 8 , 

that is, the square root of the mean of the two variances: 

(2.3.2) a'= Ja:2-;-~~2 
The unequal variability need not affect the conception of d developed 

in Section 2.2. Given that there is a difference between a A and a 8 , we merely 
are using a kind of average within-population standard deviation to standar­
dize the difference between means. It is not the arithmetic mean of a A 

and a 8 , but, as noted, the root mean square. (However, unless aA and a 8 

differ markedly, a' will not differ greatly from the arithmetic mean of aA 

and a8 .) 

'In interpreting d for this case, the U (percent nonoverlap) measures can 
no longer be generally defined and the Table 2.2.1 U columns will not obtain. 
However, interpreting d in terms of r and r 2 proceeds completely unaffected 
by a A =F a 8 , and the conventional definitions of small, medium, and large d 
can also continue to be used. 

Note that if a A =I= a 8 and it is also the case that nA =I= n 8 , the nominal values 
for t and power at a given significance criterion, a, may differ greatly from 
the true values (Scheffe, 1959; Cohen, 1965, p. 115). Under these conditions 
(a A oF- a 8 and nA ~·n8 , simultaneously), the values in Tables 2.3 may be greatly 
in error. 

Illustrative Example 

2.4 A labor economist plans a sample survey of men and women 
workers in a given occupation to determine whether their mean weekly 
wages differ. He proceeds to do at test, 3 using random samples of 100 cases 
in each group and a nondirectional significance criterion of a 2 = .01. He 
deems it quite possible that the wage variability differs between the two 
populations, i.e., a A =1= a 8 • He may arrive at the ES = d he is interested in de­
tecting in any of the following ways: 

J. Explicit d. He may plan for allowing that the difference between 
means, lmA- m8 l, is $2.00 a week, and that the "average" variability of 
the two populations is $4.00. Note that this value is not the standard devia­
tion of either the population of men workers or that of women workers, 

3 Departure from normality of the population distributions should not materially 
affect the validity of the t test and power estimate for samples of this size. 
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but the root mean square of their respective population standard deviations, 
a' (formula (2.3.2)). He then finds d by formula (2.2.2), at $2.00/$4.00 = .5. 

2. Direct Use of d. From the experience with the d concept, he may 
directly posit d = .5, or arrive at that value as a convention. Although the 
unit he is using is a' and not a, this need not substantially alter his concep­
tion ofd. 

3. Correlation and Proportion of Variance. If he finds it conceptually 
convenient to work in correlational terms, he may conceive of the ES he 
seeks to detect as a degree of (point biserial) correlation between sex and 
weekly wage as r ~ .25, or as the amount of wage variance associated with 
sex as r 2 ~ .06. In Table 2.2.1, he finds that r = .243 and r 2 = .059 are equiva­
lent to d = .5. The fact that a A# a 8 does not at all affect the validity of the 
correlational interpretation of a mean difference. Note, however, that under 
these conditions the U measures no longer apply. 

Thus, by any of the above routes, we have the specifications: 

d=.5, 

In Table 2.3.4, for column d = .5, row n = 100, he finds power equal to 
.82. If he is prepared to work with the less stringent a 2 = .05, he would find 
from Table 2.3.5 power equal to .94. On the other hand, if he is prepared to 
restrict his test to detecting a wage difference favoring men workers and 
not the opposite, he would use the a 1 = .01 level and from Table 2.3.1 find 
power= .88. 

2.3.4 CASE 3: ONE SAMPLE OF n OBSERVATIONS. Up to this point we 
have considered the most frequent application of the t test, i.e., to cases 
involving the difference between two sample means where we test the hypoth­
esis that two population means are equal or, equivalently, that their differ­
ence is zero. The t test can also be used with a single sample of observations 
to test the hypothesis that the population mean equals some specified value, 
H 0 : m =c. The value specified is relevant to some theory under considera­
tion. As an example, consider an anthropological field study of a preliterate 
group in which a random sample of n children is tested by means of a 
"culture-fair" intelligence test which yields an IQ whose mean, as standar­
dized in Western culture, is 100. The null hypothesis then is that the popula­
tion mean for the preliterate children is 100. As another example, consider 
an attitude scale so constructed that a neutral position is represented by a 
value of 6 (as in Thurstone equal-appearing interval scaling). For a single 
sample of n subjects, one can test the null hypothesis that the population 
from whence they are drawn is, on the average, neutral, i.e., H 0 : m =6. 
Rejection with a sample mean greater than 6 yields the conclusion that the 
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population is on the average "favorable" toward the social object, and 
with less than 6 that the population is on the average "unfavorable." 

For the one-sample case (Case 3), we define 

(2.3.3) 

as the ES index. Conceptually there has been no change: d3 ' is the differ­
ence between the (alternate) population mean (m) and the mean specified by 
the null hypothesis (c), standardized by the population standard deviation 
(a). Since cis conceived as the mean of a normal population whose standard 
deviation is also a, i.e., the population specified by the null hypothesis, the 
interpretation ofd/ proceeds exactly as described in Section 2.2 with regard 
to Table 2.2.I and the operational definition of small, medium, and large 
effects. 

However, the tables cannot be used as for the Case 0 two-sample test 
for two reasons: 

I. In the statistical test for Case 0, there are two sample means, each 
of n cases, each contributing sampling error to the observed sample difference 
between means, while in the one-sample test, there is only one sample mean 
based on n cases, the value c being a hypothetical population parameter 
and thus without sampling error. 

2. The power tables were computed on the basis that n is the size of 
each of two samples and that therefore the t test would be based on 2(n- I) 
degrees of freedom. In the one-sample case, t is perforce based on only n - I 
degrees of freedom. 

Thus, if one simply used the power tables directly for d3 ' and n for the 
one-sample case, one would be presuming (a) twice as much sampling error 
with consequently less power and (b) twice the number of degrees of freedom 
with consequently more power than the values on which the tables' prepara­
tion was predicated. These are not, however, equal influences; unless the 
sample size is small (say less than 25 or 30), the effect of the underestimation 
of the degrees of freedom is negligible. On the other hand, the doubling of 
the sampling error would have a substantial effect for all values of n. How­
ever, the latter is readily compensated for. For the one-sample case, use 
the power tables with n and 

(2.3.4) 

Multiplying d3 ' by J2 {approximately 1.4) compensates for the tables' 
assumption of double the error variance. The other problem resulting from 
the use of n is that the tabled value for power presumes that the degrees of 
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freedom are 2( n - 1 ), when actually there are only n - 1 degrees of freedom. 
However, since t approximates the limiting normal distribution fairly well 
even when its degrees of freedom are as few as 25 or 30, power values based 
on double the actual degrees of freedom will not be materially overestimated 
except in very small samples. 

Seeking values ford =d3'V2 raises the troublesome problem of numbers 
intermediate between the ones tabled. However, linear interpolation between 
power values will, except in rare instances, provide approximate power 
values which will differ from the true ones by no more than one or two units. 

The value of d3 ' (not d) may be arrived at (or interpreted) through the 
equivalences with the U and r statistics (Section 2.2 and Table 2.2.1 ). It 
requires the further conceptualization that c [the "null" value of the popu­
lation mean, formula (2.3.3)] is the mean of a normal population whose 
a and size are equal to that of the population being sampled. 

In summary, for Case 3, one defines d3 ' as above and interprets it exactly 
as described in Section 2.2, but values for power are sought in the power tables 

by means ofd =d3 'V2. The resulting value is, except for very small samples, 
a very slight overestimate. 

Illustrative Example 

2.5 It can be taken as known because of extensive record keeping over 
a long period, that under standard conditions a given strain of laboratory 
rats has a mean weight gain of 70 grams from birth to 90 days. To test the 
implications of a developmental theory, an experiment is performed in which 
a sample of 60 animals is reared from birth in total darkness. The investigator 
is interested in whether, under these experimental conditions, the mean 
weight gain of a population of animals departs from the standard population 
mean of 70 in either direction, even slightly. Thus, the null hypothesis he 
tests is H0 : m = c = 70. The investigator accepts d3 ' = .20 [formula (2.3.3)] 
as a conventional operational definition of a slight departure. He uses the 
relatively lenient significance criterion of a2 = .I 0. 

In order to allow for the fact that we have only one sample mean contri­
buting to error, rather than the two which the construction of the tables 
presumes, the tables must be considered not ford 3 ', but using formula (2.3.4), 

for d =d3'V2 = .20 (1.4) = .28. Thus, the specifications for estimating 
power are 

a2 = .10, d = .28, n=60. 

In Table 2.3.6. (for a2 = .10), for row b = 60, he finds power in columns 
d = .20 and d = .30 to be .29 and .50, respectively. Linear interpolation 
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between these values yields approximate power at d = .28 of .8(.50- .29) 
+ .29 = .46. 

2.3.5 CASE 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSER­
VATIONS. Although the general one-sample case as described in Case 3 
above does not occur with much frequency in behavioral science applications, 
a special form of it appears quite often. Data are frequently gathered in 
X, Y pairs which are matched in some relevant way so that there are n pairs 
of X, Y observations. The t test of the mx- my difference proceeds with the 
paired differences, X- Y = Z. Since mx- my= m<X-Y) = mz, the null 
hypothesis that mx- my = 0, or equivalently that mx = my, is identical 
to the null hypothesis that mz = 0. This in turn means that the one-sample 
formula for d3 ' (2.3.3) has c = 0 and becomes 

(2.3.5) 

The Z subscript is used to emphasize the fact that our raw score unit 
is no longer X or Y, but Z. If the investigator is content to work with <7z 
as the standardizing unit, he can proceed to do so as described for Case 3, 

usingdz', and looking in the power tables ford =dz'Vl [formula (2.3.4) for 
Z). 

Note, however, that the t test predicated here is the one described in 
textbooks as being for matched, dependent, or correlated means. If one were 
to compute the product moment r between the X andY values for each pair 
in the population, the result would in general be a nonzero value. Indeed, 
since matching is an experimental design technique used to remove irrelevant 
sources of variance (see above, section 1.3), in practice such an r will be posi­
tive and material, say at least greater than + .30. In contrast, with indepen­
dent samples such as have been described in previous sections of this chapter, 
the random pairing of X and Y values implied would perforce yield a popu­
lation r of zero. 

Now, the <7z of the denominator in formula (2.3.4), and hence the unit in 
which the ES index dz' for the difference in matched pairs is expressed, is 
given by 

(2.3.6) - - ~ ~-- ~+ --2-2----· 
<7z- <1 x-Y- v ax <7y - raxay. 

Note that as r (the population between X and Y as paired) increases, 
az decreases. In the case of matched pairs here being considered, on the 
assumption of equal variance, i.e., <7x2 = ay2 = <12, 

(2.3.7) 

Thus, the relative size of the standardizing unit for the dz' of Case 4 
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(dependent) to the d of Case 0 (independent) is uv'2(1 - r)fu = V2(1 - r). 
In other words, a given difference between population means for matched 
(dependent) samples is standardized by a value which is V2(1-~r) as large 
as would be the case were they independent. Alternatively (and equivalently}, 
the dz' value used as an ES index for means from matched samples, when 
expressed in the same terms as for independent samples, namely a, the 
common within-population standard deviation, is l/v'2(t.=. r) larger than 
the d value for the same raw score difference in independent samples. 

Although one can treat the matched pairs in Case 3 form, the standard­
izing unit, uz, will vary in size inversely with the size of r, as shown in formula 
(2.3.7.). When no estimate of r can be made, one has no choice but simply 
to apply the Case 3 procedure to the one sample of paired differences Z, 
keeping in mind that the dz' unit is uz. With an estimate of r available, a 
preferable procedure is to use as the ES index 

(2.3.8) 

Note that this is identically the same index as the d of formulas (2.2.1) 
and (2.2.2), the difference between means standardized by the within­
population u. As was the case for d3', all the interpretive material (e.g., 
U, r, r 2) of Section 2.2 holds. However, for correct power values, the value 
located in the power tables is not d4 ', but rather 

(2.3.9) d = d4 ' 

v'I-r 

As in Case 3, this procedure leads to an overestimate of power which 
is trivial for all but small samples, since the tables assume 2(n- I} degrees 
of freedom where only n - 1 are actually available. 

The advantages of matching can now be made readily apparent. Con­
sider an investigation which is to concern itself with the question of a sex 
difference in some aptitude variable. Assume that elementary school boys 
and girls each have population u = 16, and one wishes to detect a difference 
in raw population means of 8 points, using samples of n = 40 subjects. 
Assume the test is to be performed at the two-tailed .05 level (a2 = .05). 
The relevant power table is 2.3.5. 

Case 0. Since the plan is to work with independent samples of 40 boys 
and 40 girls, we use n = 40 and 

d = lmA - mal = _!. 
0' 16 = •5 

to find power = .60. 



so 2 THE t TEST FOR MEANS 

Case 4. Instead of independent samples of boys and girls, the investi­
gator plans to draw 40 brother-sister pairs to detect the 8 point difference. 
There is the same ES, namely, 

d4' = lm.- m,l = _!. = .5. 
C1 16 

However, he estimates the r between brothers and sisters on this apti­
tude variable as .6 and in Table 2.3.5 for n = 40 and 

d4' .5 .5 
d = -= ·- = -- =. 79, 

VI-r VI- .60 .6325 

he finds power ~ .93. Thus, given the same 8 point or .5 standardized 
difference between means to detect, the use of the matched pairs design with 
an estimated matching r of .60 has resulted in power of .93 instead of only 
.60. 

Note that if r were .40 instead of .60, he would look for the value 

d= .s =~ =.65 
VI- .40 .7746 ' 

and find power~ .81 (by linear interpolation), a lesser increase because the 
matching r is smaller. See Section 11.4 for a general treatment of the relative 
power of difference and regressed difference scores. 

Dlustrative Examples 

2.6 An educational researcher has developed two different programed 
tests for teaching elementary algebra. From a high school grade, he selects 
50 pairs of pupils so that the two members of each pair have IQs within 3 
points of each other. He randomly assigns the members of each pair to the 
A and B programs, and following instruction, tests all subjects on a common 
algebra achievement test. He wishes to detect a difference [formula (2.3.8)] 

a small to medium value, using the a 2 = .05 significance criterion. It would 
not be correct to look for the value in the power table d4 ' = .40, because 
this value does not take into account the advantageous effect of matching. 
The appropriate ES for this situation is [formula (2.3.9)]: 

d = d4' = .4 
VI-r VI-r' 
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r is the population correlation between IQ-matched pairs in algebra 
achievement. It is also the population r between IQ and algebra achieve­
ment.4 From past educational research, or from the sample data (if this 
power analysis is being performed post hoc), he can estimate the population 
r as .55. Thus, 

.4 .4 
d= =-=60 

vi- .55 .6708 . . 

If he were lacking a basis for estimating r, the investigator would have 
reached the same result if he had postulated that the ES he was seeking to 
detect in terms of paired differences in the achievement test, A- B = Z 
units, was [from formula (2.3.5)) dz' = .42, so that, in Case 3 fashion, he 

would use the power tables ford = .42v2 ~ .60 [formula (2.3.4)]. 
Thus, in either instance, summarizing his specifications: 

a2 = .05, d= .60, n =50. 

From Table 2.3.5, column d = .60, row n = 50, he finds power = .84. 
Note that had the same problem been undertaken with independent 

random samples of 50 cases with the same ES, namely d = .40, power would 
be only .50 (Table 2.3.5). The effect of matching with an r of .55 makes the 
effective d equal to .60 with a resultant large increase in power (from .50 to 
.84). 

2.7 Many behavioral science researchers use the "own-control" prin­
ciple, i.e., each subject is observed under two conditions, X and Y, and 
the experimental issue is the existence of a difference between mx and my. 
Thus, X, Y constitute the paired observations and the significance test is a 
straightforward instance of Case 4. Sometimes Y and X represent "before" 
and "after" some intervening experimental manipulation whose effect on 
a dependent variable is to be scrutinized. (In their failure to control for other 
concomitants of time, such studies may be misleading.) 

Consider a study to appraise the efficacy of prescribing a program of diet 
and exercises to a group of overweight male students. The researcher gets 
from each subject his" before" weight X, prescribes the program, and checks 
the "after" weight Y 60 days later. The study employs a sample of 80 sub­
jects. The researcher wishes to know the power of a test at a 1 = .01 to detect 
a mean loss (Z = X - Y) of 4 lb where the estimate of the population 
a= 12 lb. Thus [from formula (2.3.8)], d4 ' = 4/12 = .33. He may estimate 

4 Strictly speaking, this is true only if matching on IQ had been perfect. The postulated 
matching (within 3 points) approaches closely enough to make the equation of the two 
r's substantially accurate. 
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that under these circumstances the population r of before with after weight 
would be in the vicinity of .80. Thus, his effective d [from formula (2.3.9)] 
is 

d .33 .33 
= - - = -- = .74. 

VI- .80 .4472 

Alternatively, he might have avoided the need to estimate rand reasoned 
that, considering the distribution of weight loss Z, he wanted to detect a 
mean loss of about .5 of the standard deviation of weight losses, i.e. [formula 
(2.3.5)] 

d , mz 
z =- =.5. 

uz 

To find the effective d, .5v'2 = .71, or, in this instance, about the same 
value (.74) found from the approach via formula (2.3.9). 

Summarizing the specifications: 

d=.74, n=60. 

In Table 2.3.1 (for a 1 = .01), in the row n = 60, columns d = .70 and 
.80, we find respectively power of .93 and .98 between which linear interpola­
tion gives power of approximately .95. Thus, the researcher is almost certain 
of detecting a mean loss of 4 lb at the a 1 = .01 level, with n = 60. 

Note how a relatively small d4 ' of .33 becomes a d for table entry of 
.74 which yields a high power value because of the effectiveness of "own­
control" matching. Such large matching r's are not infrequent in own­
control designs in behavioral science. 

2.4 SAMPLE SIZE TABLES 

The tables in this section use values for the significance criterion, the 
ES to be detected, and the desired power to determine the sample size. They 
would therefore be of primary utility in the planning of experiments to provide 
a basis for the decision as to how many sampling units (n) are to be used. 
Although decisions about sample size in behavioral science are frequently 
made by appeal to tradition or precedent, ready availability of data, or 
intuition (Cohen, 1965, p. 97ff), unless Type II error rate considerations 
contribute to the decision, they can hardly be rational. 

2.4.1 CASE 0: uA = u 8 , nA = n8 . As was done in Section 2.3 for the 
power tables, the use of the sample size tables is first described for the 
conditions for which they were optimally designed, Case 0, where they yield 
the sample size, n, for each of two independent samples drawn from normal 
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populations having equal variances. Their use in other cases is described 
later. Tables are used for a, d, and the desired power; 

I. Significance Criterion, a. The same values of a are provided as for 
the power tables. For each of the following a levels, a table is provided: 
a 1 = .01 (a2 = .02), a 1 = .05 (a2 = .10), a 1 = .10 (a2 = .20), a2 = .01 (a1 = 
.005), and a2 = .05 (a1 = .025). 

2. Effect Size, d. This value is defined and interpreted as above [formu­
las (2.2.1, 2.2.2)] and used as in the power tables. The same provision is 
made: .10 (.10) .80 (.20) 1.40. 

To find n for a value of d not provided, an adequate approximation is 
given by substituting in the following: 

(2.4.1) 

where n. 10 is the necessary sample size for the given a and desired power at 
d = .l 0, and d is the non tabulated ES. Round the result to the nearest integer. 5 

3. Desired Power. The sample size tables list desired values of .25, .50, 
.60, 2/3, .70 (.05), .95, .99. 

Some comment about the selection of the above values is in order. The 
.25 value is given only to help provide a frame of reference in sample size 
determination; it seems very unlikely that a behavioral scientist would nor­
mally desire only one chance in four of rejecting a null hypothesis. The values 
are about equally spaced between .50 and .99. An exception to this equality 
of power interval is the provision of power of 2/3. This was made so as to 
give the sample size at which the odds are two to one that a given d would 
be detected. 

Entries for desired power values of .99, .95, and .90 are offered. This 
makes possible the setting of Type II error risk equal to the conventional 
Type I, or a, risks of .OJ, .05, and . 10. There are conceivable research cir­
cumstances where, given an alternate-hypothetical value ofd, the investigator 
may wish to equalize his Type I (a) and Type II (b = I -power) risks. 
The tables will accommodate this demand and provide the n values to 
accomplish this aim at conventional a levels. 

5 The + 1 in the formula is optimal for tests at a 1 =.OS (a 1 = .025). Slightly greater 
accuracy is obtained if constants other than 1 are added at other a levels, as follows: 

+ 1.5 at a 1 = .01 (a1 = .005) and a 1 = .01 (az = .02), 
+ .7 at a 1 =.OS (a1 = .10), and 
+ .4 at a 1 = .10 (a1 = .20). 

These constants are empirical and were determined by averaging discrepancies over the 
range power ;:::.70, .20 ~d ~ 1.00. 
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TR!e 2.4.1 

n to detect d by t test 

• 1 •• o• <•z •. oz> 
d 

P-r .10 .20 .30 .Ito .so .60 .70 .eo 1.00 1.20 1.40 

.25 Slt7 13e 62 36 24 17 13 10 7 s .. 

.so 1083 272 122 69 Its 31 24 1e 12 9 7 

.60 1332 )34 149 es 55 38 29 22 15 11 8 
2/3 1552 382 170 97 62 .... 33 25 17 12 9 

.70 1627 408 le2 103 66 47 35 27 18 13 10 

.75 1803 452 202 114 74 52 38 30 20 14 11 

.eo 2009 503 224 127 82 57 42 33 22 IS 12 

.es 2263 567 253 143 92 64 48 37 24 17 13 

.90 2605 6S2 290 164 lOS 74 55 42 27 20 IS 

.95 3155 790 352 198 128 e9 66 51 33 23 18 

.99 4330 1084 482 272 175 122 90 69 45 31 23 

a 1 • .os fez,. .10) 
d 

P-r .10 .20 .30 .Ito .so .60 .70 .eo 1.00 1.20 1.40 

.25 189 48 21 12 8 6 5 .. 3 2 2 

.so 542 136 61 35 22 16 12 9 6 5 .. 

.60 721 181 81 46 30 21 15 12 e 6 5 
2/3 862 216 96 55 35 25 18 , .. 9 7 5 

.70 942 236 lOS 60 38 27 20 15 10 7 6 

.75 1076 270 120 68 .... 31 23 18 11 8 6 

.eo 1237 310 138 78 so 35 26 20 13 9 7 

.as 1438 360 160 91 58 .. , 30 23 15 11 8 

.90 1713 429 191 108 69 48 36 27 18 13 10 

.95 2165 S't2 241 136 87 61 45 35 22 16 12 

.99 3155 789 351 198 127 88 65 so 32 23 17 

a 1 = .10 (a 2 • .20) 
d 

Power .10 .20 .30 .Ito .so .60 .70 .eo 1.00 1.20 1.40 

.25 74 19 9 5 3 3 2 2 2 2 2 

.so 329 82 37 21 14 10 7 5 .. 3 2 

.60 471 118 53 30 19 14 10 e 5 .. 3 
2/3 586 147 6S 37 24 17 12 10 6 .. 3 

.70 6S3 163 n 41 27 19 14 11 7 s .. 

.75 766 192 85 48 31 22 16 13 8 6 .. 

.eo 902 226 100 57 36 26 19 14 10 7 5 

.as 1075 269 120 67 43 30 22 17 II 8 6 

.90 1314 329 146 82 53 37 27 21 14 10 7 

.9S 1713 428 191 107 69 48 3S 27 18 12 9 

.99 2604 651 290 163 104 n 53 41 26 18 14 
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Table 2.4.1 (continued} 

.2 = .01 c., •• 005) 
d ,_,. .to .20 .30 ... 0 .so .60 .70 .so 1.00 1.20 t.lto 

.25 72S IS) S2 1!7 )I 22 17 1) 9 7 6 

.so 1329 333 11!9 ss ss 39 29 22 IS II 9 

.60 1603 402 ISO 102 66 1!6 )I! 27 IS 13 10 
2/3 ISIO 4Sit 20) liS 71! 52 39 30 20 , .. II 

.70 1921! ltS2 215 122 79 ss .. , 32 21 IS 12 

.1s 2108 S2S 236 131! S6 60 liS 35 23 17 13 

.so 233S 586 259 I liS 9S 67 1!9 )S 25 IS , .. 

.ss 2611 6Sit 292 165 106 ]I! 55 I!) 2S 20 IS 

.90 297S 746 ))2 188 120 81! 62 liS 31 22 17 
-95 3561! S92 39S 221! '" 101 71! 57 37 26 20 

·" l!S08 120) 536 302 ,,. 1)6 100 77 so 35 26 

•z • .os c., = .o2sJ 
d ,_,. .to .20 .)0 .1!0 .so .60 .]0 .so 1.00 1.20 t.lio 

.2S 332 84 )S 22 , .. 10 s 6 s .. 3 

.so 769 193 S6 .. , 32 22 17 13 9 7 5 

.60 9SI 21!6 110 62 l!O 2S 21 16 11 s 6 
2/3 111!4 2S7 12S 73 1!7 33 21! 19 12 9 7 

.]0 123S )10 I)S 7S so 35 26 20 13 10 7 

.75 13S9 )liS ISS ss 57 l!O 29 2) IS 11 s 

.so 1571 393 175 99 6lt 45 33 26 17 12 9 

.S5 1797 4SO 201 113 73 Sl )S 29 19 ... 10 

.90 2102 526 2)1! 132 S5 59 1!4 )I! 22 16 12 
-95 2600 6SI 290 16) 105 73 51! 42 27 19 , .. 
.99 3675 920 1!09 231 I liS 103 76 ss )S 27 20 

However, in the judgment of the author, for most behavioral science 
research (although admitting of many exceptions), power values as large as 
.90-.99 would demand sample sizes so large as to exceed an investigator's 
resources. Even when, with much effort or at much cost, these large n's can 
be attained, they are probably inefficient, given the nature of statistical 
inference and the sociology of science. 

Why not seek power approaching 1.00, or equivalently, b risks close to 
zero? Why not use the simple principle, "the smaller the Type II error, the 
better"? For reasons that parallel the rejection of this principle as an opera-
tiona! principle for setting a levels. Other things equal, if a is made vanishingly 
small, power becomes quite small. Similarly, ifb is made very small (desired 
power very large), other things being equal, required sample sizes become 
very large. The behavioral scientist must set desired power values as well 
as desired a significance criteria on the basis of the consideration of the 
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seriousness of the consequences of the two kinds of errors and the cost of 
obtaining data. He cannot literally place a dollar value on the "cost" of 
each kind of error, as can the industrial quality control engineer who uses 
exactly the same formal statistical inferential procedures. He can, however, 
approximate this approach by subjectively weighing the gravity of these 
two possibilities and the cost of generating data (but see Overall & Dalal, 
1965). 

The view offered here is that more often than not, the behavioral scientist 
will decide that Type I errors, which result in false positive claims, are more 
serious and therefore to be more stringently guarded against than Type II 
errors, which result in false negative claims. The notion that failure to find is 
less serious than finding something that is not there accords with the conven­
tional scientific view. 

It is proposed here as a convention that, when the investigator has no 
other basis for setting the desired power value, the value .80 be used. This 
means that b is set at .20. This arbitrary but reasonable value is offered for 
several reasons (Cohen, 1965, pp. 98-99). The chief among them takes into 
consideration the implicit convention for a of .05. The b of .20 is chosen 
with the idea that the general relative seriousness of these two kinds of 
errors is of the order of .20/.05, i.e., that Type I errors are of the order of 
four times as serious as Type II errors. This .80 desired power convention 
is offered with the hope that it will be ignored whenever an investigator 
can find a basis in his substantive concerns in his specific research investi­
gation to choose a value ad hoc. 

Returning to the Case 0 use of the n tables and summarizing, the investi­
gator finds (a) the table for the significance criterion (a) he is using, and 
looks for (b) the standardized difference between the population means 
(d) along the horizontal stub and (c) the desired power along the vertical 
stub. These determine n, the necessary size of each sample to detect d at the 
a significance criterion with the desired power. 

Illustrative Examples 

2.8 Reconsider example 2.1 for the Case 0 use of the power tables in 
which an experimental psychologist is studying the effect of opportunity 
to explore a maze on subsequent maze-learning in rats. As described there, 
initially she wished to detect an ES of d = .50 at a2 = .05. Her plan to use n 
= 30 animals in each of her E and C groups resulted in a power estimate of 
.47. She will likely consider this value too low. Now let us assume that 
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she wishes power to be .80 and wants to know the sample size necessary to 
accomplish this. The specifications thus are 

a2 = .05, d = .50, power= .80. 

In Table 2.4.1 for a2 = .05, column d = .50, row power= .80, n ( = nc = 
nE equals 64. She will need two samples of 64 animals each to have an .80 
probability of detecting d = .50 at a2 = .05. Thus, under these conditions, 
she will have to slightly more than double the planned n of 30 per group to 
go from power of .47 to power of .80. 

If, on the other hand, she had reason to anticipate a higher d, say of .80 
(our conventional definition of a large ES), which she wished to detect with 
the same power at the same a level, then 

a2 = .05, d = .80, power= .80. 

In the same Table 2.4.1 for a2 = .05, column d = .80, row power = .80, 
she finds n = 26 animals per group. 

Alternatively, if she had reason to expect d = .20 (our conventional 
definition of a small ES), for the same significance criterion and desired 
power, the specifications are: 

a2 = .05, d= .20, power= .80. 

Again in Table 2.4.1 for a 2 = .05, column d = .20, the same row power 
= .80, n is 393 for each group. 

This example illustrates dramatically the importance of putting oneself 
in the position to estimate ES in experimental planning. Depending on 
whether one posits d = .20 or .80, for representative conditions (i.e., a2 = .05, 
power = .80), one needs two samples of 26 or 393 animals for the Case 0 
design. It seems fairly apparent that experimental planning can hardly pro­
ceed in the absence of a prior rendering of judgment about the size of the 
effect one wishes to detect. 

The researcher can, of course, reduce the n demanded by making his 
specifications less stringent with regard to either the significance level or 
the desired power (or both), if these are tolerable alternatives. 

Thus, to take an extreme case with regard to the significance criterion, he 
can both increase his a risk to .10 and further define "the existence of the 
phenomenon" in directional terms, i.e., predict that mE< me. Keeping the 
other specifications for the original problem, he has: 

d=.50, power= .80. 

In Table 2.4.1 for a 1 = .10, for column d =.50, row power= .80, he 
finds n ( = nc = nd = 36, compared with n = 64 for a 2 = .05 (same d and 
power). 
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Or, he can increase his b risk and settle for a 2:1 chance of detecting 
his assumed d = .50, i.e., 

a2 = .05, d=.50, power= 2/3. 

In Table 2.4.1 for a2 = .05, for column d = .40, row power= 2/3, he 
finds n ( = nc= nE) = 47, again compared with n = 64 for power= .80 
(same a and d). 

If he relaxes both a and desired power as above simultaneously, the 
specifications are now 

a 1 = .10, d=.50, power= 2/3. 

In Table 2.4.1 for a 1 = . 10, for column d = .50 and row power = 2/3, 
he finds n ( = nc = nE) = 24 compared with 64 for more stringent a and power 
(for the same d). 

Experimental planning will frequently involve the study of then demanded 
by various combinations of levels of a, desired power, and possibly d, with a 
final choice being determined by the specific circumstances of a given research 
(for illustration, see example 3.4 in the next chapter). If no acceptable com­
bination yields an n within the resources of the investigator, the feasibility 
of more powerful designs (e.g., Case 4 for matched pairs) should be con­
sidered. 

2.9 Consider again the circumstances of the investigation of an endo­
crinological factor in schizophrenia, presented above in example 2.2. The 
design calls for a test of the significance of the difference between independent 
means of hospitalized schizophrenics and normal controls, and the investi­
gator has large resources of patients and laboratory facilities. He anticipates 
a relatively small ES, namely d = .20, and wants to decide the necessary n 
for the research. He is prepared to use as a significance criterion a2 = .05, 
but in this instance wishes that his b (Type II) risk be of the same magnitude. 
That is, he wishes to incur no greater risk that he will fail to detect a hypo­
thetical d = .20 than the risk that he will mistakenly conclude that a differ­
ence exists when d = 0. His specifications thus are 

a2 = .05, d=.20, power = I - b = I - .05 = .95. 

In Table 2.4.1 for a2 = .05, column d = .20, row power= .95, he finds 
n ( =nA =n8 ) = 651. 

This example lends itself to illustrating the procedure of "proving" the 
null hypothesis (Section 1.5.5). Assume that this experiment is now carried 
out with n = 651 and that the investigator is prepared to consider d less than 
.20 to be negligible, hence i = d = .20. If the t test on the sample data yields 
a nonsignificant result, he can conclude that the population difference is 
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negligible with a Type II risk of b no larger than .05 since were d .20 or larg­
er, the probability of detecting it would have been at least .95. 

2.4.2 CASE I: nA # n 8 , uA = u 8 . Case I is not common when the sample 
size tables are used in experimental planning, since normally the planning 
will presume the selection of samples of equal size. Equal-sized samples 
are desirable, since it is demonstrable that with a given number of cases 
available for division into two samples for experimentation, equal division 
yields greater power than does unequal division. 

There are, however, situations in which the size of one of the two samples 
is fixed in advance by circumstances. Perhaps the resources to apply to a 
given experimental treatment are limited to some fixed number, or perhaps 
no more than a given number can be withheld for use as control subjects. 
In such instances, the fixed sample size (nF) will in general be different 
from the other sample, whose size is at the experimenter's discretion (nu). 
The tables entries, as in Case 0, are a, d, and desired power, and n is sought. 
To find nu, substitute the fixed n (nF) and then read from the table in 

(2.4:2) 

where nF = the fixed sample size, 
n = the value read from the table, and 
nu = the necessary sample size for the other sample. 

When nF < !n, a zero or negative denominator results, and the problem 
is insoluble for the given specifications. One must either increase nF (usually 
not possible) or change desired power, a, or d so as to decrease n. 

ruustrative Example 

2.10 An educational psychologist plans research which will compare 
the effectiveness of a computer-based program for teaching reading to 
illiterates with a standard lecture method. He wishes to detect a d = .30 
(i.e., between "slight" and "moderate") and is only interested in testing 
whether the computer-based method (C) yields higher criterion scores than 
the standard method (S), i.e., a directional (one-tailed) test. He sets his 
significance criterion at .05 ( = a 1) and wishes power to be .75. That is, 
if the C method is superior to the S method by d = .30, he is prepared to 
run a risk of .25 (=b) of failing to get significant results, compared to the .05 
risk he runs of concluding C's superiority when the means are equal. Now, 
if there were no restrictions of time or equipment availability, this would 
be a Case 0 problem with the specifications 
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a 1 = .05, d = .30, power= .75. 

In Table 2.4.1 for a 1 = .05, column d = .30, row power= .75, he would 
find n = (nc =n5) = 120, i.e., samples of 120 cases are needed in each group. 

But now consider the real possibility that limitations in time and avail­
ability of equipment make it impossible for him to have more than 80 subjects 
in the computer group, while he is relatively unrestricted in regard to the 
sample size for the standard group. Given the fixed nF of 80, how many 
cases does he need in the standard group (nu) to meet the same specifications? 

In formula (2.4.2), withnF = 80 and n = 120 (from Table 2.4.1 at a 1 = .05), 
he finds 

(80)(120) 
"u = 2(80) - 120 = 240· 

Thus, the specifications for a, d, and power would be met with a fixed 
sample size of 80 in the C group, if he has 240 subjects in the standard 
group. 

2.4.3 CASE 2: a A =I= a 8 , nA = n8 . The n tables are used in Case 2 in 
exactly the same way as in Case 0. The inequality of population a values 
results only in a standardization of the difference in population means by 
the root mean square of the population variances [formula (2.3.2)] instead 
of the common population standard deviation. This has no effect on the 
use of the n tables. Only d is affected, and only in its interpretation via U 
measures; its interpretation in terms of r and r 2 remain unaffected. See the 
discussion of the use of the power tables for Case 2, Section 2.3.3. 

IUustrative Example 

2.11 A clinical psychologist plans a study of the orienting reflex in 
which she will compare means of process paranoid schizophrenics (S) and 
employee controls (C). On the basis of past findings, she expects that the S 
group will show greater variability than the C group, but it is a mean differ­
ence she wishes to detect the a2 = .05level with power of .90. 

In considering setting her ES, she may proceed in either of the following 
ways (among others): 

I. She may hypothesize that the ES of S vs. C population membership 
is such that it accounts for about lOOfo of the variance of the combined pop­
ulations. She notes from Table 2.2.1 that when a~ = .109, d = . 7. Note that 
the fact that the within-population variances of Sand C are assumed to dif­
fer does not affect the validity of the r interpretation. Her specifications 
then are 
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a 2 = .05, d=.7, power= .90. 

In Table 2.4.1 for a2 = .05, column d = . 7, row power = .90, she finds n 
(=ns = nc) = 44cases. 

2. She may she the value of d = . 70 (or any other), not on the basis of 
its r2 equivalent, but directly. That is, she may hypothesize that the standard­
ized difference between the population means is . 70. Since she is assuming 
that u/ =/:. u/, the standardizing unit cannot be the common within-popula­
tion standard deviation, but is instead the square root of the mean of the 

two variances, i.e., V(u52 + uc2)/2 [formula (2.3.2)]. 

2.4.4 CASE 3: ONE SAMPLE OF n OBSERVATIONS. In using then tables 
for the one-sample t test, the only departure from Case 0 is that which was 
discussed in connection with the power tables for Case 3, i.e., the appro­
priate value of d for table entry. The reader is referred to Section 2.3.4. for 
the relevant discussion of the details. Briefly, if one is testing, with a single 
sample, the null hypothesis that the population mean has some specified 
value, H0 :m = c, and scales the ES in the usual way as a standardized 
difference, namely [formula (2.3.3)] 

d ,_m-e 
3---, 

u 

one uses the n tables for the value of d = d 3 'J2. The size of n will be 
underestimated, but only to a trivial degree, unless it is quite small (e.g., 
less than 10 or 15), when prudence might dictate using n + 1, instead of n 
cases. 

Illustrative Example 

2.12 A political scientist plans to appraise the status of the attitude 
toward the United Nations of the urban population of a new African repub­
lic. He will use an orally administered Thurstone Attitude Scale which has 
the property that a neutral response is scaled 6 (on an 11-point scale). His 
null hypothesis, then, is H0 : m = 6. Since he wishes to be able to conclude 
that the average is either "pro" or "anti," he plans a nondirectional test 
and wishes to use a stringent significance criterion, namely a 2 = .01. He 
also seeks the assurance of relatively high power, .90. Furthermore, he wants 
to be in a position to conclude that the population in question is, on the 
average, only trivially different from neutral if, when the data are in, he 
does not find t to be significant. He defines such a trivial difference (i) as one 
no greater than a departure of .10 of the population mean from 6 ( =c), 
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expressed in population standard deviation units. But this .10 value is d3 ' 

[formula (2.3.3)], the Case 3 ES measure, not d. To find d, d3' must be multi-

plied by v'2 [formula (2.3.4)]. The result is d = .10v'2 = .1414. The specifi­
cations are 

a2 = .01, d = .1414, power= .90. 
In Table 2.4.1 for a2 = .01, his d value is not tabled. Following the 

procedure of Section 2.4.1, formula (2.4.1), he finds row power= .90 and 
column d = .10, in order to find n. 10 = 2978. He then substitutes this value 
and d = .1414 in formula (2.4.1) to find 

2978 
n = 100(.1414)2 + 1 = 1490. 

Thus, he will need to draw a random sample of 1490 urban dwellers to 
assure with .90 probability the detection at the a2 = .01 level of a .10 stan­
dard deviation departure of the population m from neutrality (a value of 6). 
If he should find, when the sample data are analyzed, that t is not significant, 
he may conclude with Type II error risk b = 1-.90 = .10 that the departure 
from neutrality in the population is negligible (Section 1.5.5). 

2.4.5 CASE 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSERVA­
TIONS. Here, again, the considzration involved in using the n tables are 
exactly the same as for the power tables and involve the determination of 
d. The issues are discussed in detail in Section 2.3.5, to which the reader 
is referred. See also Section 11.2 for a more general treatment. 

Summarizing for convenience, if the investigator has no basis for esti­
mating the population matching r between the X, Y pairs, he has no recourse 
but to work with their difference, Z (=X-Y) in the fashion of Case 3. 
That is, he indexes the effect size as [formula (2.3.$)] 

with the standard deviation of the difference scores as the unit in which the 

the mean difference is expressed, and enters the n tables with d =dz:'v'2, 
using formula (2.4.1) for .. interpolation" when necessary. 

If the investigator has a basis for estimating the matching r, he can 
define [formula (2.3.8)] 

d ,_ mx-mv 
4 - ' (] 

which is exactly the same index as the d of independent samples (2.2.1) and 
(2.2.2), and use the n tables with [formula (2.3.9)] for 



2.4 SAMPLE SIZE TABLES 

d' 
d = -4---. 

v't-r 

63 

The n read from the tables [or the tables plus formula (2.4.1)] is the 
necessary number of pairs to detect dz' or d4 ' (for which we enter with d) 
at the a significance criterion with the desired power. The Case 4 n (as was 
true for the Case 3 n) is, in principle, an underestimate, but unless n is 
quite small, the degree of underestimation is so small that it can be ignored. 

Illustrative Examples 

2.13 In a child development study of maternal attitude toward children 
with cerebral palsy, data are to be gathered in the following way. Each mother 
to be selected has a child with cerebral palsy (P) and at least one other child 
within 3 years of age who is free of the disease (C). The mothers are to 
complete a series of attitude scales for each of their two children separately. 
For each scale, a comparison is planned between mp and me. Each mother's 
attitude toward her P child is "controlled" by her attitude toward her C 
child. The plan is to use a 2 = .05 as the significance criterion and power of 
.80. A conventional definition of a medium effect size, d4 ' = .50, is posited 
for each scale. Note that d.' is simply the mp- me difference, standardized 
by the common within-population standard deviation [or, if ap =F ac, their 
root mean square, a', formula (2.3.2)]. What sample size of mothers is neces­
sary for these specifications? 

For table entry, we required from formula (2.3.9) and hence an estimate 
of r, the population correlation between attitude scale scores toward P and 
those toward C of such mothers, i.e., the within mother between child pairs 
r. The investigator, drawing on relevant evidence from the research literature 
and on the judgment that all sources of individual differences in attitude 
between mothers (e.g., differences in education, personality factors, response 
style) are contributing to this correlation, estimates r (probably conserva-

tively) as .40. Thus d = .50/v'(l.:::. :4o) = .50/.7746 = .645. The specifications 
are 

a2 = .05, d = .645, power= .80. 

As will generally be the case in Case 4 applications, the necessary d 
value is not tabulated and formula (2.4.1) is used. In Table 2.4.1 for a2 = .05, 
one finds for row power= .80 in column d = .10, the n. 10 value of 1571, 
and substitutes it together with din formula (2.4.1): 

1571 
n = 100(.645)2 + I = 38.8. 
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Thus, a sample of 39 mothers is required. Note that if the research design 
had involved comparisons of the means of indepr.ndent samples of P mothers 
with comparable C mothers (or equivalently if r were zero), 64 mothers of 
each type would have been needed (for the specifications a2 = .05, power = 
.80, d = .50). 

2.14 A neuropsychologist plans an investigation of the effect of leg 
amputation on various aspects of sensory threshold and discrimination 
above the amputation (A). He plans to control each A observation by 
measurement of the amputee subject on the same area on the contralateral 
side (C). He specifies a two-tailed test with Type I error risk of .02 ( = a2) 

and Type II error risk of .10 ( = b, hence, power = . 90). In specifying the 
ES, he may reason along either of the following lines: 

I. He considers the distribution of the differences between the paired 
measures, A - C = Z. He anticipates that the mean Z value for the popula­
tion is of the order of .35 of a standard deviation of such differences (mid­
way between operationally defined small and medium ES), i.e., dz' = mz/ 
az = .35 [formula (2.3.5)]. For table entry, he requires [formula (2.3.4)] 

d = dz'v'2 = .35(1.414) = .495. His specifications thus are 

a2 = .02, d = .495, power = .90. 

In Table 2.4.1 for a 1 = .01 (a2 = .02) at row power= .90, if he is con­
tent to used= .50, he finds6 n = 105. This is the number of amputee subjects 
(i.e., pairs of observations) he needs. 

2. Alternately, he may prefer to work with the standard deviation of 
the separate measures, a ( = a A = a c) as unit, 7 and conceive his ES as [formula 
(2.3.8)] d4 ' = mA- me/a= .35 (say). He must also posit a value of the popula­
tion correlation coefficient between measures on the two limbs, r. In consider­
ing how to estimate this r, he may have information from normal (N) 
subjects that estimates this value for them as rN = .70. It seems reasonable 
to him that the effect of amputation may well be to reduce this correlation 
to a value in the range .40-.60, for his sample. To find the values of d, he 
substitutes in formula (2.3.9): 

for r = .40, 

for r = .60, 

d = .35/v'0~40) = .452, 
d = .35/v'(t-=-.60) = .553. 

6 Otherwise, he uses formula (2.4.1), for which he reads out of the table n. 10 = 2605 
and, substituting it and d = .495, finds n = 107 (or 108, see footnote 5). 

'If there is reason to believe that u4 c# uc (for example, u4 > uc is not unlikely), we 
revert to a Case 2 definition, and use [formula (2.3.2)] u' = V (ul + u~)/2 in place of u in 
the definition of d;, with no effect on what foliQws. 
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Summarizing these specifications: 

d = .452 
. 553 ' 

power= .90 . 

These d values will require the use of formula (2.4.1 ). In Table 2.4.1 for 
a 1 = .01 (a2 = .02), for row power= .90, and column d = .10, he finds 
n. 10 = 2605, and substituting 

ford= .452 (i.e., r = .40), n = 129, 
ford = .553 (i.e., r = .60), n = 86. 
Note how critical is the effect on n of the value of r posited. Since n 

varies inversely with d2 , and d2 varies inversely with 1- r, the increase in 
the required n from a smaller correlation r s to a larger one rL will require an 
increase by a factor of (I - r 5)/(l - rL), in the case above, (1 - .40)/(1 - .60) 
= 1.50, i.e., a 50% increase in n. 

This may suggest that the route to d by means ofd4 ' (which is equivalent 
to the Case 0 definition of d), because of its critical dependence on r, is 
less desirable than the previous alternative, which only requires the setting 
of ES in terms ofdz, and avoids the necessity of positing a value for r. This 
would, however, be a mistaken conclusion, since the decision about ES in 
terms of dz' carries with it an implicit value of r, as can be seen from the 
relationship [formula (2.3.7)] uz = aV2(1 - r) [where a is either the com­
mon population standard deviation or a' from formula (2.3.2)]. Thus, if 
one proceeds to d from dz' in order to avoid the estimation of r, which is 
necessary to proceed to d from d4 ', one has implicitly posited (by simple 
algebra) 

(2.3.10) ( d ')2 
r = 1-! d:' · 

Thus, if the investigator would want to set d4 ' at (let us say, for concrete­
ness) .4, but because he has no idea ofr, instead elects to set dz' at .6, he has 
in effect unwittingly assumed r to be 

i.e., a definite value. The point being emphasized is that r is inevitably a 
part of the d value, and one can estimate it either explicitly or implicitly. 
There are circumstances where the paired differences, Z, represent a 
"natural" basis of study with which the investigator has some familiarity. 
In such cases he more readily expresses the ES as dz', and the fact that an 
r is implicit in his value of d is only of academic interest. But, as we have 
seen, the use of Z to evade the estimation of r does not succeed; a definite 
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value for r is merely being posited implicitly, rather than explicitly. It appears 
obviously preferable that the researcher at least know, by means of formula 
(2.3.10), what r is being implicitly posited when he uses dz', or employ the 
usually more natural approach via d4 ' and come to terms with the problem of 
explicitly estimating r for formula (2.3.9). 

2.15 An experimenter in a psychology laboratory is organizing a study 
to compare the effects of two reinforcement schedules on trials to response 
acquisition, using white rats. The design she will employ will utilize pairs 
of animals both of which come from the same litter and are free of obvious 
defects; she will randomly assign one to the A group and the other to the B 
group. She will consider the phenomenon she is interested in to be the super­
iority of the B over the A schedule, that is, more trials for A than B, and 
moreover wants to keep her Type I risk quite small. She then chooses 
a1 = .01. The ES anticipated is moderate, as indexed by d4' = .50. On the ba­
sis of past work, she estimates the between litter-mates learning abil­
ity correlation as r = .65. Her effective d, therefore, is [formula (2.3.9)) 
.50 ...jl/(1 - .65) = .845. Finally, she wishes to have a probability of .95 of 
detecting this (assumed) large effect. Thus, summarzing, 

a 1 = .01, d = .845, power= .95. 

Recourse must be taken to formula (2.4.1). In Table 2.4.1 for a1 = .01, 
row power = .95, n. 10 = 3155 and in formula (2.4.1) 

3155 
n = 100(.845)2 + 1 = 45. 

Thus, 45 litter pairs will be needed. 

2.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 

2.5.1 GENERAL INTRODUCTION. As noted above in Section 1.5, provi· 
sion has been made in the power tables to facilitate significance testing. 
Here, our focus shifts from research planning to the appraisal of research 
results, and from the consideration of the alternate-hypothetical state of 
affairs in the population to the palpable characteristics of the sample and 
their bearing on the null hypothesis. 

Accordingly, we redefine our ES index, d, so that its elements are sample 
results, rather than population parameters, and call it d •. For all tests of 
the difference between means of independent samples, 

(2.5.1)8 

8 It has been shown by Hedges (1981) and Kraemer (1983), in the context ofthe use of d,in 
meta-analysis that the absolute value of d, is positively biased by a factor of approximately (4df 
- l)/(4df - 4), which is of little consequence except for small samples. However, because the 
relationships with t given below are purely algebraic, this in no way affects its use in significance 
testing. 
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where XA and X 8 =the two sample means, and 
s = the usual pooled within sample estimate of the popu­

lation standard deviation, 
that is, 

S = J Ici<:- XA)2 + IiXa - Xa)i, 
(2.5.2) 2 

"" +ns-
Note that we have defined s quite generally so that it will hold for all 

cases involving two independent samples, whether or not sample sizes are 
equal. 

Formula (2.5.1) should be interpreted literally for a directional (one­
tailed) test and as an absolute difference [i.e., without sign, as in formula 
(2.2.2)] for the nondirectional (two-tailed) test. 

Thus, d, is the standardized mean difference for the sample. It is simply 
related to the t statistic by 

(2.5.3) d - J"~-+~; .- t ---. 
"""a 

(2.5.4) -dJ~~n;-t- 5 ---. 

"" +ns 
The value of d, necessary for significance is called de, i.e., the criterion 

value of d,. The second column of each of the power tables 2.3, headed d c• 

carries these values as a function of n. Using these values, the investigator 
need not computet; the standardized difference between his sample means, 
d., is compared with the tabled de values for his sample size. If the obtained 
d. value equals or exceeds de, his results are significant at the a value for 
that table; otherwise, they are not significant. 

The advantages of using this approach are twofold: 

I. The value s is approximately the mea:n of the separate sample stan­
dard deviations. The latter are almost always computed, and often known 
approximately even prior to computation, so that the sample d. can be 
approximated at a glance once the sample means are determined. If such an 
approximate. value of d. is materially different from the tabulated de value, 
the significance decision can be made without any computation. Thus, the 
de values can be used for a quick check on the significance of results. 

2. A second advantage lies in the convenience of having the de values 
for many values ofn. Most t tables provide criterion values oft for relatively 
few values for degrees of freedom; each power table provides de values for 
68 entries of n between 8 and l 000. 

In general, these advantages are probably not great. They are judged, 
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however, to be useful with sufficient frequency to warrant the inclusion of 
the de values in the power tables. 

The d. concept has virtues which should be noted quite apart from its use 
in significance testing. In general, the equivalents of d in terms of non­
overlap (U), correlation (r), and proportion of variance accounted for (r2), 

described for the population in Section 2.2, also hold for the sample, subject 
to the restrictions described there and in section 2.3. One simply uses Table 
2.2.1 with de as d. The U measures will hold only to the extent to which the 
samples approach the conditions of normal distribution, equal variability, 
and equal sample size, on which these measures are predicated. The (point 
biserial) r and r 2 equivalents, on the other hand, have no such restrictions. 
Further, their systematic use as an accompaniment to significance testing 
will frequently prove illuminating and has been advocated as a routine pro­
cedure (Cohen, 1965, pp. 101-104). Finally, formula (2.5.4) makes quite 
explicit the fact that a significance decision (from t) is a function both of the 
sample effect size (how much) and n, the amount of evidence brought to 
bear on the null hypothesis. Behavioral scientists too often use evidence in 
regard to significance (e.g., t values) as arbiters with which to judge the size 
of the effect or degree of relationship (e.g., as estimates of d values and their 
equivalents). The formula starkly exposes this error. 

2.5.2 SIGNIFICANCE TESTING IN CASE 0. In Case 0, the use of the de 
values in the power tables 2.3 is quite straightforward. The investigator 
computes (or estimates) his sample de value and enters the appropriate 
power table for his a, in the row for his n ( = nA = n8), and checks to see 
whether his d. equals or exceeds the tabled de value. Whether significant or 
not, he may then wish to express his de in terms of one or more of the U 
indices, r, or r 2, using Table 2.2.1, or for greater accuracy, formulas (2.2.3)­
(2.2.6). 

IUustrative Example 

2.16 Consider the conditions stated initially for example 2.1. Whatever 
the details of his expected ES (given there as d = .50), the experiment has been 
run at a 2 = .05 with two independent experimental and control samples of 
30 cases each. He computes his sample result as a standardized difference 
between means [d., formula (2.5.1)] and finds that it equals .46. His specifica­
tions are simply 

a2 = .05, n = 30, d. = .46. 

In Table 2.3.5 for a 2 = .05 and n = 30, de =.52. Since his d, value is 
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smaller than de, his observed difference is not significant at a2 = .05. 
(He learns incidentally that with samples of 30 cases, it takes a difference 
between means of about half a standard deviation to reach significance at 
a2 = .05.) 

He may go on to refer to Table 2.2.1 [or, for greater accuracy, formula 
(2.2.6)] from which he learns that the point biserial r between E versus C 
group membership and number of trials to learning is about .22 which, 
in turn, means that about .05 ( = r 2) of the total among rat variance in 
trials is associated with group membership, in his sample. 

If, for the purpose of reporting in the literature, he wants the t value, 
it is very readily found for Case 0, where formula (2.5.4) simplifies (since 
nE =nc =n) to 

(2.5.5) 

which is here 

t = .46v15 = 1.18. 

This example can be used as an illustration of approximate "at-a-glance" 
significance decisions. Assume, instead, that he finds the following sample 
means and standard deviations (n = 30, a 2 = .05 criterion): 

XE = 10.8, Xc = 12.1, 

SE = 3.81, Sc= 4.24. 

One notes at a glance that s is approximately 4 and the difference between 
means, 1.3. The latter is only about a third of s, hence d.~ .33, clearly less 
than the de = .52 for the specified conditions. 

2.5.3 SIGNIFICANCE TESTING IN CASE I, nA =/= na. The inequality of the 
sample sizes in a t test for independent means provides no new problems 
in the use of de. Formula (2.5.2) for s, the standardizing unit for the sample 
mean difference, is written for the (more general) case which provides for 
differing values ofnA and na. In entering the tables, the value ofn to be used 
is the harmonic mean of nA and "a, which we have already described above 
when Case I was first discussed in Section 2.3.2 [formula (2.3.1)]: 

The tabulated de value for Case 1 is an overestimate, but a very slight 
one unless n' is both absolutely small (say less than 20) and much smaller 
than (nA + n8)/2 (see Section 2.3.2). 
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mustrative Example 

2.17 Reconsider the conditions of example 2.3. Assume that the experi­
ment has been performed, and the psychologists are appraising the results of 
their directional hypothesis at a1 = .05 that the new psychotherapeutic tech­
nique B (n8 = 60) yields a higher mean criterion rating than the standard 
technique A (nA = 90). Using the sample means (which differ in the pre­
dicted direction) and s, they find d. = .32 [formula (2.5.1)].They also com­
pute [formula (2.3.1)] 

n'= 

Their specifications thus are 

2(90)(60) = 72. 
90+60 

a1 = .05, n' = 72, d.= .32. 

In Table 2.3.2 for a1 = .05 at n' = 72, de = .~8. The d5 value of .32 ex­
ceeds the criterion value, so they conclude that the mean for the new method 
is significantly higher than that of the old (at a1 = .05) on the rating criteri­
on. 

Ifthey had instead computed t,.they would have found it to equal1.92. If 
they then wanted to have a d5 value (for example, to express their results in 
terms of aU value,or r, or r2), they can find it from formula (2.5.3): 

d - J9o+6o - 32 
s- 1.92 (90)(60)-. . 

Or, alternatively, if they first compute d5 and requires the t value, they 
can find it from formula (2.5.4). 

2.5.4 SIGNIFICANCE TESTING IN CASE 2: aA :f:a8 , nA = n8 . Case 2 speci­
fies that the standard deviations of the two populations are not equal. It 
is included here to stress two facts. One is that the sample standard devia­
tions are virtually never equal but that this does not matter in the relation­
ships discussed above in Section 2.5.1. ,The other is that even if the population 
standard deviations are judged to be unequal (for example, on the basis of 
a variance ratio test), the relationship between d, and t nevertheless holds, 
since it is purely algebraic, and further, that the interpretation of d. in terms 
ofr and r 2 continues to hold (but not in terms of the U indices). 

An issue not to be confused with that of the t-d,-r relationships is the 
question of the validity of the t test under conditions of population variance 
heterogeneity. As discussed above in Section 2.3.3, provided that the sample 
sizes are approximately equal, the validity of the t test is hardly affected by 
any but relatively extreme population variance discrepancies. Thus, the 
de values will remain approximately valid under nonextreme Case 2 con­
ditions. 
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Illustrative Example 

2.18 Consider again the wage survey by the labor economist of example 
2.4. When the survey of men and women workers' (n = 100) weekly wages 
is completed, he proceeds to compare their means at the prespecified a2 = .01 
level. His expected population difference u A :;t u8 is reflected in the sample, 
where one variance is about twice the other (a highly significant difference 
with n's of 100). He nevertheless proceeds to determine the d, value as (say) 
.40. His specifications are: 

n·= 100, d.= .40. 

In Table 2.3.4. (for a2 = .01) with n = 100, he finds d.= .37. He con­
cludes, at a 2 = .01, that there is a sex difference in mean wages in the popu­
lation sampled, since d. exceeds d •. Since the effect of u A =I= u8 on the validity 
of the test is trivial for large and equal samples (Scheffe, 1959, p. 340) 
his conclusion is valid. 

Note, incidentally, that the d. turned out to be smaller than the d value 
he had posited in planning the experiment (see example 2.4). His smaller d. 
is nevertheless significant because of the large power he had had against 
the ES ofd =.50, namely .82. A good reason to seek high power is, of course, 
the real possibility that the d., when found, will prove materially smaller than 
the d expected in the planning. This leaves a margin for error, either judg­
mental or sampling, in the setting of d. 

2.5.5 SIGNIFICANCE TESTING IN CASE 3: ONE SAMPLE OFn OBSERVATIONS. 

For those circumstances in which the null hypothesis takes the form: A 
single sample ofn observations comes from a normal population whose mean 
is c, one must take into account the construction of the Tables 2.3, including 
the d. values. The reader is reminded that the latter proceeded on the assump­
tion of two-sample tests, with, therefore, the sampling error variance of two 
means. Thus, it is necessary in one-sample tests to adjust the tabulated d. 
value. This proceeds very simply: To find the proper criterion value for 
one-sample tests, d.', one finds: 

(2.5.6) 

This value is an underestimate, but a very slight one unless n is less than 
30 (see Section 2.3.4). 

As for the observed d. value for Case 3, we follow the principle expressed 
in Section 2.5.1 and merely define d. as we defined d3 ' with sample values 
substituted for the population values of formula (2.3.3): 
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(2.5.7) d '= X-c 
5 • s 

The prime is used to indicate that a one-sample test is involved. The 
relationship between d.' and t as given in formulas (2.5.3) and (2.5.4) must 
be revised for one-sample tests, as follows: 

(2.5.8) d.'t=J1· 

(2.5.9) 

The first of these formulae may be useful when at has been computed and 
a standardized sample ES index is desired; the second is of use when the t 
value is needed (e.g., for reporting results in an article). 

Formula (2.5.9) [as well as formulas (2.5.4) and (2.5.5)] makes patent the 
dependence of the significance decision on both effect size in the sample 
(d.') and the amount of evidence provided by the sample (n). 

lllustrative Example 

2.19 In example 2.5, an experimenter was planning a test on the effect 
of rearing rats in total darkness on their weight gain from birth to 90 days. 
The test is of the departure, in either direction, from an established standard 
value of 70 ( =c). The sample used was of 60 cases, and the test was planned 

and performed at a 2 = .10. He finds the sample mean gain to be X = 68.8 
and the standard deviation to be s = 8.1. From formula (2.5. 7), he finds 
d.'= (-).15. His specifications are: 

a 2 =.10, n=60, d.'=.l5. 

In Table 2.3.6 for a 2 = . I 0, n = 60, he finds de = .30. Since this is a one­

sample test, he goes on to find de'= .30Vl = .21. Comparing his observed 
d 5 ' with the criterion de', he concludes that the sample mean departure from 
70 is not significant at a 2 = . 10. 

2.5.6 SIGNIFICANCE TESTING IN CASE 4: ONE SAMPLE OF n DIFFERENCES 
BETWEEN PAIRED OBSERVATIONS. The significance test of the difference 
between means of paired observations is a special case of the one-sample 
test (Case 3) where c = 0 (see discussion in Section 2.3.5). That is, the compu­
tations proceed by taking the X, Y pairs, of which there are n, and finding the 
differences, X - Y = Z. The result is a single sample of n Z observations. 
From this point one proceeds as in Case 3, the null hypothesis being 
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that the population mean of these Z values is 0. Once the sample data 
are being analyzed, the issue of the population (or sample) r between X 
and Y, discussed in the power and sample size sections on Case 4 (Sections 
2.3.5. and 2.4.5), plays no role in the computations of significance. 

For case 4, we define d.' as in formula (2.5.6), calling the variable Z 
instead of X and treating c as 0, i.e., 

(2.5.10) 

where s is the sample standard deviation of the Z values. 
Note that this is the exact sample analog of formula (2.3.5). 
Also as in Case 3, we must make the adjustment of the tables de value, 

to allow for sampling error variance of only one mean, (here, a mean differ­
ence) instead of the two on which the tables are based. This requires multi-

plying d.' by vi [formula (2.5.6)] to find the Case 4 criterion, d/. 
As in Case 3, the relationship between d.' and t as given in formulas 

(2.5.8) and (2.5.9) hold for Case 4. Thus, one can simply translate a d.' value 
into t, if the latter value is required, or a t value into d.', if one wants to 
express the size of the mean difference in the sample in standardized terms, 
that is, in terms of the standard deviation of the differences. 

Finally, and again as in Case 3, the de' value is slightly underestimated, 
but to a degree which can be safely ignored unless n is small. 

IUustrative Example 

2.20 In example 2.6, an educational researcher was planning an experi­
mental comparison of two programed texts in algebra by assigning the 
members of 50 IQ-matched pairs at random to the two texts, and, following 
instruction, testing their achievement. Assume that the experiment has 
been performed and the data marshalled for the significance test, to be per­
formed at a 2 = .05, as specified in the plans. 

The test is of the significance of the departure of the mean difference, 
----- -- -

Z = (X - Y), from zero, which is equivalent to a test of X - Y = 0. He finds 

Z = -2.78, s· (of the Z's) = 8.22, and entering these in formula (2.5.10), 
d.' = (- ).34. (Since the test is nondirectional, the negative sign does not 

enter, other than to indicate the X is less than Y.) His specifications are: 

a2 = .05, n=50, d.'= .34. 

In Table 2.3.5 for a 2 = .05, n = 50, he finds de = .40. Since this is a 

one-sample test, he needs to find de' = .40Vl = .28. Comparing his observed 
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d.' value of .34 with the criterion de' value of .28, he concludes that his depar­
ture from no difference of 2. 78 (in favour of the X program) is significant at 
a2 = .05. If a value oft is required, it can be found from formula (2.5.9) 

as t = .34V 50= 2.40. 



CHAPTER 3 

The Significance of a Product Moment rs 

3.1 INTRODUCTION AND USE 

Behavioral scientists generally, and particularly psychologists with sub­
stantive interests in individual differences in personality, attitude, and 
ability, frequently take recourse to correlational anlysis as an investigative 
tool in both pure and applied studies. By far the most frequently used statis­
tical method of expression of the relationship between two variables is 
the Pearson product-moment correlation coefficient, r. 

r is an index of linear relationship, the slope of the best-fitting straight 
line for a bivariate (X, Y) distribution where the X and Y variables have 
each been standardized to the same variability. Its limits are - 1.00 to 
+ 1.00. The purpose of this handbook precludes the use of space for a 
detailed consideration of the interpretations and assumptions of r. For this, 
the reader is referred to a general textbook, such as Cohen & Cohen (1983). 
Hays (1981), or Blalock (1972). 

When used as a purely descriptive measure of degree of linear relation­
ship between two variables, no assumptions need be made with regard to 
the shape of the marginal population distribution of X and Y, nor of the 
distribution of Y for any given value of X (or vice versa), nor of equal varia­
bility of Y for different values of X (homoscedasticity). However, when 
significance tests come to be employed, assumptions of normality and 
homoscedasticity are formally invoked. Despite this, it should be noted 
that, as in the case of the t test with means, moderate assumption failure 
here, particularly with large n, will not seriously affect the validity of signifi­
cance tests, nor of the power estimates associated with them. 

75 
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In this chapter we consider inference from a single correlation coefficient, 
r., obtained from a sample ofn pairs (X, Y) of observations. There is only one 
population parameter involved, namely r, the population correlation co­
efficient. It is possible to test the null hypothesis that the population r equals 
any value c (discussed in Chapter 4). In most instances, however, the behav­
ioral scientist is interested in whether there is any (linear) relationship 
between two variables, and this translates into the null hypothesis, H0 : 

r = 0. Thus, in common statistical parlance, a significant r. is one which 
leads to a rejection of the null hypothesis that the population r is zero. It 
is around this null hypothesis that this chapter and its tables are oriented. 
(For the test on a difference between two r's, see Chapter 4.) 

The significance test of r. may proceed by means of the t distribution, 
as follows: 

(3.1.1) 

where n is the number of (X, Y) pairs in the sample, and the appropriate 
t distribution is that for n - 2 degrees of freedom. 1 As in tests on means, 
the t criterion for rejection depends on the a (significance) level and the 
directionality of the test: 

I. If either a positive or a negative value of r. is considered (a priori) 
evidence against the null hypothesis, the test is nondirectional, i.e., two 
tailed. 

2. If the sign of r, is specified in advance, that is, if only positive (or 
only negative) correlation is deemed relevant for rejecting the null hypoth­
esis, the test is directional, i.e., one tailed. 

A word about regression coefficients. When one variable of the X, Y 
pair, conventionally Y, can be looked upon as dependent upon X, one may 
speak of the regression of Y on X. The slope of the best-fitting line for pre­
dicting Y from X, when each is in its original(" raw") unit of measurement, 
is called the regression coefficient, Bvx· Bvx is simply the unstandardized 
slope of Y on X and can be written simply as a function of r and the two 
standard deviations, ax and ay: 

(3.1.2) 
ay 

Bvx= r-; 
ax 

' In the power tables, minimum values of r. necessary for significance, given a and n, 
are provided in the criterion r (r.) column. This obviates the necessity in most instances 
of computing t from formula (3.1.1) and interpolating for df in t tables. See Section 3.5 
which describes this procedure in detail. 
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thus 

(3.1.3) 
ux 

r=Bvx-. 
O'y 
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Bvx. being the slope of the regression line, indicates how many units 
of change in Y are produced by a unit change in X, where the units are the 
"raw" values of the respective variables. In problems where such dependencies 
can be assumed, and where the units in which X and Y are measured are 
inherently meaningful (e.g., dollars, population densities), regression coeffi­
cients are often preferred to correlation coefficients. Also, regression coeffi­
cients remain constant under changes in the variability of X, while correlation 
coefficients do not. 

A test of the significance of B, i.e., that it departs from zero in the popu­
lation, is automatically provided from the test of r. A glance at formula 
(3.1.2) shows that B is zero if and only ifr is zero. 2 The researcher accustomed 
to regression formulations in the two-variable case where X, Y pairs are 
sampled need only translate his problem (including the effect size) into corre­
lation terms and proceed. (Tests on partial regression coefficients are discussed 
in Chapter 9.) 

3.2 THE EFFECT SIZE: r 

The ES index offers no difficulty here (but see Section 11.1 ). The require­
ments for an ES index include that it be a pure (dimensionless) number, one 
not dependent on the units of the measurement scale(s). The population cor­
relation co-efficient, r, serves this purpose. 

Thus, a general formulation of the power estimation problem is: One 
is going to test the significance (H 0 : r = 0) of a sample r, value at the a 
significance criterion with n pairs of observations; if the population r is 
some specified value (thus, the ES), what is the power of the test (the proba­
bility of rejecting the null hypothesis)? Tables 3.3 would be used to find the 
power value. 

Similarly, a general formulation of the sample size estimation problem 
is: One plans to test the significance (H 0 : r = 0) of a sampler. value at the 
a significance criterion and wishes to detect some specified population r 
(this being the ES); he then specifies the desired power (probability of 
rejecting the null hypothesis). How many pairs of observations, n, would 
be necessary? Table 3.4 would be used to find the value ofn. 

2 The reader may object that B is zero when ay is zero whatever the value of r. How­
ever, when ay is zero, r is indeterminate, that is, it is not meaningful to talk of correlation 
when one of the variables does not vary. 
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3.2.1 r AS PV AND THE SIZE OF CORRELATIONAL EFFECTS. One concept­
ually useful way to approach an understanding of r is to consider r 2 (as 
already noted in Chapter 2). 3 The square of the correlation coefficient is 
the proportion of variance (PV) in either of the two variables which may be 
predicted by (or accounted for, or attributed to) the variance of the other, 
using a straight-line relationship (Cohen & Cohen, 1983). Concretely, given 
an r of .50 between IQ and course grades, r 2 = .25, so that 25% of the 
variance in course grades for the members of this population may be attributed 
to differences among them in IQ. (Of course, the attribution of causality is a 
logical or scientific issue, and not one of statistical inference, as such.) Note, 
incidentally, that the descriptive use of r 2 (as that of r) is not dependent on 
assumptions of normality or homoscedasticity. 

Measures of proportion of variance are usually more immediately 
comprehensible than other indices in that, being relative amounts, they 
come closer to the behavioral scientist's verbal formulations of relative magni­
tude of association. They have the additional virtue of providing a common 
basis for the expression of different measures of relationships, e.g., standar­
dized difference between means (d), variation among means (correlation 
ratio), as well as r. 

The only difficulty arising from the use of PV measures lies in the fact that 
in many, perhaps most, of the areas of behavioral science, they turn out to 
be so small! For example, workers in personality-social psychology, both 
pure and applied (i.e., clinical, educational, personnel), normally encounter 
correlation coefficients above the .50-.60 range only when the correlations 
are measurement reliability coefficients. In PV terms, this effective upper 
limit implies something of the order of one-quarter or one-third of variance 
accounted for. The fact is that the state of development of much of behavioral 
science is such that not very much variance in the dependent variable is 
predictable. This is essentially merely another way of stating the obvious: 
that the behavioral sciences collectively are not as far advanced as the 
physical sciences. In the latter, we can frequently account for upwards of 
99% of dependent variable variance, for example, in classical mechanics.4 

Thus, when we consider r =.50 a large ES (see below), the implication that 
.25 of the variance accounted for is a large proportion must be understood 
relatively, not absolutely. 

3 Another possibly useful way to understand r is as a proportion of common elements 
between variables. The implicit model for this interpretation is not compelling for most be­
havioral science applications (behavioral genetics may be one exception). See Ozer (1985) for a 
contrary view and "Effect Size" in Chapter II for further discussion of rand r2. 

4 This is one way to understand the reason for the fact that applied statistical analysis 
flourishes in the biological and social sciences and has only limited specialized applications 
in pure physical science. 
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The question, "relative to what?" is not answerable concretely. The 
frame of reference is the writer's subjective averaging of PVs from his 
reading of the research literature in behavioral science. Since no one reads 
a stratified random probability sample of the behavioral science literature 
(whose definition alone would be no mean task), this average may be biased 
in a "soft" direction, i.e., towards personality-social psychology. sociology, 
and cultural anthropology and away from experimental and physiological 
psychology. 

The preceding serves as an introduction to operational definitions of 
"small," "medium," and "large" ES as expressed in terms ofr, offered as 
a convention. The same diffidence is felt here as in Section 2.2 (and other 
such sections in later chapters). A reader who finds that what is here defined 
as "large" is too small (or too large) to meet what his area of behavioral 
science would consider appropriate standards is urged to make more suit­
able operational definitions. What are offered below are definitions for use 
when no others suggest themselves, or as conventions. 

SMALL EFFECT SIZE: r = .I 0. An r of .) 0 in a population is indeed 
small. The implied PV is r 2 = .01, and there seems little question but 
that relationships of that order in X, Y pairs in a population would 
not be perceptible on the basis of casual observation. But is it too 
small? 

It probably is not. First of all, it is comparable to the definition of a 
small ES for a mean difference (Chapter 2), which was d = .2, implying 
point biserial r = .10 (for populations of equal size). More important than 
this, however, is the writer's conviction that many relationships pursued in 
"soft" behavioral science are of this order of magnitude. Thurstone once 
said that in psychology we measure men by their shadows. As the behavioral 
scientist moves from his theoretical constructs, among which there are hypo­
thetically strong relationships, to their operational realizations in measure­
ment and subject manipulation, very much "noise" (measurement unrelia­
bility, lack of fidelity to the construct) is likely to accompany the variables. 
(See Section 11.3 for a discussion of psychometric reliability and power anal­
ysis.) This, in turn, will attenuate the correlation in the population between 
the constructs as measured. Thus, if two constructs in theory (hence perfectly 
measured) can be expected to correlate .25, and the actual measurement 
of each is correlated .63 with its respective pure construct, the observed 
correlation between the two fallible measures of the construct would 
be reduced to .25 (.63) (.63) = .10. Since the above values are not un­
realistic, it follows that often (perhaps more often than we expect), we are 
indeed seeking to reject null hypotheses about r5 when r is some value 
near .10. 

We can offer no exemplification with known instances of population r's 
of the order of .10, by the very nature of the problem. In fields where 
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correlation coefficients are used, one rarely if ever encounters low r;s on 
samples large enough to yield standard errors small enough to distinguish 
them from r's of zero. 

MEDIUM EFFECT SIZE: r = .30. When r = .30, r 2 = PV = .09, so that 
our definition of a medium effect in linear correlation implies that 9% 
of the variance of the dependent variable is attributable to the independent 
variable. It is shown later that this level of ES is comparable to that of medium 
ES in differences between two means. 

Many of the correlation coefficients encountered in behavioral science 
are of this order of magnitude, and, indeed, this degree of relationship 
would be perceptible to the naked eye of a reasonably sensitive observer. 
If we appeal to fields which use psychological tests, we find, for example, 
that Guilford and Fruchter write that "the validity coefficient (r with criteri­
on) of a single test may be expected in the range from .00 to .60, with most 
indices in the lower half of that range [1978, p. 87]." 

When one considers correlations among tests of diverse abilities, average 
r's run rather higher than .30. However, for example, for adolescents, 
correlations among representative tests of creativity average to almost 
exactly .30, and creativity tests have an average r with IQ of just below .30 
(Getzels & Jackson, 1962, p. 20). In another area, scores on the two major 
variables of personality self-description, neuroticism (or trait anxiety) and 
extraversion correlate about - .30 in college students and in psychiatric 
populations (Jensen, 1965). In still another area, about 40% of the correla­
tion coefficients among the nine clinical scales of the Minnesota Multiphasic 
Personality Inventory which are reported in the literature are in the .25-.35 
range. Broadly speaking, it seems justifiable to identify as a medium ES in 
correlation, a value at the midpoint of the range of correlations between 
discriminably different psychological variables. 

LARGE EFFECT SIZE: r =.50. The definition of a large correlational ES 
as r = .50 leads to r 2 = .25 of the variance of either variable being asso­
ciated linearly with variance in the other. Its comparability with the defini­
tion of large ES in mean differences (d = .8) will be demonstrated below. 
Here, we may simply note that it falls around the upper end of the range of 
(nonreliability) r's one encounters in those fields of behavioral science which 
use them extensively, e.g., differential, personality-social, personnel, educa­
tional, clinical, and counseling psychology. Thus, Ghiselli writing in an 
applied psychology framework states "the practical upper limit of predic­
tive effectiveness ... [is] ... a validity coefficient of the order of .50 [1964, 
p. 61)." Guilford's figure, as noted above, is similar. We appeal to the mental­
personality-social measurement field for our criterion because of its very 
heavy use of linear correlation, both historically and contemporaneously. 
One can, of course, find higher values of r in behavioral science. Reliability 



3.2 THE EFFECT SIZE: r 81 

coefficients of tests, particularly of the equivalence variety, will generally 
run much higher. Also, if effects in highly controlled "hard" psychology 
(e.g., psychophysics) are studied by means of r's, they would frequently be 
distinctly higher than .50. But they are not generally so studied. It seems 
reasonable that the frame of reference used for conventional definitions of 
correlational ES should arise from the fields which most heavily use corre­
lations. 

The example which comes most readily to mind of this .50 level of corre­
lation is from educational psychology, which gave birth to many of the 
concepts and technology of correlation methods in behavioral science (e.g., 
Galton, Spearman). Correlations between IQs or total scores from other 
comprehensive aptitude batteries correlate with school grades at values 
which cluster around .50. In contrast, when one looks at near-maximum 
correlation coefficients of personality measures with comparable real-life 
criteria, the values one encounters fall at the order of a medium ES, i.e., 
r= .30. 

Thus, when a investigator anticipates a degree of correlation between 
two different variables "about as high as they come," this would by our 
definition be a large effect, r = .50. 

3.2.2 COMPARABILITY OF ES FOR r WITH d. It is patently desirable that 
effect sizes given a qualitative label, e.g., "medium," when studied by means 
of one design or parameter, be comparable to effects given the same label 
when studied by another. An attempt has been made for the opera­
tionally defined small, medium, and large ES to be comparable across the 
different ES parameters necessitated by the variety of tests discussed in this 
book. 

Strict comparability, defined in exact mathematical terms, poses numerous 
difficulties. First, several alternative definitions are possible. Consider PV, 
which seems a likely candidate. When a variable is measured on an ordered 
equal-interval scale, so that the variance concept is meaningful, we can express 
ES in terms of proportion of variance, as was done above and in Chapter 2. 
But when the dependent variable is a nominal scale, we can no longer define 
variance and PV but would need to move to its generalization, multi variance 
or generalized variance, and enter the world of set correlation. (We do, in 
fact, do so in Chapter 10, but the going is rough.) Or, we would need to 
invoke from information theory the even more general (and much less less 
familiar) concept of amount of information or uncertainty. If we decide 
to forego nominal scale comparability and try to use PV as a "strictly" com­
parable base for ES for interval scales, we encounter two further difficulties. 
One is that we would need to specify alternate models which would lead to 
varying PV's. For example, in Section 2.2 we defined the populations as dis­
tinct "points" and therefore, the relevant r as the point biserial r (rp). So con­
ceived, PV = r P 2 • But if our model is changed so that the populations are ad-
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jacent along a scale so that when combined they define a normal distribution 
(e.g., an adult male population defined by a median cut into "tall" and 
"short" men), the correlation with height of some dependent variable would 
be given by the biserial r(rb) (Cohen & Cohen, 1983, pp. 66-67), so that PV 
= rb 2• But since rb is greater than r P' their squares and hence their PV s would 
differ. Thus, the "same" difference between means would, depending on the 
nature of the model assumption, lead to different proportions of variance. 

A further problem would arise in that, having somehow defined strictly 
comparable ES in PV terms, when the latter were then translated into more 
familiar measures, awkward values which are not convenient multiples would 
result. Thus, if a medium PV were defined as .I 0, this would lead to d = .667 
(under the conditions defined in Section 2.2) and r = .316. 

We are prepared to be content with less formal bases for comparability 
than purely mathematical ones, utilizing the "state of the science" in relevant 
areas of behavioral science, as we have done above. But we wish to be guided 
in our operational definitions by quantitative considerations, here specifically 
correlational comparability. 

In Section 2.2, the d criteria for small, medium, and large ES were stated 
and translated into point biserial r ( r p) and r /. The use of r P assumes that 
population membership (X) is two-valued and "point" in character. The t test 
for r, which concerns us in this chapter, presumes normal distributions on 
both X andY. Comparability in PV would demand that the biserial r (rb), 
for which a normal distribution is assumed to underlie the X dichotomy, 
should be the basis of comparison. With populations of equal size (i.e., 
forming the dichotomy at the median), 

(3.2.1) 

Thus, if we translate the d criteria to r P (Table 2.2.1) and then, by means 
of formula (3.2.1) to rb, and compare the latter with the ES criteria set 
forth above for r, we find the following: 

ES d rp x 1.253 = rb r 

Small .20 .100 .125 .10 
Medium .so .243 .304 .30 
Large .80 .371 .465 .so 

Comparing the rb equivalent to the r criteria of the present chapter, 
we find what are judged to be reasonably close values for small and large ES 
and almost exact equality at the very important medium ES level. Thus, the 
terms "small," "medium," and "large" mean about the same thing in 



3.3 POWER TABLES 83 

correlation terms as we go from consideration of mean differences to con­
sideration of r's. 

3.3 POWER TABLES 

The tables in this section yield power values when, in addition to the 
significance criterion and ES = r, the sample size is specified. Thus, these 
power tables will find their greatest use in determining the power of a test 
of the significance of a sample r., after the data are gathered and the test 
is made. They can also be used in experimental planning by varying n, or 
ES ( = r), or a to determine the consequence which such alternatives have 
on power. 

Specifically, the power tables yield power values for the t test of H0 : 

r = 0, i.e., for the test of the significance of a product moment r., determined 
on a sample of n pairs of observations X, Y at the a significance criterion. 
The tables give values for a, r, and n: 

1. Significance Criterion, a. Tables are provided for the following val­
ues of a: a 1 = .01, a 1 = .05, a 1 = .10; a2 = .01, a2 = .05, a2 = .10, the 
subscripts referring to one- and two-tailed tests. Since power at a 1 is to an 
adequate approximation equal to power at a2 = 2a1 for power greater than 
.10, one can determine power at a2 = .02 (from the a 1 = .01 table), a2 = .20 
(from a 1 = .10), a 1 = .005 (from a2 = .01), and a 1 = .025 (from a2 = .05). 

2. Effect Size, ES. The ES index here is simply r, the population product­
moment correlation coefficient. In directional (one-tailed) tests (a 1), r is 
understood as either positive or negative, depending on the direction posited 
in the alternate hypotheses, e.g., H 1 : r = - .30. In nondirectional (two­
tailed) tests, r is understood as absolute, e.g., "given a level of population 
r = .30, whether positive or negative .... " 

Provision is made for r = .10 (.10) .90. Conventional definitions of ES 
have been offered above, as follows: 

small: r = .10, 
medium: r = .30, 
large: r =.50. 

3. Sample Size, n. This is the number of pairs of observations X, Y 
in the sample. Provision is made for n = 8 (1) 40 (2) 60 (4) 100 (20) 200 (50) 
500 (I 00) 1000. 

The values in the body of the table are the power of the test times 100, 
i.e., the percentage of tests carried out under the given conditions which 
will result in the rejection of the null hypothesis, H 0 : r = 0. The values are 
rounded to the nearest unit and are accurate to within ± I as tabled (i.e., 
to within .01). 
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Table 3.3.1 

Power oft test of r = 0 at a1 = .01 

,. 

n ,.c .10 .20 .30 .Ito .so .60 .70 .80 .90 

8 789 02 03 OS o8 13 22 37 6o 88 
9 750 02 03 06 10 16 27 ..,. 69 93 

10 715 02 03 06 II 19 32 52 76 96 
II 68S 02 04 07 13 22 37 S8 82 98 
12 6S8 02 04 o8 lit 25 lt2 6lt 86 99 
13 6)1t 02 OS 09 16 28 lt6 69 90 99 
14 612 02 OS 10 18 31 Sl 71t 92 * 
1S 592 02 OS 10 20 31t ss 78 9lt 
16 574 02 06 II 22 38 59 81 96 
17 sse 03 06 12 23 ... 63 84 97 
18 S43 03 06 13 25 43 66 86 98 
19 529 03 06 ... 27 46 69 89 98 

20 516 03 07 15 29 49 72 91 99 
21 503 03 07 16 31 52 75 92 99 
22 492 03 07 17 32 54 77 94 99 
23 482 03 08 18 31t 56 79 95 * 21t lt72 03 o8 18 36 59 81 95 

25 lt62 03 o8 19 37 61 83 96 
26 ltS3 03 09 20 39 63 85 97 
27 lt4S 03 09 21 ... 6S 87 98 
28 437 03 09 22 lt3 67 88 98 
29 lt30 03 10 23 ..,. 69 89 98 

30 lt23 03 10 21t lt6 71 91 99 
31 lt16 04 II 25 lt7 73 92 99 
32 lt09 04 II 26 lt9 75 93 99 
33 ItO) 04 11 27 51 76 93 99 
)It 397 04 12 28 52 78 9lt 99 

35 392 04 12 29 Sit 79 95 * 36 386 04 12 30 ss 80 95 
37 381 04 13 30 S6 82 96 
38 376 04 13 31 sa 83 96 
39 371 04 13 32 59 84 97 

Ito 367 04 ,,. 33 61 8S 97 
lt2 358 04 IS 35 63 87 98 ..,. 350 OS IS 37 66 89 98 
lt6 31t2 OS 16 39 68 90 99 
lt8 335 OS 17 ,., 70 92 99 
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Table 3.3.1 (continued) 

r 

n r .10 .20 .30 
c 

.Ito .so .60 .70 .so .90 

so 328 OS 18 42 72 93 99 * * * S2 322 OS 18 ...,. 74 94 99 
54 316 OS 19 46 76 9S * S6 310 06 20 48 78 96 
sa 30S 06 21 49 80 96 

60 300 06 21 S1 81 97 
64 290 06 23 S4 81+ 98 
68 282 06 2S S7 87 98 
72 274 07 26 60 89 99 
76 266 07 28 63 90 99 

80 260 07 29 66 92 99 
81+ 2S3 o8 31 68 93 * 88 248 08 33 70 94 
92 242 o8 34 73 9S 
96 237 09 36 7S 96 

100 232 09 37 76 97 
120 212 11 4S as 99 
140 196 12 S2 90 * 160 181+ 14 S9 94 
180 173 16 6S 96 

200 164 18 70 98 
2SO 147 23 81 99 
300 134 28 88 * 3SO 124 32 93 
400 116 37 96 
4SO 110 42 98 

soo 104 46 99 
600 09S ss * 700 088 63 
800 082 69 
900 078 7S 

1000 074 80 

* Power values below thfs point are greater than .99S. 
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Table3.3.2 

Power oft test of r = 0 at a1 = .05 

r 

n r c .10 .20 .30 .40 .so .60 .70 .eo .90 

8 621 08 12 18 26 37 52 68 8.5 97 
9 582 o8 13 20 29 42 57 74 90 99 

10 549 08 14 22 32 46 62 79 93 99 
11 521 09 15 23 35 so 67 83 95 * 12 497 09 15 25 38 54 71 87 97 
13 476 09 16 26 40 .57 74 89 98 
14 458 10 17 28 43 60 78 91 98 

1.5 441 10 18 30 45 63 81 93 99 
16 lt26 10 19 31 48 66 83 95 99 
17 412 10 19 33 so 69 es 96 * 18 400 11 20 34 52 71 87 97 
19 389 11 21 36 54 73 89 97 

20 378 11 22 37 56 75 90 98 
21 369 11 22 39 58 77 92 98 
22 360 11 23 40 60 79 93 99 
23 3S2 12 24 41 62 81 94 99 
24 344 1"2 24 42 64 83 95 99 

25 337 12 25 44 65 84 95 99 
26 330 12 26 ItS 67 as 97 * 27 323 13 26 46 68 86 96 
28 317 13 27 47 70 88 97 
29 311 13 28 49 71 89 97 

30 306 13 28 so 72 90 98 
31 301 13 29 51 74 90 98 
32 296 14 30 52 75 91 98 
33 291 14 30 53 76 92 99 
34 287 14 31 54 77 93 99 

3.5 283 14 32 ss 78 93 99 
)6 279 14 32 56 79 94 99 
37 275 15 33 57 80 9.5 99 
38 271 15 33 sa 81 95 99 
39 267 1.5 34 59 82 95 * 
ItO 264 15 35 60 83 96 
42 2.57 16 36 62 85 97 
44 251 16 37 64 86 97 
46 246 16 38 66 88 98 
ItS 240 17 39 67 89 98 
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Table 3.3.2 (continued) 

r 

n r c .10 .20 .30 .Ito .so .60 .70 .eo .90 

so 23S 17 lt1 69 90 98 * * * * S2 231 17 lt2 71 91 99 
Sit 226 1a lt3 72 92 99 
S6 222 1a .... 73 93 99 
sa 21a 19 ItS 7S 9lt 99 

60 211t 19 lt6 76 9lt 99 
6lt 207 20 4a 79 9S * 6a 201 20 so a1 96 
72 19S 21 S2 a3 97 
76 190 22 Sit as 98 

ao 1as 22 S6 a6 98 
8lt lal 23 sa aa 99 
88 176 24 59 a9 99 
92 173 24 61 90 99 
96 169 2S 63 91 99 

100 16S 26 6lt 92 99 
120 151 29 71 96 * 140 140 32 77 98 
160 130 3S a2 99 
1ao 123 3a a6 99 

200 117 41 a9 * 250 10ft 47 94 
300 09S 54 97 
350 088 59 98 
ltoo 082 6lt 99 
It SO 07a 68 * 
soo 074 72 
600 067 79 
700 062 84 
800 058 88 
900 oss 91 

1000 052 94 

* Power values below thfs pofnt are greater than .995. 
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Table 3.3.3 

Power oft test of r = 0 at a 1 = .10 

,. 

n ,.c .10 .20 .30 .40 .so .60 .70 .80 .90 

8 507 IS 22 30 41 53 67 81 92 99 
9 472 IS 23 32 44 58 72 85 95 99 

10 443 16 24 34 47 61 76 88 97 * 
11 419 16 25 36 so 65 79 91 98 
12 398 17 26 38 53 68 83 93 99 
13 380 17 27 40 55 71 as 95 99 
14 365 17 28 42 58 74 87 96 99 

IS 351 18 29 44 60 76 89 97 * 16 338 18 30 45 62 79 90 98 
17 327 19 31 47 64 81 92 98 
18 317 19 32 49 66 82 93 98 
19 3o8 19 33 so 68 84 94 99 

20 299 20 34 52 70 86 95 99 
21 291 20 35 53 72 87 96 99 
22 284 20 36 54 73 88 97 99 
23 277 21 36 56 75 89 97 * 21t 271 21 37 S7 76 90 98 

25 265 21 38 58 78 91 98 
26 260 22 39 59 79 92 98 
27 255 22 40 61 eo 93 99 
28 250 22 40 62 81 94 99 
29 245 23 41 63 82 94 99 

30 241 23 42 64 83 95 99 
31 237 23 43 65 84 95 99 
32 233 23 43 66 as 96 99 
33 229 24 44 67 86 96 99 
34 225 24 45 68 87 97 * 
35 222 24 4S 69 88 97 
36 219 24 46 70 88 97 
37 216 25 47 71 89 98 
38 213 25 48 72 90 98 
39 210 2S 48 73 90 98 

40 207 2S 49 74 91 98 
42 202 26 so 7S 92 99 
44 197 26 S1 77 93 99 
46 192 27 S3 78 94 99 
48 188 27 S4 79 94 99 
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Table 3.3.3 (continued) 

r 

n rc .10 .20 .30 .40 .so .60 .70 .so .90 

so 184 28 ss 81 95 99 * * * * 
52 181 28 56 82 96 * 
54 177 29 57 83 96 
56 174 29 sa 84 97 
58 171 30 59 as 97 

60 168 30 60 86 97 
64 162 31 62 88 98 
68 157 32 64 89 98 
72 153 33 66 90 99 
76 149 34 68 92 99 

80 14S 35 70 93 99 
84 141 36 71 94 * 
88 138 36 73 95 
92 135 37 74 95 
96 132 38 75 96 

100 129 39 76 96 
120 118 42 82 98 
140 109 46 86 99 
160 102 49 90 * 180 096 52 92 

200 091 ss 94 
2SO o81 62 97 
300 074 67 99 
350 069 72 99 
400 064 76 * 450 061 80 

soo 057 83 
600 052 88 
700 048 91 
800 045 94 
900 043 96 

1000 041 97 

* Power velues below thfs pofnt ere greeter then .995. 
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Table3.3.4 

Power of t test of r = 0 at a1 = .01 

r 

n r • 10 .20 .30 c 
.40 .so .60 .70 .so .90 

8 834 01 02 OJ OS 08 14 26 47 80 
9 798 01 02 OJ 06 10 18 J2 S6 88 

10 76S 01 02 04 07 12 22 Ito 6S 93 
11 735 01 02 04 08 IS 27 46 73 96 
12 708 01 02 OS 09 17 Jl S2 79 97 
13 684 01 OJ OS 10 20 JS ss 84 99 
1ft 661 01 OJ 06 12 22 Ito 64 87 99 

IS 641 01 OJ 06 13 25 .... 68 90 * 16 62J 01 OJ 07 14 28 ItS 73 9J 
17 606 01 03 o8 16 JO 52 77 9S 
18 S90 01 04 o8 17 33 S6 80 96 
19 S7S 02 04 09 19 J6 59 8J 97 

20 S61 02 04 09 20 38 62 as 98 
21 549 02 04 10 21 41 66 88 98 
22 SJ7 02 04 11 2J 4J 68 90 99 
2J S26 02 04 12 2S lt6 71 91 99 
24 SIS 02 OS 12 26 49 7ft 9J 99 

25 sos 02 OS 13 28 Sl 76 9ft * 26 496 02 OS 14 JO SJ 78 95 
27 487 02 06 14 Jl ss 80 96 
28 479 02 06 IS J3 57 82 96 
29 471 02 06 16 J4 60 84 97 

JO 46J 02 06 17 36 62 ss 98 
31 4S6 02 07 17 37 64 87 98 
32 449 02 07 18 39 66 88 98 
33 442 02 07 19 40 67 89 99 
34 436 02 07 20 42 69 90 99 

35 430 02 08 20 43 71 91 99 
36 424 02 08 21 4S 72 92 99 
37 417 02 08 22 47 74 93 99 
38 413 02 08 23 48 76 9ft * 39 408 02 09 24 49 77 95 

Ito 403 02 09 2S so 78 95 
42 393 OJ 09 26 53 81 96 
44 J84 03 10 28 S6 83 97 
46 376 03 11 29 S8 8S 98 
48 368 03 11 J1 61 87 98 



3.3 POWER TABLES 91 

Table 3.3.4 (continued) 

r 

n r c • 10 .20 .30 .40 .so .60 .70 .80 .90 

50 361 03 12 33 63 89 99 * * * 52 354 0) 12 34 66 90 99 
54 348 03 13 36 68 91 99 
56 341 03 14 38 70 93 99 
58 336 03 14 39 72 94 * 
60 330 03 15 41 74 94 
64 320 04 16 44 77 96 
68 310 04 17 47 80 97 
72 302 04 19 so 83 98 
76 294 04 20 53 85 98 

80 286 04 21 56 87 99 
84 280 05 23 59 89 99 
88 273 OS 24 61 91 99 
92 267 05 25 64 92 * 96 262 05 27 66 94 

100 256 06 29 69 95 
120 234 07 35 78 98 
140 217 o8 42 85 99 
160 203 09 49 90 * 180 192 11 55 94 

200 182 12 61 96 
250 163 16 73 99 
300 149 20 82 * 350 138 24 89 
400 129 28 93 
450 121 32 96 

500 115 37 97 
600 105 45 99 
700 097 53 * 800 091 60 
900 086 67 

1000 081 72 

* Power values below thfs pofnt are gr~ater than .995. 
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Table 3.3.5 

Power oft test of r = 0 at a 2 = .05 

r 

n r 
·' 0 

.20 .30 .~o .so .60 .70 .so .90 
c 

8 707 06 07 11 16 2S 37 s~ 75 94 
9 666 06 08 12 19 29 ~3 62 82 97 

10 632 06 08 13 21 33 ~9 68 87 98 
11 602 06 09 I~ 23 36 s~ 73 91 99 
12 576 06 09 16 26 ~0 sa 7a 93 99 
13 S53 06 10 17 2a " 63 a2 95 * 
1~ S32 06 10 18 30 47 66 as 96 

IS 51~ 06 11 19 32 so 70 88 98 
16 497 07 11 21 3S S3 73 90 98 
17 ~82 07 12 22 37 S6 76 92 99 
18 ~68 07 12 23 39 59 79 94 99 
19 ~56 07 13 2~ 41 62 81 95 99 

20 ~ 07 1~ 25 ~3 64 83 96 * 21 433 07 14 27 4S 66 as 96 
22 ~23 07 IS 28 ~7 69 87 97 
23 413 07 IS 29 49 71 89 98 
2~ 401t .07 16 30 51 73 90 98 

2S 396 08 16 31 53 75 91 99 
26 388 08 17 33 54 76 92 99 
27 381 08 17 ~ 56 78 93 99 
28 374 08 18 35 58 80 94 99 
29 367 08 18 36 59 81 95 99 

30 361 08 19 37 61 83 95 * 31 3SS 08 19 38 62 84 96 
32 ~9 08 20 39 64 as 97 
33 3" 09 20 ~0 65 86 97 
34 339 09 21 42 67 a7 97 

3S 334 09 21 43 68 88 98 
36 329 09 22 " 69 89 98 
37 325 09 22 4S 70 90 98 
38 320 09 23 46 72 91 99 
39 316 09 23 47 73 91 99 

40 312 09 24 48 74 92 99 
42 30it 10 25 50 76 93 99 
44 297 10 26 S2 78 94 99 
46 291 10 27 S4 80 9S * 48 2as 10 28 55 82 96 



3.3 POWER TABLES 93 

Table 3.3.5 (continued) 

r 

n r 
c 

.10 .20 .30 .40 .so .60 .70 .so .90 

so 279 11 29 57 83 97 * * * * 52 273 11 30 59 85 97 
54 268 11 31 61 86 98 
56 263 11 32 62 87 98 
58 259 12 33 64 89 98 

60 2S't 12 34 65 90 99 
64 246 12 36 68 91 99 
68 239 13 38 71 93 99 
72 232 13 39 73 94 * 76 226 14 41 76 95 

80 220 14 43 78 96 
8ft 215 15 45 80 97 
88 210 15 47 82 98 
92 205 16 48 83 98 
96 201 16 so 85 98 

100 197 17 52 86 99 
120 179 19 59 92 * litO 166 22 66 95 
160 155 24 72 97 
180 146 27 77 98 

200 139 29 81 99 
250 121t 35 89 * 300 113 lt1 9ft 
350 105 lt6 97 
ltoo 098 52 98 
It SO 092 56 99 

500 088 61 99 
600 080 69 * 700 071t 76 
800 069 81 
900 065 85 

1000 062 89 

* Power values below thfs pofnt are greater then .995. 
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Table3.3.6 

Power of ttest of r" 0 at a2 = .10 

r 

n rc .10 .20 .30 .Ito .so .60 .70 .80 .90 

a 621 11 14 19 27 3a 52 68 as 97 
9 sa2 11 15 21 30 42 S7 74 90 99 

10 549 11 15 22 33 46 62 79 93 99 
11 521 12 16 24 3S so 67 a3 95 * 12 497 12 17 25 3a Sit 71 a7 97 
13 476 12 17 27 40 57 74 89 98 
14 4S8 12 18 28 43 60 78 91 98 

15 .... , 12 19 30 45 63 81 93 99 
16 lt26 12 19 31 48 66 83 95 99 
17 412 13 20 33 so 69 as 96 * 1a 400 13 21 34 sz 71 a7 97 
19 3a9 13 22 36 S4 73 89 97 

20 378 13 22 37 S6 75 90 98 
21 369 13 23 39 sa 77 92 98 
22 360 13 2ft ItO 60 79 93 99 
23 352 14 24 41 62 a1 9ft 99 
2ft , .... 14 2S 42 6ft 83 95 99 

zs 337 14 26 .... 65 84 95 99 
26 330 14 26 45 67 85 96 * 27 323 14 27 46 68 86 96 
28 317 11t 27 47 70 88 97 
29 311 15 28 .. , 71 89 97 

30 306 1S 29 so 72 90 98 
31 301 15 29 51 71t 90 98 
32 296 15 30 sz 7S 91 98 
33 291 1S 31 53 76 92 99 
3ft 287 1S 31 Sit 77 93 99 

35 283 16 32 55 7a 93 99 
36 279 16 32 S6 79 9ft 99 
37 275 16 33 S7 ao 9S 99 
3a 271 16 34 sa 81 9S 99 
39 267 16 34 59 82 95 * 
ItO 26ft 16 3S 60 a3 96 
lt2 257 17 36 62 as 97 .... 251 17 37 6ft 86 97 
lt6 246 17 38 66 88 98 
ItS 240 18 39 67 89 98 
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Table 3.3.6 (continued) 

r 

n r • to .20 .30 c 
.40 .so .60 .70 .so .90 

50 235 t8 4t 69 90 98 * * * * 52 231 t8 42 71 9t 99 
54 226 t9 43 72 92 99 
56 222 t9 44 73 93 99 
S8 2t8 t9 4S 7S 94 99 

60 2t4 20 46 76 94 99 
64 207 20 48 79 95 * 68 201 2t 50 8t 96 
72 t9S 22 52 83 97 
76 t90 22 54 85 98 

80 t8S 23 S6 86 98 
84 t 81 24 S8 88 99 
88 176 24 59 89 99 
92 173 25 61 90 99 
96 t69 26 63 91 99 

tOO 165 27 64 92 99 
120 1St 29 71 96 * 140 140 32 77 98 
t60 130 3S 82 99 
180 123 38 86 99 

200 117 41 89 * 250 104 47 94 
300 095 54 97 
350 088 59 98 
400 o82 64 99 
4SO 078 68 * 
500 074 72 
600 067 79 
700 062 84 
800 osa 88 
900 oss 91 

1000 052 94 

* Power values below thfs pofnt are greater than .995. 
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illustrative Examples 

3.1 A personality psychologist has performed an experiment in which 
he obtained paired meas.ures on a sample of 50 subjects. One of these variables 
is a questionnaire score on extraversion, the other a neurophysiological 
measure which his theory posits should relate to the former. His hypothesis 
is formulated as nondirectional and he selects a 2 = .05 as his significance cri­
terion. Although his theory dictates a strong relationship, unreliability and 
lack of high construct validity of his measures (e.g., social desirability 
variance in his questionnaire measure) lead him to expect only a medium ES, 
hence he posits r = .30 (PV = r 2 = .09). What is the power of the test of 
the significance of r, he performs? His specifications are 

a 2 = .05, r= .30, n=50. 

In Table 3.3.5 (for a 2 = .05), column r = .30, row n =50, power= .57. 
Thus, a significance test with 50 subjects at an a 2 = .05 criterion has not much 
more than a 50-50 chance of rejecting the null hypothesis when the popula­
tion r = .30. 

It may be argued that a theory which leads to so nonobvious a prediction 
as the correlation of measured electrical events in the nervous system with 
responses to complex social and intrapersonal questionnaire items combined 
in a certain specific way, should cit least predict the direction of the association. 
Indeed it does-it predicts a p1sitive correlation. If the investigator would 
have been prepared to renounce all interest in discovering an unanticipated 
negative correlation (if such, despite his theory, should be the case), he 
would have formulated his null and alternate hypothesis directionally (H 0 : 

r ~ 0, H 1 : r = + .30) and, leaving his other conditions unchanged, may have 
instead used a one-tailed significance criterion, thus: 

a 1 =.05, r=.30, n=50. 

In Table 3.3.2 for a 1 = .05 (instead of Table 3.3.5 for a 2 = .05), column 
r = .30, row n = 50, power = .69. The use of a directional instead of a non­
directional test under these conditions (of a, r, and n) would result in his 
chance of rejecting the null hypothesis being improved from .57 to .69. 
Note that the formulation of this illustration is not intended to suggest any 
manipulation of the directionality of the test after the data are gathered. 
This is properly formulated in advance and maintained. However, these 
tables may be used in experimental planning for seeking an optimum strategy. 
This could include the decision as to whether to state the hypothesis direc­
tionally or nondirectionally and would lead to such comparisons as the above. 
If we take this to be the case in the above example, the psychologist would 
then need to decide whether, under the given conditions, the gain in power 
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from .57 to .69 is worth forgoing the possibility of concluding that r is 
negative. This decision will be made, of course, on substantive and not 
statistical grounds. 

3.2 An educational psychologist is consulted by the dean responsible 
for admission at a small college with regard to the desirability of supple­
menting their criterion for admission by using a personality questionnaire. 
The plan is to administer the test to entering freshmen and determine whether 
scores on this test (X) correlate with freshman year grade point average (Y). 
Following discussion it is determined that it can be assumed that for enter­
ing freshmen, X is not correlated with the selection criterion, so that its 
correlation with Y, if any, represents incremental validity beyond present 
selection practices. The decision is made that if r = . 10, then it is worth 
adding to the selection procedure. Each annual freshmen class numbers 
about 500. The educational psychologist first seeks to determine power under 
these conditions if the decision to proceed is made at the a 2 = .01 and a2 = .05 
criteria. Her specifications are 

a 2 = .01, r = .10, n = 500, 
a 2 = .05, r = .10, n = 500. 

In Table 3.3.4 for a2 = .01, with column r = .10 and row n = 500, power= 
.37. Then in Table 3.3.5 (for a 2 = .05) for the same column and row, 
power= .61. 

The educational psychologist finds herself dissatisfied with these results, 
since, even with the 8 2 = .05 risk, she has only a three in five chance of de­
tecting r = .10. She checks the consequence of 8 2 = .10 (Table 3.3.6) for 
these conditions and finds power = .72, the same as for 8 1 = .10 (Table 
3.3.2). Thus, even if she were to use an 8 2 = .10 criterion (which she and the 
dean judge to be too large a risk in this situation), or an 8 1 = .05 criterion 
(which would mean eliminating the possibility of a valid conclusion that r is 
of sign opposite from the one anticipated), she would have power of not 
quite three in four. Since even liberalizing conditions which are unacceptable 
in the situation yield power values not as high as desired, she turns to other 
possibilities. 

The psychologist considers an experimental plan which involves combin­
ing the data for two successive years, so that n will equal about 1000. The 
conditions now are 

a2 = .01, 
a 2 = .05, 

r= .10, 
r=.IO, 

n = 1000, 
n = 1000. 

She uses Table 3.3.4 (for 8 2 = .01), with column r = .10 and row n = 
1000, and finds power = .72. Then, she considers Table 3.3.5 (for 8 2 = .05) 
and finds power = 89. She suggests to the dean that if two successive years' 
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admissions can be used (resulting in an additional year's delay) and that if 
the alpha risk of a2 = .05 is acceptably small, that a population r = .10 
can be detected with probability of almost nine in ten. The dean might well 
find this procedure acceptable. 

It may be noted that if X has a higher correlation with Y in the popu­
lation, say r = .20, the various conditions posited above yield power values 
as follows: 

n=500 

(Table 3.3.4) &z = .01 .97 
(Table 3.3.5) &z =.OS .99 
(Table 3.3.6) a1 = .10 (a1 = .05) >.995 

n= 1000 

>.995 
>.995 
>.995 

It is obvious that if r is as large as .20, it hardly matters what alpha 
criterion is chosen, and, moreover, it would certainly not pay to delay an 
additional year to bring n from 500 to 1000. This illustrates how crucial the 
ES decision may be in experimental planning. 

3.3 An industrial psychologist is asked to perform an investigation of 
the relationship between weekly wages (which vary as a function of training 
and experience) and work output for a given job. The client's purpose is 
to decide on wage and qualification policy in a new venture. The economics 
of the situation are such that if an additional dollar a week in wage (X) 
is accompanied by as much as an additional 4 units (Y) of work output, it 
would be advantageous to hire the best qualified workers who will require the 
maximum salary. The ES is thus formulated in terms of a regression coeffi­
cient Bvx = 4. The industrial psychologist can obtain appropriate data on 
n = 120 workers and plans to perform a one-tailed test at the .01 level. The 
one-tailed test is justified on the grounds that the situation does not require 
distinguishing between a zero and a negative relationship in the null hypoth­
esis-either will lead to the same decision (see Section 1.2 and Cohen, 
1965, pp. 106-111, and ref.). 

Since the ES is a regression coefficient, in order to use Tables 3.3 and 3.4.1, 
it must be converted into r. For this, values or estimates of the relevant 
population standard deviations of X and Y are needed. Assume these 
values are available, and are ux = 8 and uy = 80. Thus, from formula (3.1.3), 

ux 8 
r=Bvx- =(4)- = .40. 

Uy 80 

Thus, the specifications are 

a1 = .01, r=.40, n = 120. 
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In Table 3.3.1 (for a 1 = .01), with column r = .40 and row n = 120, 
power= .99. Thus, if the relationship in the population is such that a dollar 
increase in weekly pay is associated with an increase of 4 work units (which, 
given uy and ux, implies r = .40), then, with n = 120, the probability that 
he will reject the null hypothesis at the a 1 = .01 criterion is .99. Note that 
these conditions happen to yield equality of alpha and beta risks at .01, a 
result which can, of course, be directly sought. For this, the sample size 
Tables (3.4. I) are somewhat more convenient. 

3.4 SAMPLE SIZE TABLES 

The tables in this section list values for the significance criterion, the 
r ( = ES) to be detected, and the desired power. The number of paired observa­
tions (X, Y) required in the sample, n, is then completely determined. These 
tables are designed primarily for use in the planning of experiments, during 
which the decision on sample size is made. As already noted (Section 2.4), 
a rational decision on sample size requires, after the significance criterion 
and ES are formulated, attention to the question: How much power (or 
how little Type II error risk) is desired? 

The use of these tables is subject to the same assumptions of normality 
and homoscedasticity as those applying to the power tables in the previous 
section (see Section 3.1 ). Tables give values for a, r, and desired power: 

1. Significance Criterion, a. The same values of a are provided as for 
the power tables. Five tables are provided, one for each of the following 
nonparenthetic a levels: a 1 = .01 (a2 = .02), a 1 = .05 (a2 = .10), a 1 = .10 
(a2 = .20), a2 = .01 (a 1 = .005), and a 2 = .05 (a 1 = .025). 

2. Effect Size, ES. The population r serves as ES. For problems in 
which the effeet size is expressed as a regression coefficient, it is converted to 
r by means of formula (3.1.3). The same provision for r is made as in the 
power tables: .10 (.10) .90. For r values other than the nine provided, the 
following formula, rounding to the nearest integer, provides an excellent 
approximation5 : 

(3.4.1) (.100)2 
n = n. 10 --;- + 2, 

where n. 10 is the necessary sample size for the given a and desired power 
at r = .10 (obtained from the table), and z is the Fisher z transformation for 

sA check on formula (3.4.1) was made by applying it to the 96 values for a 1 = .005, 
.025, .050, and .010, r = .20 (.10) .90 at power levels .50, .80, and .99. The mean discrepancy 
from the rounded values of Tables 3.4 was +.01, with a standard deviation of .46. No 
discrepancy exceeded I. I. Since rounding error alone would result in a standard deviation 
of discrepancies of .29, the approximation is more than adequate. 
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the nontabled r value. The constant .I 00 is the value of the z transformation 
when r = . 10. Discussion of the Fisher z transformation is found in many 
statistics textbooks (e.g., Hays, 1981). The next chapter contains an r to z 
transformation table (4.2.2). 

3. Desired Power. As in Chapter 2, provision is made for desired power 
values of .25, .50, .60, J, .70 (.05), .95, .99. For discussion of the basis for 
selecting these values, the provision for equalizing a and b risks, and the 
rationale of a proposed convention of desired power of .80, see Section 2.4. 

Summarizing the use of then tables which follow, the investigator finds 
(a) the table for the significance criterion (a) he is using, and locates (b) the 
population r along die horizontal stub and (c) the desired power along the 
vertical stub. n, the necessary sample size to detect r at the a significance 
criterion with the desired power, is then determined. If the r value in his 
specifications is not provided in the tables, he (a) finds the table for the 
significance criterion he is using, and (b) enters it in column r = .I 0 and row for 
desired power, and reads out n. 10• He then finds in Table 4.2.2 of the next 
chapter the Fisher z value for his r, and enters it and n. 10 in formula (3.4.1) 
to compute n. 

It should be noted that these tables are not valid under conditions of 
range restriciton such as may occur in personnel selection. See Schmidt, 
Hunter, and Urry (1976), Raju, Edwards, and LoVerde (1985), Alexander, 
Carson, Alliger, and Barrett (1985), and their references. 

Illustrative Examples 

3.4 Reconsider the conditions of example 3.1, in which a personality 
psychologist is concerned with the relationship between a neurophysiological 
measure and a questionnaire score on extraversion. As originally described, 
he wishes to detect an ES of r = .30 at a2 = .05. His plan to use n = 50 subjects 
resulted in a power estimate of .57. He will almost certainly consider this 
value too low. Assume that he wishes power to be at the conventional .80 
value and wants to know the sample size necessary for this. The specifications 
are 

a2 = .05, r= .30, power= .80. 

In Table 3.4.1 for a2 = .05, column r = .30, row power= .80, he finds 
n = 85. Thus, with these specifications of a and r, he will require 85 subjects 
to achieve power of .80. 

What if this psychologist had instead anticipated a strong relationship 
between the two variables, r =.50 (our operational definition of a large 
ES), using the same a and power: 

a2 = .05, r=.50, power= .80. 
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Table3.4.1 
n to detect r by t test 

a, = .01 (a2 = .02) 

Power .10 .20 .30 .40 .50 .60 .70 .80 .90 

.25 274 69 31 18 12 9 7 5 4 

.50 541 135 59 31 20 14 10 7 5 

.60 664 165 72 39 24 16 11 8 6 
213 758 188 82 44 28 18 13 9 6 

.70 810 201 88 48 29 19 13 9 6 

.75 897 222 97 53 32 21 14 10 7 

.80 1000 247 108 59 36 23 16 11 7 

.85 1126 278 121 66 40 26 17 12 8 

.90 1296 320 139 76 45 29 20 13 8 

.95 1570 387 168 91 55 35 23 16 10 

.99 2153 530 229 124 75 47 31 20 13 

a, = .05 (a2 = .10) 

Power .10 .20 .30 .40 .50 .60 .70 .80 .90 

.25 97 24 12 8 6 4 4 3 3 

.50 272 69 30 17 11 8 6 5 4 

.60 361 91 40 22 14 10 7 5 4 
213 431 108 47 26 16 11 8 6 4 

.70 470 117 52 28 18 12 8 6 4 

.75 537 134 59 32 20 13 9 7 5 

.80 617 153 68 37 22 15 10 7 5 

.85 717 178 78 43 26 17 12 8 6 

.90 854 211 92 50 31 20 13 9 6 

.95 1078 266 116 63 39 25 16 11 7 

.99 1570 387 168 91 55 35 23 15 10 

a, = .10 (a2 = .20) 

Power .10 .20 .30 .40 .50 .60 .70 .80 .90 

.25 39 11 6 4 3 3 3 3 3 

.50 166 42 19 11 7 5 4 3 3 

.60 237 60 27 15 10 7 5 4 3 
213 294 74 33 18 12 8 6 4 4 

.70 327 82 36 20 13 9 6 5 4 

.75 383 96 42 23 14 10 7 5 4 

.80 451 113 49 27 17 11 8 6 ~ 

.85 537 134 58 32 19 13 9 6 4 

.90 656 163 72 39 24 16 11 7 5 

.95 854 211 92 50 31 20 13 9 6 

.99 1296 320 139 76 45 29 19 13 8 
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Table 3.4.1 (continued) 

a2 = .01 (a, = .005) 

Power .10 .20 .30 .40 .50 .60 .70 .80 .90 

.25 362 91 40 23 15 11 8 6 5 

.50 662 164 72 39 24 16 12 8 6 

.60 797 198 87 47 29 19 13 9 7 
213 901 223 97 53 32 21 15 10 7 

.70 958 237 103 56 34 23 15 11 7 

.75 1052 260 113 62 37 25 17 11 8 

.80 1163 287 125 68 41 27 18 12 8 

.85 1299 320 139 76 45 30 20 13 9 

.90 1481 365 158 86 51 34 22 15 9 

.95 1773 436 189 102 62 40 26 17 11 

.99 2390 588 254 137 82 52 34 23 13 

a2 = .05 (a, = .025) 

Power .10 .20 .30 .40 .50 .60 .70 .80 .90 

.25 167 42 20 12 8 6 5 4 3 

.50 385 96 42 24 15 10 7 6 4 

.60 490 122 53 29 18 12 9 6 5 
213 570 142 63 34 21 14 10 7 5 

.70 616 153 67 37 23 15 10 7 5 

.75 692 172 75 41 25 17 11 8 6 

.80 783 194 85 46 28 18 12 9 6 

.85 895 221 97 52 32 21 14 10 6 

.90 1047 259 113 62 37 24 16 11 7 

.95 1294 319 139 75 46 30 19 13 8 

.99 1828 450 195 105 64 40 27 18 11 

The same table (Table 3.4.1 for a 2 = .05) for column r =:50, row power 
= .80 yields n = 28. 

At the other extreme of our operational definitions, suppose he hypothe­
sized r = .10 (a small ES), keeping the other specifications constant: 

a 2 = .05, r = .10, power= .80. 

In Table 3.4.1 for a 2 = .05, for r = .I 0 and power = .80, n = 783. 
Again we see how crucial anticipated ES is to the decision about sample 

size. Over our range from large to medium to small ES, the n's required go 
from 28 to 85 to 783. Reversing the argument, it is apparent that a decision 
about sample size implies some value for r (given a and desired power). 
Many experiments are undertaken as if the experimenter were anticipating a 
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very large ES, since presumably he would not bother to do the experiment 
if he thought he had a low probability of rejecting the null hypothesis. 

Another point incidentally illustrated here is the nonlinearity of the 
r scale: At any given desired power level, equal increments in r do not 
produce equal or even proportional decrements in necessary n (as is implicit 
in formula (3.4.1 ), i.e., n varies approximately as the square of the reciprocal 
of the z value). 

Experimental planning may involve preparing tables in which, for alter­
native power levels, the n's necessary under varying alternative ES values 
and alternative a criteria are assembled from Table 3.4.1 and scrutinized in 
the light of the substantive issues of the research. A possible table for this 
example is shown in Table 3.4.2. 

Table3.4.2 
An Example of a Sample Size Planning Table 

Power 

.70 .80 .90 

ES = r ES = r ES = r 
.20 .30 .40 .20 .30 .40 .20 .30 .40 

a1 = .01 201 88 48 247 108 59 320 139 76 
a1 = .05 117 52 28 153 68 37 211 92 50 
a1 = .10 82 36 20 113 49 27 163 72 39 
a2 = .01 237 103 56 287 125 68 365 158 86 
a2 = .05 153 67 37 194 85 46 259 113 62 

An experimenter with such a table before him is in a position to make a 
choice of an experimental plan which is consonant both with his knowledge 
and informed hunches of his substantive field and with statistical analytic 
issues. Thus, he might decide after reviewing the table that he is prepared to 
expend the money and effort involved in running 85 or 86 subjects, but 
would prefer the 85 subjects called for when he posits r = .30 at power = .80 
for 8 2 = .05 rather than the 86 called for when, with more stringent 8 2 = .01 
and greater power= .90, he must posit r = .40; he may not consider the risk 
of assuming r so high worth the a and power advantage. He may consider 
least desirable the plan which calls for n = 82, which allows for a distinctly 
smaller ES orr= .20, but at the cost of less power (.70) and a large, one­
tailed Type I risk (a1 = .10) or equivalently an even larger two-tailed Type I 
risk (a2 = .20). 
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3.5 A social psychologist is planning an experiment in which college 
students selected with regard to a personality questionnaire measure (Y) 
will be subjected to various alternative communications in a study of atti­
tude change. Befor~ this is undertaken, however, he considers it important 
that it be demonstrable that his measure (Y) not be related to a questionnaire 
measure of social desirability (X). He finds himself in the apparent position 
of having to prove the null hypothesis that r = 0, which is formally impossible. 

However, instead of demanding of himself the impossible proof that 
r = 0, he may revise this to an attempt to demonstrate that r is trivially small, 
which is probably all that is ever meant by "no" relationship in behavioral 
science (see Section 1.5.5). He may consider an r no greater absolutely than 
.10 as meeting this criterion in this context. It now becomes possible to 
mount an experiment from which the conclusion that r is trivially small may 
properly be drawn. He sets up as the ES he wishes to detect r = .10. To assure 
himself a good chance of detecting this value if it should obtain, he demands 
relatively high power, say .90. Assume he is prepared to run a large risk that 
he will mistakenly reject r = 0 by setting a 2 = .10. He now seeks then which 
will satisfy these specifications, which, summarized, are 

r = .10, power= .90. 

Table 3.4.1 for a1 = .05 (a2 = .10), for column r = .10, row power= .90, 
yields n = 854. (Since both X and Y are obtained by group procedures, this 
large sample may well be within his resources. 6 ) 

Assume that the data are collected and he finds r, = .04, which is not 
significant at a2 = .10. He can conclude that the population r is effectively 
zero. This is because, if the population r is as large as .I 0, it is unlikely 
(b = I -power= I - .90 = .10) that he would have failed to find r. signifi­
cant. 

In this way, experiments can be organized which can accomplish what is 
really sought when we attempt to "prove null hypotheses." What we have 
done instead is to mitigate the null hypothesis to mean "trivially small" and 
set up this small value as the ES (alternate hypothesis) in an experiment 
which has enough power to detect it. If we then fail to reject the literal null 
hypothesis, we can conclude that the effect is negligible. 

6 An alternative design for the overall study, which does not depend on this r being 
trivially small (but makes other assumptions), would be a factorial design (Y levels by 
communications) analysis of covariance in which the attitude change measure would be 
the dependent variable and the social desirability control measure (X) would be the 
covariate or "adjusting" variable. See Chapter 9. 
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3.6 A research clinical psychologist is preparing an investigation of 
rate of decay of the orienting reflex (OR) in various psychopathological 
patient groups. An issue arises as to whether the OR is appreciably related to 
amount of confusion as rated by trained observers (C). In the context of the 
study, she decides that if the proportion of variance in OR associated with C 
is as large as .10, she wants to perform a preliminary experiment at the 
8 2 = .1 0 level which will have power of . 90 to detect it. Since PV = r = .1 0, 
ES =r = .../.10 = .32, a value not provided in Table 3.4.1. She thus takes 
recourse to formula (3.4.1), which requiresn. 10 (from Table 3.4.1 for a2 = .10) 
and z, the Fisher z transformation of an r of .32. The latter is found in 
Table 4.2.2 of the next chapter to be z = .332. n. 10 is found in Table 3.4.1 
for a2 = .10 in column r = .10, row power = .90, as 854. Entering these val­
ues in formula (3.4.1), 

( 100)2 
n = 854 :332 + 2 = 79.5. 

Thus, if she is to have a .90 probability of detecting r = .32 (PV = r = 
.10) at the 8 2 = .10 level, she will need a sample n of 80 cases. 

If, on reconsideration, she decides she would prefer to use more stringent 
8 2 = .05level and is prepared to operate with .85 power to detect the same PV 
= .1 0, all that changes is then. 10 value. She uses Table 3 .4.1 for 8 2 = .05, r = 
.1 0, power = . 85, and finds n. 10 = 895. Substituting in formula (3 .4.1 ), 

( 100)2 
n = 895 :332 + 2 = 83.1, 

a slightly larger value. 

3.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING OF r 

Although the major purpose of this handbook is the exposition and facili­
tation of power analysis, the power tables contain criterion values of the 
ES in the sample necessary to reach statistical significance. These values 
facilitate the testing of null hypotheses when the sample results are deter­
mined. 

The power tables in .this chapter (Tables 3.3.1-3.3.5) contain, in the rc 
column, the sampler, necessary to attain the significance level of the table for 
the sample size of the row in which it appears. The rc is taken as absolute 
(of either sign) for nondirectional (two-tailed) tests, and as of the appropriate 
sign in directional (one-tailed) tests. These values are of the same kind 
as appear in some statistical texts, but provide many more values, both for 
a and forn. 
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Ulustrative Examples 

3.7 Consider the analysis of the data arising from the experiment relating 
extraversion to a neurophysiological measure given in example 3.1. Assume 
that the data have been collected as planned, and the sample '• is found to 
equal - .241. The specifications for the significance test are 

a2 = .05, n=50, '· =- .241. 

Table 3.3.5 (for a 2 = .05) is used for n =50, and the rc value is found to 
equal .279. Since .241 (the sign is ignored because the test is two-tailed) is 
smaller than rc, the null hypothesis is not rejected. 

3.8 Reconsider the condition of example 3.2, where the validity of a 
personality questionnaire to predict freshman grade point average is under 
study. Assume that prior to data collection, the decision is made to test the 
null hypothesis at a2 = .05 and n = 500. When the data are collected, '• is 
found to equal .136. Thus, 

a2 = .05, n = 500, '· = .136. 

In Table 3.3.5 (for a2 = .05) at n = 500, the criterion value rc is found to 
be .088. Since '• exceeds this, the null hypothesis is rejected, and it is con­
cluded that there is a (nonzero) relationship between the questionnaire meas­
ure and grade point average. 

3.9 The industrial psychologist in example 3.3 designed an experiment 
using 120 paired observations to determine whether a regression coefficient 
of wages on work unit output was significant at a 1 = .01. In that example, 
it was demonstrated how the regression coefficient could be converted to an 
r and the tables of this chapter could be applied. In planning, his alternate 
hypothesis was r = .40. When the sample data were analyzed, the '• was 
found to equal + .264. The following specifications, then, are the conditions 
for his test of the null hypothesis that population r = 0: 

a 1 = .01, n = 120, '• = + .264. 

He uses Table 3.3.1 (for a 1 = .01) at row n = 120 and finds that rc = .212. 
Since his sample '• exceeds the a 1 = .01 criterion value .212, and is of the 
proper sign (since the test was directional), the null hypothesis is rejected. 

Note that rejecting H0 : r = 0 means rejecting H0 : B = 0, i.e., if the correla­
tion is not zero, neither is the regression coefficient (as discussed in Section 
3.1). 

Note, too, that although the sample '• of .264 is much smaller than the 
anticipated population r of .40 which figured in the experimental planning, 
it is nevertheless significantly different from zero. {This comes about because 
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the power of the experiment to detect an r = .40 was very high, .99.) The 
rejection of the null hypothesis does not warrant the conclusion that the 
specified alternate hypothesis (anticipated ES) is true, only that the null 
hypothesis is false (subject of course to the Type I risk). See Cohen (1973) in 
this regard. 



CHAPTER 4 
Differences between Correlation 
Coefficients 

4.1 INTRODUCTION AND UsE 

This chapter is concerned with the testing under various specified con­
ditions of hypotheses concerning differences between population correlation 
coefficients. The previous chapter was devoted to a frequently occurring 
special case of this issue, namely, the difference between a population r and 
zero. In the present chapter, other cases are considered: the difference between 
two population r's when a sample is available from each (Cases 0 and I), and 
the difference between a population r and any specified hypothetical value 
(Case 2). 

Interest in relationships in behavioral sciences transcends the simple 
question of whether a relationship exists (Chapter 3). Whether the degree of 
relationship between two variables is greater in one natural population or 
given experimental condition than it is in another, is an issue that arises with 
some frequency. A related issue involves the question of whether, in a popula­
tion or condition, the degree of relationship differs from some specified value, 
not necessarily zero. Tests of these issues are available through Fisher's z 
transformation of r (e.g., Cohen & Cohen, 1983, pp. 53-55, 62; Hays, 1981, 
466-467; Blalock, 1972, 401-407), and the power analyses in this chapter re­
late to these tests. 

The above informal statement requires closer specification. By "relation­
ship," linear correlation indexed by the Pearson product-moment correlation 
coefficient, r, is intended. The usual normality and homoscedasticity assump­
tions are formally assumed for the r's involved (Cohen & Cohen, 1983), 
but even with considerable departure from these assumptions, the validity of 

109 
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tabled a and power values is not greatly affected, particularly for large 
samples. 

The material in this chapter will be organized into "cases," according to 
the specific hypothesis and sample(s) employed: 

Case 0. r. values from equal size samples to test r1 = r2 • 

Case 1. The same hypothesis, but n 1 =I= n2 . 

Case 2. One sample drawn from a population to test r =c. 

A word about differences between independent regression coefficients. As 
such, the procedures and tables of this chapter do not provide a basis for 
power analysis of the test of H 0 : 8 1 -82 = 0. (Note, however, that if the 
standard deviations of X andY can be assumed equal over the two popula­
tions, the test of the equality of r's is equivalent to the test of equality of 8's.) 
The more general test can be analyzed by the method of Chapter 9. 

4.2 THE EFFECT SIZE INDEX: q 

The detectability of a difference in magnitude between population r's is 
not a simple function of the difference. That is, if we were to define j = r 1 - r 2 

and try to use j as our ES, we would soon discover that the delectability of j, 
under fixed conditions of a and n, would not be constant, but would depend on 
where along the r scale the difference j occurred. As a concrete example, when 

I. r 1 =.50 and r 2 = .25, j =.50- .25 = .25; and when 

2. r 1 = .90 and r 2 = .65, j = .90- .65 = .25 also. 

But for these two equal differences of j = .25, given a2 = .05 and n = 35 (for 
example), the power to detect the first difference (.50- .25) is only .22, while 
the power for the second (.90- .65) is .80. Thus, r does not supply a scale of 
equal units of detectability, and so the difference between r's is not an appro­
priate ES index. 

The Fisher z transformation of r provides a solution to the problem. 
When r's are transformed by the relationship 

(4.2.1) 
l+r 

z= !log.--, 
1-r 

equal differences between z's are equally detectable. Thus, we define as our 
ES index 

(4.2.2) q = Zt- Z2 

=I Zt- z2l 
(directional) 

(nondirectional). 
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Thus, unlike r 1 - r 2 , z 1 -z2 =q gives values whose delectability does not 
depend on whether the z's (and hence the r's) are both small or both large. 
The power and sample size tables of this chapter provide entry for q = .10 
(.JO) .80 (.20) 1.40. 

To facilitate the conversion ofr1 -r2 to z 1 -z2 =q values, Tables 4.2.1 
and 4.2.2 have been provided. Table 4.2.1 yields q values as a function of 
r 1 - r 2 ; Table 4.2.2 is the usual r to z transformation table. 

Table 4.2.1 

r1 values as a function of r1 and Q = z1 - z1 

q = z1 - z2 

r2 .10 .20 .30 .40 .so .60 .70 .so 1.00 1,2() 1.40 

.oo 10 20 29 38 46 S4 60 66 762 834 88S 

.os IS 2S 34 42 so S7 64 69 782 848 896 

·' 0 
20 29 38 46 S4 60 66 72 801 862 90S 

.IS 2S 34 42 so S7 64 69 74 at a a74 914 

.20 29 3a 46 S4 61 67 72 76 a34 886 922 

.2S 34 43 so sa 64 69 74 7a a so 897 930 

.30 39 47 S4 61 67 72 77 ao a64 907 937 

.3S 43 Sl sa 64 70 7S 79 a2 a7a 916 943 

.40 4a ss 62 68 73 77 at 84 890 92S 949 

.4S S3 S9 66 71 76 79 a3 86 902 933 9SS 

.so S7 63 69 74 7a 82 as 87 914 941 960 

.ss 62 67 73 77 81 84 87 89 924 949 96S 
.60 66 71 76 80 83 86 88 90 93S 9S6 970 
.6s 70 7S 79 83 86 88 90 92 944 962 97S 
.70 75 79 82 as 88 90 92 93 953 968 979 

.1s 79 83 as 88 90 92 93 94 962 974 983 

.so 83 86 89 90 92 94 9S 96 970 9aO 987 .as 88 90 91 93 94 9S 96 97 978 98S 990 

.90 92 93 94 9S 96 97 97 98 986 990 994 

.9S 96 97 97 98 98 98 99 99 993 99S 997 

Table4.2.1 is generally more convenient for use in power analysis and when 
r 1 and r 2 are of the same sign. Assume both positive and r 1 >r2 • Given r 2 , 

the smaller, read across tor 1, the larger. When r 1 is found, it is used to deter-
mine q, the column heading, which is the difference between the z transforma-
tions of the r's, i.e., q = z 1 - z2 • For example, if you wished to detect a differ-
ence between population r's of .25 ( = r 2) and .50 ( = r 1), the table provides the 
difference q between their respective z values, as follows: Locate in the first 



111 4 DIFFERENCES BETWEEN CORRELATION COEFFICIENTS 

Table4.2.2 

Transformation of Product Moment r to z 

r z z z z 

.00 .000 .25 .255 .50 .549 .75 0.973 

.01 .010 .26 .266 .51 .563 .76 0.996 

.02 .020 21 .277 .52 .576 .77 1.020 

.03 .030 .28 .288 .53 .590 .78 1.045 
,04 .040 29 .299 .54 .604 .79 1.071 

.05 .050 .30 .310 .55 .618 .80 1.099 

.06 .060 .31 .321 .56 .633 .81 1.127 

.07 .070 .32 .332 .57 .648 .82 1.157 

.08 .080 .33 .343 .58 .662 .83 1.188 

.Q9 .090 .34 .354 .59 .678 .84 1.221 

.10 .100 .35 .365 .60 .693 .85 1.256 

.11 .110 .36 .377 .61 .709 .86 1.293 

.12 .121 .37 .388 .62 .725 .87 1.333 

.13 .131 .38 .400 .63 .741 .88 1.376 

.14 .141 .39 .412 .64 .758 .89 1.422 

.15 .151 .40 .424 .65 .775 .90 1.472 

.16 .161 .41 .436 .66 .793 .91 1.528 

.17 .172 .42 .448 .67 .811 .92 1.589 

.18 .182 .43 .460 .68 .829 .93 1.658 

.19 .192 .44 .472 .69 .848 .94 1.738 

20 .203 •. 45 .485 .70 .867 .95 1.832 
.21 213 .46 .497 .71 .887 .96 1.946 
.22 224 .47 .510 .72 .908 .97 2.092 
.23 .234 .48 .523 .73 .929 .98 2.298 
24 .245 .49 .536 .74 .950 .99 2.647 
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column the value r 2 = .2S, then read across to r 1 = .SO, and at the top of the 
::olumn, find q = .30. 

Since one cannot have both convenient multiples of . 10 for q and sim­
ultaneously convenient multiples of .05 for both r 1 and r 2 , the use of Table 
4.2.1 may require interpolation in q. Thus, for r 1 = .2S, r 1 = .60, entry in the 
row for r 2 = .2S yields q = .40 for r 1 =.58 and q =.SO for r 1 = .64. Linear· 
interpolation gives the approximate value ofq = .433. 

Alternatively, for exact values of q, Table 4.2.2 may be used to locate 
r, = .60 and r2 = .2S and their respectivez values found: z 1 = .693, z 2 = .2SS. 
Then, q = .693 - .2SS = .438. Note that in either case, interpolation would be 
needed when this nontabled q value is used in the power tables (but not for 
sample size determination 1 ). 

Table 4.2.2 would also be used when r 1 and r 2 are of different sign. For 
example, for r 1 = + .60 and r 2 = - .2S, the respective z values are found from 
Table 4.2.2 as z 1 = +.693 and z2 = -.2SS. Then q =z1-z2 = +.693-
(- .2S5) = .948. 

Finally, Table 4.2.2 will be necessary to find q5 when the power tables are 
used for significance testing, as described in Section 4.S. 

In practice, the need to use nontabled values ofq in power and sample size 
determination will not arise frequently. This is because one rarely has so 
highly specified an alternate hypothesis in terms ofr1 and r 2 values that one 
must find power or sample size for a value of q which is not tabled. A less 
exact specification of the r 1 - r 2 difference permits the use of the nearest 
tabled value ofq in Table 4.2.1 and the later tables of this chapter. Indeed, 
the even less exact procedure of defining q as "small," "medium," or "large" 
with the operational definitions proposed below will suffice for many purposes. 

4.2.1 "SMALL," "MEDIUM," AND "LARGE" DIFFERENCES IN CORRELA· 
TION. To provide the behavioral scientist with a frame of reference in which to 
appraise differences in degree of correlation, we attach specific values of q to 
the adjectives "small," "medium," and "large" to serve as operational 
definitions which are offered as conventions. This conforms to the general 
plan which has been followed with each type of statistical test in this hand­
book. Again, the reader is urged to avoid the use of these conventions, if he 
can, in favor of exact values provided by theory. However, it is less likely here 
than, say, in testing differences between means, that contemporary theory will 
lead to exact alternative-hypothetical values of q. 

EQUAL UNITS AND AMOUNTS OF RELATIONSHIP. Differences in "amounts" 
of relationship expressed in Fisher z's, i.e., q values, are not generally 

1 As will be seen below, determining n from the sample size table (Table 4.4.1) requires 
no interpolation. For nontabled values of q, formula (4.4.1) is used. 
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familiar to behavioral scientists. Indeed, the intuitive concept "amount" 
of relationship requires specification for it to be useful. It is frequently 
pointed out in textbooks in applied statistics that r is an index number, 
not a measurement on a linear scale of equal units, and that in consequence 
equal changes in r do not represent equal changes in amount of relationship 
at different points along the range of possible values. (It has already been 
stated above that equal differences in population r's are not equally detect­
able.) 

There are, however, simple functions ofr which more closely accord with 
intuitive notions about amounts of relationship so that differences in these 
functions are equal in some acceptable sense. 

One of these functions has already been encountered. Given an r for a 
population of X, Y pairs, r 2 , the "coefficient of determination," is the propor­
tion of variance (PV) in either variable which is linearly accounted for by the 
other. Thus, the quantity r /- r/ represents amount of change in the pro­
portion of variance accounted for; equal amounts ofPV change can be mean­
ingfully understood as equal amounts of change in amount of relationship, 
anywhere along the r scale. In this sense, the r 1, r 2 pairs .38, .10 and .88, .80 
represent equal differences in amount of relationship, since in both pairs, 
r 12 - r 2 2 = .134-the larger r 1 of each pair accounts for 13.4% more variance 
than the smaller; similarly the pairs .60, .00 and .92, .70 (r12 - r/ = .36). 

Another of those conversion functions is the complement of the coefficient 
of alienation, 1 - vi-= r 2: expressed as percent and called E, the "index of 
forecasting efficiency" (Guilford & Fruchter, 1978, pp.356-358). E indexes 
the amount of reduction in errors of prediction relative to the case where r = 
0, when errors of prediction are measured by their standard deviation about 
the linearly predicted value. This standard deviation, called the "standard er­
ror of estimate," is reduced as r increases, and when r = ± 1, becomes zero, 
so that E = 100%. When a pair of r's is converted to a pair of E's, the index 
E1 - E2 , in the sense of amount of reduction in error standard deviation, 
represents another meaningful rendition of the concept "differences in 
amount of relationship" which is independent of where on the r scale the 
difference occurs. In this sense, the r 1 , r 2 pairs .38, .10 and .53, .40 represent 
(approximately) equal differences in amount of relationship, since in both 
pairs, E 1 - E2 = 7 %-the larger r 1 of each pair results in an additional 7% 
reduction of standard error of estimate over the smaller r; similarly the pairs 
.50, .25 and .64, .50 (where E1 - E2 = 10%). 

The difference functions r/ -r/ and E1 - E2 are not equivalent, yet 
each offers a reasonable rendition of"equal differences in amount of relation­
ship." Our ES index, q =z1 -z2 was chosen on the criterion of equal detect­
ability, rather than equal amounts. Fortunately, over the most frequently 
encountered values of the correlation scale, equal q values yield not grossly 
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unequal values of either r 12 - r 2 2 or E 1 - E2 . Thus equal detectability over 
much of the correlation scale represents approximately equal "differences in 
amount of relationship" as rendered either by difference in proportion of 
variance accounted for or by percent reduction in the standard error of 
estimate. In the description of our operational definitions of "small," 
"medium," and "large" q values, each will be interpreted in the latter terms 
and the range of approximate constancy will be described for each. 

SMALL EFFECT SIZE : q = .10. A small difference between correlations 
is defined as q = .10. The following pairs of r's illustrate this amount of 
difference: .00, .10; .20, .29; .40, .48; .60, .66; .80, .83; .90, .92; .95, .96 
(Table 4.2. 1). 

When the smaller r 2 falls between .25 and .80, a q = .I 0 implies r 12 - r 2 2 

falling in the range .05-.08. (Outside these r 2 limits, r 12 - r 2 2 is below .05). 
Thus one can generally think of a small difference in correlation as one for 
which the population of larger r has an X, Y percentage shared variance 
5-8% larger than that of the population with the smaller r. 

In terms of difference between amounts of relationship expressed in fore­
casting efficiency terms for r 2 between .25 and .95, q = .10 implies E1 - E2 

values of 3-5%. (For r 2 outside these limits, E1 - E2 is smaller than 3 %.) 
MEDIUM EFFECT SIZE: q = .30. With q = .30 taken to define a med­

ium ES, we find (Table 4.2.1) the following pairs of r's illustrating this 
amount of difference: .00, .29; .20, .46; .40, .62; .60, .76; .80, .89; .90, .94; 
.95, .97. 

When the smaller r 2 falls between .15 and . 75, q = .30 implies a difference 
between r 2 falling between .15-.23. Taking a narrower range of r 2 between 
.25 and . 70, r / - r 2 2 falls between .18-.23. Thus, over the middle of the 
correlation scale, a medium difference in correlation can be understood as one 
for which the population of larger r has a percentage of shared variance 
between X andY which is about 20% larger than that of the smaller r. Outside 
these ranges of r 2 , the shared variance difference is less; for low r 2 , it reaches a 
minimum value (for r2 = .00, r1 = .29) of .084. 

Interpreted in forecasting efficiency. terms, for r 2 between .25 and .90, 
q = .30 implies E1 - E2 values of 10-15%, values outside these r 2 limits again 
yielding smaller discrepancies in E1 - E2 • 

LARGE EFFECT SIZE: q = .50. A large difference in r's is operationally 
defined as one which yields q = .50. Pairs of r's illustrating this degree of 
difference are: .00, .46; .20, .61; .40, .73; .60, .83; .80, .92; .90, .96; and .95, 
.98 (Table 4.2.1 ). Here it becomes particularly obvious how different is 
our approach via q from the simple difference r 1 - r 2 • 

Large differences, so defined, mean r 12 - r 2 2 values falling in the range .28 
to .38 when r 2 (the smaller) falls between the limits .10-.70, or, taking a slightly 
narrower range for r 2 of .20 to .65, PV differences of .32 to .38. Thus, a large 
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difference in r's in the middle of the scale is taken to mean one which involves 
about a third of the total variance. 

In terms of difference in forecasting efficiency, when r 2 lies between .20 
and .80, E 1 - E2 is within the limits of 20-25 %. If the latter seems small to 
the reader, it should be pointed out that a substantial reduction of the stan­
dard error of estimate from its maximum value when r = 0 requires very large 
values of r. Thus, for example, when one considers the definition in Chapter 3 
of a large ES, r = .50, one finds that its E value is only 13.4 %. For E to be as 
much as 50%, rmust be .866. Thus, a difference between E's of20-25% should 
be consonant with the intuitive conception of a large difference between 
amounts of correlation. 

Comparison with Definitions for Significance Test ofr. We can reinterpret 
the operational definitions of "small," "medium," and "large" ES of 
Chapter 3 on significance testing of a single r in the light of the q of the present 
chapter. Since q =z1 - z2 , and r2 = 0 transforms to z 2 = 0, given the defini­
tions of Chapter 3 of ES = r = .10, .30, and .50, these become respectively 
q = . 1 0, .31, and .55. They are thus approximately comparable with the q 
values .10, .30, and .50 of the present chapter. However, the set r = .10, .30, 
.50 yields smaller values when expressed as r 2 and E differences from zero 
than those of the middle range described above. Thus the ES definitions for 
differences in relationship expressed as shared variance or reduction in error 
of prediction are larger than the ES definitions for significance testing of a 
single r. 

4.3 POWER TABLES 

When the significance criterion, ES, and sample size are specified, the 
tables in this section can be used to determine power values. Their major use 
will thus be after a research is performed or at least planned. They can, of 
course, also be used in research planning by varying n, ES, or a, or all three, 
to see the consequences to power of such alternatives. 

4.3.1 CASE 0: n1 =n2 • The power tables are designed to yield conveni­
ently power values for the normal curve test of the difference between the 
Fisher transformations of the r•s ( q = z 1 - z2) of two independent samples of 
equal size. This is designated Case 0; other cases are described and illustrated 
in later sections. Tables give values for a, q, and n: 

1. Significance Criterion, a. Six tables are provided for the following 
values of a: a1 = .01, a1 = .05, a 1 = .10, a2 = .01, a2 = .05, a2 = .10, where 
the subscripts refer to one- and two-tailed tests. Since power at a1 is to an 
adequate approximation equal to power at a2 = 2a1 for power greater than 
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Table 4.3.1 

Power of Normal Curve Test of r 1 = r 1 

via Fisher z transormation at a 1 = .01 

q 

n qc .10 .20 .30 .Ito .so .60 .70 .so 1.00 1.20 1.40 

s 1.471 02 02 03 OS 06 08 11 14 23 33 lt6 
9 1.343 02 02 olt OS 07 10 13 17 2S 40 Sit 

10 1.243 02 03 olt 06 OS 11 15 20 32 lt7 62 
11 1.163 02 03 olt 06 09 13 18 23 37 53 68 
12 1.097 02 03 OS 07 10 15 20 26 lt2 59 71t 
13 1.040 02 03 OS OS 11 16 22 30 46 6lt 79 , .. .992 02 03 05 08 12 18 25 :n 51 69 83 

IS .950 02 03 06 09 , .. 20 27 36 ss 73 86 
16 .912 02 03 06 10 IS 21 29 39 59 77 S9 
17 .879 02 olt 06 10 16 23 32 lt2 63 80 92 
IS .849 02 olt 07 11 17 25 34 ItS 66 83 93 
19 .S22 02 olt 07 12 18 26 36 47 69 86 95 

20 .798 02 Olt 07 12 19 28 39 so 72 ae 96 
21 .ns 02 Olt 08 13 20 30 41 SJ 7S 90 97 
22 .7SS 02 04 08 , .. 22 32 43 S6 78 92 98 
23 .736 02 OS 08 14 23 33 46 sa ao 93 98 
24 .71a 02 OS 09 IS 24 3S 48 60 82 94 99 

2S .701 02 OS 09 16 25 37 so 63 Bit 95 99 
26 .6S6 02 OS 10 16 26 39 52 6S 86 96 99 
27 .672 02 OS 10 17 28 ItO Sit 67 87 97 99 
2S .6SS 02 OS 10 18 29 lt2 56 69 89 97 * 29 .64S 02 OS 11 19 30 .... sa 71 90 9a 

30 .633 03 06 11 20 31 45 60 73 91 98 
31 .622 03 06 11 20 32 47 62 75 92 98 
32 .611 03 06 12 21 34 48 63 76 93 99 
33 .601 03 06 12 22 35 so 65 78 94 99 
34 .S91 03 06 13 23 36 S2 67 79 95 99 

35 .582 03 06 13 23 37 53 68 at 95 99 
36 .573 03 07 13 24 )a Sit 70 82 96 99 
37 .s64 03 07 14 25 40 56 71 83 96 * 3S .ss6 03 07 14 26 .. , 57 73 as 97 
39 .site 03 07 IS 26 lt2 59 74 86 97 

Ito .S41 03 07 IS 27 lt3 60 75 87 98 
lt2 .527 03 07 16 29 45 63 78 S9 98 ..,. .Slit 03 08 17 30 48 65 eo 90 99 
lt6 .502 03 08 18 32 so 68 82 92 99 
ItS .490 03 08 18 33 52 70 Bit 93 99 
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Table 4.3. 1 (continued) 

q 

n qc .10 .20 .30 .Ito .so .60 .70 .eo 1.00 1.20 1.1to 

so .ltBO 03 09 19 3S Sit 72 86 ,.. 99 * * S2 .lt70 03 09 20 36 S6 74 87 9S * Sit .lt61 03 09 21 38 sa 76 89 " S6 .4S2 04 10 22 " 60 78 90 " sa .ltltlt 04 10 23 41 62 79 91 97 

60 .434 04 10 23 42 63 81 92 97 
6li .421 04 11 2S ItS (7 84 ,.. 98 
68 .408 04 12 27 48 70 86 9S 99 
72 .396 04 12 29 S1 73 88 96 " 76 .38S 04 13 30 Sit 76 90 97 99 

8o .37S 04 14 32 S6 78 92 98 * 84 .36S OS IS 34 S9 80 93 98 
88 .3S7 OS IS 36 61 82 ,.. 99 
92 .349 OS 16 37 63 84 9S 99 
96 .341 OS 17 39 66 86 96 99 

100 ., .. OS 18 41 68 88 97 99 
120 .304 06 21 .. , 77 " 99 * 140 .281 07 2S S6 84 97 * 160 .263 07 29 63 89 98 
ISO .247 08 " 

,, 92 99 

200 .231t 09 37 71t 9S * 2SO .206 12 47 86 99 
300 .191 13 Sit 91 " 3$0 .177 16 62 9S * 400 .16S 18 69 97 
ltSO .IS6 20 7S "98 

soo .I ItS 23 80 99 
600 .13S 27 87 * 700 .12S 32 92 
800 .117 37 9S 
900 .110 42 97 

1000 .104 46 98 

* P- values below thfs pofnt are greater than .99S. 
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Tlble4.3.2 

Power of Normal Curve Test of r1 "'r2 

via Fisher z transformation at a1 = .OS 

41 

n 41c .10 .zo .30 .Ito .so .60 .70 .80 1.00 1.20 1.'«1 

a 1.01to 07 09 1Z 16 20 Zit 30 35 lt7 60 71 
9 .950 07 10 13 17 22 27 , ItO Sit 67 78 

10 .a79 07 10 , .. 19 Zit 30 37 .... 59 73 83 
11 .azz 07 11 1S 20 26 , ItO lt8 A 77 88 
12 .776 08 11 16 21 za 36 .... 52 68 8Z 91 
13 .736 08 1Z 16 23 30 3a lt7 56 n as , ... .701 08 1Z 17 Zit 32 ... so 59 76 88 ts 

15 .672 08 12 .a 25 31t lt3 53 62 79 90 " 16 .61ts 08 ., ., 27 36 ItS 56 65 8Z 9Z t7 
17 • 622 08 13 20 za 37 Ita sa 68 ... ,.. ,. 
Ia • 606 09 ... 20 29 ,, so 61 71 86 9S " 19 • sa2 09 ... 21 30 lt1 52 63 73 88 " " 20 • s"' 09 ... 22 32 .. , Sit 65 75 .90 97 " 21 • SitS 09 15 23 , .... 56 67 77 91 97 " 22 .S:Jit 09 15 Zit 31t "' sa 70 79 9Z 98 .. 
23 .szo 09 16 Zit 35 lt7 60 71 a1 ,.. 98 
Zit .s08 09 16 25 36 lt9 62 73 83 ,.. 

" 25 ... 96 09 16 26 3a 51 "' 75 8lt 95 " 26 .lt8S 10 17 27 39 52 .65 77 86 " " 27 .lt75 10 17 27 ItO 53 67 7a a7 97 " za .lt6S 10 17 za .. , ss 68 80 88 97 .. 
29 • ltS6 10 ta 29 lt2 56 70 at 89 98 

30 ..... 8 10 18 29 .. , 58 71 82 90 .98 
31 .ltlto 10 • a 30 .... 59 73 8lt 91 98 
32 .lt32 10 19 31 Its 60 7lt as 9Z 98 
33 .lt25 10 19 31 lt6 61 75 86 93 " , .. .lt1a 11 20 32 lt7 ,, 76 87 93 " 35 .lt11 11 20 33 lt8 "' 77 88 ,.. 

" ,, .ltos 11 20 33 lt9 65 79 88 95 " 37 .399 11 21 ,,. so " 80 89 95 " Ja .393 11 21 35 51 67 81 90 " " , .388 11 21 35 52 68 az 91 " .. 
Ito .3a2 11 22 36 53 " 83 91 " lt2 .372 11 22 37 ss 71 8lt 93 97 .... .363 t2 23 , 57 73 86 ,.. 98 
lt6 .3ss 12 Zit ItO sa 75 a7 95 98 
lt8 .]lt7 12 Zit ,., 60 77 89 9S 98 
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Table 4.3.2 (continued} 

q 

n lie .10 .20 .30 .Ito .so .60 .70 .80 1.00 1.20 1.40 

so .339 12 2S 42 62 78 90 96 99 * * * 52 .332 13 26 .... 63 80 91 97 99 
5lt .326 13 26 ItS 6S 81 92 97 99 
56 .320 13 27 46 66 82 93 97 99 
58 .314 13 28 47 67 84 93 98 99 

60 .308 13 28 48 69 as ,.. 98 * 6ft .298 14 29 so 71 87 9S 99 
68 .289 14 31 S3 74 89 96 99 
72 .280 14 32 ss 76 90 97 99 
76 .272 15 33 S7 78 92 98 * 
80 .265 IS 34 59 80 93 98 
84 .2S8 16 3S 60 82 ,.. 99 
88 .2S2 16 37 62 83 95 99 
92 .247 16 38 6ft 8S 95 99 
96 .241 16 39 66 86 96 99 

100 .236 17 41 68 87 97 99 
120 .231 19 4S 74 92 99 * 140 .199 21 50 80 9S 99 
160 .186 22 55 84 97 * 180 .175 24 S9 88 98 

200 .166 26 63 91 99 
2SO .146 30 73 96 * 300 .135 34 79 98 
3SO .ns 37 84 99 
400 .117 40 88 * 4SO .110 .... 91 

soo .104 47 93 
600 .095 S3 96 
700 .088 59 98 
800 .082 6ft 99 
900 .078 68 * 1000 .074 72 

* P-r ,.lues below thh pofnt are greater than .995 



4.3 POWER TABLES lll 

Table4.3.3 

Power of Normal Curve Test of r 1 = r 2 

via Fisher z transformation at a 1 = .1 0 

q 

n qc .10 .20 .30 .~to .so .60 .70 .so 1.00 1.20 t.lto 

8 .811 13 17 21 26 31 37 lt3 lt9 62 73 82 
9 .7/tO 13 17 22 28 )It ItO lt7 54 67 79 87 

10 .685 ,,. 18 24 30 36 .... 51 59 72 83 91 
11 .61t1 ,,. 19 25 31 39 lt7 ss 62 76 87 9't 
12 .601t ,,. 20 26 33 Itt so 58 66 80 90 95 
13 .573 14 20 27 35 lt3 52 61 69 83 92 97 
14 .547 15 21 28 37 lt6 55 6/t 72 86 9't 98 

15 .523 15 21 29 3S ItS 57 67 75 88 95 98 
16 .503 15 22 30 ~to 50 60 69 7S 90 96 99 
'17 .48/t 15 23 31 Itt 52 62 72 so 91 97 99 
tS .lt68 16 23 32 lt3 53 6/t 74 S2 93 9S 99 
19 .453 16 24 33 .... 55 66 76 Sit 9't 98 * 
20 .lt4o 16 24 34 45 57 6S 7S 85 95 99 
21 .427 16 25 35 47 59 70 79 S7 96 99 
22 .lt16 17 25 36 ItS 60 71 S1 88 96 99 
23 .~tos 17 26 37 49 62 73 S2 S9 97 99 
24 .396 17 26 3S 51 63 75 Sit 90 97 * 
25 .3S7 17 27 39 52 65 76 85 92 98 
26 .37S 17 27 40 53 66 77 S6 92 98 
27 .370 17 2S Ito 54 67 79 S7 93 99 
28 .363 18 28 Itt 55 69 80 88 9't 99 
29 .3SS 18 29 42 56 70 81 89 95 99 

30 .349 1S 29 It) 57 71 S2 90 95 99 
31 .343 18 30 .... 59 72 83 91 96 99 
32 .337 1S 30 .... 60 73 Sit 92 96 99 
33 .331 19 31 45 61 74 85 92 97 * 34 .326 19 31 46 62 75 S6 93 97 

35 .320 19 31 47 62 76 87 9't 97 
36 .316 19 32 47 63 77 88 9't 9S 
37 .311 19 32 48 64 7S 8S 95 9S 
3S .307 19 33 49 65 79 89 95 98 
39 .302 20 33 50 66 so 90 95 98 
40 .298 20 34 so 67 81 90 96 98 
42 .290 20 35 52 69 82 91 96 99 .... .2S3 20 35 53 70 84 92 97 99 
46 .277 21 36 54 72 S5 93 98 99 
48 .270 21 37 56 73 S6 9't 98 99 
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Table 4.3.3. (continued} 

q 

n qc .to .20 .30 .40 .so .60 .70 .80 1.00 1.20 1.40 

so .264 21 38 57 74 87 95 98 * * * * 52 .259 22 39 58 76 88 95 99 
54 .254 22 39 59 77 89 96 99 
56 .249 22 40 60 78 90 96 99 
58 .244 22 41 61 79 91 97 99 

60 .240 23 42 63 80 92 97 99 
64 .232 23 43 65 82 93 98 * 68 .225 24 .... 67 84 ,.. 98 
72 .218 2lt lt6 68 86 95 99 
76 .212 25 47 70 87 96 99 

80 .207 25 48 72 88 97 99 
84 .201 26 50 73 90 97 99 
88 .197 26 51 75 91 98 * 92 .192 27 52 76 92 98 
96 .188 27 53 78 93 98 

100 .184 28 54 79 93 99 
120 .168 30 60 84 96 99 
140 .155 32 65 89 98 * 160 .145 35 69 92 99 
180 .136 37 73 ,.. 99 

200 .129 39 76 96 * 250 .113 .... 84 98 
300 .lOS 47 88 99 
350 .097 51 91 * 400 .091 55 ,.. 
450 .086 58 96 

soo .081 62 97 
600 .074 67 99 
700 .069 72 99 
800 .~ 76 * 900 .o61 80 

1000 .057 83 

* Power values below thfs pofnt are greater than .995, 
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Table4.3.4 

Power of Normal Curve Test of r 1 = r z 
via Fisher z transformation at az = .01 

q 

" qc .10 .20 .)0 .40 .so .60 .70 .so 1.00 1.20 1.40 

8 1.629 01 01 02 03 04 05 07 09 16 25 36 

' 1.487 01 01 02 03 04 06 09 12 20 ,, .... 
10 1.377 01 02 02 03 05 07 10 14 24 37 52 
11 1.288 01 02 02 01+ 06 o8 12 16 28 43 59 
12 1.215 01 02 03 01+ 06 10 14 19 32 49 65 
13 1.152 01 02 03 OS 07 11 16 22 37 54 71 
14 1.098 01 02 03 OS 08 12 17 24 41 59 76 

15 1.052 01 02 0) 06 09 13 19 27 45 64 80 
16 1.010 01 02 04 06 10 15 21 30 49 69 84 
17 .973 01 02 04 06 11 16 23 32 53 73 87 
18 .9'-0 01 02 04 07 11 18 26 35 56 76 90 ,, .911 01 02 04 07 12 19 28 38 60 79 92 

20 .884 01 02 04 08 13 20 30 40 63 82 93 
21 .859 01 02 05 08 14 22 32 43 66 85 95 
22 .836 01 03 OS 09 15 23 34 46 69 87 96 
23 .815 01 03 05 09 16 25 36 48 72 89 97 
24 .795 01 03 05 10 17 26 38 51 75 ,, 98 

25 .777 01 03 06 11 18 28 40 53 77 92 98 
26 .760 01 03 06 11 19 29 42 55 79 93 " 27 .7 .... 01 03 06 12 20 31 .... 58 81 9'f " 28 .728 01 03 07 12 21 32 46 60 83 95 " 29 .714 02 03 07 13 27 34 48 62 85 96 99 

30 .701 02 03 07 13 23 36 so 64 86 97 " 31 .688 02 03 07 14 24 37 52 66 88 97 • 
32 .676 02 04 07 15 25 39 54 68 89 98 
33 .665 02 04 oe IS 26 40 55 70 90 98 
34 .654 02 04 08 16 27 42 57 72 91 98 

35 .644 02 04 08 16 28 43 59 73 92 99 
36 .634 02 04 09 17 29 .... 61 75 93 99 
37 .625 02 04 09 18 30 46 62 76 9'f 99 
38 .616 02 04 09 18 31 47 64 78 95 99 
39 .607 02 04 10 19 32 49 65 79 95 " 40 .599 02 04 10 20 34 so 67 81 96 • 42 • 583 02 OS 11 21 36 53 70 82 97 .... .569 02 05 11 22 38 56 72 85 97 
46 .5s6 02 OS 12 24 40 58 75 87 98 
48 .543 02 OS 12 25 42 61 77 89 98 
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Table 4.3.4 (continued} 

q 

ft qc .10 .20 .]0 .Ito .so .60 .70 .eo 1.00 1.20 1.1to 

so .m 02 OS 13 26 .... 6] 79 90 99 * * 52 .520 02 06 lit 28 lt6 65 81 92 99 
Sit .SIO 02 06 lit 29 ItS 68 83 93 99 
56 .SOl 02 06 IS 30 so 69 as ,. 99 
S8 .lt91 02 06 16 32 S2 72 86 9S * 
60 .lt82 02 07 16 33 Sit 73 88 9S 
6lt .lt67 02 07 18 36 S7 77 90 97 
68 .ltS2 02 08 19 38 61 80 92 98 
72 .lt38 02 08 21 It I 6lt 83 ,. 98 
76 .lt26 03 09 22 .... 67 as 9S 99 

80 .It IS 03 09 2lt lt6 70 87 96 99 
Bit .ltos 03 10 2S lt9 73 89 97 99 
88 .39S 03 10 27 Sl 7S 91 98 * 92 .386 03 II 28 Sit 78 92 98 
96 .378 03 II 30 56 80 ,. 99 

100 .370 03 12 31 58 82 9S 99 
120 .337 04 IS 39 69 89 98 * litO .311 04 18 lt6 77 ,. 99 
160 .291 OS 21 S3 83 97 * 180 .271t 05 21t 60 88 98 

200 .260 06 28 66 92 99 
2SO .228 07 38 79 97 * 300 .211 09 .... 86 99 
3SO .196 II 52 92 * ltoo .183 12 60 95 
ltSO .172 lit 66 97 

soo .163 16 72 98 
600 .llt9 20 81 * 700 .138 2lt 88 
80o .129 28 92 
900 .122 32 95 

1000 .115 37 97 

* Pa.w ,.I ues below thfs pofnt ere greeter then .995. 
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Table4.3.5 

Power of Normal Curve Test of r 1 = r 2 

via Fisher z transformation at a2 = .05 

q 

n qc .to .20 .30 .'+o .so .60 .70 .so 1.00 1.20 t.lto 

8 1.2'+0 OS 06 08 10 12 16 20 2'+ 35 ItS 60 
9 1.132 OS 06 08 11 tit 18 23 28 Itt ss 68 

10 1.01+8 OS 07 09 12 IS 20 26 32 lt6 61 75 
11 .980 OS 07 09 13 17 22 29 36 52 1:.7 80 
12 .921t 06 07 to 14 19 25 32 40 S6 72 84 
13 .877 06 07 10 IS 20 27 3S 43 61 77 88 
tit .836 06 08 11 16 22 29 38 lt7 65 80 91 

IS .Boo 06 08 11 17 23 31 ItO so 69 84 93 
16 .769 06 08 12 17 25 33 '+3 53 72 86 95 
17 • 7'+1 06 08 12 18 26 3S '+6 S6 75 89 96 
18 .716 06 09 13 19 28 38 '+8 59 78 91 97 
19 .693 06 09 tit 20 29 40 51 62 81 92 98 

20 .672 06 09 14 21 30 42 53 6S 83 94 98 
21 .653 06 09 IS 22 32 44 56 67 as 95 99 
22 .6)6 06 09 IS 23 33 46 58 69 87 96 99 
23 .620 06 10 16 24 3S 48 60 72 88 97 99 
24 .60S 06 10 16 25 36 '+9 62 74 90 97 * 
25 .591 06 10 17 26 38 Sl 64 76 91 98 
26 .s7B 06 10 18 27 39 53 66 77 92 98 
27 .S66 06 II 18 28 41 ss 68 79 93 99 
28 .ss4 06 11 19 29 42 56 70 81 94 99 
29 .S44 07 II 19 30 44 58 71 82 9S 99 

30 .5)4 07 II 20 31 4S 60 73 84 96 99 
31 .S24 07 12 20 32 46 61 7S 8S 96 99 
32 .SIS 07 12 21 33 48 63 76 86 97 * 33 .S06 07 12 21 34 49 64 77 87 97 
)It .498 07 12 22 3S 51 66 79 88 98 

35 .490 07 13 22 36 52 67 80 89 98 
36 .483 07 13 23 37 53 68 81 90 98 
37 .475 07 13 24 38 54 70 82 91 98 
38 .469 07 13 24 39 55 71 83 92 99 
39 .462 07 14 25 40 51:. 72 Sit 92 99 

40 .456 07 14 25 41 58 73 85 93 99 
42 .444 07 14 26 42 60 75 87 94 99 
44 .433 07 IS 27 44 62 78 89 9S 99 
lt6 .423 08 IS 29 46 64 79 90 96 * 48 .413 08 16 30 48 66 81 91 97 
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Table 4.3.5 (continued} 

q 

n qc .10 .20 .30 .Ito .so .60 .70 .so 1.00 1.20 1.1to 

so .ltCJII 08 16 31 lt9 68 83 92 97 * * * 52 .396 08 17 32 51 70 a.. 93 9(! 
Sit .388 08 17 33 52 71 36 9't 93 
56 .381 08 18 ]It 54 73 S7 95 98 
sa .31 .. 08 18 35 ss 75 Sll 96 99 

60 .367 08 19 36 57 76 89 96 99 
64 .3SS 09 20 38 60 79 91 97 99 
68 .3 .... 09 21 ItO 63 81 93 98 * 72 .331t 09 22 lt2 65 Bit 9't 98 
76 • 321t 09 23 .... 68 86 95 99 

8o .316 10 21t lt6 70 S7 96 99 
Bit .301! 10 25 ItS 72 89 97 99 
88 .301 10 26 so 71t 90 97 * 92 .29'1 10 27 52 76 92 98 
96 .2S7 10 28 53 78 93 98 

100 .281 II 29 ss 80 9't 99 
120 .256 12 33 63 86 97 * litO .237 13 38 70 91 99 
160 .221 ... lt3 76 ,.. 99 
180 .208 16 lt7 81 96 * 
200 .198 17 51 as 98 
250 .173 20 62 92 99 
300 .161 23 68 96 * 350 .... , 26 75 98 
ltOO .139 29 80 99 
It SO .131 32 as 99 

500 .12 .. 35 88 * 600 .113 ... 93 
700 .lOS lt6 96 
100 .098 Sl 98 
900 .093 56 99 

1000 .088 61 99 

* Power values below this pofnt are greater than .995. 
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Table 4.3.6 

Power of Normal Curve Test of r 1 = r 1 

via Fisher z transformation at a1 = .10 

q 

n qc .10 .20 .30 .40 .so .60 .70 .eo 1.00 1.20 1.40 

8 1.040 10 12 14 17 20 2S 30 3S 48 60 71 
9 .950 11 12 15 18 22 28 33 Ito 54 67 78 

10 .879 11 12 15 19 24 30 37 ..,. 59 73 83 
11 .822 11 13 16 20 26 33 ItO 48 64 77 88 
12 .776 11 13 17 22 28 36 44 52 68 82 91 
13 .736 11 13 18 23 30 38 47 56 72 8s 93 
14 .701 11 14 18 24 32 41 50 59 76 88 95 

IS .672 11 14 19 26 34 43 53 62 79 90 96 
16 .645 11 14 20 27 36 45 5~ 65 82 92 97 
17 .622 11 IS 20 28 38 48 58 68 8lt 94 98 
18 .606 11 15 21 29 39 50 61 71 86 95 99 
19 .S82 11 IS 22 31 41 52 63 73 88 96 99 

20 .s64 11 16 23 32 43 54 65 75 90 97 99 
21 .548 12 16 23 33 ..,. 56 67 77 91 97 99 
22 .S34 12 16 24 34 46 sa 70 79 92 98 * 23 .520 12 17 25 35 48 60 71 81 94 98 
24 .soa 12 17 2S 37 49 67 n 83 94 99 

25 .496 12 17 26 38 51 64 75 84 95 99 
26 .485 12 18 27 39 52 65 77 86 96 99 
27 .475 12 18 27 40 54 67 78 87 97 99 
28 .465 12 18 28 41 55 68 80 88 97 * 29 .4S6 12 19 29 42 56 70 81 89 98 

30 .ltlt8 12 19 30 43 58 71 82 90 98 
31 .ltlto 12 19 30 44 59 73 8lt 91 98 
32 .432 12 20 31 4S 60 74 85 92 98 
33 .425 13 20 32 46 61 75 86 93 99 
34 .418 13 20 32 47 63 76 87 93 99 

35 .411 13 21 33 48 64 77 88 94 99 
36 .405 13 21 34 49 6S 79 88 95 99 
37 .399 13 21 34 so 66 80 89 95 99 
38 .393 13 22 35 51 67 81 90 96 99 
39 .388 13 22 36 52 68 82 91 96 * 
40 .382 13 22 36 53 69 83 91 96 
42 .372 13 23 38 ss 71 84 93 97 
44 .363 13 24 39 57 n 86 94 98 
46 .3SS 14 24 40 sa 75 87 95 98 
48 .347 14 25 41 60 77 89 95 98 
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Table 4.3.6 (continued; 

q 

n lfc .10 .20 .30 .Ito .so .60 .70 .80 1.00 1.20 1.40 

so .339 14 2S 43 62 7a 90 96 99 * * * S2 .332 ... 26 .... 63 80 91 97 99 
Sit .326 14 26 ItS 6S al 92 97 99 
S6 .320 14 27 46 66 a2 93 97 99 
sa .311t IS 2a 47 67 84 93 98 99 

60 .308 IS 29 r.a 69 as ,.. 98 * 64 .298 IS 30 Sl 71 a7 9S 99 
68 .2a9 IS 31 S3 74 a9 96 99 
72 .2ao 16 32 ss 76 90 97 99 
76 .272 16 33 S7 7a 92 98 * 
80 .26S 16 3S S9 ao 93 98 
84 .2sa 17 36 60 a2 ,.. 99 
88 .2S2 17 37 62 a3 9S 99 
92 .247 17 3a 64 as 9S 99 
96 .241 17 39 66 a6 96 99 

100 .236 Ia 41 68 a7 97 99 
120 .231 20 ItS 74 92 99 * 140 .199 21 so ao 9S 99 
160 .186 23 ss 84 97 * 180 .17S 2S S9 aa 98 

200 0166 26 63 91 " 2SO .llt6 31 73 96 * 300 .13S )It 79 98 
3SO .us 37 84 99 
400 .117 ItO aa * 4so .110 .... 91 

soo .104 47 93 
600 .09S S3 96 
700 .088 S9 98 
aoo .082 64 99 
900 .o7a 6a * 1000 .074 72 

* P-r values below thfs pofnt are greater than .99S. 
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(say) .10, the tables can also be used for power at a 2 = .02, a 2 = .20, a 1 = .005, 
and a 1 = .025. 

2. Effect Size, ES. This is the difference between Fisher z-transformed r's, 
q, whose properties are described in Section 4.2. Tables 4.2.1 and 4.2.2 
facilitate the conversion of r 1, r 2 pairs into q values. Provision in the power 
tables is made for q = .I 0 (.1 0) .80 (.20) 1.40. Conventional definitions of ES 
have been offered, as follows: 

small: q = .10, medium: q = .30, large: q = .50. 

3. Sample Size, n. This is the size of each of the two samples whose r,'s 
are being compared. Provision is made for n = 8 (I) 40 (2) 60 (4) 100 (20) 
200 (50) 500 (100) 1000. 

The values in the body of the table are the power of the test x 100, i.e., 
the percentage of tests carried out under the given conditions which will 
result in the rejection of the null hypothesis. They are rounded to the nearest 
unit and are accurate to within ± I as tabled. 

Wustrative Examples 

4.1 A marriage counselor has been studying the issue of personality 
similarity as a factor in the quality of marriage relationships. She has gath­
ered data on several personality questionnaire variables from 60 husband­
wife pairs in marriages rated as harmonious (Group I) and from another 60 
pairs with marital difficulties (Group 2). The study design involves the deter­
mination of the husband-wife correlation in each group for each personality 
variable, followed by a test of the significance of the difference between the 
two groups' rs's (for each variable), i.e., H0 :r1 = r2 • Her significance criterion 
is a2 = .05. Given that the ES is q = .30 (the optional definition of a medium 
difference), what is the power of each test? The specifications are 

a 2 = .05, q=.30, 

To find the test's power, in Table 4.3.5 for a 2 = .05, column q = .30, and 
row n = 60, power = .36. Thus, the probability of a significant (a2 = .05) 
result is only slightly greater than one in three if the two populations differ in 
degree of relationship by q = .30 (e.g., population r values of .20, .46, or .40, 
.62 or .60, .76 from Table 4.2.1, or, if of opposite sign, e.g., -.15, .15 or -.10, 
+.20). 

If one posits large ( q = .50) instead of medium ES, one finds in the same 
table and row, but for column q = .SO, power = . 76. Only if one is seeking to 
detect an ES ofq = .60--.70 does power increase to the low nineties, but this 
ES implies r pairs such as .20, . 70 or .40, .80 or opposite sign pairs of the 
order of -.30, +.30 or -.10, +.50. 
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4.2 A theory of psychopathology yields the derivation that the correla­
ation between two variables X, Y, should be higher for paranoid schizo­
phrenics than for catatonic schizophrenics. A research psychiatrist gathers the 
relevant data for 180 cases in each diagnostic group, in order to perform a 
one-tailed significance test at a 1 = .01. On the several alternative hypotheses 
that the difference in r is small (q = .10), medium(q = .30), and large (q =.50), 
what is the power in each instance? Specifications are 

.10 
q= .30, 

.50 

In Table 4.3.1 for a 1 = .01, row n = 180, and for columnsq = .10, .30, and 
.50, one finds respectively power values of .08, .69; and .99. The extreme 
spread of these power values strongly suggests the importance of deciding 
how large the anticipated ES is (at least at this level ofn). Depending on the 
ES, the experiment has either a poor, fairly good, or virtually certain proba­
bility of a significant result. If the result is not significant, the only con­
clusion that can be drawn is that the difference in degree of relationship 
between the populations favoring the paranoid schizophrenics, if any, is not 
large. Were the degree of relationship large, with power of .99 to detect a 
large effect, it would likely have been found. A medium or small difference 
may well exist; the latter possibility, in particular, is quite consonant with the 
results. Of course, given nonsignificant results, the investigator cannot con­
clude that a difference exists, whatever the a priori power. 

4.3.2 CASE l: n 1 =F n2 • The tables will yield power values when, under 
the conditions for a valid test of the significance of the difference between two 
population r's, samples of different sizes are drawn. In such cases, compute 

(4.3.1) 
, 2(n 1 - 3)(n2 - 3) 3 n= +, 

n1 +n2 -6 

and use then' value in then column of the table. Unless one of then's is very 
small ( < 10), the power value found is an exact value. 2 Also, all of the 
interpretative material of Section 4.3.1 on differences between degrees of 
relationship holds for Case I. 

Dlustrative Example 

4.3 A psycholinguist has developed and used in a series of researches a 
certain procedure (P 2) for measuring speech disruption whose population 
reliability (i.e., correlation between parallel forms) is estimated as falling in 
the .75-.85 range. For theoretical and practical reasons, he designs an alter-

2 That is, it is as exact as the Case 0 value, i.e., accurate within ± 1. 
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native procedure (P1) whose reliability compared to P2 he wishes to assess. 
For practical reasons he is interested in the possibility that r 1 > r 2 , but differ­
ence in the other direction would also be quite meaningful to theory. Thus a 
nondirectional test is indicated, and he elects to use a 2 = .05. lfr2 is approxi­
mately .80, he is interested in the possibility that r 1 is about .10 away (par­
ticularly if it is about .90). Reference to Table 4.2.1 indicates that the r pairs 
.75,.88; .80, .90; and .85, .93, all of which define an ES = q = .40 (i.e., be­
tween medium and large), represent the magnitude involved. Now, he has 
accumulated data on the original procedure for n2 = 260, and uses the new 
procedure on an independent sample of n1 =51. What is the power of the 
test? 

a 2 =.05, q=.40, n 1 =5l:;.i:260=n2 • 

With unequal n, he finds [from formula (4.3.1)] 

I = 2 (51- 3)(260- 3) 3 = 2 (48)(257) 3 = 84 
n 51 + 260- 6 + 305 + · 

In Table 4.3.5 for a2 = .05, column q = .40, and row n' = n = 84, power= 
.72. Thus, his chances are (not quite) three in four of detecting a difference of 
q = .40, given these conditions. 

Note the implication ofn'. His samples of 51 and 260, a total of 311 cases, 
yields as much power as two equal samples of 84 cases, a total of 168 cases. 
As previously noted in two-sample comparisons, for a given total number 
cases, optimal power for any specified conditions occurs when the total 
number is divided equally. That is, an equal division of his 311 cases would 
yield two samples of 155 cases, for which the power would be .93 (interpola­
ting in Table 4.3.5), instead of the value of .72 for the actual unequal division. 

4.3.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST r =c. Thus far 
we have considered the power of the normal curve test via the difference 
between Fisher's transformations of r's of two independent samples, where 
the null hypothesis is r 1 = r 2 • The same transformation and test can be used 
to test the departure of the r of a single population from some specified value 
c. The null hypothesis for the one-sample test is r = c. The test is employed 
when, given a sample of n cases, the investigator's purpose is to determine 
whether the data are consonant with the hypothesis that the population r is 
.50 or .90 or - .25 or any other value. It is thus the general case of which the 
test of Chapter 3 that r is zero is a special case. 

Although the special case r = c = 0 arises frequently in behavioral science, 
the r = c -::1: 0 form is also encountered. It will be found useful in psycho­
metric technology where experience has led to certain expectations or 
standards for values of reliability and validity coefficients which would then 
serve as values for c. In behavioral genetics or other areas of behavioral 
science where strong theory exists, derivations from theory may also yield 
specific values of c whose statistical testing brings important information. 
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For the one-sample case (Case 2), we define our ES as for the other cases, 
i.e., as the difference between z-transformed r's, but whereas in formula 
(4.2.2), r 2-+z2 is an estimable population parameter, here it is a constant, so 
that for Case 2 

(4.3.2) q2' = z, - Zc 

= lz, -zcl 
(directional) 

(nondirectional), 

where z 1 =the Fisher z transformation of the alternative-hypothetical r as 
before and 

zc = the Fisher z transformation of the null-hypothetical c. 

There is no conceptual change: q/ is the difference between the (alternate) 
population value (r 1) and the value specified by the null hypothesis (c) ex­
pressed, as before, in units of the z transformation. The interpretation of 
q2 ' proceeds exactly as described in Section 4.2 with regard to Table 4.2.1, r 2 , 

and E, and the operational definitions of small, medium, and large ES. 
The tables, however, are not applied to the value q2' since they are con­

structed for Case 0, where there are two sample statistics (z1 and z2 ) which 
each contribute sampling error variance to the observed sample difference, for 
a total variance of2/(n- 3). Here only one sample contributes sampling error 
variance, yielding half the amount, 1/(n- 3). This is simply allowed for by 
finding 

(4.3.3) q =q2' v'2. 
The q value is sought in the tables, while q2 ' is the ES index which is inter­

preted. This procedure is exact. 3 

If q2 ' is chosen as a convenient multiple of .10, q will in general not be a 
multiple of. 10. Thus the operational definitions of ES for q/ of. 10, .30, and 
.50 become, for the one sample test, q = .14, .42, and . 71. Linear interpolation 
between power values will provide values which are sufficiently close (within 
.01 or .02) for most purposes. 

Illustrative Example 

4.4 A social psychologist has developed a considerable body of data on 
attitudes toward the mentally ill. One of his scales yields an alternate-form 
correlation coefficient which he can estimate as being very close to .60 in the 
population. He has prepared a revision of this scale to improve its reliability 
but must weigh an improvement of reliability against the loss of compara­
bility of a revised scale. He decides that if he could raise the population 

3 Unlike the one-sample test of a mean (Section 2.3.4) which proceeds by a t test 
with its dependence on varying n and df, the present test uses the normal curve for all n, 
and no overestimation of power occurs when the tables are used for the one-sample test 
ofr. 
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reliability (correlation) to the middle seventies, say .76 (see Table 4.2.1), it 
would warrant the replacement of the original scale. Thus, he will perform 
a one-sample test to determine whether he can conclude that the revision is 
superior. As formulated, he has no interest in the possibility that the revision 
has lower reliability; thus his test is one-tailed (directional), and he selects as 
his significance criterion a1 = .05. He administers the revised scale to a sample 
of 50 subjects. 

The null hypothesis he is testing is, therefore, r ~ .60 with an alternative 
hypothesis (or ES) of r = . 76. Informally stated, his research questions are: 
Does the revised scale have reliability in the population better than .60? For 
the power analysis, he asks: If it is as high as . 76, what is the probability that 
I will conclude that it is better than .60 with n =50 at a 1 = .05? 

Reference to Table 4.2.1 shows that the .60, . 76 values of r yield q2 ' = .30 
(and incidentally, why the author chose the value .76). Note that q2' = .30 

represents a medium effect. For table entry, we need q = .30v2 = .424. 
Summarizing the specifications 

a 1 = .05, q = .424, n = 50. 

In Table 4.3.2 for a 1 = .05 and row n =50, he finds power in columns 
q = .40 and .50 to be .62 and .78, respectively. Linear interpolation between 
thesevaluesyieldspower'atq = .424of(.424- .40)(.78- .62)/.10 + .62 = .66. 
Thus, if r = .76, his a 1 = .05 test for n =50 has a two in three chance of get­
ting a significant result, warranting the conclusion that r > .60. Note that no 
mention has been made of the sampler.; this is irrelevant to the power anal­
ysis, which may (or better, should) be performed prior to the data collection. 

4.4 SAMPLE SIZE TABLES 

The tables in this section list values of the significance criterion, the ES 
to be detected, and the desired power. One then finds the necessary sample 
size. Their primary utility lies in the planning of experiments to provide a 
basis for the decision as to the number of sampling units (n) to use. 

4.4.1 CASE 0: n 1 = n2 • The use of the sample size tables first described is 
that for which they were optimally designed, Case 0, where they yield the 
sample size, n, for each of two independent samples whose population r's 
are to be compared. The description of their use in two other cases follows this 
subsection. Tables are entered with a, q, and desired power. 

I. Significance Criterion, a. The same values of a are provided as in the 
power tables, a table for each of the following: a 1 = .01 (a2 = .02), a 1 = .05 
(a2 = .10), a 1 = .10 (a2 = .20), a2 = .01 (a 1 = .005), and a2 = .05 (a 1 = .025). 

2. Effect Size, q. This value is defined and interpreted as above [formula 
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T•ble4 .... 1 

n to detect q • z1 - z3 by Fisher 
z Transformation of r 

.I •• 01 <•2 • .02) 

,_ .10 .20 .]0 .Ito .so .60 .70 .8o 1.00 1.20 1.1to 

.25 Sft9 1]9 6ft 37 25 18 1ft 12 8 7 6 

.so 1085 27ft 123 71 lt6 ]] 25 20 1ft 11 9 

.6o 133ft ]36 151 86 56 Ito 30 2ft 16 12 10 
2/3 1523 383 172 98 6ft ItS 34 27 18 lit 11 

.70 1628 lt09 18ft 105 68 lt8 36 28 19 14 11 

.75 180ft It 53 203 116 75 53 Ito 31 21 16 12 

.ao 2010 50S 226 128 8] 59 ltlt ]It 23 17 13 

.as 226S S68 25ft lltlt 93 66 .. , ]a 26 19 IS 

.90 2606 65ft 292 166 107 75 56 ltlt 29 21 16 

.95 3157 792 353 200 129 91 67 52 35 25 19 

·" It]]] 1085 lt8lt 27ft 176 123 91 71 lt6 33 25 

a1 • .os <•2 • .lo) 

,_r .10 .20 .30 .ItO .so .60 .70 .80 1.00 1.20 1.1to 

.25 191 so 2ft 15 11 8 7 6 5 It .. 

.so Sltlt 138 63 37 25 Ia 1ft 11 a 7 6 

.60 72ft 183 8] lt8 32 23 1a 1ft 10 a 7 
2/3 865 218 99 57 37 27 21 16 12 9 7 

.70 ,.... 238 108 62 41 29 22 18 12 10 8 

.75 1079 272 t23 70 lt6 33 25 20 lit 10 9 

.ao 121t0 312 litO eo 52 37 2a 22 15 12 9 

.as lltlt I 362 163 93 61 It] 32 25 17 13 10 

.90 1716 lt]l 193 110 72 51 38 30 20 15 12 

.95 2167 5ftlt 21t3 138 90 63 lt7 37 25 Ia 1ft 

·" 3157 792 353 200 129 91 67 52 3S 25 19 

• 1 • .to <•z • .2o) 
Q ,_r .10 .20 .)0 .Ito .so .60 .70 .80 1.00 1.20 1.1to 

.25 77 21 11 8 6 5 It It It 

.so 331 85 39 2ft 16 12 10 a 6 5 5 

.60 lt71t 121 55 32 22 16 13 10 a 6 5 
2/3 sa9 150 68 Ito 26 19 15 12 9 7 6 

.70 655 166 75 ltlt 29 21 16 13 to a 6 

.75 76a 19ft 88 51 )It 21t 19 15 11 8 7 

.80 90S 22a 10) 59 ]9 2a 21 17 12 9 a 

.as 1078 272 122 70 lt6 33 25 20 1ft 10 a 

.90 1317 331 11t9 as 56 39 30 21t 16 12 10 

.95 1716 lt31 193 110 72 51 38 30 20 15 12 

·" 2606 65ft 292 166 107 75 56 ltlt 29 21 16 
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Table 4.4.1 (continued} 

.2 •• 01 c., • .oos> 

,_ .. .10 .20 .30 .40 .so .60 .70 .80 1.00 1.20 1.40 

.2S 726 184 83 48 32 23 18 14 10 8 7 

.so 1330 33S ISO 86 S6 40 30 24 16 12 10 

.60 1604 403 181 103 67 lt7 36 28 19 ,,. 11 
2/3 1811 ltSS 20ft 116 7S S3 ItO 31 21 16 12 

.70 192S lt84 217 123 80 S6 lt2 " 22 16 13 

.7S 2116 S31 238 135 88 62 lt6 36 2ft 18 14 

.80 2339 S87 263 149 96 68 51 " 26 19 IS 

.as 2613 6SS 293 166 107 7S S6 ,... 
~ 21 16 

.90 2979 71t7 334 189 122 86 6ft 49 " 24 18 

.9S 3566 89ft 399 226 146 102 76 S9 " 28 21 

·" 4809 1205 S37 303 19S 137 101 78 S1 36 28 

e2 = .os Ce1 = .02S) 

,_ .. .10 .20 .30 .40 .so .60 .70 .so 1.00 1.20 1.40 

.2S 333 86 40 24 16 12 10 8 6 s s 

.so 771 195 88 Sl 31t 21t 19 IS 11 8 7 

.60 983 2ft8 112 6ft lt2 30 23 18 13 10 8 
2/3 11ft6 289 130 7ft lt9 3S 26 21 14 11 9 

.70 1237 312 140 80 52 37 28 22 IS 12 9 

.7s '"' 3SO 1S7 90 S9 lt2 31 25 17 13 10 

.so 1S73 39S 177 101 66 lt7 3S 28 19 14 11 

.as 1799 4S2 203 liS 7S S3 40 31 21 IS 12 

.90 210ft 528 236 134 87 61 46 36 2ft 18 ,,. 

.9S 2602 6S3 292 165 107 7S S6 ,... 29 21 16 

.99 3677 922 lt11 233 ISO lOS 78 60 Ito 29 22 

(4.2.2)] and used as in the power tables. The same provision is made: .10 (.10) 
.80 (.20) 1.40. 

To find n for a value of q not tabled, a good approximation is given by 
substituting in 

(4.4.1) 
n.to- 3 

n= 100q2 +3, 

where n. 10 is the necessary sample size for the given a and desired power at 
q = .10, and q is the non tabled ES. Round to the nearest integer. 

3. Desired Power. Provision is made for entering the sample size tables 
with desired power values of .25, .50, .60, 2/3, .70 (.05) .95, .99. See the dis-
cussion in Section 2.4.1 on the selection of these values and considerations 
affecting choice in a given investigation. The suggestion of desired power -
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.80 to serve as a convention, in the absence of other bases for choice, is reiter­
ated here. 

Summarizing the Case 0 procedure, the investigator finds (a) the table 
for the significance criterion (a) he is using, and looks for (b) the difference in 
z-transformed r's( q) along the horizontal stub and (c) the desired power along 
the vertical stub. He then finds n, the necessary size of each sample to detect 
q at the a significance criterion with the desired power. 

Illustrative Examples 

4.5 Reconsider example 4.1, where a research study in personality simi­
larity between spouses as a factor in the quality of marital relationships is 
described. In its initial formulation, a medium difference in correlation, i.e., 
ES = q = .30 was posited, and the significance criterion of a 2 = .05 was to be 
used. If power of .80 is desired, what is the sample size necessary? The speci­
fications thus are 

a 2 = .05, q=.30, power= .80. 

In Table 4.4.1 for a2 = .05, column q = .30, and row power = .80, 
n = 177. The investigator will thus need samples of good and poor marital 
pairs with 177 couples in each in order to detect a q = .30 difference in 
z-transformed correlations at the a2 = .05 level. If she reconsiders her speci­
fications and is content to posit q = .50 instead, the sample size required in 
each group is 66. 

4.6 In example 4.2, a study testing for a higher correlation of a given pair 
of variables in paranoid than in catatonic schizophrenics was described. The 
significance criterion is 8 1 = .01. Assume that the psychiatrist is content with 
power of .75 and poses the question: How many cases are required, assuming 
successively that q = .10, .30, and .50? 

.10 
q=.30, 

.50 
power= .75. 

In the section of Table 4.4.1 for a 1 = .01 and row power= .75, the values 
in columns q = .10, .30, .50 are found to be 1804, 203, and 75, respectively. 
She may then decide that she is content to try to detect a medium effect and 
plan to collect samples of 203 cases of each schizophrenic type. Alternative­
ly, she may reconsider her significance criterion. If she sets it at 8 1 = .05, she 
finds from Table 4.4.1 (specifications otherwise the same) n's of 1079, 123, 
and 46 for the three q levels; if she sets it at a 1 = .10, she finds in the next 
section of the table 768, 88, and 34. Her explorations in sample size require­
ments can be summarized in tabular form: 
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n FOR DESIRED PoWER = .75 

q 

.10 .30 .50 

Significance .01 1804 203 75 
level a, .05 1079 123 46 

.10 768 88 34 

Depending on her resources for data gathering and the theory being test­
ed, she can make a choice among these possibilities, or investigate others 
(non-directional a, q of .20, .40). 

4.4.2 CASE I: n 1 =I= n 2 • One does not ordinarily plan to use samples of 
unequal size (since equal sample sizes are optimal), but Case I can occur in 
planning when a value ofr. is already available from a given sample or one 
sample's size is necessarily fixed by circumstances, so that the researcher's 
freedom in setting sample size is restricted to only one of the two samples. 
With one sample size fixed at nF, this value will generally differ from that of 
the other sample, whose size is at the researcher's disposal (nu). As in Case 0, 
given a, q, and desired power, Table 4.4.1 gives values for n. To find nu, 
substitute the fixed sample size (nF) and then read from the table in 

(4.4.2) 

(See Section 2.4.2 when denominator is zero or negative.) 

Illustrative Example 

4.7 Return to consider again the situation described in example 4.3. The 
issue is whether a new procedure (P2) has a significantly different (a2 = .05) 
parallel form correlation from that of an older procedure (P1). The ES to be 
detected is q = .40, and a sample is already available to estimate the correla­
tion of P 1, with nF = 260. Assuming that he desires power of. 90, what sample 
size nu does he require for the test? 

If he were unconstrained in the choice ofn for both samples, i.e., if Case 0 
conditions prevailed, his specifications would simply be 

a2 = .05, q=.40, power= .90. 

In the section of Table 4.4.1 for a 2 = .05, with column q = .40 and row 
power= .90, one finds that samples of 134 cases each would be required. But 
in this instance, he already has one sample whose size is fixed at nF = 260. 
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Thus, the other sample need only contain (substituting nF = 260 and n = 134 
in formula (4.4.2)) 

260(134 + 3)- 6(134) 
nu = 2(260)- 134-3 = 91 cases. 

Thus, the availability of a sample of nF = 260 cases makes it possible for 
him to satisfy his specifications (attain power of .90 to detect q = .40 at a2 = 
.05) with a sample for the new procedure of91 cases. 

4.4.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST r =c. In using 
the n tables for the one-sample test, the only departure from Case 0 is that 
which was discussed in connection with the power tables for Case 2, the proper 
value of q to be sought in the table (see Section 4.3.3 for details). Briefly, if 
one is testing with a single sample the null hypothesis that the population r 
has some specified value, i.e., H 0 : r = c, and scales his ES in the usual way, 
as a difference betweenz-transformed values ofr1 and c, namelyq2' = z 1 - z., 

then value is determined forq = q2' v2. If the resultantq is not tabled (a likely 
occurrence), he takes recourse to the procedure described in connection with 
formula (4.4.1). 

Illustrative Example 

4.8 We return to example 4.4, where a social psychologist, engaged in an 
attitude-scale revision effort, plans a test at a 1 = .05 of H 0 : r ~ .60 against 
the alternate H 1 : r 1 = . 76. Instead of assuming a sample size and determining 
the resulting power, as was done in problem 4.4, let us here assume that he 
seeks the sample size necessary for power to be .95. Note that this is an in­
stance in which the investigator wishes the two kinds of errors to be equal, 
i.e., Type I = .05, Type II = b = 1.- .95 = .05. 

As before, for r's of .60 and . 76, the difference in z units (Table 4.2.1) is 

.30, which is q 2'. To use the table we require q = .30 v2 = .4243, as in prob­
lem 4.4. Thus, the specifications are 

a 1 = .05, q = .4243, power= .95. 

Since q = .4243 is not tabled, we follow the procedure described in Section 
4.4.1. In the part of Table 4.4.1 for a 1 = .05, row power= .95, and column 
q = .10, find n. 10 , = 2167. Then substitute n. 10 = 2167 and q = .4243 in 
formula (4.4.1) for the required n: 

2167-3 
n = 100 (.4243)2 + 3 = 123. 

Thus ifr = .76, a one-sample test ofH0 : r = .60 performed at thea 1 = .05 
level will have .95 probability of a significant result if the sample n is 123. 
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4.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 

4.5.1. GENERAL INTRODUCTION. Provision has been made in the power 
tables to facilitate significance testing. Power analysis is largely concerned 
with the planning of experiments and thus with the alternate-hypothetical 
ES. Once the experiment is performed, attention turns to the assessment of 
the null hypothesis in the light of the sample data. 

We accordingly redefine our ES index, q, so that its elements are sample 
statistics, rather than population values, and call it q,. For cases 0 and I, 
where the r's of two independent samples are being compared, the sample r. 
values are transformed into sample Fisher z. values, and 

(4.5.1) (directional) 

(nondirectional). 

Thus, q, is simply the difference in sample z values. It is related to the 
unit normal curve deviate (or "critical ratio") x, by4 

(4.5.2) J n 1 +n2 -6 
q.= X ' 

(n 1 - 3)(n2 - 3) 

(4.5.3) _ J(n1 - 3)(n2 - 3) 
X- q, . 

nl + n2- 6 

The relationships are stated here for the more general situation where 
the sample n's need not be equal. They simplify for the Case 0, equal n 
condition (see below). 

The value of q, necessary for significance is called q., i.e., the criterion 
value of q •. The second column of the power Tables 4.3, headed q., carries 
these values as a function ofn. Using these values, the investigator need not 
compute the normal curve deviate x. He simply finds the z transformations 
of his sample r,'s in Table 4.2.2, then finds their difference, q., and compares 
it with the tabled q. value for his sample size. If the obtained q. value equals 
or exceeds q. , his obtained difference is significant at the a value for that 
table; otherwise, it is not. 

4.5.2 SIGNIFICANCE TESTING IN CASE 0, n 1 =n2 =n. In Case 0, where 
n 1 = n2 = n, the relationships between q. and the normal deviate x are simpli­
fied: 

(4.5.4) 

(4.5.5) 

q.= xJ 2 ' 
n-3 

J-n-3 
X= qs -2-. 

4 The unit normal curve deviate is frequently represented by the symbol z. We use x 
here to avoid confusion. 
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[Formula (4.5.4) was used in the computation of the qc values of the 
power tables, x being the normal curve deviate for the a criterion.] 

The Case 0 use of the qc values is quite straightforward: The investigator 
looks up the Z5 values for the two r;s in Table 4.2.2, finds their difference, q. 
[formula (4.5.1 )], and uses the appropriate power table depending on a, in 
the row for his n( = n 1 = n2 ), checking whether his q. value equals or exceeds 
the tabulated qc value. 

Illustrative Example 

4.9 Consider the conditions of example 4.1, where a marriage counselor 
is studying the difference in husband-wife correlation on a series of person­
ality variables between 60 marriages ratedi as harmonious (Group I )1 and 
60 having marital difficulties (Group 2). The significance criterion is a2 = .05. 
When the data are analyzed, it is found for a specific variable A that r, 1 is 

.42 and r52 is .16. She looks up the z transformation of these rs's and finds Z5 , 

= .448 and Z52 = .161. Thus, q5 = .448 - .161 = .287. Her specifications, 
thus are 

a 2 = .05, n=60, q. = .287. 

In Table 4.3.5 (for a2 = .05) for row n = 60, she finds under qc the value 
.367. Since her q. is smaller than qc, her observed difference is not significant 
ata2 = .05. [From formula (4.5.5), x = .287 V{60- 3)/2= 1.53.] 

Assume now that for another variable B, she finds r5 , = .35, r52 = - .14. 

Transformed by means of Table 4.2.2, these r values yield, respectively, 
z, 1 = .365, z,2 =- .141. By formula (4.5.1) for nondirectional tests, 

q. = 1.365- (- .141)1 = 1.5061 = .506. 

The specifications remain the same as for variable A, except that 
now q, = .506. Since this exceeds the qc = .367, the difference in correla­
tion for variable 8 is significant at a 2 = .05. [From formula (4.5.5), x = .506 

v'(60- 3)/2 = 2.70.] 
Consider now the results for a third variable, C. Assume she finds r5 , = 

_ 20 r = - .06. Transformed, these r values yield, respectively, z, = 
• ' '2 I 

- .203, z,2 = - .060. By formula (4.5.1) for nondirectional tests, 

q. = 1-.203- (- .060)1 = 1- .1431 = .143, 

which is less than qc = .367 and hence not significant at a 2 = .05. [From formu­

la (4.5.5), x = .143 v'(60- 3)/2 = .76.] 
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4.10 Example 4.2 described a study in clinical psychiatry which 
depended on comparing at the a 1 = .01 level correlations of two variables 
between (a) paranoid and (b) catatonic schizophrenics, r. 1 being predicted 
the larger. When samples ofn = 180 are analyzed, it is found that r. 1 = .60, 

r.2 = .36. When transformed, these yield z. 1 = .693 and z.2 = .377. Thus 

q. = .693 - .377 = .316. The specifications are 

a 1 = .01, n = 180, q. = .316. 

Table 4.3.1 (for a 1 = .01) for row n = 180 and column q., yields the 
value .247. Since q. (.316) exceeds the criterion value (.247), it can be con­
cluded at a 1 = .01 that the relationship is significantly larger for the para­

noids. [If desired, x can be found from formula (4.5.5) to be .316V(l80-=-3)12 
= 2.97.] Note that if the r;s for paranoids and catatonics were reversed, 

i.e., if the sample results were contrary to the predicted direction, no q 
values need be determined-the difference, being contrary to the predicted 
direction in a directional test, is nonsignificant whatever its magnitude. 

To make another point, we assume instead that r. 1, r.2 turn out to be 

+.15, -.14sothatz. 1,z,2 are.l51, -.141,andq.=.l51-(-.141)=.292. 

Now, since q. = .292 is greater than q. = .247, the difference between r,'s 
is significant, i.e., we conclude that r 1 is (algebraically) greater than r 2 • 

Note that this is true despite the fact that neither is significantly different 
(at the same a 1 = .01 level) from zero. (In Chapter 3, Table 3.3.1, r. for 
n = 180 is .173, which neither value exceeds.) Thus, two-sample values 
departing in opposite directions from zero may be significantly different 
from each other while neither is significantly different from zero. There is 
no contradiction if nonsignificance is properly interpreted as the data not 
warranting the rejection of the null hypothesis. Thus, the results of each 
sample do not warrant the conclusion that its population r is not zero, but, 
together, they do warrant the conclusion that the population r's differ 
(subject, of course, to the Type I error). 

4.5.3. SIGNIFICANCE TESTING IN CASE I, n 1 =I= n2 . The fact of inequality 
of sample sizes in significance testing using the tabled q. values requires 
only finding the harmonic mean of the (n- 3)'s, n', as described in Section 
4.3.2 [formula (4.3.1)]: 

n' = 2(n 1 - 3)(n2 - 3) + 3. 
n 1 +n2 -6 

In using Tables 4.3, values ofn' are substituted for n. Otherwise, exactly 
the same procedure is followed as in Case 0. 

If the normal curve deviate value x is desired, it is found using formula 
(4.5.3), or, if n' has been found, it is computationally simpler to substitute 
n' for n in formula (4.5.5). 
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Illustrative Example 

4.11 Example 4.3 describes an investigation in psycholinguistics designed 
to improve the reliability (parallel forms correlation) of a speech disruption 
measure. The statistical test takes the form of comparing the r 5's for the 
new (P 1) and old (P2) procedure at the a 2 = .05 significance level. Assume he 
finds r. 1 = .89 for n 1 =51 and r.2 = .79 for n2 = 260. The transformed values 

are found to be Z51 = 1.422 and Z52 = 1.071, so that 

q = 11.422- 1.0711 = 1.3511 = .351. 

To use the table, find n' from formula (4.3.1): 

n' = 2(51 - 3)(260- 3) + 3 = 84 
51+ 260-6 

(as before in example 4.3). 

The specifications for significance testing of the sample difference are: 

a 1 =.05, n' =84, q. = .351. 

Table 4.3.5 for a 2 = .05, row n = 84, and column qc, yields .308. Since 
q, exceeds qc, the difference in sample correlations is significant. (If desired, 
x may be found from formula (4.5.5) as .351 V(S4 --3)}2= 2.23.) 

Note that in planning (example 4.3), an ES of q = .40 was posited. Des­
pite the fact that the observed difference q, = .351 fell short of this, it was 
nevertheless significant. As has been noted previously, this can only occur 
when, for the planning specifications, power exceeds .50. (In this example, 
it was .72.) 

4.5.4 SIGNIFICANCE TESTING IN CASE 2: ONE SAMPLE, H 0 : r =c. When 
the null hypothesis takes the form: The r of a population of paired values 
from which a sample of n observations has been randomly drawn equals c, 
an adjustment must be made of the tabled q. value. Since the tables were 
constructed for Case 0 conditions (two samples of equal size), they are 
designed to allow for sampling error variance of two z;s, while in Case 2 
there is only one. To find the proper criterion for one-sample tests of 
r = c, one finds 

(4.5.6) q; =q. v! = .1o1q •• 

where q. is the tabulated value for n. 
As for the observed q. value for Case 2, we follow the principle expressed 
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in (4.5.1 ), and simply define q; as we defined q 2' [formula (4.3.2)], merely 
substituting the sample value ofz. for the population parameter z 1 : 

(4.5.7) 

= lz. -z.l 
(directional) 

(nondirectional) 

The prime is used to denote that a one-sample test is involved. The 
relationships between q.' and the normal deviate x for this case are now 

(4.5.8) , J J qs =X --' 
n-3 

(4.5.9) x = q.'v'n- 3. 

Formula (4.5.9) can be used if the exact value of the normal deviate 
("critical ratio") is desired, e.g., for reporting results for publication. 

Illustrative Example 

4.12 In example 4.4, which was concerned with an attempt to improve 
the reliability of an attitude scale, a test of H0 : r ~ .60 at a 1 = .05 (i.e., 
predicting r > .60) with a sample of n = 50 was described. When the data 
are collected, the social psychologist finds r. = .72. Can he safely conclude 
that the new scale has a population reliability coefficient (alternate form 
correlation) greater than .60? He converts these two values of r5 to z., 
and finds their difference: 

q; = .908- .693 = .215. 

This is the sample ES. His specifications, then, are 

a 1 = .05, n=50, q; = .215. 

In Table 4.3.2 (for a 1 = .05) with row n = 50, he finds in column q., 
.339. This would be the criterion for a two-sample test. For this one-sample 

case, he goes on to find [formula (4.5.6)] q.' = .339v'f = (.707){.339) = .240. 
This is the relevant criterion value, and since q.' = .215 is less than q.' = .240, 
he cannot conclude at a 1 = .05 that the population reliability of the new pro­
cedure exceeds .60. 

If he wishes to determine the exact normal curve deviate value x which 

would result from the test, he finds [formula (4.5.9)] x = .215v'50- 3 = .147. 



CHAPTER 5 
The Test That a Proportion Is .50 
and the Sign Test 

5.1 INTRODUCTION AND USE 

It arises with some frequency in behavioral science that a null hypothesis 
takes the form that the fraction of a population of potential observations 
having some defined characteristic is one-half, i.e., H0 : P = .50. Examples 
come to mind from areas as diverse as political science (opinion or political 
polling), experimental psychology (learning theory, psychophysics), and 
behavior genetics. Thus, for example, the question as to whether or not 
there is majority support in the electorate for a course of action by the 
national administration could be approached by polling a suitably drawn 
salll;ple and testing the null hypothesis that the proportion of the population 
in favor is .50; rejection of this null hypothesis leads to the conclusion. As 
another example, the ability of an experimental subject to detect a near­
threshold stimulus which is presented on a random half of a series of trials 
can be assessed by testing the null hypothesis that on a very long series he 
would be correct in his judgments of present-absent on P = .50 of the trials. 
The finding that the sample P is greater than .50 and significant would lead 
to the conclusion that he is (at least on some trials) making the perceptual 
discrimination. Research in extrasensory perception involving the calling of 
the side of a coin or the color of the suit of a playing card would test null 
hypotheses of the same form. 

The fact that in many human populations the sexes are about equally 
divided leads to the relevance of the P = .50 test in studies of sex differences. 
Thus, if an investigator is interested in the relationship between sex and a 
definable characteristic (say, falling into a given psychiatric diagnostic group 

145 
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or a political party), he can draw a random sample of a group having the 
characteristic and test the null hypothesis that the proportion of males is 
.50. Departure from .50 is taken as evidence for a sex difference in incidence 
of the characteristic, and therefore a relationship between sex and the 
characteristic. 

The widest application of the test of H0 : P = .50 arises in the form of 
the non parametric "Sign Test" (Siegel, 1956, pp. 68-75). Consider the 
following circumstances. We have a population of X, Y paired observations, 
and we are conceroed with the relative magnitude of the X's and Y's. If 
we can merely say for each pair in a sample whether X is greater than Y (so 
that X- Y is positive) or X is less than Y (so that X - Y is negative), we have 
a basis for deciding whether the X population is stochastically larger or 
smaller than the Y population. By "stochastically larger (smaller)" we 
simply mean that in more than half of the X, Y pairs in the population, X 
is larger (smaller) than Y. Under these circumstances, the null hypothesis 
that the X and Y populations are stochastically equal is simply H0 : P =.50, 
where Pis the proportion of pairs in which X (or Y) is larger. 

Note that no assumption need be made about the shape of either the X 
or the Y distributions, or of their joint (bivariate) distribution. Indeed, it 
is not even necessary that the values of the variables be expressed in metric 
(i.e., interval or ratio scale) form: only "larger than" or "smaller tllan" 
judgments are required. Thus, the test is distribution-free, and sine, no 
estimation of population parameters are called for, nonparametric as well. 

If stronger assumptions are permitted, specifically, if it can be assumed 
that X - Y = Z values are normally distributed and with equal variance, 
then the t test for dependent means of Section 2.3.5 is appropriate, and, for 
equal specifications, more powerful. Further, with large samples, moderate 
failure of these assumptions is tolerable. The investigator may nevertheless 
choose to perform the less powerful sign test as a "shortcut" or "approxi­
mate" test (Welkowitz, Ewen, & Cohen, 1982, Chapter 17). 

This test can equally be used for a test of the difference between correlated 
or dependent proportions (Hays, 1973, pp. 740-742). If we assess X and Y 
as having some attribute present (1) or absent (0), then our X, Y pairs are 
either (1, 0), (0, I), (1, 1), or (0, 0). We then discard the instances of the latter 
two possibilities, where we cannot make a judgment of" greater than." Now, 
if the proportions having the attribute differ between X and Y, then P, the 
proportion of differing X, Y pairs in which X is greater than Y, will depart 
from .50. Thus, the null hypothesis is again P = .50, and the methods of this 
chapter can be applied. 

The statistical term for the test model under consideration is the 
"symmetrical binomial cumulative distribution." It is frequently referred 
to by this name in the statistical literature [see MacKinnon (1959, 1961) for 
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some useful tables]. "Symmetrical" is used for P = I - P =.50; tests of 
other values of P proceed by means of other binomial cumulative distribu­
tions (see Hays, 1973, pp. 185-197). The methods of the next chapter may 
be used to test the more general hypothesis H0 : P = k, where k is any 
proportion. 

5.2 THE EFFECT SIZE INDEX: g 

We index departure from P =.50 simply by the distance in units of 
proportion from .50, i.e., 

(5.2.1) 
and 

g = P- .50 or .50- P 

g= IP- .501 

(directional), 

(nondirectional). 

In this form, our null hypothesis is that g = 0. A test of H0 : P =.50 
when P 1 is actually .60 represents an alternate hypothesis or ES of g = . 60 
-.50= .10. Unlike some of the other ES indices in this book, g is fortu­
nately expressed in a unit which is immediately comprehensible to the 
behavioral scientist. 

5.2.1 "SMALL," "MEDIUM," AND "LARGE" VALUES OF g. We offer as 
conventions operational definitions of qualitatively defined levels of ES 
here with, if anything, greater diffidence than in the previous chapters (see 
particularly the general discussion in Section 1.4 ). Since g is so transparently 
clear a unit, it is expected that workers in any given substantive area of the 
behavioral sciences will very frequently be able to set relevant ES values 
without the proposed conventions, or set up conventions of their own 
which are suited to their area of inquiry. 

They are offered here for whatever use they may afford researchers in 
areas where effect sizes are obscure, for use with the sign test where experi­
ence in an area may not provide a guide, and for the sake of symmetry of 
exposition. One further reason lies in a larger effort to make behavioral 
scientists using statistical inference more aware of the sizes of the effects 
they are studying. It must be reiterated, however, that a basis for positing g 
which comes from theory or experience should automatically take precedence 
over these conventions. 

SMALL EFFECT SIZE: g = .05. With g = .05 as the definition, we are con­
sidering a division of the population of .55: .45 as a small departure from 
the null (.50:.50). This may be considered either too large or too small a 
criterion, depending on the reader's perspective. 

For a normally distributed population of differences, the division between 
the highest .55 and the lowest .45 of them comes at about one-eighth (.126) 
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of their standard deviation away from their mean (see discussion of U 3, 

Section 2.2 and Table 2.2.1 ). If such a division obtained in a sign test, with 
.55 positive and .45 negative, the mean of the positive differences would be 
.85, and of the negative differences (- ).75, when expressed in units of the 
(total) standard deviation of the differences. This may well seem like very 
little, less than "small," particularly when one considers that at P =.50, 
these tail means are .80 and - .80. 

On the other hand, consider political polling. In a presidential election, a 
candidate who garners 55% of the popular vote is said to have won by a land­
slide. (In only II of the 28 presidential elections since 1872 did the popular 
plurality candidate get more than 55% of the vote; in only 4, more than 
60 %.) In opinion polling on closely divided issues (where it is most relevant), 
a .55: .45 division is sizable. Another relevant fact: the well~ known excess 
of women over men among the aged amounts to a female-male sex ratio of 
.547 :.453 in the population aged 65 and over (for the year 1970). Also the 
difference in vocabulary knowledge between adult siblings of opposite sex 
is such that in about 55% of the pairs who differ, the female will be superior 
[estimated from Wechsler (1958, p. 147)). 

Thus, the g = .05 criterion for a small departure may be too large or 
too small from some specific viewpoint; it seems, however, a reasonable 
criterion for general use. 

MEDIUM EFFECT SIZE: g = .15. A .65:.35 split is,offered as a conventional 
definition of a medium departure from .50: .50. ·This is a 13:7 ratio, i.e., 
approximately 2:1. (If exactly 2 to I is desired, it is provided in the tables 
atg=i.) 

In a normal distribution of differences, the highest .65 are cut off at 
.385 of a standard deviation away from the mean. Interpreted as a sign test 
with .65 positive differences, the mean of these differences is .96, while that 
of the negative differences is (- ).77 (in standard units). Thus, if adult 
mixed-sex sibling pairs were given a standard Arithmetic Reasoning test, 
in about two-thirds of the cases where the siblings differed, the brothers 
would get the larger score [estimated from Wechsler (1958, p. 147)). 

In more familiar terms, and returning to divisions in the popular vote 
in presidential elections, there never has been a division as extreme as 
.65: .35 since popular vote totals became available (1872). (The largest 
proportion polled up to 1972 was .608 by Roosevelt in 1936. Ironically, this 
was the year of the Literary Digest Poll debacle, when Landon's election was 
predicted by a socioeconomically biased sample.) 

An instance of a division of the order of g = .15 can be drawn from 
mortality statistics. If one were to collect very large and equal random 
samples of black and white births inthe East South Central States, those dy­
ing before the age of one year would contain almost twice as many blacks 
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as whites (.643: .357V 
Another instance of a medium effect size is the sex difference in incidence 

of manic-depressive psychosis: Authorities generally agree that the diag­
nosis is made about twice as frequently in females than in males, hence 
P ~ .67 and 1 ~ .67 - .50= .17 (see Campbell, 1953, p. 70). 

For another example, consider again normally distributed populations 
of differences between adult brother-sister pairs with regard to two intelli­
gence subtest variables, arthmetic reasoning and a speeded digit-symbol 
substitution task. In the arithmetic subtest, in approximately .64 of the 
pairs, the brothers would obtain the higher score, and in the digit-symbol 
subtest, in the same proportion of the pairs the sisters would show superior 
performance (estimated from Wechsler (1958, p. 147)]. Thus, ~~.14 in 
both instances, a medium departure. 

LARGE EFFECT SIZE I = .25. We operationally define as a large ES a 
. 15: .25, or 3: I split. In line with our orientation in setting the ES conven­
tions, this should be a departure from .50:.50 which is fairly obvious to the 
observer's naked eye, yet not so large as to render statistical analysis wholly 
superfluous (see Section 1.4). 

In a normally distributed population of differences, the largest .75 of 
them are cut off at .674 of a standard deviation below the mean. When 
interpreted as a sign test with .75 positive differences, the mean of the 
positive differences would be 1.10 and the mean of the negative differ­
ences (- ).60 (in standard units). Thus, there would be a half standard 
deviation separation between the means of the positive and negative tail 
segments.2 

It is difficult to come by well-known examples to illustrate a departure 
from the null of 1 = .25, i.e., . 75: .25 population splits where .50: .50 represents 
"no effect." For example, as already noted, no recorded popular vote for 
the U.S. presidency has approached this size, and no brother-sister difference 
in the area of human abilities, such as were used to illustrate small and 
medium ES are known which are of this magnitude. 

An obvious example can be drawn from Mendelian genetic ratios. For 
the simple case of single gene complete dominance inheritance, the matings 
of heterozygous parents yield offspring .25 of whom would manifest 
the recessive character. Thus, the ratio among phenotypes showing to 

1 Computed from Bureau of the Census (1975, Table 89, p. 63). 
2 The reader should not confuse this with the medium ES of d = .S separation between 

means of different whole normal populations, standardized by their common within popu­
lation standard deviation, used in connection with the t test (see Section 2.2). Here tail 
segments of a single normal population are involved, and the standardizing unit is the 
total standard deviation, a much larger unit than the within-population standard deviation. 
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not showing the recessive trait would be .25: .75, thus a departure of .25 
from a null hypothesis which posits equal incidence of the two pheno­
types. 

One can find populations that split .75: .25, but they are not compelling 
examples unless there is a reasonable basis for stating a .50: .50 null hypothe­
sis. For example, the proportion of adult males in the U.S. who are unmarried 
is close to .25, but to consider this a g = .25 departure from .50: .50 seems 
forced in the absence of any particular reason to posit an equiprobable null 
hypothesis for single/not single. Or, in other words, what effect is there none 
of if the proportion of single men were .50? 

The area of sex differences has provided some useful illustrations of 
small and medium ES. On can find examples of large sex differences, but 
they are larger than our g = .25 criterion. Thus, when one identifies the 
sex distribution in samples of school children who are stutterers or behavior 
problems or who are diagnosed as reading disability cases or color blind, 
the departure from a no sex effect .50 incidence for boys is typically at least 
.30 (i.e., .80: .20), color blindness (usually a sex-linked recessive character) 
rising to about g = .40 (i.e., .90: .10). 

One example of a g = .25 sex difference can be offered: If one were to 
draw large and equal samples of male and female arrests from police blotters 
in U.S. cities of over 2500 population, and then to identify the arrests for 
auto theft, 75% of them would be males! 

5.3 POWER TABLES 

The tables in this section yield power values when, in addition to the 
significance criterion and ES ( =g), the sample size is specified. They should 
therefore be used in finding the power of the test of H0 : P =.50 (or g = 0), 
after the data are gathered. They can also be used in planning experiments 
by varying n, ES, or a, or all three, to determine the consequence to power 
of such alternative specifications. The tables give values for "nearest" a, 
g, and n: 

1. Significance Criterion, a. Since frequencies are discrete, the (exact) 
binomial test cannot be performed at a constant conventional value of a, 
such as .05 or .01. For example, when a population P = .50, and a random 
sample ofn = 10 cases is drawn, the probability (a2 ) of a 10:0 or 0:10 distri­
bution in the sample is .002, of a 9: I or I :9 distribution is .021, and of an 
8:2 or 2:8 distribution is .109. No tests at a2 =.OJ, .05, or .10 are possible 
because intermediate values for frequences between 10 and 9 and between 
9 and 8 are not possible. Thus, for each value of n in each power table, 
the exact value of a 1 or a2 for the test is given. This is generally3 the nearest 
available value to the conventional .01, .05, and .10 criteria. 
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Tables are provided for the following "nearest" values of a: a 1 ~ .01, 
a 1 ~ .05, a 1 ~ .10; a2 ~ .01, a 2 ~ .05, a2 ~ .10, the subscripts referring to 
one- and two-tailed tests. Since power at a 1 closely approximates power at 
a2 = 2a1 , for power greater than .10, one can also determine power at a2 ~ 

.02 (from the a 1 ~ .01 table), a2 ~ .20 (from a 1 ~. 10), a 1 ~ .005 (from 
a2 ~ .01, and a1 ~ .025 (from a2 ~ .05). In each instance one simply doubles 
or halves the exact values for a 1 or a2 given in the table. These will, however, 
not necessarily be the nearest possible values to those desired. 

2. Effect Size, ES. The ES index here is g, the discrepancy in the popu­
lation from the null-hypothetical P =.50. In directional (one-tailed) tests 
(a 1), g is understood as either positive or negative, depending on the direc­
tion posited in the alternate hypothesis, e.g., H 1 : g = - .15 (i.e., P 1 = .35). 
In nondirectional (two-tailed) tests, g is understood as absolute, e.g., "given 
a departure from .50 or .15, whether positive or negative .... " 

Provision is made for g = .05 (.05) .40, and also *· Conventional defini­
tions have been offered above, as follows: 

small: g = .05 {.55: .45) 

medium: g = .15 (.65: .35), 

large: g = .25 (.75: .25). 

3. Sample Size, n. This is the number of observations in the sample. 
Depending on the nature of the application of the test, observations may be 
single, or as in the "Sign Test," paired. Provision is made for n = 8 (I) 
40 (2) 60 (4) 100 (20) 200 (50) 500 (100) 1000. 

The values in the body of the table are the power of the test times 100, 
i.e., the percent of tests carried out under the given conditions which will 
result in the rejection of the null hypothesis, H 0 : P = .50 at the exact level 
of a given in the third column. The values are accurate to two places, 
as given. For a few values of n (250, 350, and 450), exact binomial values 
are not available in published tables and the normal approximation was 
used. (Also, see Cohen, 1970.) 

(For the meaning and use of v, see Section 5.5). 

3 An occasional exception is made in order to provide more values. For example, 
when n = 16, a break of 12:4 or 4: 12 is significant at &z = .077. This is given in Table 5.3.5 
for &z ~.OS. A break of II :4 or 4: II is significant at &z = .210 and is given in Table 5.3.6 
for &z ~ .10, even though .077 is closer to .10 than .210 is. This exception avoids duplicating 
the information in that line of the table in Table 5.3.6 and instead provides an additional 
line of values. 
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Table 5.3.1 

Power of Sign Test (P = .501 at a1 ,., .01 

g 

n ., 
'I .os .10 .IS 1/6 .20 .2S .30 .3S .Ito 

8 8 004 01 02 03 ()It 06 10 17 27 .. , 
9 9 002 00 01 02 03 ()It o8 13 23 39 

10 9 011 02 OS 09 10 IS 2ft 38 Sit 7ft 
11 10 006 01 03 06 08 11 20 32 lt9 70 
12 II 003 01 02 ()It OS 09 16 27 ,.,. 66 
13 11 011 03 06 11 , .. 20 32 so 69 87 
lit 12 006 02 ()It o8 11 16 28 ItS 65 Bit 

IS 13 004 01 03 06 08 13 24 ItO 60 82 
16 13 011 03 07 13 17 2S ItO 60 79 93 
17 lit 006 02 OS 10 13 20 35 55 76 92 
18 IS 004 01 03 o8 10 16 31 so 72 90 
19 IS 010 03 07 IS 19 28 47 67 86 96 

20 16 006 02 OS 12 IS 24 41 63 83 96 
21 16 013 ()It 10 20 2S 36 57 77 92 99 
22 17 008 03 07 16 21 31 52 73 90 98 
23 18 oos 02 OS 13 17 27 47 69 88 98 
24 18 011 ()It 10 21 26 39 61 81 ,.. 99 

25 19 007 03 07 17 22 34 56 78 93 99 
26 19 014 OS 12 26 32 46 69 87 97 * 27 20 010 03 10 22 28 .. , 64 Bit 96 
28 21 006 02 07 18 23 36 60 82 9S 
29 21 012 ()It 12 26 33 48 71 89 98 

30 22 Oo8 03 09 22 29 ,., 67 87 97 
31 23 oos 02 07 19 2S 39 63 as 97 
32 23 010 ()It 12 27 3lt so 74 91 98 
33 24 007 03 09 23 30 ItS 70 89 98 
)It 2lt 012 OS , .. 31 39 ss 79 ,.. 99 

3S 2S oos ()It 11 27 3'+ 51 76 93 99 
36 26 006 03 09 23 30 lt7 73 91 99 
37 26 010 ()It 13 31 39 57 81 95 99 
38 27 007 03 11 27 35 52 78 ,.. 99 
39 27 012 OS 16 36 .... 62 as 96 * 
ItO 28 oos ()It 13 31 ItO 58 82 96 
lt2 29 010 OS 1S 3S .... 63 86 97 .... 30 011 OS 17 39 lt9 67 89 98 
lt6 31 013 o6 19 ,., 53 71 91 99 
ItS 33 007 ()It ,,. 35 Its 64 88 98 



5.3 POWER TABLES 153 

Table 5.3.1 (continued} 

g 

n v ., .os ,10 .15 1/6 ,20 .25 .30 .35 .40 

so 34 008 ott 16 39 .. , 68 90 99 * * 52 35 009 OS 18 43 53 72 92 99 
S4 36 010 06 20 46 56 76 94 99 
56 37 011 06 22 49 60 79 95 * 58 38 012 07 24 53 63 81 96 

60 40 007 ott 18 45 56 76 95 
64 42 008 06 22 52 63 82 97 
68 .... 010 07 2S 58 69 86 98 
72 46 012 08 29 63 74 89 99 
76 49 008 06 25 59 70 88 99 

80 51 009 07 29 64 75 91 99 
84 53 011 08 32 69 79 93 99 
88 55 012 09 36 73 83 95 * 92 sa 008 07 31 70 80 94 
96 60 009 08 35 73 84 95 

100 62 010 10 38 77 86 97 
120 73 011 12 47 85 93 99 
140 84 011 13 S4 91 96 * 160 95 011 IS 60 94 98 
180 106 010 17 65 96 99 

200 117 010 18 69 98 99 
250** 144 010 22 80 99 * 300 171 009 26 87 * no** 197 010 33 93 
400 224 009 36 95 
450- 250 010 42 98 

500 277 009 45 98 
600 329 010 ss * 700 381 011 63 
800 433 011 70 
900 485 011 76 

1000 537 010 80 

* Pawer values bel aw thfs pofnt are greater thin ,995, 
** Nona I approxf•tfon. 



154 5 THE TEST THAT A PROPORTION IS .50 AND THE SIGN TEST 

Table5.3.2 

Power of Sign Test (P = .501 at a, "".05 

9 

n y .1 .05 .10 .15 1/6 .20 .25 .30 .35 .40 

8 7 035 06 11 17 20 26 37 so 66 81 
9 8 020 04 07 12 14 20 30 .... 60 77 

10 8 055 10 17 26 30 38 53 68 82 93 
11 9 033 06 12 20 23 31 46 62 78 91 
12 9 073 13 23 3S 39 49 65 79 91 97 
13 10 046 09 17 28 32 42 sa 75 88 97 
14 11 029 06 12 20 26 36 S2 70 as 96 

15 11 059 12 22 35 40 52 69 84 ,.. 99 
16 12 038 09 17 29 34 45 63 80 92 98 
17 12 072 15 26 42 48 60 77 89 97 * 18 13 Olt8 11 21 35 41 53 72 87 96 99 
19 14 032 08 16 30 35 47 67 84 95 99 

20 14 058 13 25 42 48 61 79 91 98 * 21 15 039 10 20 36 42 55 74 89 97 
22 15 067 IS 29 47 54 67 84 ,.. 99 
23 16 Olt7 12 24 41 48 62 80 93 98 
24 17 032 09 19 36 42 56 77 91 98 

25 17 054 13 27 47 54 68 as 95 99 
26 18 038 10 23 41 48 63 82 94 99 
27 18 061 15 31 52 59 73 89 97 * 28 19 044 12 26 46 54 68 86 96 99 
29 19 068 17 34 56 64 77 92 98 * 
30 20 0119 14 29 51 58 73 89 97 
31 21 035 II 25 46 53 69 87 97 
32 21 055 15 32 55 63 77 92 98 
33 22 040 12 28 50 sa 73 90 98 
34 22 061 17 35 59 67 81 ,.. 99 

3S 23 045 13 31 54 62 77 92 99 
36 23 066 18 38 63 71 84 95 99 
37 24 049 IS 33 58 66 81 ,.. 99 
38 25 036 12 29 53 62 77 93 99 
39 25 054 16 36 62 70 84 96 99 

40 26 040 13 32 S7 66 81 9S 99 
42 27 044 IS 34 61 69 84 96 99 .... 28 048 16 37 64 72 86 97 * 46 29 OS2 17 40 67 7S 88 98 
48 30 OS6 18 42 70 78 90 98 
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Table 5.3.2 (continued) 

g 

n y al .os .10 .15 1/6 .20 .25 .30 .)5 .Ito 

so 31 059 20 45 73 80 92 99 * * * 52 32 063 21 47 75 82 93 99 
54 34 0)8 IS 38 68 77 90 98 
56 35 041 16 41 71 79 91 99 
58 36 043 17 43 73 81 93 99 

60 37 046 18 ItS 75 8) 94 99 
64 39 052 20 49 79 86 95 * 68 41 057 23 53 83 89 97 
72 44 0)8 18 47 79 87 96 
76 46 042 20 51 83 89 97 

80 48 046 22 ss ss 92 98 
84 so 051 24 ss 88 93 98 
88 52 oss 25 61 90 95 99 
92 54 OS9 27 64 91 96 99 
96 57 041 22 59 90 95 99 

100 59 044 24 62 91 96 99 
120 70 041 26 68 95 98 • 
140 so 054 34 78 98 99 
160 91 048 35 81 99 * 180 102 043 35 84 99 

200 112 052 42 89 * 250** 139 oso 45 93 
300 165 047 52 97 
350** 191 050 59 98 
400 217 049 64 99 
4so** 243 oso 68 * 
soo 269 049 72 
600 321 047 78 
700 372 052 85 
800 424 048 88 
900 475 051 92 

1000 527 047 93 

* Values below thfs pofnt are greater than .995. unless other values are 
specf ff eel. 

** Non~~a1 approxf•tfon. 
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Table5.3.3 

Power of Sign Test (P = .50) at a, "' .10 

g 

-··--·-·-
n y .1 .os .10 .IS 1/6 .20 .25 .30 .35 .Ito 

8 6 titS 22 32 It) lt7 ss 68 80 89 96 
9 7 090 IS 23 )It 38 lt6 60 71t 86 9S 

10 7 172 27 38 51 56 65 78 88 95 99 
11 8 113 19 30 It) lt7 57 71 8lt 93 98 
12 8 19lt 30 ltlt sa 63 72 8lt 93 98 * 13 9 133 23 35 so ss 65 79 90 97 99 
lit 10 090 17 28 lt2 lt8 sa 7lt 87 95 99 

IS 10 151 26 ItO 56 62 72 85 9lt 98 * 16 11 105 20 33 lt9 55 66 81 92 98 
17 11 166 29 ItS 62 67 78 89 96 99 
18 12 119 23 37 55 61 72 86 95 99 
19 13 08lt 17 31 lt8 Sit 67 83 93 98 

20 13 132 25 lt2 60 66 77 90 97 99 
21 tit 095 20 35 Sit 60 72 87 96 99 
22 lit 1lt3 28 ItS 65 71 81 93 98 * 23 IS 105 22 39 59 65 77 90 97 * 2lt 16 076 17 33 53 59 73 88 96 99 

2S 16 115 2lt lt2 63 70 81 93 98 * 26 17 08lt 19 36 57 6lt 77 91 98 
27 17 12lt 26 lt6 67 73 8lt 95 99 
28 18 092 21 ItO 62 69 81 93 99 
29 18 132 28 lt9 70 77 87 96 99 

30 19 100 23 lt3 65 72 8lt 95 99 
31 20 075 19 38 60 68 81 9lt 99 
32 20 108 25 lt6 69 76 87 96 99 
33 21 081 21 It I 6lt 71 8lt 95 99 
)It 21 115 27 lt9 72 79 89 97 * 
3S 22 088 22 ltlt 68 75 86 96 99 
36 22 121 29 52 75 81 91 98 * 
37 23 09lt 2lt lt6 71 78 89 97 
38 23 128 30 Sit 77 8lt 92 98 
39 2lt 100 26 lt9 71t 80 91 98 

Ito 25 077 21 ltlt 69 77 88 97 
lt2 26 082 23 lt7 72 80 90 98 
ltlt 27 087 Zit lt9 75 82 92 99 
lt6 28 092 26 52 77 Bit 93 99 
lt8 29 097 27 Sit 79 86 9lt 99 
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Table 5.3.3 (continued) 

g 

n y ., .os .10 .IS 1/6 .20 .25 .30 .3S .Ito 

so 30 101 29 56 81 87 95 99 * * * 52 31 106 30 58 83 89 96 * Sit 32 110 31 60 ss 90 97 
56 33 lilt 33 62 86 91 97 
ss 34 119 34 64 88 92 98 

60 36 078 26 S6 83 89 96 
64 38 oBit 28 59 86 91 97 
68 ItO 091 31 63 88 93 98 
72 42 097 33 66 90 95 99 
76 lt4 103 35 69 92 96 99 

80 lt6 109 37 72 93 97 99 
84 lt8 115 39 74 95 97 * 88 51 o83 33 69 93 97 99 
92 53 o87 35 72 94 97 * 96 55 092 36 74 95 98 

100 57 097 38 76 96 98 
120 68 o85 39 80 98 99 
140 78 102 47 87 99 * 160 89 089 47 89 99 
180 99 102 53 93 * 
200 110 o89 53 93 
zso** 136 100 60 97 
300 162 092 66 98 
350** 187 100 74 99 
400 213 106 77 * 45o** 239 100 80 

500 265 097 83 
600 316 103 88 
700 367 106 92 
800 419 095 94 
900 470 097 96 

1000 521 097 97 

* Values below thfs pofnt ere gr .. ter than .995, unless other values ere 
specf ff eel. 

** No .... 1 epproxf•tfon. 
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T.tlle5.3.4 

P~ of Sign Test IP • .50) at a2• ~ .01 

g 

n • •z .os .to .IS 1/6 .zo .zs .:so .35 ... o 

8 8 008 01 02 03 Olt 06 10 17 27 .. , 
9 9 oOit 01 01 02 03 04 08 12 23 39 

10 10 002 00 01 01 02 03 06 " 20 3S 

" 10 012 02 03 06 08 11 20 32 lt9 70 
12 11 006 01 02 Olt OS 09 " 27 .... 66 ,, 12 003 01 01 03 Olt 06 13 23 Ito 62 , .. 12 013 02 Olt 08 11 ,, 2a ItS 65 84 

IS 13 007 01 03 06 oa 13 24 40 60 az ,, , .. OOit 01 02 OS 06 10 20 3S 56 79 
17 , .. 013 02 OS 10 13 20 35 ss 76 92 
Ia IS 008 01 03 08 10 16 31 so 72 90 
19 16 OOit 01 02 06 08 13 26 .. , 68 aa 

20 16 012 02 OS 12 IS Zit It I 63 83 " 21 17 007 01 Olt 09 12 20 37 59 ao 9S 
22 18 OOit 01 03 07 10 16 32 Sit 77 ,.. 
23 Ia 011 02 OS 13 17 27 lt7 69 88 98 
24 19 007 01 Olt 10 lit 23 ltz 66 86 97 

zs 19 015 03 07 17 22 , .. 56 78 ,.. 
" 26 20 009 02 0~ 14 19 30 52 75 92 99 

27 21 006 01 Olt 11 IS 26 47 71 90 99 
28 21 013 03 07 18 23 36 60 az 95 * 
29 22 008 02 06 IS 20 32 56 79 ,.. 99 

30 23 oos 01 Olt IZ 17 za 51 76 " 99 
31 23 011 oz 07 19 zs 39 63 as 97 * 32 24 007 02 06 16 Zl 34 59 83 " 33 24 Ollt 03 09 23 30 ItS 70 a9 98 ,.. zs 009 oz 07 zo 26 41 66 a7 98 

35 26 006 oz 06 17 zz 36 63 as 97 ,, 26 011 03 09 23 30 lt7 73 91 " 37 27 008 oz 07 20 27 lt2 69 90 98 
38 27 014 03 11 27 35 52 78 ,.. 

" 39 28 009 02 11 24 31 lt8 75 " 99 

ItO 29 006 oz 09 21 27 .... 72 91 99 
ltZ 30 008 oz 09 Zit 3Z 50 77 ,.. 99 .... 31 010 03 10 za 36 ss a1 " * lt6 3Z 011 03 1Z 31 ItO 60 as 97 
lt8 33 013 Olt 11t 35 ItS 6lt 88 98 
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Table 5.3.4 (continued} 

g 

" v •z .os .10 .IS 1/6 .20 .25 .30 .35 .Ito 

so 35 007 02 10 28 37 57 8ft 97 * * 52 36 008 03 II 31 It! 61 87 98 
Sit 37 009 03 13 35 ItS 66 89 99 
56 38 010 Oft lit 38 .. , 69 91 99 
sa 39 012 Oft 16 lt2 52 73 93 99 

60 ItO 013 05 18 ItS 56 76 95 * 6ft lt3 008 03 IS It! 52 71t ,.. 99 
68 ItS 010 Olt 18 lt7 59 80 96 * 72 lt7 013 OS 21 53 65 8ft 98 
76 so 008 Olt 18 so 62 82 97 

80 52 010 OS 21 55 67 86 98 
Bit Sit 012 OS 25 60 72 90 99 
88 57 007 Olt 21 57 69 88 99 
92 59 009 OS 21t 62 71t 91 99 
96 61 010 05 27 66 78 93 * 

100 63 012 07 31 70 81 95 
120 75 008 06 32 75 86 97 
litO 86 009 07 Ito 8ft 92 99 
160 97 009 09 lt7 89 95 * 180 108 009 10 53 93 97 

200 119 009 II 59 95 99 
2so** llt6 010 IS 72 99 * 300 173 009 19 81 * no** 200 010 23 87 
ltOO 226 011 29 93 
It so** 253 010 32 9S 

500 279 011 38 97 
600 332 010 ItS 99 
700 .385 009 52 * Boo lt37 010 60 
900 lt89 010 67 

1000 Sit I 010 73 

* V•lues bel- thfs pofnt •re gr .. ter then .995, unless other velues ue 
apecfffed. 

** !tonne! •pproxf•tfon. 
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Table5.3.5 

Power of Sign Test (P " .50) at a2 .... 05 

g 

" y .2 .os .10 .15 1/6 .20 .2S .)0 .)S .Ito 

8 7 070 08 11 17 20 26 37 50 66 81 

' 8 039 OS 07 12 , .. 20 30 .... 60 77 

10 ' 021 03 OS 09 10 IS 2ft 38 Sit .,. 
11 ' 065 08 12 20 2lt 31 lt6 62 78 91 
12 10 039 OS 09 15 18 2S " S6 .,. 89 
13 11 022 03 06 11 , .. 20 " so 69 87 , .. 11 057 07 13 22 26 36 52 70 85 96 

IS 12 03S OS 09 17 21 30 lt6 6S 82 ,.. 
16 12 077 10 17 29 31t ItS 63 80 92 98 
17 13 Olt9 07 13 2ft 28 " S7 76 90 98 
18 , .. 031 OS 10 19 23 " S2 72 88 97 
19 , .. 06lt 09 17 30 35 lt7 67 8ft 95 " 20 IS Olt1 06 13 25 30 lt2 62 80 " " 21 16 027 Oft 10 20 2S 36 S7 77 92 " 22 16 052 08 16 30 36 .. , 70 87 96 * 23 17 035 06 12 25 31 .... 6S 8ft 95 " 2ft 17 06lt 10 ,, 36 lt2 56 77 91 98 * 
25 18 Olt3 07 1S 31 37 51 73 89 97 
26 19 029 OS 1.! 26 32 lt6 69 87 97 
27 19 OS2 08 19 36 lt3 sa 79 93 " 28 20 036 06 15 31 38 53 75 91 98 
29 20 061 10 22 .. , ItS 6ft 83 95 99 

30 21 Olt3 07 18 36 lt3 S9 eo ,.. 
" 31 22 029 06 1ft 31 38 Sit 77 93 " 32 22 oso 09 21 ItO ItS 6ft as 96 " 33 23 035 07 17 36 lt3 60 82 95 99 ,.. 23 058 10 23 ItS 53 69 88 97 * 

35 21t Olt1 08 20 ItO ItS 65 86 97 
36 2ft 06S 11 26 .. , 58 7ft 91 98 
37 25 Olt7 09 22 ItS 53 70 89 98 
38 26 031t 07 19 ItO lt8 66 87 97 

" 26 053 10 25 .. , 57 7ft 91 98 

Ito 27 038 08 21 .... 53 70 90 98 
lt2 28 Oltlt 09 2ft lt8 57 71t 92 " .... 29 Olt9 10 26 52 61 78 ,.. 

" lt6 30 OSit 11 29 56 6S 81 95 " lt8 31 059 12 31 59 68 8ft 96 * 
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Table 5.3.5 (continued) 

g 

n v .:l .os .10 .IS 1/6 .20 .2S .30 .3S .~to 

so 32 06S 13 34 62 71 a6 97 * * * S2 34 036 09 26 Sit 64 al 96 
54 3S o40 10 2a 57 67 8lt 97 
S6 36 o44 11 30 60 70 a6 97 
sa 37 o~ta 11 33 63 73 a a 98 

60 3a OS2 12 3S 66 76 90 9a 
64 ItO 060 14 39 71 ao 92 99 
6a 43 O)a 11 34 67 77 91 99 
72 4S o44 12 3a 72 al 93 99 
76 47 oso 14 42 76 8lt 9S * 
8o 49 OS7 16 46 ao a7 96 
8lt S2 03a 12 41 76 as 96 
88 Sit o42 14 .... ao a a 97 
92 S6 o47 IS 4a 83 90 9a 
96 sa 052 17 51 as 92 9a 

100 60 OS7 Ia Sit a7 93 99 
120 71 oss 21 61 92 97 * 140 a2 OS2 22 67 95 9a 
160 93 o~ta 24 72 97 99 
lao 1o4 o44 2S 76 98 99 

200 114 OS6 31 a3 99 * 2So** 141 oso 3S a9 * 300 167 057 43 "' 3SO** 194 oso 46 96 
400 220 051 52 98 
4so** 246 oso 58 99 

soo 272 054 62 * 600 32S 045 67 
700 377 054 74 
8oo 42a OS2 a1 
900 4ao 049 as 

1000 531 OS4 a9 

* Values below this point ere greeter then .995, unless other values ere 
specffiecl. 

** Nor,.l epproxl1111tfan. 
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Tlble5.3.6 

Power of Sign Test IP"' .501 at al == .10 

9 

ft y •2 .os .10 ·' 5 1/6 .20 .25 .30 .35 .Ito 

8 6 289 31 37 ItS lt9 56 68 80 90 96 
9 7 180 20 26 35 39 ft7 60 7ft 86 95 

10 8 109 13 18 27 30 38 53 68 82 93 
11 8 227 25 32 .... lt8 57 61 8ft 93 98 
12 9 1ft6 17 2ft 35 ItO lt9 65 79 91 97 
13 10 092 11 18 28 32 lt2 58 75 88 97 , .. 10 180 21 30 .. , ItS 59 7ft 87 95 " 15 11 118 IS 23 35 ... 52 69 8ft ,.. 

" 16 11 210 25 35 so ss 66 81 92 98 * 17 12 , .. , 18 27 lt2 ItS 60 77 89 97 * 18 13 096 13 21 36 .. , 53 72 87 96 " 19 13 167 21 32 lt8 Sit 67 8] 93 98 * 
20 , .. 115 IS 26 lt2 lt8 61 79 91 98 
21 15 078 11 20 36 lt2 ss 7ft 89 97 
22 IS 13ft 18 30 lt8 Sit 67 8ft ,.. 

" 23 16 093 13 2ft .. , lt8 62 80 93 98 
2ft 16 152 20 , .. 53 60 73 88 96 " 
25 17 108 15 28 lt7 Sit 68 as 95 " 26 18 076 11 23 ... ft8 63 82 ,.. 99 
27 18 122 17 31 52 59 73 89 97 * 28 19 087 13 26 lt6 Sit 68 86 96 99 
29 19 136 19 35 56 6ft 77 92 98 * 
30 20 099 15 29 51 sa 73 89 97 
31 21 071 11 25 lt6 53 69 87 97 
32 21 110 17 33 ss 63 77 92 98 
33 22 080 13 28 so sa 73 90 98 , .. 22 121 18 36 59 67 81 ,.. 

" 35 23 090 IS ,, Sit 62 77 92 " 36 23 132 20 39 63 71 8ft 95 " 37 2ft 099 16 , .. 58 66 81 ,.. 
" 38 25 073 13 29 53 62 77 93 " 39 25 108 18 37 62 70 8ft 96 " ItO 26 081 ... 32 57 66 81 95 " lt2 27 088 IS 35 61 69 8ft 96 " .... 28 096 17 37 6ft 72 86 97 * lt6 29 lOft 18 Ito 67 75 88 98 

lt8 30 111 20 lt2 70 78 90 98 
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Table 5.3.6 (continued) 

9 

n v a2 .os .10 .IS 1/6 .20 .2S .30 .n ... o 

so 31 119 21 '-S 73 80 92 99 * * * 52 32 126 22 .. 7 75 82 93 99 
54 34 076 16 38 68 77 90 98 
S6 35 081 17 41 71 79 91 99 
58 36 087 18 43 73 81 93 99 

60 37 092 19 4S 75 83 94 99 
64 39 103 21 '-9 79 86 95 * 68 41 114 23 53 83 89 97 
72 44 076 18 47 79 87 96 
76 46 08S 20 51 83 89 97 

80 48 093 22 55 8S 92 98 
84 50 101 2'- sa 88 93 98 
88 52 109 26 61 90 95 99 
92 S4 117 28 64 91 96 99 
96 57 082 23 59 90 95 99 

100 59 089 24 62 91 96 99 
120 70 082 26 68 95 98 * 1'-0 80 108 , .. 78 98 99 
160 91 097 35 81 99 * 180 102 086 ]6 84 99 

200 112 10'- '-2 89 * 2so"'* 139 100 4S 93 
3~ 165 094 S2 97 
35 191 100 59 98 
400 217 099 64 99 
4so"'* 243 100 68 * 
500 269 098 72 
600 321 094 78 
700 372 104 8S 
800 424 097 88 
900 475 102 92 

1000 527 094 93 

* Values below thfs pofnt ere greater thin .995, unless other values ere 
specfffed. 

"'* Nor•1 epproxf•tfon. 
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IUustrative Examples 

5.1 A class in political science at a large state university undertakes 
a research project, as follows: There are about to be student government 
elections, and the class attempts to forecast the result by polling a random 
sample of 100 students who indicate they will vote. Two candidate slates 
are in contention, and, among other questions, respondents are asked their 
slate preference. A test is to be performed at the a 2 ~~~::~ .05 level of the null 
hypothesis that either slate will poll .50 of the votes. Assuming that, in 
fact, the present split in the student body is .55: .45, i.e., that 1 = .55 - .50 
= .05, what is the power of the test? The specifications are;: 

a2 ~~~::~ .05, ·1 = .05, n = 100. 

In Table 5.3.5 (for a2 ~ .05), one finds that the closest exact value to 
a2 = .05 for n = 100 is a 2 = .057. At that level, for column 1 = .05, power 
equals .18. Thus, if the population split is .55:.45, there is only an 18% 
chance of detecting this slight edge at the a 2 = .057 level with n = 100. 

Other things equal, what is the probability that a .60:.40 population 
split is detectable? 

a2 = .057, 1=.10, n = 100. 

In row n = 100 of Table 5.3.5 in column 1 = .10, one finds power of 
.54. Thus, there is only about an even chance of detecting a .60: .40 disparity 
in preference for the two slates with n = 100 at a 2 = .057. Under these 
conditions, apparently, a sample of 100 cases is insufficient for useful fore­
casting, unless P departs a great deal from .50. Note that one must posit 
g = .15, a population .65 : .35 split 'hence a "landslide") for the power of 
the test to be usefully large (i.e., .87). 

5.2 An experimental psychologist undertakes an investigation in 
which he randomly assigns the two members of 24 litter pairs of rats to an 
E (impoverished environment)· and C (control) condition. At maturity, 
each of the pairs is brought together and a panel of three observers renders 
judgments as to which ofthe two is the more aggressive, a majority vote being 
determining. These circumstances call for a sign test. The null hypothesis 
is that PE ~.SO, to be tested at a 1 ~ .OS, against the directional alternative 
that PE >.50, that is, that more of the E members would be judged aggres­
sive, this being the expectation derived from his theory. The latter leads him 
to expect a strong effect, which he operationally defines as "large," i.e., 
1 = .25. Thus, his exact alternate hypothesis is that the population PE = .50 
+ .25 = .75. Given the latter, what is the power ofthe test? The specifications 
are: 

g=.25, n=24. 
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Note that although there are 48 animals involved, the observational unit 
is the pair, which can yield a positive (E >C) or a negative (E <C) difference 
in dominance, hence n = 24. 

In Table 5.3.2 for a 1 ~ .05, one notes first that for row n = 24, the nearest 
to the .05 exact value of a 1 = .032. (The next most stringent criterion for 
a 1 at n = 24 is .076-see Table 5.3.3.) Reading over to column g = .25, one 
finds his power to be . 77. Thus, if the effect is that large, he has a fairly good 
chance (about 3 in 4) of rejecting the null. 

However, if the observational judgment about aggressiveness is difficult 
to make, as evidenced, for example, by many split decisions among the 
judges, he might reason that the large effect expected from theory may be 
attenuated by measurement (judgment) error, and that perhaps he should 
not expect more than a 2: I rather than a 3: l predominance of E members 
being judged the more aggressive, hence g = PE- .50= i -! = 1. For this 
alternate hypothesis, that is for g = 1 along row n = 24 (where a 1 = .032), 
the power =only .42. He might consider liberalizing his a 1 criterion, 
since the discreteness has forced him to use a1 = .032 when he was prepared 
to work at a 1 = .05. He revises his specifications to 

g=1, n=24. 

In Table 5.3.3 for a 1 ~ .10, he finds (as noted before) that at n = 24 
he can work at the exact value a1 = .076, which is not very far from his 
originally intended a1 = .05 level. Reading over to g = 1, he finds power= 
.59, which he may still find inadequate for his purpose. 

5.3 An educational psychologist has designed an experiment to decide 
which of two alternative frame sequences more effectively teaches a small 
unit of plane geometry in a programed textbook. A group of 300 subjects 
was formed into 150 pairs, the members of each matched for available 
mathematical aptitude score, sex, and class. They were assigned textbooks 
differing only in whether the A or B version of the unit was included in 
their program. When the text was completed, the students were given a 
criterion problem and the "passers" were determined. The test performed 
involved finding whether the (correlated) proportions of passers in the A 
and B groups differ (Hays, 1973, pp. 740-742), or, equivalently, whether, 
out of the pairs whose outcomes (pass or fail) differ (nd), the proportion who 
had the A versions differ from .50. Note that this number cannot be known 
in advance, but varies inversely with the degree of between pair correlation, 
i.e., the stronger the relationship between pair members, necessarily the 
fewer pairs will have differing outcomes. He wishes to be able to reject the 
null hypothesis if, in the population, there is a .60:.40 split among those 
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pairs who have differing outcomes, thus 1 = .10. As stated, the test is non­
directional, and he has set a 2 ~ .05. He finds, after the experiment is com­
pleted, that in 60 of the 150 pairs, the pass-fail outcomes of the two members 
of the pair differ, i.e., nd = 60. What is the power of the test? The specifica­
tions are: 

1= .10, n=60. 

In Table 5.3.5 (for a2 ~ .05) for n = 60, he first finds that the exact a2 

value for the test at that n is .052. In column 1 = .10, he finds power = .35. 
He might well consider this power value inadequate for his purpose. He 
reconsiders the plan. 

It occurs to him that he can liberalize his significance driterion, since a 
Type I error in this situation is relatively tolerable. Thus: 

I= .10, n=60. 

Now, in Table 5.3.6 (for a2 ~ .10) for n = 60, he first finds that the 
exact a2 value is .092, and for 1 = .I 0, finds power = .45. This still leaves him 
with a less than equiprobable chance of rejecting the null for these specifi­
cations. 

He then decides to consider even further liberalization of his significance 
criterion: He can test at a2 ~ .20 by using the a1 ~ .10 criterion on a two­
sided basis: 

1=.10, n=60. 

In Table 5.3.3 for a 1 ~ .10, but used in a way that makes a2 ~ .20, he 
first finds that for n = 60, the exact a 1 value is .078, so for his intended use, 
a2 = 2(.078) = .156. For 1.;, .10, he finds power= .56. 

Although by progressively liberalizing his a2 criterion from .052 to 
.156, he has increased power from .35 to .56, he may well decide that the 
latter value is still inadequate. If he cannot reasonably expect 1 > .10, his 
only recourse within this design is to increase n. 

5.4 SAMPLE SIZE TABLES 

The tables in this section give values for the significance criterion, the 
1 ( = ES) to be detected, and the desired power. The sample size, n (i.e., 
the number which is the base of the sample proportion to be tested), is 
then determined. These tables are designed primarily for use in making the 
decision about sample size during the planning of experiments. As Section 
2.4 points out, a rational decision on sample size requires, once a significance 
criterion and ES are formulated, attention to the question: how much power 
(how little Type II error risk) is desired? 
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Table 5.4.1 

n to detect g in the Sign Test I P = .50) 

• 1 • .ot <•z z .o2) 
g 

P-r .os .10 .IS 1/6 .20 .25 .)0 .u .ItO 

.25 271+ 69 )2 27 19 lit 11 7 7 

.so Sf+ I 135 60 1+9 32 22 17 tit 11 

.60 665 166 73 59 1+2 27 19 tit 11 
2/3 759 189 83 67 1+7 30 19 17 11 

.70 811 202 89 72 1+9 32 22 17 11 

.75 899 223 98 79 51+ 3ft 25 t7 tit 

.eo 1001 21t8 t09 88 60 37 27 t9 tit 

.as 1127 279 122 98 67 1+2 30 19 t7 

.90 1297 321 litO 112 77 50 32 22 t7 

.95 1571 388 169 135 92 56 37 27 t9 

.99 215ft 530 230 181+ 121+ 75 50 35 25 

., • .os C•z •. to> 
9 

P-r .os .10 .IS 1/6 .20 .25 .30 .35 .Ito 

.25 95 28 13 13 8 8 5 5 5 

.so 27t 68 30 28 18 13 8 8 5 

.60 360 90 lt2 35 23 16 11 8 8 
2/3 lt30 107 lt7 37 28 18 ,, 11 8 

.70 lt69 tt6 51 " 30 t8 13 11 8 

.75 536 133 58 lt9 35 23 13 11 8 

.eo 6t6 152 67 53 37 23 16 13 8 

.as 716 177 77 62 " 28 t8 13 11 

.90 853 210 91 73 50 33 23 16 11 

.95 1077 265 115 92 62 ItO 28 t8 t3 

.99 1568 385 166 t33 89 Sit 35 26 18 

• 1 • .1o <•z • .2o) 
9 

P-r .os .10 .IS t/6 .20 .25 .30 .35 .Ito 

.25 39 lit 9 7 7 .. 4 4 4 

.so 16ft 1+6 21 19 lit 9 7 It It 

.60 235 59 28 21 17 9 9 7 .. 
2/3 292 73 35 28 19 lit 9 7 7 

.70 325 81 37 30 21 14 9 7 7 

.75 381 ,.. 4ft 35 26 17 17 9 7 

.eo "' Ill 1+8 39 28 19 t4 9 7 

.as 535 132 57 48 35 21 14 9 7 

.90 65ft 161 70 S6 39 26 ,, 12 9 

.95 852 209 90 72 49 30 21 14 9 

.99 1293 317 136 109 73 " 28 21 tit 
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Table 5.4.1 (continued} 

.2 •• 01 (a1 • .OOS) 

Power .os .10 .1 s 1/6 .20 .2S .30 .3S .Ito 

.2S 363 92 .... 34 26 Ia 12 a a 

.so 663 166 74 60 42 26 Ia 12 12 

.60 aoo 199 a a 71 49 34 24 12 12 
2/3 903 22S 99 ao ss 34 26 15 15 

.70 960 239 105 as sa 39 26 IS IS 

.75 IOS4 262 liS 93 6lt 39 26 IS 15 
• ao 116S 289 127 102 70 .... 32 15 IS 
.as 1301 322 lit I lilt 7a 49 34 21t 18 

.90 14a3 367 160 129 aa Sit 37 26 Ia 

.95 177S lt)a 191 153 104 6lt .... 32 21 

.99 2392 sa9 2SS 20S 139 84 ss 39 26 

a2 = .05 (a1 = .025) 
g 

Power .05 .10 .1 s 1/6 .20 .25 .30 .35 .Ito 

.2S 166 .... 20 17 12 9 6 6 6 

.so 384 96 44 37 2S 17 12 9 6 

.60 489 122 Sit .... 32 20 15 9 9 
2/3 S70 142 62 so 37 2S 17 12 9 

.70 616 153 67 Sit 37 25 17 12 9 

.75 692 172 75 61 .... 28 17 IS 9 

.so 7a3 194 as 68 lt9 30 20 15 12 

.as 89S 221 97 78 53 32 2S 17 12 

.90 1047 2S9 113 90 61 Ito 28 17 IS 

.9s 1294 319 13a 111 7S lt9 32 23 17 

.99 1827 ltlt9 194 ISS lOS 63 lt2 30 20 

As was pointed out above in Section 5.3, the use of the exact binomial 
test precludes the use of exact conventional significance criteria because 
of the discreteness of sample frequencies. In order to avoid the cumber-
someness of supplying the exact a values for each value of n read from 
the table, the values of n read from the table are to be interpreted as 
follows: 

I. n Less than 50. The exact a value which was used is no greater than 
the stated value; it is the (discrete) value of a below the stated value. Thus, 
the actual a values for, say, the table for a2 = .05 are more or less below .05. 
Accordingly, the power values, being for actual a generally less than nominal 
a, will be (slightly) lower than would be the case if the exact values could 
be used. 
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2. n of 50 or More. The normal approximation to the binomial was 
used, and the n values are the nearest integral number (as is true throughout 
the book), not the next largest. 

Tables give values for a, g, and desired power. 

1. Significance Criterion, a. The same values are provided as for the 
power tables, but as just noted, are for exact values not exceeding the nomi­
nal value when the value ofn read from the table is less than 50. Five tables 
are provided, one for each of the following non parenthetic a levels: a1 = . 01 
(a2 = .02), a 1 = .05 (a2 = .10), a 1 = .10 (a2 = .20), a2 = .01 (a1 = .005), and 
a2 = .05 (a1 = .025). 

2. Effect Size, ES. The difference between the alternative-hypothetical 
value of P and .50 = g, the ES index. The same provision for g is made 
as in the power tables: .05 (.05) .40 and t· For g values other than the nine 
provided, the following formula, rounding to the nearest integer, provides 
a good approximation: 

(5.4.1) n.os n=---K 400g2 ' 

where n.os is the necessary sample size for the given a and desired power at 
g = .05 (obtained from the table), and K is a constant which varies with the 
desired power, as follows4 : 

Power: 
K: 

.50 
0 

.60 
0.5 

i .70 
1.0 1.5 

.80 
2.5 

.85 .90 
3.0 3.5 

.95 .99 
6.0 9.0 

3. Desired Power. As in the previous chapters, provision is made for 
desired power values of .25, .50, .60, f, .70 (.05), .95, .99. For discussion 
of the basis for selecting these values, the provision for equalizing a and b 
risks, and the rationale of a proposed convention of desired power of .80, 
see Section 2.4. 

Summarizing the use of the following n tables, the investigator finds 
(a) the table for the significance criterion (a) he is using, locates (b) the popu­
lation (alternate-hypothetical) value of g and (c) the desired power along the 
vertical stub. He then finds n, the necessary sample size to detect g at (when 
n <50, no more than) the a significance criterion with the desired power. 
If the g value in his specifications is not provided, he locates the value for 

4 The approximation is the normal approximation, thus the n found will be the 
estimated value at the a value necessary for the desired power. It will thus be comparable 
in its interpretation to the tabled values of n ~SO, i.e., the nearest number, not the next 
largest, as is the case with tabled values of n < SO. 
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n.05 in the relevant a table in column g = .05 and the row for desired power. 
This is used, together with the value of K for the desired power, in formula 
(5.4.1) to compute n. 

Illustrative Examples 

5.4 Consider again the situation described in example 5.1, where a 
political science class undertakes a project involving polling a sample of 
the college student body with regard to student government elections. As 
described there originally, they wish to detect a .55: .45 division between 
two slates (hence, g = .05) at a 2 = .05. Their original intention to use n = 100 
respondents who would express a preference led to power of .18. We may 
safely assume that this value is found inadequate. Assume now that they 
wish to have power at the proposed conventional value of .80 and seek the 
necessary sample size to achieve this. The specifications are: 

a2 = .05, g=.05, power= .80. 

In Table 5.4.1 in the section for a2 = .05, column g = .05, row power= 
.80, one finds n = 783. This is a very large sample, indeed, far larger than 
the originally intended n = 100. It thus takes many cases to detect a small 
ES (g = .05) with conventional desired power of .80. 

If they posit instead that the division in the student population may be 
as large as .60:.40 (hence, g = .60- .50= .10), a value which falls between 
the operational definitions of small and medium ES for this test, what is 
the sample size required? The new specifications: 

a2 = .05, g = .10, power= .80. 

In the same line (power = .80) of the same table (Table 4.5.1. in the 
section for a2 = .05), for column g = .10, one finds n = 194. 

5.5 The experimental psychologist of example 5.2 was studying the 
effects of an impoverished early environment on the aggressiveness of rats. 
Using litter pairs (one E and one C), the plan is, following the experimental 
manipulation, to have judgments rendered as to which pair member is the 
more aggressive. He intends a directional sign test at about a 1 = .05, pre­
dicting that the E member will be more frequently judged the more aggres­
sive. Assume that although he anticipates a large true effect, because of 
expected judge unreliability, he posits as an alternate hypothesis g = PE- .50 
= i-! = i· He desires power to be .80. What is the required n? The specifi­
cations are 

a 1 = .05, g=i. power= .80. 
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In the section of Table 5.4.1 for a 1 = .05 in column g = 1 for row desired 
power = .80, he finds n = 53 litter pairs. Since n > 50, a normal curve test is 
envisaged. 

Assume that this is a much larger experiment than he had planned to 
mount. He wonders how much reduction in n would occur if he reduced his 
desired power to . 70, keeping the other specifications unchanged, i.e., 

a 1 =.05, g=1. power= .70. 

In the a 1 = .05 section of Table 5.4.1, in column g = 1. he now reads 
from row power = . 70 that the necessary n is 44. Since n <50, the specifica­
tion is for an exact binomial sign test at a 1 ::;;: .05 and power> .70. To find the 
exact value ofa 1 and power, he uses the power table for a 1 ~ .05, Table 5.3.2 
for n = 44. He finds there in column a 1 that the exact value is .048 at which 
criterion column g = l gives exact power . 72. 

This n is still rather large for his resources. While in the power Table 
5.3.2, he glances upward along the a 1 column and notices that if he slightly 
liberalizes his a 1 criterion to .054 and applies it with n = 39, g = 1. power= 
. 70. Thus, he can save 5 ( = 44 - 3 9) litter pairs by working at a 1 = .054 
instead of .048 and with power of .70 instead of .72, differences he might 
well consider trivial. 

He glances a little further up the a 1 column and notes that if he further 
liberalizes his a 1 criterion to .066 this value can be used in a test where 
n = 36, at g = 1. power= .71. He thus has essentially the same power at a 
saving of three more pairs, if he is prepared to use the a 1 = .066 significance 
criterion. 

He decides that he is quite prepared for a, to exceed .05. bu.t is uncomfor­
table about the (l- .71 =) .29 Type II (b) risk. In studying the test at 
n = 36, he notes that the risk ratio, .29 :.066, is such that he runs about a 
4 times larger risk of failing to obtain significance if g = 1 than of getting 
a spuriously significant result if g::;;: 0 (i.e., if the directional null hypothesis 
is true). Although, as was suggested in Section 2.4, such a ratio is consonant 
with the conventional scientific caution, an investigator's knowledge about 
the place of his specific research effort in his research context requires 
(certainly permits) that he set values for a and b and thus their ratio. Our 
experimental psychologist determines that he wishes to reduce the risk 
ratio, and is quite prepared to liberalize his a 1 criterion in order to increase 
his power to about .80. He thus changes his specifications to 

g=i. power= .80. 

Using again the sample size Table 5.4.1, but in the section for a 1 = .10, 
for column g = i, row power= .80, he finds n = 39. Since n <50, the table 
assumes an exact binomial test, so a1 < .10 and power> .80. To determine 
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exact values, he turns to power Table 5.3.3 (for a 1 ~ .10) and, for row n = 39, 
sees that the exact a1 = .100 and the exact power at g = l is .80. (It is, of 
course, a coincidence that his specifications are met exactly.) His risk ratio 
is now b = 1- .80 = .20 to a 1 = .100, exactly 2 to I. He may proceed on the 
basis of these specifications, or seek others in the vicinity of n = 39, e.g., at 
n = 38, where power is .84 and the two risks are almost equal, .16: .128, 
or if he does not wish to exceed a1 = .10, at n = 40 where the risk ratio is 
.23: .077, or at n = 37 where it is .22 to .094. 

5.6 The test of the null hypothesis that P =.50 (or g = 0) as applied 
to a test of correlated proportions was illustrated in problem 5.3. In that 
problem, an education psychologist was comparing two alternate pro­
gramed frame sequences in a unit of plane geometry, by forming matched 
pairs of students, supplying them with one or the other sequence, and 
determining whether they passed a criterion problem. For the test, only the 
pairs whose pass-fail outcomes differ are relevant, since the null hypothesis 
formulation is that among such pairs, P = .50 of them come from sequence 
A (or B). 

If, as described initially in problem 5.3, he expects a .60:.40 split among 
the pairs with differing outcomes (g = .10), plans to use the a2 = .05 signifi­
cance criterion, and wishes power to be .75, his specifications are 

a2 = .05, g = .10, power= .75. 

In the a2 = .05 section of Table 5.4.1 with column g = .10 and row 
power= .75, he finds n = 172. Since this represents the number of pairs of 
differing outcome, which he anticipates to be one-third of the total number 
of pairs, this means that these specifications require that he have a total 
of 3(172) = 516 pairs or 1032 subjects in all. Assuming classes of 30 students, 
this would require some 35 classes in plane geometry! 

Assume the validity of the exclamation point, specifically that in the 
entire city there are only 26 classes in plane geometry, and that furthermore, 
he is not sure he can get the cooperation of every last one of the teachers 
involved. He reconsiders his specifications, and, as in problem 5.3, realizes 
that the nature of the decision is such that he can afford a larger Type I 
error criterion, so he changes his specifications to 

a2 = .10, g= .10, power= .75. 

In the section of Table 5.4.1 for a2 = .1 0 in column g = .10, row power = 
.75, he finds n = 133. This means a total of 399 pairs on the expected one­
third of total differing in outcome, or 788 students, or 26-27 classes. He 
knows that there will be some defections from the 26 classes in the city's 
high schools, so he decided to liberalize his a criterion to a2 = .20. He 
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reasons that in this situation, failure to detect the alternate-hypothetical 
.60:.40 discrepancy is almost as serious as a mistaken conclusion of the 
superiority of one sequence over the other. Since he is committed to a 
1 - .75 = .25 (=b) risk of the former, he decides to raise the latter to .20 
( = a2). What sample size is now demanded? The specifications are 

a2 = .20, g=.IO, power= .75. 

In Table 5.4.1 the subtable for a2 = .20 is used and for column g = .10 
and row power= .75, n = 94, the number of differing pairs required. This, 
in turn, requires in all 3(94) = 282 pairs-or 564 students-a total of 19 classes 
which is close to the total number he can expect to get. 

In the above example, we have manipulated only the significance criterion. 
In other problems where there is a fixed maximum n permitted by the re­
sources (which, of course is true, in principle, for all research problems), 
other specifications instead of (or in addition to) the significance criterion 
may be more appropriately modified. Thus, some of the specifications which 
result in about the same required n from Table 5.4.1 are tabulated. 

az g Power n 

.01 1 .75 92 

.02 .15 .75 98 

.02 1 .85 98 

.05 .10 .50 96 

.05 .15 .85 97 

.10 .10 .60 90 

.10 .15 .90 91 

.10 1 .95 92 

.20 .15 .95 90 

The investigator must weigh the alternative specifications for his prob­
lem from such a sample size table, and decide his best strategy. It was 
implicitly assumed in this problem that the investigator could not reasonably 
anticipate g greater than .I 0, nor was he prepared to tolerate less than 3: I 
odds that, given a .60: .40 split, he would be able to make a definitive deci­
sion favoring the A or B sequences. This then left him to consider the signifi­
cance C'riterion, which, given the nature of the problem, we saw he could 
liberalize. 

5.7 A psychiatrist plans an experiment involving a single neurotic 
subject to determine whether ,for this su~ject, psychoanalytic sessions following 
ingestion of a very small dosage of LSD are more productive than those 
fol!owing placebo. His purpose is to decide, after the experimental series, 
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either to continue the psychoanalysis with LSD or without it (strictly, with 
placebo). The design is to determine randomly which of the sessions in 
each successive pair is to be an LSD session, the other to be placebo. Trans­
cripts of the tape-recorded sessions are to be submitted to a panel of judges 
who must render a blind consensus judgment as to which session of each pair 
is the more productive. 

He reasons that unless in the population5 there is a superiority of the order 
of 4:1 favoring LSD sessions, he would just as soon not decide in its favor; 
hence he expects a population split of .80: .20, or 1 = .80- .50= .30. As 
formulated, the test is nondirectional and he decides that the significance 
criterion be a 1 = .05. Finally, if 1 is in fact .30, he wants to be fairly sure 
that he will reject the null and fixes the desired power at .90. How many 
session pairs does he require for these specifications, which are, in summary 

a1 = .05, 1=.30, power= .90. 

In Table 5.4.1 in the section for a 1 = .05 with column 1 = .30 and row 
power= .90, he finds n = 23. He will thus need 23 pairs of sessions to satisfy 
the specifications. Since the n is less than 50, he can determine the exact 
conditions of the binomial test by referring to the power table for the a 1 = .05 
level, Table 5.3.2. In that table with n = 23, he sees that for the binomial 
test, the exact a 1 value is .047 at which, given 1 = .30, power= .93. He might 
look at other n values in the vicinity to see if they yield paired values of exact 
a 1 and exact power which he prefers to those at n = 23 (for example, at 
n = 22, a 1 = .067 with power= .94; at n = 24, a 1 = .032 with power= .91, 
etc.). 6 

It is insufficiently appreciated in many areas of the behavioral sciences 
that statistical investigations can be usefully undertaken with single subjects. 
The n of a study is the number of observations or instances, not necessarily 
the number of organisms or sets of organisms. Naturally, in investigations 
of single subjects, the populations to which generalizations can be made or 
inferences drawn are made up of instances or observations of that subject 
and cannot validly transcend him to populations of subjects. Still, such single 
subject experiments and their logically limited conclusions can be of either 
practical utility (as in the above example) or heuristic importance. For a 

5 The population here is, as is so often the case in behavioral sciences, an abstraction. 
It may be thought of as all the session pairs that might occur under the conditions specified. 

6 There is an alternative statistical-design strategy for problems of this kind which 
may well be superior to the preset fixed n described in this problem. "Sequential" tests 
proceed by assessing each experimental unit (usually a subject, but here, a session) as it 
becomes available and deciding whether to draw a conclusion or observe another experi­
mental unit. Such tests require special procedures originally described by Wald (1947) 
and, less technically, by Fiske and Jones (1954). 
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treatment of the rationale, method, and some applications of single subject 
studies see Davidson and Costello (1969). 

5.8 Assume that a certain mathematical model in signal detection pre­
dicts a proportion of success over a given series of trials to be .68, hence 
g = .18, while the null hypothesis is that P = .50. What is the n required, 
if the psychologist wishes power at .95 for a directional test at a 1 = .05, 
that is, equal a and b risks at .05? The specifications are 

a 1 = .05, g= .18, power= .95. 

Since g = .18 is not tabled, the psychologist must take recourse to formula 
(5.4.1), which requires n. 05 , then required under the conditions stated when 
g=.05. 

In Table 5.4.1 in the section for a 1 = .05, at row power= .95, he firyds in 
column g = .05 the value 1077 = n .os· Substituting that value, g = .18, and 
the value for K for power= .95 provided with formula (5.4.1 ), he finds 

1077 
n= 00( 8 2 -6.0=83.1-6.0=77.1. 

4 .I ) 

Thus, the normal (or chi square) approximation test will yield a probabi­
lity of .95 of rejecting H0 : P =.50 if the actual P = .68 when n = 77. (Note 
that since the test is directional, the standard normal curve deviate 
required for significance at the .05 level is 2 1.65. If the equivalent chi square 
form of the test is used, the criterion is the one tabled for one df (u =I) at 
a= .10, namely 2.706.) 

5.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 

As was the case in previous chapters, the power tables provide a signifi­
cance criterion column to facilitate the performance of the statistical test of 
the null hypothesis after the data are collected. This is particularly useful 
for the test of this chapter, since it obviates the necessity of using a separate 
set of tables for the binomial function. 

For any given n, the significance criterion in the test of H0 : P = .50 is 
simply the number of observations in the larger (or smaller) subgroup defined 
with regard to the presence or absence of the characteristic under study (e.g., 
males, success, positive differences, etc.). If this number departs sufficiently 
from !n, the null hypothesis is rejected. 

The power tables in this chapter (Tables 5.3.1-5.3.5) contain, in the v 
column, the number of observations in the larger portion of the sample 
necessary to attain the exact significance level (given in column a) for the 
sample size of the row in which it appears. For nondirectional (two-tailed) 
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tests, v is simply the number in the larger portion; for directional (one­
tailed) tests, it is assumed that the test has been oriented so that the predicted 
direction is the one in which the larger portion occurs, since no matter 
how extreme the departure from .50, if it is in the wrong direction in a 
one-tailed test, the result is not significant. 

Except for the three values of n double-asterisked in Tables 5.3.1-5.3.5, 
all the values given for v are exactly the minimum number needed to reject 
the null hypothesis (P = .50, g = 0) at the exact significance criterion given 
in the next column (a) using the symmetrical binomial test. At n = 250, 
350, and 450, the value v is that required by the normal (or equivalently chi 
square) approximation to the binomial. 

Illustrative Examples 

5.9 Consider the analysis of the data arising from the political science 
class project to forecast the result of a student government election using 
a sample of I 00 voters at a2 1'1::1 .05. When the sample results are tallied, it 
is found that one of the two slates has garnered 57 ( = v.) of the 100 votes. 
The specifications for the significance test are 

n = 100, 

In Table 5.3.5 for a 2 ~ .05 at row n = 100 it is first found that the nearest 
exact value to a 2 of .05 is at .057 (from column a2). For significance at 
a2 = .057, in the same row, it is found that the larger portion must contain 
v = 60 cases. Since 57 is less than 60, the departure from P. = .50 is insufficient 
for rejection at a2 = .057. 

Let us consider the same situation from the perspective of problem 
5.4, where it was finally decided, on the basis of a power analysis, that n 
should equal 194. Assume, instead, that the survey is accomplished with 
n = 200 voter respondents, at the a2 ~ .05 level as before, and that one of 
the two slates has v. = 116 adherents. The specifications for the test of signifi­
cance now are: 

n =200, v. = 116. 

The same table (5.3.5 for a2 ~ .05) is used for row n = 200, and now 
the exact a2 value equals .056 (from column a2). In the same row, the cri­
terion for significance (at the a2 = .056 level) is found in column v to be 114. 
Since 116 exceeds this (minimum necessary) value, the null hypothesis is 
rejected at the .056 level, and the class concludes that the slate in question 
has a majority of the voting population. 
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5.10 Reconsider the circumstances of example 5.2, where an experimen­
tal psychologist was studying the effect on litter pairs of an early impoverished 
environment (versus control) on aggressiveness. Assume that the experiment 
was carried out as planned, and that it was found that 17 ( = v .) of the 
24 E rats were judged more aggressive (in the predicted direction). Is this 
significantly different from the 12 expected on the null hypothesis? The speci­
fications are 

n=24, v. = 17. 

In Table 5.3.2. (for a1 ~ .05) for row n = 24, he finds first that the 
nearest a2 exact value to .05 is (in column a 1) .032, at which level he requires 
a minimum of 17 ( = v) pairs in which the E rat was judged the more aggres­
sive. Since there are 17 ( = v.) in this group, his results are significant, and 
he can reject the null hypothesis at a 1 = .032 (see example 5.12 below). 

5.11 The educational psychologist in example 5.3 was studying which 
of two frame sequences more effectively taught a unit of plane geometry. 
Using matched pairs of students, he found that 60 (of the original 150) pairs 
were made up of members one of whom had passed and the other of whom 
had failed the criterion problem. Assume, as originally specified in example 
5.3, that the test was planned to be performed at the a2 ~ .05, and that it 
was found that the students in sequence A who passed the criterion problem 
while their matches failed numbered 35. The specifications for the signifi­
tance test are 

n=60, v. = 35. 

In Table 5.3.5 (for a 2 ~ .05) for n = 60, he finds first that the exact a 2 

value nearest .05 is .052, and for significance at that level he requires v = 38. 
Since his observed v. falls short of that value, he cannot reject the null hypo­
hesis and conclude superiority for sequence A. 

When this problem was revisited in example 5.6, the educational psycholo­
gist eventually decided that his needs would be better met by using the 
a2 ~ .20 level. Assume that, on the basis of power considerations, he uses 
an initial sample size that results in his having 96 pairs of subjects with 
differing outcomes on the criterion. Let us say that he finds that of these 
there are 59 for which those with sequence A passed (while their matches on 
B failed). Does this lead to rejection of the P =.50 null hypothesis? The 
test specifications are 

n=96, v. =59. 

Although there is no power table headed " ... at a2 ~ .20," the values 
for v are the same as those given for a1 ~ .10. Accordingly, in Table 5.3.3 



178 5 THE TEST THAT A PROPORTION IS .50 AND THE SIGN TEST 

for row n = 96, he finds in column a 1 that a test is available aot a 1 = .092. 
He can treat it as providing a test at 2a 1 = .184 = a2 . At this level, if the 
larger portion has v = 55 or more cases of the 96, he can conclude that the 
frame sequence of that portion is superior. Since sequence A superior 
pairs numbered 59, the null hypothesis is rejected and the superiority of 
sequence A affirmed at the .184 significance level. 

5.12 In example 5.7, a psychiatrist was planning a study of the effects 
of LSD in a single patient on the productivity of psychoanalytic sessions by 
randomly assigning LSD or placebo to successive pairs of sessions. His 
planning specifications (a 1 = .05, g =.30, power= .90) led to the determina­
tion that he required n = 23 pairs of sessions. Assume that he has now 
performed the experiment as planned and finds that his judges have decided 
that in 16 of the paired sessions, the session preceded by LSD was more 
productive than the one preceded by placebo. Does this warrant rejecting 
the null hypothesis? The specifications are 

n =23, v. = 16. 

In Table 5.3.2 for a 1 ~ .05 and row n = 23, he finds that v = 16 (for exact 
a 1 = .047). In other words, when the population P =.50, he will obtain a 
16:7 (or more extreme) break in the predicted direction .047 of the time in 
random sampling. Since his v, is included in the critical region (i.e., 16-23 
out of 23), he rejects the null and concludes that/or this patient, LSD leads 
to more productive sessions than placebo. 

Note that his sample proportion is 16/23 = .70, which is less than the 
.80 he hypothesized in the alternative hypothesis, yet this result led to a 
proper rejection of the null hypothesis. This can occur whenever the power 
planned for exceeds .50. This makes it clear that the rejection of the null 
hypothesis (P = .50) does not carry the implication that the alternate hy­
pothesis (P = .80 or g = .30) is necessarily true. His sample value of . 70 is 
not consistent with P = .50 (at a1 = .047), but is consistent with many val­
ues of P, including in this instance .80. 



CHAPTER 6 

Differences between Proportions 

6.1 INTRODUCTION AND USE 

This chapter is concerned with the testing of hypotheses concerning 
differences between independent population proportions (P). Chapter 5 
was devoted to a frequently occurring related issue, namely, the difference 
between a population proportion and .50. In the present chapter, other cases 
are considered: the difference between two independent population P's when 
a random sample is available from each, and the difference between a popula­
tion P and any specified hypothetical value. 

A proportion is a special case of an arithmetic mean, one in which the 
measurement scale has only two possible values, zero for the absence of a 
characteristic and one for its presence. Thus, one can describe a population 
as having a proportion of males of .62, or, with equal validity (if not equal 
stylistic grace), as having a mean "male-ness" of .62, the same value neces­
sarily coming about when one scores each male I, each non male 0, and finds 
the mean. It follows, then, that the same kinds of inferential issues arise 
for this special kind of mean as arise for means in general. 

When one considers a difference between independent population pro­
portions it becomes apparent that one can just as well think of the issue in 
terms of a relationship between two variables. Thus, if the P of Republicans 
in a given population above a certain income level is .30 and the P of Demo­
crats above that level is .20, it is a matter of convenience or habit of thought 
whether this is viewed as a difference between Republicans and Democrats 
in income or as a relationship between political affiliation and income. 
It is apparent, then, that differences between proportions (as, indeed, be­
tween means) can be viewed in correlational terms. 

179 
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It is possible to approach the testing of hypotheses about proportions 
by different statistical techniques, including the classical normal curve 
test using a "critical ratio" applied directly to the proportions (Edwards, 
1972, pp. 42-44; Guilford&Fruchter, 1978, pp. 159-161; Blalock, 1972, pp. 
228-232), by a chi-square contingency test (see Chapter 7 and references), by 
a special case of the hypergeometric probability distribution ("Fisher's Exact 
Method'') for 2 x 2 tables (Hays, 1981, pp. 552-554; Owen, 1962, pp. 
479-496), or by means of a normal curve test applied to the arcsine transfor­
mation of the proportions. Despite its unfamiliarity, it is the last of these al­
ternatives that provides the basis for the approach of this chapter because of 
certain advantages it has, particularly from the viewpoint of power analysis. 
However, the results from using any of these procedures will be the same to a 
close approximation, particularly when samples are not small (Cohen, 1970). 

The types of tests on proportions which the methods of this chapter 
facilitate are organized into cases, according to the specific hypothesis and 
sample(s) employed: 

Case 0. P. values from equal size samples to test P1 = P2 . 

Case I. The same hypothesis, but n1 =F n2 • 

Case 2. One sample drawn from a population to test P =c. 

6.2 THE ARCSINE TRANSFORMATION AND THE EFFECT SIZE INDEX: h 

P. shares with the product moment r. the difficulty that the standard 
deviation of the sampling distributions depend upon their population para­
meters, which are unknown. A consequence of this is that the delectability 
of a difference in magnitude between either population P's or r's is not a 
simple function of the difference. This problem and its resolution for differ­
ences in r's was discussed in Section 4.2 (q.v.). The same problem with P's 
has a similar resolution. 

If we were to define j = P 1 - P 2 , and try to use j as our ES, we would 
soon discover that the delectability of some given value of j, under given 
fixed conditions of a and n, would not be constant, but would vary depend­
ing upon where along the scale of P between zero and one the value j occurred. 
Concretely, when 

1. P1 = .65 and P2 = .45, j = .65-.45 = .20; and when 

2. P1 = .25 and P2 = .05, j = .25- .05 = .20 also. 

But for these two equal differences of j = .20, given a2 = .05 and n = 46 (for 
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Table 6.2.1 

P 1 values as a function of P 2 and h = 1/11 - 1/12 

h.+ - + 1 2 

'2 .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

.os 07 10 13 17 21 25 30 34 39 44 49 54 

.10 13 17 21 25 29 3'+ 39 44 49 54 59 63 

.15 19 23 27 32 36 '+1 46 51 56 61 66 71 

.20 24 29 33 38 43 48 53 58 63 67 72 76 

.25 29 34 39 44 49 54 59 64 68 73 77 81 

.30 35 ItO 44 lt9 54 59 64 69 73 78 82 85 

.35 40 45 50 55 60 65 69 74 78 82 86 89 

.40 45 so 55 60 65 69 74 78 82 86 89 92 

.45 50 55 60 65 69 74 78 82 86 89 92 95 

.so 55 60 65 69 74 78 82 86 89 92 95 97 

.ss 60 65 69 74 78 82 86 89 92 95 97 98 

.60 65 70 74 78 82 86 89 92 95 97 98 99 

.65 70 7lt 78 82 86 89 92 95 97 98 99 * .70 74 79 83 86 90 92 95 97 98 99 * 

.75 79 83 87 90 93 95 97 98 99 * .so 84 87 91 93 96 97 99 * * .85 88 91 94 96 98 99 * .90 93 95 97 99 * * .95 97 98 99 * 

* Values below thfs pofnt •~e g~eate~ than .995. 

example), the power to detect the first difference (.65- .45) is .48, while 
the power for the second (.25 - .05) is .82. Thus, P does not provide a 
scale of equal units of detectability, hence the difference between P's is not 
an appropriate ES index. 

As was the case with r, a nonlinear transformation of P provides a solution 
to the problem. When P's are transformed by the relationship.1 

(6.2.1) ~ = 2 arcsin VP, 

equal differences between ~·s are equally detectable. Thus, we define as the 
ES index for a difference in proportions 

(6.2".2) h =~1 -~2 (directional) 

= 1~1- ~21 (nondirectional). 

1 The use of the symbol ~ for the arcsin transformation should not be confused with 
its use elsewhere in this book to represent the fourfold point product-moment correlation 
coefficient. 
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Thus, unlike P 1 - P 2 , 4> 1 - 4>2 = h gives values whose delectability does 
not depend on whether the 4>'s (and hence the P's) fall around the middle or 
on one side of their possible range. The power and sample size tables in this 
chapter provide values for h = .10 (.10) 1.20. 

Tables 6.2.1 and 6.2.2 provide the necessary conversion of P 1 - P 2 to 
4>1 - 4>2 = h values. Table 6.2.1 gives h values as a function of P 1 - P 2 ; 

Table 6.2.2 is a P to 4> transformation table. 
Table 6.2.1 is likely to be more convenient for use in power analysis, 

and when the tabled h values are sufficient. It provides direct conversion 
of P 1 - P 2 to 4> 1 - 4>2 = h values for tabled h. Taking P 1 > P 2 , locate at 
the left P 2 , the smaller P, and read horizontally to P 1, the larger. When 
P 1 is found, determine the heading of the column which is h, the difference 
between the arcsine transformations of the P's, that is, 4> 1 - 4>2 • For example, 
with P's of .35 ( = P 2 ) and .50 ( = P 1), the table provides the difference 
h between their respective 4> values, as follows: Find in the first column 
P 2 = .35 and read across to P 1 = .50; then read up to the head of that column, 
where you find h = .30. 

Since one cannot have both convenient multiples of .10 for h and simul­
taneously convenient multi pies of .05 for both P 1 and P 2 , the use of 
Table 6.2.1 may require interpolation in h. Thus, for P 2 = .25 and P 1 = .50, 
values in the row for P 2 = .25 indicate that h = .50 for P 1 = .49 and 
h = .60 for P 1 = .54. Linear interpolation gives the approximate value of 
h=.52. 

Alternatively, for exact values ofh, P1 =.50 and P2 = .25 may be located 
in Table 6.2.2 and their respective</> values found: </> 1 = 1.571, </>2 = 1.047. 
Then, h = 1.571 - 1.047 = .524. Note that with the resulting nontabled 
h value, interpolation would be required in order to use it in the power tables 
(but not for sample size determination2 ). 

Table 6.2.2 will also be useful for finding h. when the power tables are 
used for significance testing, as described in Section 6.5. 

In practice, the need to use non tabled values of h in power and sample 
size determination will not arise frequently. This is because one rarely has 
so highly specified an alternate hypothesis in terms of P 1 and P 2 that one 
must find power or sample size for a value of h which is not tabled. A looser 
specification of the P 1 - P 2 difference permits the use of the nearest tabled 
value of h in Table 6.2.1 and the later tables in this chapter. Indeed, the 
even looser procedure of defining h as "small," "medium," or "large," 
with the operational definitions proposed below, will suffice for most pur­
poses. 

2 As will be seen below, determining n from the sample size Table (4.4.1) requires no 
interpolation. For nontabled values of h, formula (6.4.1) is used. 
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Table6.2.2 

Transformations of Proportion (P) to q,•• 

p 1/J p 1/J p 1/J p 1/J 

.00 .ooo• .25 1.047 .50 1.571 .75 2.094 

.01 .200 .26 1.070 .51 1.591 .76 2.118 

.02 .284 .27 1.093 .52 1.611 .77 2.141 

.03 .348 .28 1.115 .53 1.631 .78 2.165 

.04 .403 .29 1.137 .54 1.651 .79 2.190 

.05 .451 .30 1.159 .55 1.671 .80 2.214 

.06 .495 .31 1.181 .56 1.691 .81 2.240 

.07 .536 .32 1.203 .57 1.711 .82 2.265 

.08 .574 .33 1.224 .58 1.731 .83 2.292 

.09 .609 .34 1.245 .59 1.752 .84 2.319 

.10 .644 .35 1.266 .60 p72 .85 2.346 

.11 .676 .36 1.287 .61 1.793 .86 2.375 

.12 .707 .37 1.308 .62 1.813 .87 2.404 

.13 .738 .38 1.328 .63 1.834 .88 2.434 

.14 .767 .39 1.349 .64 1.855 .89 2.465 

.15 .795 .40 1.369 .65 1.875 .90 2.498 

.16 .823 .41 1.390 .66 1.897 .91 2.532 

.17 .850 .42 1.410 .67 1.918 .92 2.568 

.18 .876 .43 1.430 .68 1.939 .93 2.606 

.19 .902 .44 1.451 .69 1.961 :94 2.647 

.20 .927 .45 1.471 .70 1.982 .95 2.691 

.21 .952 .46 1.491 .71 2.004 .96 2.739 

.22 .976 .47 1.511 .72 2.026 .97 2.793 

.23 1.000 .48 1.531 .73 2.049 .98 2.858 

.24 1.024 .49 1.551 .74 2.071 .99 2.941 
1.00 3.142* 

*For observed P. "'0, 1/Jo "'2 arcsin 1/4n; 
for observed~"' 1, I/J1 "'3.142- 1/Jo (Owen, 1962, p. 293). 

"*This table is abridged from Table 9.9 in Owen, D. B .. Handbook of Statistical 
Tables. Reading, Mass.: Addison-Wesley, 1962. Reproduced with the permission of the 
publisher. (Courtesy of the U.S. Atomic Energy Commission.) 
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6.2.1 "SMALL," "MEDIUM," AND "LARGE" DIFFERENCES BETWEEN 
PROPORTIONS. To provide the investigator with a frame of reference for 
the appraisal of differences between proportions, we define the adjectives 
"small," "medium," and "large" in terms of specific values of h at these 
levels to serve as conventions, as has been done with each type of statistical 
test discussed in this handbook. As before, the reader is counseled to avoid 
the use of these conventions, if he can, in favor of exact values provided 
by theory or experience in the specific area in which he is working. 

As noted above, in working with h, we use an index of ES which provides 
units which are equal in detectability, rather than equal in units of raw 
differences in proportion (i.e., j = P 1 - P 2). This means that for any given 
value ofh, the value of j varies depending on whether j occurs symmetrically 
about .50 as a midpoint between P 1 and P 2 , where it is at its largest, or 
toward either tail (P2 near zero or P1 near one), where it is at its smallest. 
If we restrict ourselves to the part of the P scale between .05 and .95, the 
range of j is tolerably small. Thus, we do not have to pay a large price in 
consistency of interpretation of h in terms of P 1 - P 2 = j for the convenience 
of using an equal power unit. In the description of each conventional 
level of ES which follows, the range of j values for each value of h will be 
described. 

SMALL EFFECT SIZE: h = .20. A small difference between proportions 
is defined as a difference between their arcsine transformation values of .20. 
The following pairs of P's illustrate this amount of difference: .05, .10; .20, 
.29; .40, .50; .60, .70; .80, .87; .90, .95 (Table 6.2.1). The (P 1, P2) pairs 
yielding any value of h are symmetric about P =.50 (where q, = 1.571); 
also, j is largest when P 1 and P 2 are symmetrical about .50. Thus, for h = .20, 
j reaches its maximum of .100 when the Ps are .45 and .55. The minimum 
value of j is not useful, since it approaches zero as P 1 approaches one or 
P 2 approaches zero. If we stay within a P range .05-.95, the minimum 
value of j is .052. Summarizing then, a small difference between proportions, 
h = .20, means a raw difference j which varies from .05 near either extreme 
to .10 around the middle of the P scale. As can be seen from the values of 
P given above, and from Table 6.2.2, between .20 and .80, j equals .09 or 
.10 when h = .20. 

As has already been noted, a difference between populations 1 and 2 in 
the proportions having attribute X can alternatively be viewed as a relation­
ship between population membership (I versus 2) and having-not having 
X. This relationship can be indexed by the product-moment correlation 
coefficient r, which, when applied to dichotomous variables, is frequently 
called the phi or four-fold point correlation coefficient. When the two 
populations are equally numerous, the value of this r implied by h = .20 
varies narrowly from .095 {for P's of .05-.10 or .90-.95) to .100 {for P's of 
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.45-.55).3 This is quite consistent with the definition of a small r given in 
Section 3.2. 

In summary, a small difference in proportions is a difference of about .10 
(down to .05 near the extremes) and is equivalent to an r of about .10. 

MEDIUM EFFECT SIZE: h = .50. With h =.50 taken to define a medium 
ES, we find (from Table 6.2.1) the following pairs of P's illustrating this 
amount of difference: .05, .21; .20, .43; .40, .65; .60, .82; .80, .96. The 
difference j reaches its maximum of .248 for P values of .376 and .624. Within 
a restricted .05-.95 scale for P, the minimum value of j is .160 (P's of .050 
and .210 or .790 and .950). Over a broad range of midscale values, say between 
.20 and .80, a medium difference between proportions is a j of .23 to .25. 

Expressed in terms of r, this is equivalent to a value of .238 to .248. 
This is lower than our operational definition of a medium ES for r in general, 
which was .30, but quite consistent with the more relevant point biserial r 
or"'' (see Sections 3.2, 8.2). 

Thus, a medium difference in proportions is a raw difference of about 
.20 to .25 over most of the scale and is equivalent to an r between population 
and attribute of about .25. 

LARGE EFFECT SIZE: h = .80. A large difference in proportions is oper­
ationally defined as one which yields h = ~ 1 - ~2 = .80. Pairs of P's 
illustrative of this degree of difference are: .05, .34; .20, .58; .40, .78; .60, 
.92; .80, .996. The maximum difference is .390 and occurs for P's of .305 
and .695. For P's between .05 and .95, the smallest difference is .293 (for 
P's of .050 and .343 or .657 and .950). Over a wide range of midscale 
values (P's between .12 and .88), a large difference between proportions is 
.35 to .39. 

Again, when this difference in proportions is translated into a fourfold 
product moment r, the value ranges between .37 and .39. Note, again, that 
this value is smaller than the ES for a large r defined in Section 3.2, which 
was .50. 

Thus, a large ES in differences between proportions is defined as being 
about .35 to .39, and implying an r between population membership and 
presence-absence of the attribute of about .37-.39. 

For a further consideration of the interpretation of the difference be­
tween proportions 0) as a measure of effect size, see Section 11.1 "Effect 
Size" in Chapter 11 and Rosenthal and Rubin (1982). 

6.3 POWER TABLES 

When the significance criterion, ES, and sample size are specified, the 
tables in this section can be used to determine power values. Thus, they 
will receive their major use after a research is performed, or at least after 

3 The equality of the maximum j for a given value of h with the r for this maximum 
(both .100 here) is no accident. For any value of h, this equality holds. When two pro­
portions are symmetrical about .SO, their difference equals the fourfold point r. 
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Table 6.3.1 

Power of Normal Curve Test of P1 = P, 
via Arcsine Transformation at a1 = .01 

h 

n he .to .zo .38 .40 .so .60 .70 .eo .90 1.00 1.10 1.20 

10 1.040 02 03 OS 08 11 16 22 30 38 46 55 64 
11 .992 02 03 05 08 12 18 25 33 41 51 60 69 
12 .950 02 03 06 09 14 20 27 36 45 55 64 73 
13 .912 02 03 06 10 15 21 29 39 49 59 68 77 
14 .879 02 04 06 10 16 23 32 42 52 63 72 80 

15 .849 02 04 07 11 17 25 34 45 56 66 75 83 
16 .823 02 04 07 12 18 26 36 47 59 69 78 86 
17 .798 02 04 07 12 19 28 39 50 62 72 81 88 
18 .775 02 04 08 13 20 30 41 53 65 75 83 90 
19 .755 02 04 08 14 22 32 43 56 67 77 86 91 

20 .736 02 OS 08 14 23 33 lt6 58 70 80 88 93 
21 .718 02 05 09 15 24 35 48 60 72 82 89 94 
22 .701 02 05 09 16 25 37 50 63 75 84 91 95 
23 .686 02 05 10 17 26 39 52 65 77 86 92 96 
Zit .672 02 05 10 17 28 40 Sit 67 79 87 93 97 

25 .658 02 OS 10 18 29 42 56 69 80 89 94 97 
26 .645 02 05 11 19 30 ..,. 58 71 82 90 95 98 
27 .633 03 06 11 20 31 45 60 73 84 91 96 98 
28 .622 Q3 06 11 20 32 47 62 75 85 92 96 98 
29 .611 03 06 12 21 3ft lt8 63 76 86 93 97 99 

30 .601 03 06 12 22 35 50 65 78 88 ,. 97 99 
31 .591 03 06 13 23 36 51 67 79 89 95 98 99 
32 .582 03 06 13 23 37 53 68 81 90 95 98 99 
33 .573 03 07 13 24 38 Sit 70 82 91 96 98 99 
3ft .564 03 07 14 25 40 56 71 83 92 96 99 * 
35 .556 03 07 ... 26 41 57 73 85 92 97 99 
36 .sits 03 07 15 26 ftZ 59 7ft 86 93 97 99 
37 .$Itt 03 07 15 27 43 60 75 87 94 98 99 
38 .53ft 03 07 15 28 ..,. 61 77 88 94 98 99 
39 .527 03 07 16 29 ft5 63 78 89 95 98 99 

Ito .szo 03 08 16 30 ft6 64 79 89 96 98 * ft2 .soB 03 08 17 31 ft9 66 81 91 96 99 ..,. .ft96 03 08 18 33 51 69 83 92 97 99 
lt6 .485 03 09 19 3ft 53 71 as 93 98 99 
ItS .lt7S 03 09 20 36 ss 73 86 ,. 98 99 
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Table 6.3.1 (continued) 

h 

n he .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

50 .465 03 09 20 37 57 75 88 95 99 * * * 52 .456 03 10 21 39 59 77 89 96 99 
54 ..... 8 olt 10 22 40 61 79 91 97 99 
56 ..... o olt 10 23 42 63 80 92 97 99 
58 .432 olt II 24 43 ~ 82 93 98 99 

60 .425 olt II 25 4S 66 83 93 98 * ~ ·"" olt 12 26 47 69 86 95 99 
68 .399 olt 12 28 so 72 88 96 99 
72 .388 olt 13 30 53 75 90 97 99 
76 .3n olt 14 32 56 78 91 98 * 
80 .368 OS 14 33 s8 80 93 98 
a.. .359 OS 15 35 60 82 ~ 99 
88 .351 OS 16 37 63 84 95 99 
92 .343 OS 17 39 65 86 96 99 
96 .336 OS 17 40 67 87 97 99 

100 .329 OS 18 42 69 89 97 * 120 .300 06 22 so 78 91+ 99 
140 .278 07 26 57 85 97 * 160 .260 08 30 ~ 89 98 
180 .245 08 33 70 93 99 

200 .233 09 37 75 95 * 250 .208 11 46 as 98 
300 .190 14 55 91 99 
350 .176 16 63 95 * 400 .165 18 69 97 
450 .I 55 20 75 99 

500 .147 23 80 99 
600 .134 28 87 * 700 .124 32 92 
800 .116 37 95 
900 .110 42 97 

1000 .1 olt 46 98 

* Power values below thfs pofnt are greater than .995. 
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Table6.3.2 

Power of Normal Curve Test of P1 .. P2 

viaArcsineTransformation at a1 = .05 

h 

" h .10 
c 

.20 .30 .40 .so .60 .70 .80 .90 1.00 1.10 1.20 

10 .736 08 12 17 23 30 38 47 56 ~ 72 79 as 
11 .701 08 12 17 24 32 41 so 59 68 76 83 88 
12 .672 08 12 Ia 25 )It It] 53 62 71 79 as 90 
13 .~s 08 13 19 27 36 ItS S6 6S 74 82 sa 92 
lit .622 08 13 20 28 37 lt8 sa 68 77 8lt 90 9lt 

IS .601 09 lit 21 29 39 50 61 71 79 86 91 95 
16 .S82 09 lit 21 30 ltl 52 63 73 82 88 93 96 
17 .5~ 09 lit 22 32 lt3 Sit 6S 75 8lt 90 9lt 97 
Ia .S4a 09 15 23 33 44 S6 68 77 as 91 95 97 
19 .s34 09 IS 24 ]It 46 sa 70 79 a7 92 96 98 

20 .szo 09 16 24 3S 47 60 72 al 89 9lt 97 98 
21 .508 09 16 2S 36 lt9 62 73 a] 90 9lt 97 99 
22 .496 09 16 26 38 51 ~ 75 8lt 91 95 98 99 
23 .lt8S 10 17 27 39 52 6S 77 a6 92 96 98 99 
24 .47S 10 17 27 40 53 67 78 a7 93 97 98 99 

2S .465 10 17 28 41 ss 68 ao 88 9lt 97 99 * 26 .4S6 10 Ia 29 42 56 70 al 89 95 98 99 
27 .448 10 18 29 It] sa 71 az 90 9S 98 99 
28 .440 10 18 30 44 59 73 8lt 91 96 98 99 
29 .lt32 10 19 31 ItS 60 7'+ 8S 92 96 98 99 

30 .lt25 10 19 31 lt6 61 7S 86 93 97 99 * 31 .418 II 20 32 lt7 63 76 87 93 97 99 
32 .411 II 20 33 ItS ~ 77 88 9lt 97 99 
33 .ltos II 20 33 lt9 6S 79 88 9S 98 99 
34 .399 11 21 ]It 50 66 80 89 95 98 99 

3S .393 11 21 35 51 67 81 90 96 98 99 
36 .388 11 21 35 52 68 82 91 96 99 * 37 .382 11 22 36 53 69 83 91 96 99 
38 .377 II 22 37 54 70 83 92 97 99 
39 .372 12 22 37 ss 71 84 93 97 99 

40 .368 12 23 38 S6 72 as 93 97 99 
42 .359 12 23 39 57 71t 87 9lt 98 99 
44 .351 12 21t 41 59 76 88 95 98 * 46 .343 12 25 lt2 61 77 89 96 99 
4a .336 13 2S 43 62 79 90 96 99 
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Table 6.3.2 (continued} 

h 

n he • to .20 .30 .Ito .so .60 .70 .so .90 t.oo t.to 1.20 

so .329 13 26 .... 64 80 91 97 99 * * * * 52 .323 13 27 ItS 65 82 92 97 99 
Sit .317 13 27 lt7 67 83 93 98 99 
56 .311 13 28 ItS 68 Sit ,.. 98 * 58 .305 , .. 28 lt9 69 as ,.. 98 

60 .300 tit 29 so 71 86 95 99 
64 .291 tit 30 52 73 88 96 99 
68 • 282 , .. 32 Sit 75 90 97 99 
72 .271t IS 33 56 77 91 97 99 
76 .267 IS )It sa 79 92 98 * 
80 .260 16 35 60 81 ,.. 98 
Sit .2Sit 16 36 62 83 ,.. 99 
88 .21t8 16 38 63 Sit 95 99 
92 .21+3 17 39 65 86 96 99 
96 .237 17 Ito 67 87 97 99 

too .233 17 ,., 68 88 97 * 120 .212 19 1+6 75 93 99 
tltO • 197 21 51 81 96 99 
160 .I Sit 23 56 8s 97 * 180 • 173 21t 60 89 98 

200 .164 26 64 91 99 
250 .llt7 30 72 96 * 300 .131+ )It 79 98 
350 .12 .. 38 Sit 99 
I+OO .116 I+ I 88 * It SO .110 .... 91 

500 • 1 Olt lt7 ,.. 
600 .095 53 97 
700 .088 59 98 
800 .082 64 99 
900 .078 68 * 1000 .071+ 72 

* Po.er values below thfs pofnt are greater than .995. 
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Tlble6.3.3 

Power of Normal Curve Test of P 1 "' P 2 

via Arcsine Transformation at a, = .10 

h 

n he .10 .20 .30 .Ito .so .60 .70 .80 .90 1.00 l.to t.20 

to .sn IS 20 27 3S .... 52 61 69 77 83 88 92 
11 .Sit7 IS 21 28 37 lt6 ss 6lt 72 80 86 90 9lt 
12 .sn IS 21 29 38 lt8 57 67 75 82 88 92 95 
t) .SOl IS 22 30 Ito so 60 69 7a Bit 90 9lt 96 
tit .lt&lt 15 23 )t Itt 52 62 72 80 86 91 9S 97 

IS ... 68 t6 2) 32 .. , 53 6lt 71t 82 88 93 96 98 
16 • ItS) 16 2lt 33 .... ss 66 76 Bit 90 9lt 97 98 
17 .ltltO ~~ 21t ,.. ItS 57 68 ~ as 9t 9S 97 99 
ta .lt27 16 25 3S lt7 59 70 79 a7 92 96 98 99 
t9 .lt16 17 25 36 Ita 60 7t 81 88 93 96 98 99 

20 .ltos 17 26 37 lt9 62 73 82 89 9lt 97 99 99 
2t .396 t7 26 38 St 63 75 8lt 90 9S 97 99 * 22 .386 t7 27 39 52 6S 76 as 9t 96 98 99 
23 .)7a 17 27 ItO 53 66 77 a6 92 96 98 99 
2ft .370 t7 28 Ito Sit 67 79 a7 93 97 99 99 

zs .362 18 za Itt ss 69 80 88 9lt 97 99 * 26 .3SS Ia 29 lt2 S6 70 8t 89 9S 98 99 
27 .31t9 ta 29 lt3 57 7t 82 90 9S 98 99 
28 .31t2 t8 30 .... 59 72 83 91 96 98 99 
29 .337 18 30 .... 60 73 8lt 92 96 98 99 

30 .33t t9 31 ItS 6t 71t as 92 97 99 * 3t .)26 19 31 .. , 62 75 86 93 97 99 
32 .)20 t9 32 lt7 62 75 87 9lt 97 99 
33 .316 19 32 lt7 63 77 88 9lt 98 99 , .. .311 t9 32 Ita 6lt 78 88 9S 98 99 

3S .)06 19 33 lt9 6S 79 89 9S 98 99 
36 .302 20 33 so 66 80 90 9S 98 99 
37 • 298 20 , .. so 67 81 90 96 98 * 38 • 29'+ 20 , .. Sl 68 82 91 96 99 
39 .290 20 3S 52 69 82 91 96 99 

ItO .287 20 3S 52 69 83 92 97 99 
lt2 .280 2t 36 Sit 7t 8lt 93 97 99 .... .273 21 37 ss 72 86 9lt 98 99 
le6 .267 21 37 56 71t 87 ,.. 98 99 
lt8 .262 21 38 57 7S 88 9S 98 * 
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Table 6.3.3 (continued} 

h 

" h c 
,10 ,20 .30 .40 .so .60 .70 .so .90 1,00 1,10 1.20 

so .2S6 22 39 S9 76 89 96 " * * * * * S2 .2S1 22 40 60 78 90 96 " S4 .247 22 40 61 79 ,, 97 " S6 .242 23 41 62 80 ,, 97 " ss .238 23 42 63 81 92 97 " 60 .234 23 43 64 82 93 98 " 64 ,227 24 44 66 84 94 98 * 68 .220 24 4S 68 85 9S " 72 .214 25 47 70 87 96 99 
76 .208 25 48 71 88 96 99 

80 .203 26 49 73 89 97 99 
84 .198 26 51 75 91 97 * 88 .193 27 S2 76 91 98 
92 .189 27 53 77 92 98 
96 .18S 28 S4 79 93 99 

100 .181 28 ss 80 94 " 120 .16S 31 61 as 97 * 140 .1S3 33 6S 89 98 
160 .143 3S 69 92 " 180 .135 37 73 94 " 
200 .128 39 76 96 * 2SO ,11 s 44 83 98 
300 ,105 48 88 " 350 ,097 52 91 * 400 .091 55 ,.. 
4SO .oe5 59 96 

500 .o81 62 97 
600 .074 67 " 700 .069 72 " 800 .064 76 * 900 ,060 80 

1000 ,OS7 83 

* Power values below thfs pofnt are greater than ,995. 
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Tlble6.3.4 

Power of Normal Curve Test of P1 = P2 

via Arcsine Transformation at a2 = .01 

h 

n h .10 .20 .]0 .Ito .so .60 .70 .eo .90 1.00 1.10 1.20 
c 

10 1.1S2 01 02 03 OS 07 11 16 22 29 37 ItS Sit 
11 1.098 01 02 0] 05 o8 12 18 21t 32 lt1 so S9 
12 1.0S2 01 02 0] 06 09 13 19 27 ]6 ItS ss 6ft 
13 1.010 01 02 03 06 10 1S 21 ]0 39 .. ~ S9 69 
11t .973 01 02 Olt 06 11 16 23 32 lt2 Sl 6] 73 

1S .91to 01 02 Olt 07 11 18 26 3S lt6 S6 67 76 
16 .911 01 02 Olt 07 12 19 28 ]8 lt9 60 70 79 
17 .88ft 01 02 Olt o8 13 20 30 ItO S2 6] 71t 82 
18 .8S9 01 02 OS o8 11t 22 32 .. , ss 66 77 as 
19 .8]6 01 0] OS 09 1S 23 , .. ItS sa 69 79 87 

20 .81S 01 0] OS 09 16 2S ]6 ItS 61 72 82 89 
21 .79S 01 0] OS 10 17 26 ]8 S1 63 7S 8ft 91 
22 .777 01 03 06 11 18 28 Ito S3 66 77 86 92 
23 .760 01 03 06 11 19 29 lt2 ss 68 79 88 93 
2ft .7ltlt 01 03 06 12 20 31 .... sa 71 81 89 ,.. 
2S .728 01 03 06 12 21 32 lt6 60 73 83 91 9S 
26 .71 .. 02 03 07 13 22 3ft ItS 62 7S as 92 96 
27 .701 02 03 07 13 23 36 so 6ft 77 86 93 97 
28 .688 02 03 07 11t 2ft 37 52 66 79 88 ,.. 97 
29 .676 02 Olt 08 15 25 39 Sit 68 80 89 95 98 

]0 .66S 02 Olt 08 1S 26 Ito ss 70 82 90 9S 98 
31 .65ft 02 Olt 08 16 27 lt2 S7 72 83 91 96 98 
32 ·'" 02 Olt o8 16 2a .. , S9 73 a5 92 97 99 
33 .6]1t 02 Olt 09 17 29 .... 61 7S a6 93 97 99 ,.. .62S 02 oft 09 18 30 lt6 62 77 87 ,.. 97 99 

3S .616 02 Olt 09 18 31 lt7 6ft 78 88 9S 98 99 
36 .607 02 Olt 10 19 32 lt9 6S 79 89 9S 98 99 
37 .s99 02 Oft 10 20 ]It so 67 81 90 96 98 * 38 .S91 02 oft 10 20 3S S2 68 82 91 96 99 
39 .s83 02 OS 11 21 ]6 S3 70 83 92 97 99 

ItO .S76 02 OS 11 22 37 Sit 71 8ft 93 97 99 
lt2 .S62 02 OS 11 23 39 S7 71t 86 ,.. 98 99 .... .Sit9 02 OS 12 2lt lt1 S9 76 88 95 98 * lt6 .sn 02 OS 13 26 .. , 62 78 90 " 99 
lt8 .S26 02 06 1] 27 ItS 6ft 80 91 97 99 
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Table 6.3.4 (continued) 

-------------·-·-
h 

n he ,10 ,20 .30 ,40 .so ,60 .70 .so .90 1,00 1,10 1.20 
------------

so .SIS 02 06 14 28 47 66 82 92 97 99 * * S2 .sos 02 06 IS 30 49 69 84 93 98 99 
S4 .496 02 06 IS 31 Sl 7l 86 94 98 * S6 .487 02 06 16 32 S3 73 87 9S 99 
S8 .478 02 07 17 34 ss 74 88 96 99 

60 .470 02 07 18 3S S6 76 90 96 99 
64 .4ss 02 07 19 38 60 79 92 97 99 
68 .442 02 08 20 40 63 82 93 98 * 72 .429 02 08 22 43 66 8s 9S 99 
76 .418 03 09 23 46 69 87 96 99 

80 .407 03 09 2S 48 72 89 97 99 
84 .397 0) 10 26 Sl 7S 91 98 * 88 .388 03 II 28 53 77 92 98 
92 .380 03 II 29 ss 79 93 99 
96 .372 03 12 31 S8 81 94 99 

100 .364 03 12 33 60 83 9S 99 
120 .333 04 IS 40 70 90 98 * 140 .308 04 18 47 78 9S 99 
160 .288 OS 22 S4 84 97 * 180 .272 OS 2S 61 89 98 

200 .2S8 06 28 66 92 99 
250 .230 07 37 78 97 * 300 .210 09 45 86 99 
350 .195 II 53 92 * 400 .182 12 60 9S 
450 .172 14 66 97 

500 .163 16 72 98 
600 .149 20 81 * 700 .138 24 88 
Boo ,129 28 92 
900 .121 32 9S 

1000 ,115 37 97 

* Powe~ values below thfs pofnt •~e g~eate~ than ,995, 



194 6 DIFFERENCES BETWEEN PROPORTIONS 

Tllble 6.3.5 

Power of Normal Curve Test of P1 = P1 

via Arcsine Transformation at a1 = .05 

h 

n h c .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

10 .877 06 07 10 IS 20 27 35 43 52 61 69 77 
11 .836 06 08 II 16 22 29 38 47 56 65 73 80 
12 .800 06 08 11 17 23 31 40 so 60 69 77 84 
13 .769 06 08 12 17 25 33 43 53 63 72 80 86 
14 .741 06 08 12 18 26 36 46 56 66 75 83 89 

IS .716 06 09 13 19 28 38 48 59 69 78 as 91 
16 .693 06 09 14 20 29 40 51 62 72 81 88 92 
17 .672 06 09 14 21 31 lt2 53 65 75 83 89 94 
18 .653 o6 09 IS 22 32 44 56 67 77 as 91 95 
19 .636 06 09 IS 23 34 lt6 sa 69 79 87 92 96 

20 .620 06 10 16 24 35 48 60 72 81 89 94 97 
21 .60S 06 10 16 25 37 49 62 74 83 90 95 97 
22 .591 06 10 17 26 38 51 64 76 as 91 95 98 
23 .578 06 10 17 27 39 53 66 77 86 92 96 98 
24 .566 06 11 18 28 41 55 68 79 88 93 97 99 

25 .55'+ 06 11 19 29 42 56 70 81 89 94 97 99 
26 .S44 07 11 19 30 44 58 71 82 90 95 98 99 
27 .533 07 11 20 31 45 60 73 84 91 96 98 99 
28 .524 07 12 20 32 46 61 75 85 92 96 98 99 
29 .SIS 07 12 21 33 48 63 76 86 93 97 99 * 
30 .506 07 12 21 34 49 64 77 87 94 97 99 
31 .498 07 12 22 35 so 66 79 88 94 98 99 
32 .490 07 13 22 36 52 67 80 89 95 98 99 
33 .483 07 13 23 37 53 69 81 90 96 98 99 
34 .475 07 13 23 38 54 70 82 91 96 98 99 

35 .469 07 13 24 39 55 71 83 92 96 99 * 36 ,462 07 14 24 40 56 72 84 92 97 99 
37 .456 07 14 25 41 58 73 85 93 97 99 
38 .450 07 14 26 41 59 74 86 94 98 99 
39 .444 07 14 26 42 60 75 87 94 98 99 

ItO .438 07 IS 27 43 61 77 88 95 98 99 
lt2 .428 07 IS 28 ItS 63 79 89 96 98 * 
44 ,418 08 16 29 47 65 80 91 96 99 
lt6 ,409 08 16 30 48 67 82 92 97 99 
ItS ,400 08 17 31 so 69 84 93 97 99 
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Table 6.3.5 (continued) 

h 

" he .10 .20 .30 .a.o .so .60 .70 .eo .90 1.00 1.10 1.20 

50 .392 08 17 32 52 71 85 94 98 99 * * * 52 .)Ba. 08 18 33 53 72 86 95 98 * Sit .377 08 18 )It 55 7ft 88 95 99 
56 .370 08 18 3S 56 75 89 96 99 
58 .)6a. 08 19 37 58 77 90 96 99 

60 .358 09 19 38 59 78 91 97 99 
6a. .)a.6 09 20 ItO 62 81 92 98 99 
68 .336 09 21 lt2 65 83 94 98 * 72 .327 09 22 ltlt 67 85 95 99 
76 .)18 09 23 a.6 69 87 96 99 

80 .)10 10 2a. ItS 72 89 97 99 
8IJ .)02 10 25 a.9 7a. 90 97 * 88 .295 10 26 51 76 91 98 
92 .289 10 27 53 77 92 98 
96 .283 11 28 55 79 93 99 

100 .277 11 29 56 81 94 99 
120 .253 12 )a. 6a. 87 97 * ta.o .2)a. ta. 39 71 92 99 
160 .219 16 a.) 77 95 99 
180 .207 16 ItS 81 97 * 
200 .196 17 52 85 98 
250 .175 20 61 92 99 
300 .160 23 69 96 * )50 .ta.8 26 75 98 
400 .139 29 81 99 
4SO .1)1 32 85 99 

500 .124 3S 89 * 600 .113 41 93 
700 .105 46 96 
800 .098 52 98 
900 .092 S6 99 

1000 .088 61 99 

* Powe~ values below thfs pofnt •~• g~tltt~ than .995. 
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T8ble6.3.6 

Power of Normal Curve Test of P1 "P2 

via Arcsine Transformation at a2 " .10 

h 

" he .10 .20 .30 .Ito .so .60 .70 .80 .90 1.00 1.10 1.20 

10 .736 11 13 18 23 30 38 47 56 6lt 72 79 85 
11 .701 11 ... 18 24 32 41 so 59 68 76 83 88 
12 .672 11 lit 19 26 , .. .. , 53 62 71 79 85 90 
13 .61ts 11 14 20 27 36 ItS 56 65 74 82 88 92 
lit .622 11 15 20 28 38 48 58 68 77 8lt 90 ,.. 
15 .601 11 15 21 29 39 so 61 71 79 86 91 95 
16 .582 11 15 22 31 ... 52 63 73 82 88 " " 17 .s61t 11 16 23 32 43 54 65 75 8lt 90 ,.. 97 
18 .548 12 16 23 33 .... 56 68 77 as 91 95 97 
19 .534 12 16 24 34 lt6 58 70 79 117 92 " 98 

20 .520 12 17 25 35 48 60 72 81 89 ,.. 97 98 
21 .5o& 12 17 25 37 .. , 62 73 83 90 ,.. 97 " 22 ... ,, 12 17 26 38 51 6lt 75 8lt 91 95 98 " 23 .485 12 18 27 39 52 65 77 86 92 96 98 " 2lt .475 12 18 28 ItO 54 67 78 87 93 97 98 " 
25 .465 12 18 28 lt1 55 68 80 88 ,.. 97 " * 26 .lt56 12 19 29 lt2 56 70 81 89 95 98 " 27 ..... , 12 19 30 lt3 58 71 82 90 95 98 " 28 .ltlto 12 19 30 .... 59 73 8ft 91 " 98 " 29 .lt32 12 20 31 ItS 60 71t as 92 96 98 " 
30 .lt2S 13 20 32 lt6 61 75 86 93 97 " * 31 .lt18 13 20 32 lt7 63 76 87 93 97 " 32 .lt11 13 21 33 lt8 6lt 77 88 ,.. 97 " 33 • lt05 13 21 , .. 49 65 79 88 95 98 " ,.. .399 13 21 34 so 66 80 89 95 98 " 
3S ·'" 13 22 35 51 67 81 90 96 98 " 36 .388 13 22 36 52 68 82 91 96 " * 37 .382 13 22 36 53 69 83 91 96 " 38 .377 13 23 37 Sit 70 83 92 97 " 39 .372 13 23 38 55 71 8ft 93 97 " Ito .368 13 23 38 56 72 85 93 97 " lt2 .359 lit 2ft 39 57 7ft 87 ,.. 98 " .... .351 ... 2ft lt1 59 76 88 95 98 * lt6 .31t3 lit 25 lt2 61 77 89 " " 48 .336 lit 26 lt3 62 79 90 " " 
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Table 6.3.6 (continued} 

h 

n h ,10 ,20 ,]0 ,40 
c 

.so .60 .70 .80 .90 1.00 1,10 1,20 

so .]29 14 26 .... ~ 80 91 97 99 * * * * 52 ,]2] 14 27 4S 6S 82 92 97 99 
~ .317 15 28 47 67 83 93 98 99 
56 .]11 1S 28 48 68 84 94 98 * 58 ,]OS 15 29 49 69 8S 94 98 

60 .300 15 29 so 71 86 95 99 
~ .291 1S 31 S2 73 88 96 99 
68 ,282 16 32 ~ 7S 90 97 99 
72 .274 16 33 56 77 91 97 99 
76 ,267 16 34 S8 79 92 98 * 
80 ,260 17 3S 60 81 94 98 
84 .2~ 17 37 62 83 94 99 
88 ,248 17 38 ~ 84 95 99 
92 .243 18 39 65 86 96 99 
96 .237 18 40 67 87 97 99 

100 .233 18 41 68 88 97 * 120 ,212 20 46 75 93 99 
140 .197 22 51 81 96 99 
160 .184 23 56 8S 97 * 180 .173 25 60 89 98 

200 .1~ 26 ~ 91 99 
250 ,147 30 72 96 * 300 .134 34 79 98 
350 .124 ]8 84 99 
400 .116 41 88 * 4SO .110 .... ,, 
soo .1oft 48 94 
600 .095 ~ 97 
700 .oss 59 98 
800 .082 ~ 99 
900 .078 68 * 1000 .074 72 

* Powe~ values below this point •~• g~e~te~ then .995. 
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it is planned. They can, of course, also be used in research planning by 
varying n, ES or a, or all three to see how their variation affects power. 

6.3.1 CASE 0: n 1 =n2 • The power tables of this chapter are designed 
to yield directly power values for the normal curve test of the difference 
between P's of two independent samples of equal size (via the arcsine trans­
formation). This is designated Case 0. Other cases are described and illus­
trated in succeeding sections. Tables are entered with a, h, and n. 

1. Significance Criterion, a. Six tables are provided for the following 
values of a: a 1 = . 01, .05, . 10 and a 2 = .01, .05, and . 10, where the subscripts 
refer to one- and two-tailed tests. since power at a 1 is to a close approxima­
tion equal to power at a 2 = 2a1 for power greater than (say) .10, the tables 
can also be used for power at a 2 = .02, a 2 = .20, a 1 = .005, and a 1 = .025. 

2. Effect Size, ES. This is the difference between arcsine-transformed 
P's, i.e., f/> 1 - 4>2 = h, whose properties are described in Section 6.2. Table 
6.2.1 facilitates the conversion of P 1, P 2 pairs into h values. The tables pro­
vide for h = .I 0 (. 10) 1.20. Conventional or operational definitions of ES 
have been offered, as follows: 

small: h = .20, 

medium: h = .50, 

large: h = .80. 

3. Sample Size, n. This is the size of each of the two samples whose 
proportions are being compared. Provision is made for n = 10 (I) 40 (2) 60 
(4) 100 (20) 200 (50) 500 (100) 1000. 

The values in the table are the power of the test times 100, i.e., the per­
cent of tests carried out under the given conditions which will result in the 
rejection of the null hypothesis. They are rounded to the nearest unit and 
are accurate to within ± I as tabulated. 

Illustrative Examples 

6.1 A social psychologist is interested in the cross-cultural generaliza­
bility of the finding in the United States that first-born and only child Ss 
(A) more frequently than later-born Ss (B) prefer waiting with others to 
waiting alone while anticipating an anxiety provoking experience. In a non­
Western culture, he performs a replicating experiment for which he obtains 
the cooperation of 80 S's of each birth order type, 160 in all. The prior work 
in the U.S. suggests that about two-thirds of the A's prefer waiting "to­
gether" while only about half of the B's do. On the expectation of a 
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difference of similar magnitude in the other culture, even though both P's 
might rise or fall under his particular conditions, he posits an ES of about 
the same size, namelyh = .30 (actually, h = </>. 67 - </>.so= 1.918- 1.571 = .347 
from Table 6.2.2). He plans a directional test of H0: P A= P0 at a1 = .05. 
What is the power of the test? The specification summary is 

a 1 =.05, h=.30, nA =n 8 =n = 80. 

In Table 6.3.2 for a 1 = .05, column h = .30, and row n = 80, he finds 
power = .60. Thus, he works with only 3 : 2 odds of obtaining a significant 
(a1 = .05) result if the populations in the new culture have proportions 
whose .P's differ by .30 in favor of the A sample. Note that h = .30 when the 
following pairs of proportions are compared: . 10 and .21, .25 and .39, 
.40 and .55, .60 and .78, .75 and .87, .90 and .97, as well as .50 and .65, 
the values approximated by the original experiments. 

On the reasonable assumption that the psychologist finds the power value 
of .60 unsatisfactorily low, he would need to change his plans, either by 
increasing n or by increasing a, preferably the former. This assumes, of 
course, that the experiment has not yet been run. If it has, and his results 
were nonsignificant, he could not readily conclude that the U.S. finding did 
not generalize, since even if h were .30 in the new culture, his b risk was 
much too large (I - .60 = .40) for such a conclusion. If, on the other hand, 
the results were significant, although he can conclude that P A> P0 , he cannot 
conclude that the population difference in terms of h was .30 (although his 
results are consistent with h being .30, and, of course, other values). 

6.2 A clinical psychologist plans a research in which patients, upon 
admission to a mental hospital, are randomly assigned to two admission 
wards of different treatment atmospheres, one "custodial-authoritarian" (C), 
the other "therapeutic-democratic" (T). Among other criteria, she plans six 
months after admission, to compare the proportions that have been dis­
charged. The issue, then, is the effect of the atmosphere of the initial ward 
placement on length of stay in the hospital. The hospital admits about 50 
patients a month, and she plans to assign randomly to C and T conditions 
for a four-month period, yielding two samples of about 100 cases each. She 
reviews Table 6.2.1 and decides that the ES she expects is given by h = .40, 
since the pairs of proportions which differ by this amount around the middle 
of the scale of P (where from experience she expects the results to lie) are .40 
and .60, .45 and .65, .50 and .69, and .55 and. 74. The test will be performed 
at a2 = .05. She wishes to assess the power of the eventual test of the signifi­
cance of the difference between P c and PT. In summary, the specifications 
are 

a2 = .05, h = .40, nc =ny =n = 100. 
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To find the power of this test, use Table 6.3.5 (for a 2 = .05) with column 
h = .40, row n = 100; power is .81. She thus has about four chances in five 
of concluding (at the .05 level) that the atmosphere difference has conse­
quence to length of stay !f the difference in proportions amounts to h = .40. 
If either (a) she wishes a better probability than .81 under these specifica­
tions, or (b) she wants to assure high power if the difference in proportions 
were smaller, say h = .30, she might consider running her experiment longer 
in order to get more Ss. If she can run a fifth month for a total of about 250 
Ss, under condition (a) above the specifications are: 

a 2 = .05, h=.40, nc =ny =n = 125. 

In Table 6.3.5, again for column h = .40, and roughly interpolating 
between the rows n = 120 and n = 140, we find power with this larger n to 
be about .88 (i.e., one-quarter of the way between .87 and .92), a better than 
7:1 chance of rejecting the null hypothesis if h = .40. Or, assuming the (b) 
condition, the specifications become 

a2 = .05, h=.30, nc=ny=n= 125. 

When we move to the left one column in Table 6.3.5, i.e., to h = .30, 
roughly interpolating again between the rows n = 120 and n = 140, we find 
power to be about .66 (i.e., one-quarter of the way between .61 and .71). 
This value may well give her pause.If h is as small as .30, she would have to 
run about seven months (so that n = 180) to get power of .81 at a2 = .05. 

6.3.2 CASE 1: n 1 =1= n2. The tables will yield valid power values for 
tests on differences between population proportions when samples of differ­
ent sizes are drawn. In such cases, find the harmonic mean ofn 1 and n2, i.e., 

(6.3.1) ' 2nln2 n =---
nl +n2 

and use the n column of the power table for n'. The results of this procedure 
are exact,4 provided that neither n is very small ( < 10). 

IUustrative Example 

6.3 In example 6.1 we described a cross-cultural research on the experi­
mental hypothesis that first-born and only children (A) have a preference for 
waiting with others rather than alone relative to the later born (B) while 
anticipating an experience that is contemplated with anxiety. There, we 
posited that the social psychologist obtained the cooperation of 80 Ss of 

4 That is, as exact as the Case 0 value, generally within ± 1 as tabulated. 
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each birth-order type. It was found there that if h = .30, the probability 
of finding a difference significant at a 1 = .05 was .60. That example was 
somewhat artificial, in that in canvassing people to volunteer for the experi­
ment, it is likely that the number of first and only born volunteers would not 
equal the number of later born volunteers, since there are more of the latter 
in most populations, particularly in a non-Western culture. If, for example, 
80 A's and 245 B's volunteered, it would be a mistake to accept only 80 of 
the B's in order to keep the sample n's equal. The mistake lies in the loss 
of power through reduced total n. What is the power of the test using all 
the volunteers? Keeping the other conditions the same, the specifications are 

a 1 = .05, h = .30, 

With unequal n's, one finds [from (6.3.1)] 

n' = 2(80)(245) = 120 6 
80 + 245 .. 

Using Table 6.3.2 for a 1 = .05, as before, and column h = .30, but now 
row n = 120, one finds that power= .75, in contrast with the value of .60 
obtained for nA = n8 = 80. 

6.4 A proposition derivable from psychoanalytic theory holds that the 
incidence of homosexuality should be higher in female paranoid schizo­
phrenics (P) than in females bearing other psychiatric diagnoses (0). A 
clinical psychologist has records available for 85 P's and 450 O's. On the 
expectation that the difference in relative incidence or proportion of cases 
in which homosexuality is found in the case records of the two popula­
tions is "medium," i.e., h =.50, what is the power of a (directional) test of 
H 0 : Pp< P0 at a 1 = .01? The specifications are 

a1 = .01, h=.50, np = 85 ::;i-450 = n0 . 

For unequal n's, first find [from formula (6.3.1)] 

n' = 2(85)( 450) = 143 0 
85 + 450 .. 

Using Table 6.3.1 (for a 1 = .01) for column h =.50, row n = 140, one 
finds power= .97. 

The psychologist formulated the test as directional, since the theory's 
prediction was not merely that there would be a difference, but that Pp > P0 . 

Theories normally do predict the direction of differences. However, if, in 
fact, it turned out that the sample proportions differed in the direction 
opposite to prediction, no conclusion could be drawn no matter how great 
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the difference. (See Section 1.2 and Cohen, 1965, pp. 106-111.) It is instruc­
tive to inquire here what the power would be if a nondirectional test, which 
permits conclusions in either direction, were performed. The specifications 
are to be otherwise held constant, i.e., 

a 2 = .01, h =.50, n' = 143. 

In Table 6.3.4 (for a2 = .01) for column h =.50, row n = 140, we find 
power= .95, in contrast to the a 1 = .01 power value of .97. The clinical 
psychologist might well decide that the loss in power is trivial, and that it 
is worth formulating the problem in nondirectional (two-tailed) terms to 
make possible the converse conclusion. 5 

6.3.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST P =c. Thus 

far we have been considering the power of the test of the difference between 
proportions of two independent samples, where the . null hypothesis is 
P 1 = P 2 • Essentially the same test procedure can be used to test the depar­
ture of the P in a single population from some specified value c. H0 for the 
one-sample test is P =c. The test is employed when, given a random· sample 
of n cases, the investigator's purpose is to determine whether the data are 
consonant with the hypothesis that the population P is .62 or .90 or any 
other value. It is thus the general case of which the test that P = .50 of 
the preceding chapter is a special case. 6 

Although the special case P = c = .50 occurs quite widely in behavioral 
science (including particularly the "Sign Test"), the case of P = c :1= .50 is 
not as frequently found. Increasingly, however, the use of mathematical 
models provides ever stronger and more precise hypotheses, which are 
frequently cast in a form which predicts values of P not generally equal to 
.50. The rejection or affirmation of such hypotheses may proceed by use of 
the tables provided in this chapter. 

For Case 2 we define the ES as for the other cases, that is, as the differ­
ence between arcsine-transformed P's. However, in formula (6.2.2), P2 -</>2 

is an estimable population parameter. Here it is a constant, so that for Case 2 

(6.3.2) h2' = </>1 - </>c 

= l</>1- 4>c I 
(directional) 

(nondirectional), 

where 4> 1 =the arcsine transformation of P 1 as before, and 

4>c = the arcsine transformation of c. 

5 It should be noted that the smallness of the power difference is due to the fact that 
the power values are close to 1.00. 

6 As in the case where H0 : P =.SO, the test of Ho: P = c can be performed exactly 
by means of tables for the binomial distribution. The present procedure, however, requires 
no additional tables and provides an excellent approximation unless n is quite small. 
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There is no conceptual change in the ES; h/ is the difference between 
the (alternate) population value P 1 and the value specified by the null hypoth­
esis, c, expressed in units of the arcsine transformation of formula (6.2.1). 
and Table 6.2.2. The interpretation of h 2 ' proceeds exactly as described in 
Section 6.2 with regard to Table 6.2.1 and the operational definition of 
small, medium, and large ES. 

The power and sample size tables, however, cannot be used directly with 
h 2 ' since they are constructed for Case 0, where there are two sample statis­
tics each of which contributes sampling error variance for a total of 2/n. 
Here, there is only one sample contributing sampling error variance, yielding 
half the amount, 1/n. This is simply allowed for by finding 

(6.3.3) 

The value h is sought in the tables, while hz' is the ES index which is 
interpreted. 

If h2 ' is chosen as a convenient multiple of .10, h will in general not be 
such a multiple. Thus, the proposed operational definitions of ES for hz' 
of .20, .50, and .80 become, for table entry, .28, . 71, and 1.13. Linear inter­
polation between columns will provide values which are sufficiently close 
(within .01 or .02) for most purposes. 

Illustrative Example 

6.5 A mathematical model predicts that a certain response will occur 
in {H 0 : P 1 = c =) .40 of the animals subjected to a certain set of conditions. 
An experimental psychologist plans to test this model using n = 60 animals 
and as the significance criterion a2 = .05. Assuming that the model is incor­
rect, and that the population rate is actually .50, what would be the power of 
this test? 

The ES is found directly from Table 6.2.1, where, from .40 (column P 2) 

to .50 amounts to a difference in t/>'s of .20. This value is for hz'. For entry 
into the power table, we require [from (6.3.3)], h = h2 ' v'2 = .20 v'2 = .28. 
Thus, the specifications are 

a 2 = .05, h=.28, n=60. 

In Table 6.3.5 (for a 2 = .05), row n = 60, for column h = .20, power is 
.19 and for h = .30, power is .38. Interpolating linearly between these values, 
we approximate the power as . 19 + (.38- . 1 9)(.28 - .20)/(.30- .20) = .34. 
Thus, even if a discrepancy of .50-.40 in the parameter existed, the experi­
ment as planned would have only about one chance in three of detecting it. 
It is apparent that if this experimental plan is followed, and the result is 
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a nonsignificant departure of the sample P value, the psychologist would 
be making an error to conclude that the results were confirmatory of the 
model. Our alternate hypothetical value of .50 would likely be considered a 
large discrepancy in this context, and failing to reject the model when there 
was only a one-third chance of doing so, given a large true departure from 
it, can hardly be considered confirmatory. 

The above results hold to a sufficient approximation whether the test is to 
be performed by means of the arcsine transformation (as described in Section 
6.5), or the exact binomial, or the approximations to the latter provided by 
either the normal curve test using proportions or the equivalent x2 " goodness 
of fit" test on frequencies. 

6.4 SAMPLE SIZE TABLES 

The tables in this section list the significance criterion, the ES to be 
detected, and the desired power. One then can find the necessary sample 
size. Their primary utility lies in the planning of experiments to provide 
a basis for the decision as to the sample size to use. 

6.4.1 CASE 0: n 1 = n 2 • The use of the sample size tables is first described 
for the application for which they were optimally designed, Case 0, where 
they yield the sample size, n, for each of two independent samples whose 
populations P's are to be compared. The description of their use in two 
other cases follows this subsection. Tables give values for a, h, and desired 
power: 

1. Significance Criterion, a. The same a values are provided as in the 
power tables by means of a table for each of the following: a 1 = .01 {a2 = .02), 
a 1 = .05 (a2 = .10), a 1 = .10 (a2 = .20), a2 = .01 (a1 = .005), and a2 = .05 
(a1 = .025). 

2. Effect Size. h is defined and interpreted as above [formula (6.2.2)) 
and used as in the power tables. The same provision is made: h = .10 (.10) 
1.20. 

To find n for a value of h not tabled, substitute in 

(6.4.1) 
n.IO 

n = l00h2' 

where n. 10 is the necessary sample size for the given a and desired power at 
h = .10 (read from the table) and his the nontabled ES. Round to the nearest 
integer. 

3. Desired Power. Provision is made for desired power values of .25, 
.50, .60, 2/3, .70 (.05) .95, .99.(See Section 2.4.1 for a discussion of the basis 
for the selection of these values, and the proposal that power = .80 serve 
as a convention in the absence of another basis for a choice. ) 
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Tlble6.4.1 

n to detect h • ~. - ~2 via Arcsine Transformation 

., •• 01 Ca2 • .02) 

Power .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

.25 546 136 61 34 22 15 11 9 7 5 5 .. 

.so 1082 271 120 68 .. , 30 22 17 13 11 9 8 

.60 1331 333 148 83 53 37 27 21 16 13 11 9 
2/3 1520 380 169 95 61 42 31 24 19 15 13 11 

.70 1625 406 181 102 65 45 33 25 20 16 13 11 

.75 1801 450 200 113 72 50 37 28 22 18 15 13 

.so 2007 502 223 12S 80 56 41 31 25 20 17 14 

.as 2262 565 251 141 90 63 46 35 28 23 19 16 

.90 2603 651 289 163 104 72 53 41 32 26 22 18 

.9S 31S4 789 3SO 197 126 88 6lt 49 39 32 26 22 

.99 4330 1082 481 271 173 120 88 68 S3 .. , 36 30 

e1 • .os Ca2 • .lo) 
h 

Power .10 .20 .30 .Ito .so .60 .70 .so .90 1.00 1.10 1.20 

.25 188 47 21 12 8 s .. 3 2 2 2 1 

.so 541 135 60 34 22 IS 11 8 7 5 .. .. 

.60 721 180 80 45 29 20 15 11 9 7 6 5 
2/3 862 215 96 54 34 24 18 13 11 9 7 6 

.70 ,.., 235 105 59 38 26 19 15 12 9 8 7 

.7S 1076 269 120 67 43 30 22 17 13 11 9 7 

.so 1237 309 137 77 .. , 34 25 19 IS 12 10 9 

.as 1438 359 160 90 58 Ito 29 22 18 14 12 10 

.90 1713 428 190 107 69 48 3S 27 21 17 14 12 

.95 216ft 541 240 135 87 60 44 34 27 22 18 IS 

·" )154 789 350 197 126 88 6ft 49 39 32 26 22 

a1 = .1~ Ca2 = .20) 
h 

Power .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

.zs 74 18 8 s 3 2 2 1 1 1 1 1 

.so 328 82 36 21 13 9 7 s .. 3 3 2 

.60 471 118 S2 29 19 13 10 7 6 s .. 3 
2/3 586 147 65 37 23 16 12 9 7 6 s .. 
.70 652 163 72 41 26 18 13 10 8 7 s 5 
.75 765 191 85 48 31 21 16 12 9 8 6 s 
.80 902 22S 100 S6 36 25 18 14 11 9 7 6 
.85 1075 269 119 67 .. , 30 22 17 13 11 9 7 

.90 1314 328 146 82 53 36 27 21 16 13 11 9 

.9S 1713 428 190 107 69 48 3S 27 21 17 14 12 

.99 2603 651 289 163 104 72 53 41 32 26 22 18 
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Table 6.4.1 (continued) 

.2 r: .01 (a1 r: .OOS) 

Power .10 .20 .30 .40 .so .60 .70 .so .90 1.00 1.10 1.20 

.2S 723 181 80 4S 29 20 IS 11 9 7 6 s 

.so 1327 332 147 83 53 37 27 21 16 13 11 9 

.60 1601 400 178 100 64 .... 33 25 20 16 13 11 
2/3 1808 ltS2 201 113 72 so 37 28 22 18 IS 13 

.70 1922 481 214 120 77 53 39 30 24 19 16 13 

.7S 2113 528 23S 132 as 59 43 33 26 21 17 15 

.so 2336 S84 260 146 93 6S 48 36 29 23 19 16 

.85 2610 652 290 163 104 72 53 41 32 26 22 18 

.90 2976 71t4 331 186 119 83 61 46 37 30 25 21 

.95 3563 891 396 223 143 99 73 56 .... 36 29 25 

.99 4806 1202 S34 300 192 134 98 75 59 48 40 33 

•z ... os <•1 • .o2sl 
li 

Power • 10 .20 .30 .Ito .so .60 .70 .so .90 1.00 1.10 1.20 

.2S 330 83 37 21 13 9 7 s .. 3 3 2 

.so 768 192 as 48 31 21 16 12 9 8 6 5 

.60 980 245 109 61 39 27 20 IS 12 10 8 7 
2/3 1143 286 127 71 46 32 23 18 14 11 9 8 

.70 1234 309 137 77 49 34 25 19 IS 12 10 9 

.75 1388 347 1$4 87 56 39 28 22 17 14 II 10 

.80 1570 392 174 98 63 .... 32 25 19 16 13 11 

.as 1796 lt49 200 112 72 so 37 28 22 18 IS 12 

.90 2101 525 233 131 84 sa 43 33 26 21 17 15 

.9S 2599 650 289 162 104 72 53 41 32 26 21 18 

.99 3674 919 408 230 147 102 75 57 ItS 37 30 26 

The Case 0 procedure involves finding (a) the table for the significance 
criterion (a) being used, then finding (b) the difference in arcsine-transformed 
P's (h) along the horizontal stub and (c) the desired power along the verti-
cal stub. This gives n, the necessary size for each sample to detect h at the a 
sign,ficance level with the desired power. 

mustradve Example 

6.6 Consider again the research in example 6.1, where there is described 
a crosscultural test of the experimental hypothesis that, in circumstances 
which arouse anxiety, Ss who were first-born or only children more fre-
quently prefer to wait with others than do Ss who were later born. It was 
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found there that if the population proportions differed by h = .30, a test of 
the null hypothesis at a 1 = .05 using samples of 80 cases in each group, 
would have only a .60 probability of rejection (power). If power of .80 is 
desired, what sample sizes should be used? The specifications are 

a 1 = .05, h= .30, power= .80. 

Table 6.4.1 for a 1 = .05, column h = .30, and row power= .80 yields n = 
137. The social psychologist would thus need samples of I 37 each of the two 
kinds of Ss in order to have a probability of .80 of rejecting the null hypoth­
esis if the population P's differed by h = .30. 

6.4.2 CASE I: n1 -=1= n2 . Although in manipulative experiments one 
does not ordinarily plan to use samples of unequal size (since the equal n 
condition is optimal), unequal n's can occur in planning when a sample pro­
portion is already available for one population or when the size of one 
sample is necessarily fixed by other circumstances. In such an eventuality, 
the investigator is free to set the size of only one of the two samples. With 
on! sample size fixed at nF, the problem is to determine the necessary size 
of the sample whose size is at the investigator's disposal (nu). Table 6.4.1 
is used as in Case 0 with a, h, and desired power, and n is determined. In 
order to find nu, substitute the fixed sample size (nF) and the n read from 
Table 6.4.1 in 

(6.4.2) 
n nF "u = -----'--

2nF -n · 

(See Section 2.4.2 when denominator is zero or negative.) 

Illustrative Example 

6.7 A psychopharmacologist plans to study the efficacy of a new drug 
for first psychiatric admissions bearing a given admission diagnosis. He wishes 
to compare the discharge rate four months from admission of patients 
treated with this drug (E) with that of patients currently treated by other 
means (C). He wishes to detect with power of .90 a small difference, in either 
direction from the rate for C patients, accepting the proposed convention 
of a small difference of h = .20. He plans the test at the a2 = .01 criterion. 
From past records of nF = 1600 patients bearing the diagnosis, he has avail­
able a sample P c· His specifications summary is 

h=.20, power= .90. 

In the section of Table 6.4.1. for a 2 = .01, column h = .20, and row 
power= .90, he findsn = 744. Thus, his specifications are met by two samples, 
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each of 744 cases. But he already has one sample of nF = 1600 cases for the 
C group. To find how many patients he requires in the E group, he substitutes 
in formula (6.4.2) to find 

744(1600) 
nu = 2{l600) _ 744 = 485 cases. 

Thus, the availability of a sample of nF = 1600 cases makes it possible 
for him to satisfy his specifications (attain power of .90 to detect h = .20 
at a2 = .01) with a sample for the new drug of 485 cases. 

6.4.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST P =c. In 
using the n tables for the one-sample test, the only departure from Case 0 
is that which was discussed for the use of the power tables for Case 2, namely 
the proper value of h to use the tables (see Section 6.3.3). Briefly, to test 
with a single sample the null hypothesis that a population P has some 
specified value, i.e., H0 : P = c, and the ES is indexed in the usual way, 
as a difference between arcsine transformed values of the alternate, P" 
and c, namely h/ = .P 1 - </>2 , entry into then tables is made with h = h2 ' Vi~ 
If, as is probable, the resultant h is not tabled, recourse is taken to formula 
(6.4.1). 

Illustrative Example 

6.8 Return to example 6.5, where an experimental psychologist was 
testing a derivation from a mathematical model that a population response 
rate was P = .40. With a test to be performed at a2 = .05, given that the true 
parameter differs from .40 byES= h2 ' = .20, how large a sample of animals 
does he need to attain power of .95? He sets this high power requirement 
because he wishes to interpret nonsignificance as confirmatory of the model 
(Section 1.5.5). 

Since there is only one sample P yielding sampling error, as described in 

Section 6.3.3, for the table entry he requires [formula (6.4.1)] h = h2 ' v2 = 
.20 v'2 = .2828. Thus, the specifications are 

a2 = .05, h = .2828, power= .95. 

Since h = .2828 is not tabled, he follows the procedure described in 
Section 6.4.1. Use the part of Table 6.4.1 for a2 = .05, row power= .95, 
and column h = .10 to find n. 10 = 2599. Then substitute n. 10 = 2599 and 
h = .2828 in formula (6.4.1) for the required n: 

2599 
n = 100(.2828)2 = 325. 
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Thus, if P = .50, a one-sample test of H0 : P = .40 performed at the 
a2 = .05 level, in order to have .95 probability of rejection of H 0 , must 
have sample n = 325. (This is much larger than the n = 60 experiment origi­
nally posited, but a nonsignificant result from the latter would have been 
inconclusive.) 

6.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 

6.5.1 GENERAL INTRODUCTION. As a convenience to the researcher, 
provision has been made in the power tables to facilitate significance test­
ing. Power analysis is primarily relevant to the planning of experiments and 
thus with the alternate-hypothetical ES. Once the experiment is performed 
and the data are in, attention turns to the assessment of the null hypothesis 
in the light of the sample data. 

For significance testing, we redefine our ES index, h, so that its elements 
are observed sample statistics rather than hypothetical population para­
meters, and call it h,. For Cases 0 and 1, where the P's of two independent 
samples are being compared, the sample P. values are transformed by the 
arcsine function, and 

(6.5.1) (directional) 

( nondirectional). 

Thus, h. is simply the difference in sample 4> values. It is related to the 
unit normal curve deviate (or "critical ratio") x, by 

(6.5.2) 

(6.5.3) 

These formulas are stated generally, so that the sample n's need not be 
equal. They simplify for the Case 0 condition of equal n (see below) . 

. The value of h, necessary for significance is called he, i.e., the criterion 
value of h •. The second column of the power tables 6.3, headed he, carries 
these values as a function ofn. Using these values, the normal curve deviate 
x need not be computed. One simply finds the sample difference in arcsine 
transformed tf>'s using Table 6.2.2, and compares it with the tabled he value 
for his sample size. If the obtained h, value equals or exceeds he, his obtained 
difference is significant at the a level for that table; otherwise, it is not. 
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6.5.2 SIGNIFICANCE TESTING IN CASE 0, n 1 = n 2 = n. When the sample 
sizes are equal, the relationship between h. and the normal deviate x are 
simplified: 

(6.5.4) 

(6.S.5) 

h5 =xJ~, 
X=h5 J~. 

[Formula (6.5.4) was used for the computation of the tables, qc values, x 
being taken as the normal curve deviate for the a criterion.] 

Use of the he values in Case 0 is straightforward: the investigator looks 
up the arcsine P = </1 values for the two P.'s in Table 6.2.2, finds their differ­
ence, h. , and enters the appropriate power table depending on a, in the row 
for his n ( = n 1 = n 2), and checks whether his h. value equals or exceeds the 
tabled he value. 

Wustrative Example 

6.9 Reconsider the research described in example 6.2, where a clinical 
psychologist was planning a study to compare the relative treatment etfec­

. tiveness of two ward atmospheres (T and· C) by comparing the proportions 
of 100 cases originally admitted to each ward who are discharged within 
six months. Now assume that the experiment is performed as planned and 
the sample proportions discharged turn out to be .41 for the C condition 
and .57 for the T condition. Is this difference significant at the planned 
8 2 = .05level? First, she looks up the cp transformation ofthese P.'s in Table 
6.2.2, and finds them to be respectively, 1.390 and I. 711: Thus, h. = II. 711 -
1.3901 = .321. Therefore, the specifications are: 

a 2 = .OS, n = 100, h.= .321. 

In Table 6.3.5 (for 8 2 = .05) for row n = 100, she finds under he the 
value .277. Since her h5 value exceeds he, her observed difference is signifi­
cant. This determination may be sufficient for her purposes, but if she wants 
the exact normal deviate value, x, she can substitute in formula (6.5.5) and 
find X = .321 ..J100/2= 2.27. 

6.5.3 SIGNIFICANCE TESTING IN CASE 1, n 1 =F n 2 • Inequality of sample 
sizes in significance testing using the tabled he values requires only finding 
the harmonic mean of the two n's, n', as described in Section 6.3.2 [formula 
(6.3.1)]: 

n'= 
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The Tables 6.3 are applied, using n' for n. The procedure is otherwise 
exactly the same as for Case 0. 

If the normal curve deviate value x is desired, it is found using formula 
(6.5.3), or, if n' has already been found, more simply by substituting n' for 
n in formula (6.5.5). 

Illustrative Example 

6.10 Example 6.3, which in turn referred to example 6.1, described a 
cross-cultural test of the experimental hypothesis that, under anxiety con­
ditions, first-born and only children (A) more frequently than later-born (B) 
prefer to wait with others. As revised in example 6.3, sample sizes ofnA = 80 
and n8 = 245 are available for a test at a 1 = .05. Assume now that when the 
experiment is run, he finds the sample proportions preferring to wait with 
others to be 56/80 = .70 for the A sample and 159/245 = .65 for the B sample. 
Since the difference is in the predicted direction (P A> P8 ), the test pro­
ceeds. The P,'s are transformed to ,P's by finding in Table 6.2.2 the values 
respectively of 1.982 and 1.875. Their difference, h.= 1.982- 1.875 = .107, 
is found. For use in the table, find n' from formula (6.3.1) (as in example 
6.3): 

n'= ~(80)(245) = 120 6 
80+ 245 .. 

The specifications for significance testing of the sample difference are: 

a 1 = .05, n' = 120.6, h, = .107. 

Table 6.3.2 (for a 1 = .05) for row n = 120 and column h., yields .212 
Since h, is smaller than the criterion h., the difference is not significant at 
a 1 = .05.7 Thus, the research provides no warrant for concluding the general­
izability of the United States finding to this culture. 

6.5.4 SIGNIFICANCE TESTING IN CASE 2: ONE SAMPLE, H 0 : P =c. When 
the null hypothesis takes the form: "For a population from which a sample 
of n observations is randomly drawn, the P having a given characteristic 
equals c," an adjustment must be made of the tabled h., value. This is because 
the tables were constructed for Case 0 conditions and hence allow for 

7 When n' is not tabulated, and intermediate h. values are desired, linear interpolation 
will usually provide an adequate approximation. If greater accuracy is desired, either h. 
or x can be solved by using formulas (6.5.2) and (6.5.3). 
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sampling error variance of two P.'s, while in Case 2 there is only one. The 
proper criterion for one sample tests of P = c is 

(6.5.6) 

where he is the tabulated value for n. 
As for the observed h. value for Case 2, we follow the principle expressed 

in (6.5.1) and simply define h.' as we defined h2 ' [formula (6.3.2)], merely 
substituting the sample value of cp. for the population parameter cp 1 : 

(6.5.7) h.'= cp5 - c/Je (directional) 

(nondirectional). 

The prime is used to denote a one-sample test. The relationships between 
h.' and the normal deviate x for the case are now 

(6.5.8) h.'= xJr' 
(6.5.9) x= h.'vn. 

Formula (6.5.9} can be used if the exact normal deviate ("critical ratio") 
is desired, e.g., for reporting results for publication. 

Illustrative Example 

6.11 Assume that the experimental psychologist of example 6;5, follow­
ing the power analysis described therein, actually performs the experiment 
to test H 0 : P = .40, but uses instead the more liberal rejection criterion of 
a 2 = .20 and a larger sample size ofn = 100, both of these changes in specifi­
cations serving to make it easier to detect departures from, and hence reject, 
the model. (The reader can determine as an exercise that, if in fact, P =.SO, 
then power is now approximately .75.) Given these new conditions, he finds 
that the sample proportion of animals giving the response is 47/100 = .47. 
Can he conclude from this result that the null hypothesis is false, i.e., that 
the value predicted by the mathematical model, .40, is incorrect? 

He finds the arcsine transformations of these two values from Table 
6.2.2 to be 1.511 (for .47) and 1.369 (for ;40), and their difference [formula 
(6.5.7)]h.' = 11.511- 1.3691 = .142. This is the sample ES. His specifications, 
then, are 

a2 = .20, n = 100, h.'= .142. 

Table 6.3.3 (for a 1 = .10, but used here for a 2 = .20}, with row n = 100 
and column he, gives the value .181. This would be the criterion for a 



6.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 213 

two-sample test where each n = 100. For this one-sample case, he goes on to 
find [formula (6.5.6)] he' = .181 v l = (. 707)(.181) = .128. This is the relevant 
criterion value, and since the sample h.'= .142 exceeds it, the null hypothesis 
of P = c = .40 is rejected. The experiment, thus, casts serious doubt on the 
validity of the model. 

If he wishes to determine the exact normal deviate value x which would 
result from this test, he finds [formula (6.5.9)] x = .142V I 00 = 1.42. 



CHAPTER 7 

Chi-Square Tests for Goodness of Fit 
and Contingency Tables 

7 .l INTRODUCTION AND UsE 

This chapter is concerned with the most frequent application of the 
chi-square (x2) distribution in behavioral science applications, namely to 
sets of frequencies or proportions. Two types of circumstances may be dis­
tinguished: 

I. Case 0: Goodness of Fit Tests. Here a single array of categories of 
sample frequencies or proportions is tested against a prespecified set which 
comprise the null hypothesis (Edwards, 1972, pp. 53-55; Hays, 1981, pp. 
537-544). 

2. Case 1: Contingency Tests. Here observed frequencies. are each classi­
fied simultaneously by means of two different variables or principles of 
classification, i.e., in a two-way table. The joint frequencies are tested against 
a null hypothesis which specifies no association between the two bases of 
classification (see the following: Hays, 1981, pp. 544-552; Edwards, 1972, 
pp. 55-65; Blalock, 1972, pp. 275-314). 

The chi-square test on frequencies is quite general in its applicability 
to problems in data analysis in behavioral science, in both manipulative 
experiments and survey analysis. It is particularly appropriate with variables 

215 
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expressed as nominal scales or unordered categories, e.g., religion, marital 
status, experimental condition, etc. 

When used for frequency comparisons, the chi-square test is a non­
parametric test, since it compares entire distributions rather than para­
meters (means, variances) of distributions. Thus, other than the need to 
avoid very small hypothetical frequencies (see Hays, 1981, pp. 521), the test 
is relatively free of constraining assumptions. 

Milligan (1980) shows how the tables of this chapter can be used for 
determining power for the analysis of multidimensional contingency tables 
using the loglinear model. 

In the following section, the two types of tests will be described in greater 
detail in the context of the ES index. 

7.2 THE EFFECT SIZE INDEX: W 

We require for an ES index a "pure" number which increases with the 
degree of discrepancy between the distribution specified by the alternate 
hypothesis and that which represents the null hypothesis. We achieve" pure­
ness" here by working with relative frequencies, i.e., proportions. In both 
cases, there are "cells"; categories in Case 0 and joint categories in Case I. 
For each cell, there are two population proportions, one given by the null 
hypothesis, the other by the alternate. The ES index, w, measures the dis­
crepancy between these paired proportions over the cells in the following 
way: 

(7.2.1) 

where Po; = the proportion in cell i posited by the null hypothesis, 
P 1; = the proportion in cell i posited by the alternate hypothesis and 

reflects the effect for that cell, and 
m = the number of cells. 

Thus, for each cell, the difference between the two hypothetical P's 
is squared and divided by the null-specified P0 ; the resulting values are 
then added over the cells, and the square root taken. 

Note the identity in structure of formula (7 .2.1) with that of the standard 
computing formula for x2 with frequencies; in w, proportions are used in 
place of frequencies (for generality), and the population values replace the 
sample values. 1 Indeed, if the sample proportions are used in the formula 

1 The technically oriented reader will note that w is simply the square root of the 
noncentrality parameter, lambda, divided by the total sample size. 
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in place of the Pli's, and the resulting w' is squared and multiplied by N, 
the total sample size, the result is the sample x2 value. 

w varies from zero, when the paired P's in all cells are equal and hence 
there is no effect and the null hypothesis is true, to an upper limit which 
depends on the nature of the problem, as is detailed below. 

The structure of x2 tests on distributions (hence w) is "naturally" non­
directional. Only when there is u = I degree of freedom in x2 , are there only 
two directions in which discrepancies between null and alternate can occur. 
With more than I df, departures can occur in many directions. The results 
of all these departures from the null are included in the upper tail rejection 
region, and, as normally used, x2 tests do not discriminate among these and 
are therefore nondirectional. The tests will be so treated here. 

7 .2.1 CASE 0: W AND GOODNESS OF FIT. The null hypothesis for goodness 
of fit tests is simply: 

(.I Po;= 1), 
•= 1 

i.e., a specified distribution of proportions in m cells, summing to unity. A 
population of independent observations is posited as falling into m mutually 
exclusive and exhaustive classes with a specified proportion in each. 

The source of such null-hypothetical distributions varies in different 
behavioral science applications. One common example is a test of the hypoth­
esis that a population is normally distributed on a continuous variable 
X. Then, H 0 is the array of proportions in successive step intervals of X 
which would accord with the form of the normal distribution (Hays, 
1981, 542-544). Form = 9 intervals, the successive P01 values might be: 
H 0 : .020, .051, .118, .195, .232, .195, .118, .051, .020. 

In some areas of behavioral science, a strong theory may yield predicted 
distributions of populations over relevant classes, or cells. For example, 
a behavioral geneticist may be enabled by Mendelian theory to predict the 
ratio of four behavior types resulting from cross-breeding to be I: 3: 3:9. 
The theory would be expressed in proportions in the H 0 : .0625, .1875, .1875, 
.5626 (Edwards, 1972, p. 54f). 

Another source of H 0 might be an empirical distribution determined for 
the population in the past, as in census data. A contemporary sample could 
be tested against such an H0 in a study of social or economic change. 

The logical structure of many experiments, e.g., those resulting in deci­
sions or the expression of preference among m alternatives, suggests a 
null hypothesis of equiprobability: H0 : P 01 = P o2 = P 03 = · · · = P om = 1/m. 
Thus, a study of consumer preference among m = 4 advertising displays 
would posit H 0 : Po; = .25 for i = 1, 2, 3, 4. 



218 7 CHI-SQUARE TESTS FOR GOODNESS OF FIT AND CONTINGENCY TABLES 

The test for equiprobability can be seen as a generalization of the test 
H0 : P = .50 to which Chapter 5 was devoted. In the present context, the 
test of Chapter 5 is the test for equiprobability when m = 2, where g = 1w. 

Furthermore, the Case 0 circumstance for x2 tests of frequencies for 
m = 2 is an alternative procedure to the Chapter 6, Case 2 test that the 
proportion of a population having a given characteristic equals some specified 
value c. In present terms, the same hypothesis is stated as H0 : P01 = c, 
P02 = 1- c. 

By whichever of the above relevant approaches an H 0 set of P0 ;'s is 
established, the alternative hypothesis is expressed by a paired set of P11's 
and the departure or ES defined by w of formula (7 .2.1 ). It is clear that 
with no departure, the numerator of each cell's contribution is zero, hence 
w = 0 when there is no effect, i.e., the null hypothesis is true. In general, 
the maximum value of win Case 0 applications is infinity. This occurs when 
the null hypothesis specifies that for any given cell, P 0 = 0. If zero values 
for the Po; are ruled out as inadmissible, w can become as large as we like by 
defining any P0 value as very small (relative to its fixed paired P1 value). 

For the special circumstances of equiprobability in m cells, the maximum 

value of w is J m - 1. Thus, for the m = 4 advertising displays, the maxi­
mum possible value of w, which occurs when all respondents prefer one dis-

play, is J4- 1 = J3 = 1.73. 
Despite the general upper limit of infinity, in practice, for sample sizes 

large enough to yield valid results with the x2 test, it is not generally neces­
sary to make provision for w greater than .90 (a long way, indeed, from 
infinity!). 

In Case 0 tests, in general, the degrees of freedom (u) for x2 is simply 
m - 1. An exception to this rule occurs where additional degrees of freedom 
are "lost" because of additional parameter estimation. In the normal 
curve fitting test, for example, where the sample yields estimates of the 
mean and standard deviation, each estimate costs an additional degree of 
freedom, so that u = m - 3. In the other examples given above, u is always 
m-1. 

In a later section, operationally defined values of w for "small," "me­
dium," and "large" ES will be offered. 

7.2.2 CASE I: W AND CONTINGENCY TESTS. The most frequent applica­
tion of x2 in behavioral science is to what are variously called "contin­
gency," "independence," or "association" tests. They can also be viewed 
as tests of the equality of two or more distributions over a set of two or 
more categories. 

Consider a circumstance where there are two variables or classification 
schemes, each made up of mutually exclusive and exhaustive categories. 
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Call one of the variables R. made up of r ~ 2 categories. and the other K. 
made up of k ~ 2 categories. If all the members of a population are simul­
taneously characterized with regard to their category assignment on R and 
K, the results can be expressed in a two-way table of dimension r x k, with 
rk cells. In each cell. we can write the proportion of observations in the 
population which it contains. From such a table, one can determine whether 
R is associated with (or contingent upon, or not independent of) K in the 
population. or. equivalently. whether the r subpopulations on the R variable 
having differing distributions over the k categories of K. 2 

For concreteness. consider the cross-classification Table (7.2.1) in which 
a sub-population has been jointly characterized with regard to sex= R (r = 2) 
and political preference= K (k = 3). Note that the marginal (i.e., total) 
distribution for sex is .60, .40, and that for political preference .45, .45, .I 0. 

TABLE 7.2.1 

P 1 VA LUES IN A JOINT DISTRIBUTION OF SEX AND 

POLITICAL PREFERENCE 

Sex 
Dem. Rep. Ind. marginal 

Men .22 .35 .03 .60 
Women .23 .10 .07 .40 

Preference 
marginal .45 .45 .10 1.00 

Note that although the marginal ratio of men to women is .60 : .40 or 3: 2. the 
ratio for Republicans is 3.5: I, and the Democrats are made up about equally 
of men and women (i.e .• 1 :I). Similarly, one might note that although there 
are equal marginal proportions of Democrats and Republicans. there are 
more Republicans than Democrats among the men and the preference is 
reversed among the women. This inequality of ratios within a column (or row) 
of the table with the column (or row) marginal ratios constitutes evidence that 
Rand K are not independent of each other. or that they are associated. 

A formal way to describe this association proceeds by asking the question, 
"Given the two marginal distributions in this population. what cell values 
would constitute independence (or no association)?" This is readily found 
for each cell by multiplying its row marginal proportion by its column 
marginal proportion. Consider the proportion of men-Democrats which 

2 R and K can be interchanged; the relationships are symmetrical. 
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would evidence no association: Since .60 of the population are men, and 
.45 of the population are Democrats, the condition of no association would 
lead us to expect (.60)(.45) = .27 of the population being men-Democrats. 
The other no-association cell proportions are similarly computed and are 
given in Table 7.2.2. Note that this operation has resulted in within row (or 
column) ratios being equal to the row (or column) marginal ratios. In the 
circumstance described in Table 7 .2.2, in contrast to that in Table 7 .2.1, 
given the knowledge of a person's sex, one can make no better a guess as to 
political preference than doing so without such knowledge. The converse is 
also true, since the association is symmetric. 

TABLE 7.2.2 

P0 (No ASSOCIATION) VALUES IN A JOINT DISTRIBUTION 

OF SEX AND POLITICAL PREFERENCE 

Sex 
Dem. Rep. Ind. marginal 

Men .27 .27 .06 .60 
Women .18 .18 .04 .40 

Preference 
marginal .45 .45 .10 1.00 

Although the above has been described in terms of association between 
R and K, it could also be understood as an inquiry into whether the different 
R groups (the two sexes) have the same proportional distribution over the 
various categories of K (political preference). In Table 7.2.1, they clearly 
do not, while in the no-association condition described in Table 7.2.2, they 
do.3 

In the analysis of contingency tables, the null hypothesis conventionally 
tested is that of no association. Thus, for the issue of association between 
sex and political preference, the null hypothesis is represented by the P 0 

values in the cells of Table 7.2.2. Small departures from these values would 
represent weak association (or dependence), large departures strong associa­
tion. The degree of departure orES index is given by w, as defined in formula 
(7 .2.1 ). It is applied in r x k contingency tables in the same way as in good­
ness of fit tests. Each of the rk = m cells has a null-hypothetical P 0 value 
given by the product of the marginal proportions (such as in Table 7.2.2) 
and an alternate-hypothetical P 1 value reflecting the association posited 

3 Again we note that Rand K can be interchanged. 
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(as in Table 7.2.1). For the problem considered, using the values in these 
tables, 

Jr2k=6 {Pii ~ P0 ;)2 J(.22- .27)2 (.35- .27)2 (.07- .04)2 

W= = + +···+----
pOi .27 .27 .04 

i= 1 

= j.0093 + .0237 + .0150 + .0139 + .0356 + .0225 

= j.I200 = .346. 

Thus w = .346 indexes the amount of departure from no association, or 
the degree of association between sex and political preference in this popula­
tion. Equivalently it can be understood as indexing the difference between 
men and women in their distribution over political preference. 

In Case I tests, the number of degrees of freedom associated with the 
x2 for an r x k contingency table is given by 

(7.2.2) u = (r- l)(k- 1). 

For the 2 x 3 table under consideration, u = (2- 1)(3 - 1) = (1)(2) = 2. 
Because the marginals of both rows and columns are fixed, it is not the 
number of cells less one, as in Case 0.4 

In contingency tables, the maximum value of w depends upon r, k, and 
the marginal conditions. If r and k are assigned so that r is not larger than 
k (this will be assumed throughout) and no restriction is put on the marginals, 
maximum w is Jr-=1. Thus, in the example, no P1 values can be written 

which yield w greater than j2- I = I. If for both marginals the classes have 
equal proportions, i.e., 1/r for one set and 1/k for the other, maximum 
w =Jr(r- 1)/k. 

W AND OTHER MEASURES OF ASSOCIATION. Although W is a useful ES 
index in the power analysis of contingency tables, as a measure of association 
it lacks familiarity and convenience. As noted above, its maximum is J r - I ; 
hence w varies with the size of the smaller of the table's two dimensions. 

There are several indices of association for r x k contingency tables 
which are familiar to behavioral scientists and which are simply related 
to w. These will be briefly described, and formulas relating them to w will 
be given. In Table 7.2.3, for the convenience of the reader, the equivalent 
values for these other indices are given for the values of w provided in the 
power and sample size tables in this chapter. The formulas and table make 
possible indexing ES in terms of these other measures. 

4 For example, note that in Table 7 .2.1, after one has specified the 2 ( = u) values .22 
and .35, all the other cell values are determined by the requirement that they sum to the 
row and column totals. 



222 7 CHI-SQUARE TESTS FOR GOODNESS OF FIT AND CONTINGENCY TABLES 

TABLE 7.2.3 

EQUIVALENTS OF WIN TERMS OF C, <f>, AND</>' 

4>' 

w c r=2* 3 4 5 6 

.10 .100 .10 .071 .058 .050 .045 

.20 .196 .20 .141 .115 .100 .089 

.30 .287 .30 .212 .173 .150 .134 

.40 .371 .40 .283 .231 .200 .179 

.so .447 .50 .354 .289 .250 .224 

.60 .514 .60 .424 .346 .300 .268 

.70 .573 .70 .495 .404 .350 .313 

.80 .625 .80 .566 .462 .400 .358 

.90 .669 .90 .636 .520 .450 .402 

• This column gives the equivalents in terms of <f>, the 
product-moment correlation coefficient for the fourfold 
(2 x 2) table. 

Contingency Coefficient, C. The most widely used measure of association 
in contingency tables is C, Pearson's coefficient of contingency (Hays, 1981, 
p. 558). The relationship amon5 C, x2, and w is given by 

(7.2.3) 

(The first expression gives the sample C value, the second that of the 
population.) 

For the population data of Table 7.2.1, for example, where w2 = .3462 = 
.12, the C value equals J.12/(.12 + I)= J.l2/1.12 = .33. 

To express win terms of C, 

(7.2.4) J-a-
w = 1- C2' 

C = 0 when w = 0, indicating no association. The maximum value of C 
is not 1, but increases towards I, as maximum w increases. We have seen 
that maximum w equals J r - I. Therefore, substituting in (7 .2.3), maximum 

C = J<r- 1)/r. For example, a 2 x k table (k ~ 2) has a maximum C of 
J(2- 1)/2 = Jf = .71, while a 5 x k table (k ~ 5) has a maximum C of 
j(5- 1)/5 =J4/5 = .89. This varying upper limit dependency on r is 
generally considered a deficiency in the measure, becoming particularly 
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awkward when one wishes to compare C values coming from tables of 
different size. 

Note the relationship between w and C in Table 7.2.3. As w increases, 
C increases, but with progressively smaller increments. 

cp, The Fourfold Point Correlation Coefficient. Among contingency tables, 
the most frequently analyzed in behavioral science is the 2 x 2 table. In 2 x 
2 tables, one can conceive of each of the R and K dichotomous dimensions as 
scaled 0 for one category and I for the other (or any other distinct values) and 
compute a product-moment correlation coefficient between the two dimen­
sions. In such circumstances the correlation coefficient5 is called q, (see 
Cohen & Cohen, 1983, pp. 65-66; Guilford & Fruchter, 1981, pp. 316-318). 
Its relationship to w is one of identity: 

(7.2.5) Jx2 
cp = N = w. 

(The first expression is the sample cp value, the second that of the popula­
tion.) 

Since cp is a bonafide product moment correlation coefficient, c/>2 is 
interpretable as the proportion of variance (PV) shared by the two variables 
Rand K (see Chapter 3; also Chapters 2, 4, 6, 11). Thus, for the 2 x 2 table, 
w 2 gives directly the PV shared by the two dichotomies. 

Cramer's cp'. A useful generalization of cp for contingency tables of any 
dimensionality is provided by Cramer's statistic cp' (Hays, 1981, p. 557; 
Blalock, 1972, p. 297); 

(7.2.6) , J x2 w 
;fo = N(r- I)= Jr- 1' 

where r is, as before, not greater than k. (Again, the first expression gives 
the sample value and the second the population value.) win terms of cp' and 
r is given by 

(7.2.7) w = cf>'Jr- 1. 

Naturally, cp' cannot be interpreted as a product-moment correlation, 
since neither R nor K is, in general, metric or even ordered. But it does have 
a range between zero and a uniform upper limit of one. The latter is true 
because, as we have seen, the upper limit of w in a contingency table is 

Jr-1. 
s Not to be confused with the same symbol, t/>, to indicate the arcsine transformation of P 

in Chapter 6. 
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That cf>' is a generalization of cf> can be seen when we note that for a 

2 x 2 table, r = 2; formula (7.2.6) then gives cp' = wfj2- l = w ( =c/>). 
This is why the cf> equivalents of Table 7.2.3 are given under cf>' for r = 2. 
The latter is more general, since it applies not only to 2 x 2 tables but to 
2 x k tables. For example, for the association between sex and political 

preference in Table 7.2.1, a 2 x 3 table, cp' = .346/J2- 1 = .346. 

7.2.3 "SMALL," "MEDIUM," AND "LARGE" W VALUES. Since W is not 
a familiar index, it becomes particularly important to have some guide to 
its magnitude for the purpose of power analysis or the estimation of neces­
sary sample size or both. The best guide here, as always, is the development 
of some sense of magnitude ad hoc, for a particular problem or a particular 
field. Since it is a function of proportions, the investigator should generally 
be able to express the size of the effect he wishes to be able to detect by 
writing a set of alternate-hypothetical proportions for either Case 0 or Case I, 
and, with the null-hypothetical proportions, compute w. Some experimen­
tation along these lines should provide one with a •• feel" for w. 

As in the other chapters, values of w for" small,"" medium," and "large" 
ES are offered to serve as conventions for these qualitative adjectives. Their 
use requires particular caution, since, apart from their possible inaptness 
in any given substantive context, what is subjectively the "same" degree 
of departure (Case 0) or degree;: of association (Case 1) may yield varying 
w as the size of r, k, or u (degrees of freedom) changes, and conversely. 
Note, for example, in Table 7.2.3, that for constant e, cf>' decreases as r 
increases. The investigator is best advised to use the conventional definitions 
as a general frame of reference for ES and not to take them too literally. 

SMALL EFFECT SIZE: w = .10. For Case 0 goodness of fit applications, 
w = .10 for the following H 0 , H 1 pairs, where in each instance H 0 posits 
equiprobability for the m cells, and the H 1 values are placed at equal intervals 
and symmetrically about 1/m: 

m = 2 H 0 : .50 .50 
H 1 : .45 .55 (same as g = .05; see Section 5.2) 

m = 3 H 0 : .333 .333 .333 
H 1 : .293 .333 .374 

m= 4 Ho: .250 .250 .250 .250 
H.: .216 .239 .261 .284 

m= 5 Ho: .200 .200 .200 .200 .200 
H.: .172 .186 .200 .214 .228 

m=IO Ho: .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 
Hl: .084 .088 .091 .095 .098 .102 .105 .109 .112 .116 
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The illustration of Case 1 instances of w = .1 0 would demand the presen­
tation of several cumbersome contingency tables. Instead, attention is called 
to Table 7.2.3, where equivalents ofw = .10 for C, q,, and q,• are given. Note 
that what is defined as a small degree of association implies a C of .100, and 
for a 2 x 2 table, a q, also of .100. For larger tables, Cramer's q,· decreases, 
so that when the smaller dimension (of r categories) is 6, q,• = .045. 

MEDIUM EFFECT SIZE: W = .30. To illustrate a medium ES in Case 0 appli­
cations, the following H 0, H 1 pairs are presented in all of which w = .30: 

m = 2 H 0 : .50 .50 
H 1 : .35 .65 (same as g = .15; see Section 5.2) 

m = 3 H 0 : .333 .333 .333 
H 1 : .211 .333 .456 

m = 4 H0 : .250 .250 .250 .250 
H 1 : .149 .216 .284 .351 

m = 5 H 0 : .200 .200 .200 .200 .200 
H 1 : .115 .158 .200 .242 .285 

m = 10 H 0 : .100 .100 .100 .100 .100 .100 .100 .100 .100 .100 
H 1 : .053 .063 .074 .084 .095 .105 .116 .126 .137 .147 

For contingency tables (Case 1) we note, as before, the equivalences from 
Table 7.2.3. Equivalent tow= .30 are C = .287 and the fourfold q, = w = .10. 
For q,• in larger tables, constant w = .30 implies diminishing values, e.g., 
q,• = .134 for r = 6. 

The P1 values relating sex to political preference of Table 7.2.1 yielded 
an w = .346, slightly above our operational definition of a medium effect. 

LARGE EFFECT SIZE: w = .50. As before, we here illustrate the large ES for 
Case 0 by a series of H 0 , H 1 pairs for each of which w = .50: · 

m = 2 H 0 : .50 .50 
H 1 : .25 . 75 (same as g = .25; see Section 5.2) 

m = 3 H 0 : .333 .333 .333 
H 1 : .129 .333 .537 

m = 4 H0 : .250 .250 .250 .250 
H 1 : .082 .194 .306 .418 

m = 5 H 0 : .200 .200 .200 .200 .200 
H 1 : .059 .129 .200 .271 .341 

m = 10 H0 : .100 .100 .100 .100 .100 .100 .100 .100 .100 . 100 
H 1 : .022 .039 .056 .074 .091 .109 .126 .143 .161 .178 
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For contingency tables, a large degree of association as defined here 
implies C = .447 and for the 2 x 2 table, 4> = w = .50 (Table 7.2.3). For 
larger tables, the 4>' values decrease with constant w = .50 as r increases, e.g., 
for r = 6, 4>' = .224. 

SOME FURTHER COMMENTS ON ES AND W. The Case 0 illustrations above 
were all for H 1 of an equally spaced departure from an H 0 of equiprobability. 
This was done for the sake of simplicity, but should not mislead the reader. 
Any full set of proportions can be tested as an H 0 , and w will index the de­
parture of any H 1 from it. Thus, when we define w = .30 as a medium depar­
ture of H 1 from H 0 , or ES, any discrepancy yielding w = .30 is so defined. 
For example, for m = 4, the following H 0, H 1 pair also represents an ES 
of w = .30 and their delectability by means of a x2 test is the same as for the 
m = 4 illustration above: 

H 0 : .250 .250 .250 .250 
H 1 : .380 .207 .207 .207 

This is a w = .30 departure from equiprobability in which the effect is 
concentrated in the first category, the remainder being equiprobable. 

The following pair illustrates yet another w = .30 departure from equi­
probability for m = 4, one in which the effect is divided equally between the 
first two categories, and between the last two: 

H 0 : .250 .250 .250 .250 
H 1 : .325 .325 .175 .175 

Since the departure from H 0 may occur in many ways, and since H 0 

may itself occasionally represent other than an equiprobable distribution, 
clearly any given value of w may arise from a multiplicity of patterns of dis­
crepancies. It is the size of w which is important. An investigator may specify 
an H 0 appropriate to his purpose, and posit an H 1 which he believes to be 
the true state of nature. He then obtains some specific w, say .30. He may 
be wrong about the specific H 1 set of P 1 values he has posited, but the power 
(or sample size) he determines from the tables for w = .30 will hold for any 
H 1 which yields w = .30. Thus, however they may have come about, his 
inference can be viewed as testing H0 : w = 0 against H 1 : w = .30. 

We reiterate a word of caution about the use of constant w values to define 
a given level of departure, such as the operational definitions of "small," 
"medium," and ''large" ES as applied to Case 1 contingency tests. It was 
noted several times above that constant w implies a decreasing value for 4>' 
as table size (specifically r) increases (see Table 7 .2.3). 6 If an investigator 
thinks of amount of association in terms of 4>', then clearly he cannot use the 

6 This is also true for a measure of association not discussed here. Tschuprow's T 
(Blalock, 1972, p. 296). The remarks about if> in this context hold also forT. 
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operational definitions suggested above, or any other pegged to a constant w. 
Thus, for example, if he is prepared to define a "large" amount of associa­
tion as a tfo' = .40, this implies varying w depending on r: it would be 
w = .40 for a 2 x k table, w = .57 for a 3 x k table, · · · w = .89 for a 6 x k 
table [formula (7.2.7) and Table 7.2.3]. 

7.3 POWER TABLES 

The power tables for this section are given on pages 228-248. 
The 42 tables in this section are used when an overall sample size N is 

specified together with the degrees of freedom (u}, the significance criterion a, 
and the ES, w; the tables then yield power values. As throughout this hand­
book, power tables find their major use after an experiment has been per­
formed. They can also be used in experimental planning by varying N (and/or 
ES, and/or a) to study the consequences to power of such alternatives. 

Tables list values for a, u, w, and N: 

1. Significance Criterion, a. Since x2 is naturally nondirectional (see 
above, Section 7.2), 14 tables (for varying u) are provided at each of the a 
levels .01, .05, and .10. 

2. Degrees of Freedom, u. At each a level, a table is provided for each 
of the following 14 values of u: I (1) 10, 12 (4) 24. They have been selected 
so as to cover most problems involving x2 comparisons of proportions 
(or frequencies) likely to be encountered in practice. In particular, since for 
r x k contingency tables, u = ( r - l )(k - I), the larger values of u (12, 16, 20, 
24) were chosen so as to have many factors. Thus, tables whose r x k are 
2 x 25, 3 x 13, 4 x 9, and 5 x 7 all have u = 24. When necessary, linear 
interpolation between u values in the l 0-24 range will yield quite adequate 
approximations. 

3. Effect Size, w. For either Case 0 or Case 1 applications, was defined 
in formula (7.2.1} provides the ES index. Provision is made for finding nine 
values of w: .10, (.10) .90. As a frame of reference for ES magnitude, con­
ventional definitions have been offered above, as follows: 

small: w = .10, 
medium: w = .30, 
large: w =.50. 

4. Sample Size, N. This is the total number of cases in the comparison. 
Provision is made for N = 25 (5) 50 (10) 100 (20) 200 (50) 400 (100) 1000. 
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Note that although all the tables begin at N = 25, for the Case 0 and Case 1 
application of x2 of this chapter, samples of this size will yield tests of dubious 
validity as u increases. See Section 7.4 for discussion and references on this 
point. 

The values in the body of the tables are the power times 100, i.e., the 
percent of tests carried out under the specified conditions which will result 
in the rejection of the null hypothesis. They are rounded to the nearest unit, 
and they are generally accurate to within ± 1 as tabled. 

7 .3.1 CASE 0: GOODNESS OF FIT TESTS. By the way of review: In Case 0, 
the H0 is a set of proportions (P01) in m categories which reflect no effect 
in a way appropriate to the problem. The H 1 is another set of proportions 
(Pu) in the m categories which collectively reflect the effect. Each category 
contributes a value (P u - P 01) 2 /P 01 to a total, whose square root, w, indexes 
the ES. The u for a given problem is m- 1, unless there are further con­
straints due to parameter estimation, as e.g., in fitting a normal distribution, 
where u = m- 3 (see Section 7.2.1 and references). 

mustrative Examples 

7.1 A market researcher is seeking to determine the relative preference 
by consumers among four different package designs for a new product. He 
arranges to have a panel of 100 consumers each select the single design he 
prefers over the rest. He performs a x2 test at a = .05 on the preference 
distribution against a null hypothesis of equal preference, i.e., 

A B C D 
H 0 : .25 .25 .25 .25 

What is the power of this test, if in fact, in the population, the actual distri­
bution is 

A B C D 
H 1 : .3750 .2()83 .2083 .2083 ? 

First, one finds w for this alternative [formula (7 .2.1)]: 

w - J(.3750 - .2500)2 3(.2083 - .2500)2 -

- .2500 + .2500 - ·289· 

The degrees of freedom, u, for this application is m - 1 = 3, there being only 
one constraint on the freedom of the category P values to vary, namely the 
requirement that they sum to 1.00. Thus, the summary of his specifications is 

a= .05, U=3, W= .289, N = 100. 
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In Table 7.3.17 for a= .05 and u = 3 at row N = 100, we find power for 
column w = .20 to be .36 and for w = .30 to be .71. Linear interpolation 
yields (approximate) power of 

(.289- .20) 
.36 + (.30- .20) (.71 - .36) = .36 + .31 = .67. 

Thus, if H 1 is true, or for any other H 1 which yields a w = .289, the market 
researcher has about a 2 in 3 chance of rejecting the null hypothesis of equal 
preference in the population among the four designs. 

7.2 A psychometrician needs to determine whether a population dis­
tribution of scores on a psychological test under development is normal. 
He secures a random sample of 200 Ss, and by methods described by Hays 
(1981, pp. 542-544) determines that for 9 step intervals of his score distribu­
tion, a normal distribution would have the following proportions in succes­
sive intervals : 

H 0 : .020 .051 .118 .195 .232 .195 .118 .051 .020 

After experimenting with several alternate population distributions, he con­
cludes that he wishes to be able to detect a departure from normality of 
w = .20. Since the burden of" proof" of normality is his, he selects a = .10 
as his significance criterion in order to be lenient in his rejection of the null 
hypothesis of normality. Under these conditions, what is the power of his x2 

test for goodness of fit to normality? 
To determine the u, consider that in the fitting of the normal distribution 

to his sample values, in addition to the usual constraint of summation of the 
proportions to .1 00, he has estimated from his sample two population para­
meters, the mean and standard deviation. Thus, his degrees of freedom are 
u = m - 3 = 9 - 3 = 6. 

The specifications for the power of the x2 test are: 

a= .10, u =6, W=.20, N = 200. 

In Table 7.3.34 (for a= .10, u = 6) for column w = .20, row N = 200, he 
finds power= .66. Under the circumstances, he might consider that, given a 
departure of w = .20 from normality, a probability of rejection of normality 
of only .66 might not be sufficient. 

7.3.2 CASE 1: CONTINGENCY TESTS. In Case I, we deal with a two-way 
table of variables Rand K which has rk = m cells, each containing a propor­
tion of the population. The m null-hypothetical proportions Po; are those 
which reflect no association between R and K and are found as products 
of the marginal proportions, as in Table 7.2.2. The alternate-hypothetical 
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proportions Po; are another set which then necessarily reflect some associa­
tion, of greater or lesser degree. The amount of association or departure 
from H 0 is found as in Case 0, i.e., each of the m cells contributes a value 
(Pu- P0 ;)2/P0 ; to a total whose square root is w. The u for a given problem 
is (r- l)(k- 1). Such problems can be viewed equally as concerning asso­
ciation between R and K or as concerning differences among the r subpopula­
tions in distributions over the k categories (or k subpopulations over the r 
categories). 

Illustrative Examples 

7.3 A political scientist is studying the relationship between sex and 
political preference (Democrat, Republican, Independent) for a certain popu­
lation. Assume that she knows, or can estimate, the marginals, i.e., the pro­
portions of men and women voters, and the proportions of each political 
preference in the population. She has available a sample of N = 140 voters 
for the x2 contingency test, which she performs at the a = .01 significance 
level. Her null hypothesis is expressed by the P01 in Table 7 .2.2 above, which 
reflects no association between voter sex and politial preference or, equiva­
lently, no sex difference in political preference distribution. The degrees of 
freedom for the test, u = (2- 1)(3 - l) = 2. If the joint proportions in the 
population are the P u of Table 7 .2.1, what is the power of the test? It has 
been shown above (Section 6.2) that the ES of the departure of the Pu from 
the Po; is w = .346. Then, 

a= .01, u =2, w = .346, N = 140. 

Table7.3.2(fora = .Ol)atu = 2, N = 140, powerforw = .30is .75and 
for w = .40, .97. Linear interpolation gives the (approximate) power for w 
= .346as 

(.346- .30) 
.75 + (.40- .30) (.97- .75) = .85. 

Thus, if the population proportions are as in Table 7.2.1, or for any other 
set of values yielding w = .346, the probability of rejecting the hypothesis of 
no association at a= .01 using 140 respondents is .85. 

7.4 A clinical psychologist is studying the predictive validity of a new 
psychodiagnostic procedure administered to patients upon admission to a 
psychiatric hospital, using as a criterion final psychiatric diagnosis. Assume 
that 80 patients are classified into the diagnostic categories "brain damaged," 
"functional psychotic," and" psychoneurotic," both by the psychodiagnostic 
procedure and by the final diagnosis. The contingency table for assessing pre-
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dictive validity will thus be a 3 x 3 table, with u = (3- 1)(3 - I)= 4. If the 
degree of association in the population is indexed by a Cramer 4>' of .20, what 
is the power of a x2 test using a = .05 as the significance criterion? 

To be used in the power tables, the 4>' must be converted into its w equiva­
lent. From formula (7.2.7), noting that r( = k) = 3, we find w = .20j3 - 1 = 
.283. The specifications, then, are: 

a= .05, U=4, w = .283, N =80. 

In Table 7.3.18 (for a= .05, u = 4) for row N = 80, we find power at 
w = .20 to be .26 and at w = .30 to be .55. Interpolating linearly for w = .283, 
power is found to be approximately 

(.283- .20) 
.26 + (.30 - .20) (.55 - .26) = .50. 

Thus, at the level of association of 4>' = .20 posited for the population, it is 
a "toss-up" whether a contingency test significant at a = .05 will result with 
N =80. 

7.5 A community psychiatry research team undertakes an inquiry into 
the association between religious-ethnic group ( r = 5) and type of diagnosis 
given (k = 6) in a statewide population of child clinic referrals. Data are 
available for N = 400 referrals. If the degree of association is small (w = .10; 
C = .100; cfo' = .050 from Table 7.2.3), what is the power of a x2 test per­
formed at the 0.1level? For this large table, u is equal to (5- 1)(6- 1) = 20. 
The specifications, in summary form, are 

a= .01, u =20, W= .10, N =400. 

In Table 7.3.13 for a= .01 and u = 20, column w = .10, and row N = 
400, we find power to be .05( !). Note that even if the lenient a = .10 criterion 
is used instead (Table 7.3.41), power is still only .26. If the actual association 
is "medium" w = .30, and from Table 7.2.3, C = .287, 4>' = .150), at a= .01, 
power is .92 and at a= .05, power is .98. 

7.4 SAMPLE SIZE TABLES 

The sample size tables for this section are given on pages 253-267. 
The tables in this section give values for the significance criterion (a), 

the degrees of freedom (u), the ES to be detected (w), and the desired power. 
The necessary total sample size N then may be found. As with the other 
sample size tables in this handbook, they will be used primarily in the plan­
ning of experiments where they provide a basis for the decision as to the 
sample size to use. 
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TABLE 7.4.1 

N TO DETECT W BY X2 AT&= .01, u = ), 2, 3 

.!!...:..J. 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .80 .90 

.25 362 90 40 23 14 10 7 6 4 

.so 664 166 74 41 27 18 14 10 8 

.60 BOO 200 89 50 32 22 16 13 10 
2/3 904 226 100 56 36 25 18 14 11 

• 70 961 240 107 60 38 27 20 15 12 
• 75 1056 264 117 66 42 29 22 17 13 
.80 1168 292 130 73 47 32 24 18 14 
.85 1305 326 145 82 52 36 27 20 16 

.90 1488 372 165 93 60 41 30 23 18 

.95 1781 445 198 111 71 49 36 28 22 
-99 2403 601 267 150 96 67 49 38 30 

~ 
w 

Power .10 .20 .30 .40 .so .60 . 70 .80 .90 

.25 467 117 52 29 19 13 10 7 6 

.so 819 205 91 51 33 23 17 13 10 

.60 975 244 108 61 39 27 20 15 12 
2/3 1092 273 121 68 44 30 22 17 13 

-70 1157 289 129 72 46 32 24 18 14 
• 75 1264 316 140 79 51 35 26 20 16 
.80 1388 347 154 87 56 39 28 22 17 
.85 1540 385 171 96 62 43 31 24 19 

.90 1743 436 194 109 70 48 36 27 22 
-95 2065 516 229 129 83 57 42 32 25 
.99 2742 685 305 171 110 76 56 43 34 

.!!....!...l. 
w 

Power .10 .20 .30 .40 .so .60 • 70 .80 .90 

.25 544 136 60 34 22 15 11 8 7 

.so 931 233 103 58 37 26 19 15 11 

.60 1101 275 122 69 44 31 22 17 14 
2/3 1227 307 136 77 49 34 25 19 15 

.70 1297 324 144 81 52 36 26 20 16 
• 75 1412 353 157 88 56 39 29 22 17 
.80 1546 386 172 97 62 43 32 24 19 
.85 1709 427 190 107 68 47 35 27 21 

.90 1925 481 214 120 77 53 39 30 24 
-95 2267 567 252 142 91 63 46 35 28 
-99 2983 746 331 186 119 83 61 47 37 
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TABLE 7.4.2 

N TO DETECT W BY X2 AT a= .01, U = 4, 5, 6 

~ 
w 

Power .10 .20 .30 .ItO .so .60 • 70 .so .90 

.zs 607 152 67 38 24 17 12 9 7 

.so 1023 256 114 64 41 28 21 16 13 

.60 1204 301 134 75 48 33 25 19 15 
2/3 1338 335 149 Bit Sit 37 27 21 17 

.70 1412 353 157 88 56 39 29 22 17 
·75 1534 383 170 96 61 43 31 24 19 
.so 1648 412 183 103 66 46 34 26 20 
.as 1847 462 205 115 74 51 38 29 23 

.90 2074 518 230 130 83 58 lt2 32 26 

.95 2433 608 270 152 97 68 50 38 30 
-99 31SO 795 353 199 127 88 65 50 39 

.!!....=J. 
w 

Power .10 .20 .)0 .ItO .so .60 • 70 .80 .90 

.zs 663 166 71t 41 27 18 11t 10 8 

.so 1103 276 123 59 44 31 23 17 lit 

.60 1294 323 141t 81 52 36 26 20 16 
2/3 llt)lt 359 159 90 57 ItO 29 22 18 

• 70 1512 378 168 91t 60 lt2 31 Zit 19 
• 75 161!0 410 182 102 66 46 33 26 20 
.80 1787 lflt7 199 112 71 50 36 28 22 
.as 1966 492 218 123 79 55 Ito 31 24 

.90 2203 551 245 138 88 61 45 34 27 
-95 2576 61tlt 28, 161 103 72 53 ItO 32 
.99 3350 837 372 209 134 93 68 52 41 

.!L!...! 
w 

Power .10 .20 .30 .Ito .so .60 .70 .so .go 

.25 713 178 79 ItS 29 20 15 II 9 

.so 1175 291t 131 73 lt7 33 24 18 15 

.60 1371t )It) 153 86 55 38 28 21 17 
2/3 1521 380 169 95 61 lt2 31 21t 19 

.70 1601 ltoo 178 100 61t ltlt 33 25 20 
• 75 1734 lt31t 193 108 69 ItS 35 27 21 
.so 1887 lt72 210 JIB 75 52 39 29 23 
.as 2073 518 230 130 83 58 lt2 32 26 

.90 2318 sao 258 I ItS 93 61t lt7 36 29 

.95 270it 676 300 169 108 75 55 lt2 33 

.99 3502 876 389 219 litO 97 71 55 lt3 
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TABLE 7.4.3 

N TO DETECT W BY X2 AT a= .OJ, U = 7, 8, 9 

.!!...=.-I 
w 

Power .10 .20 .30 .40 .so .60 . 70 .80 .go 

.25 758 190 84 47 30 21 15 12 9 

.so 1241 310 138 78 50 34 25 19 15 

.60 1447 362. 161 90 58 Ito 30 2.3 18 
2/3 1599 ltoo 178 100 64 "" 33 25 20 

.70 1683 421 187 105 67 47 34 26 21 
• 75 1820 455 202 lilt 73 51 37 28 22 
.80 1979 495 220 124 79 55 Ito 31 24 
.85 2171 543 241 136 87 60 "" 34 27 

.90 2424 606 269 151 97 67 49 38 30 

.95 2821 705 313 176 113 78 58 44 35 

.99 3641 910 405 22.8 146 101 74 57 ItS 

~ 
w 

Power .to .20 .30 .40 .so .60 . 70 .80 .90 

.25 801 200 89 50 32 22 16 13 10 

.so 1302 325 145 81 52 36 27 20 16 

.60 1515 379 168 95 61 42 31 24 19 
2/3 1673 418 186 105 67 46 34 .2.6 21 

.70 1759 440 195 110 70 49 36 27 22 

.75 1900 475 2.11 119 76 53 39 30 23 

.so 2064 516 229 129 83 57 42 32 25 

.85 2261 565 251 141 90 63 46 35 28 

.90 2521 630 280 158 101 70 51 39 31 

.95 2929 732 325 183 117 81 60 46 36 

.99 3769 942 419 236 151 lOS 77 59 47 

~ 
w 

Power .10 .20 .30 .40 .so .60 • 70 .80 .90 

.25 840 210 93 53 34 23 17 13 10 

.so 1359 340 151 85 54 38 28 21 17 

.60 1579 395 175 99 63 44 32 2.5 19 
2/3 1741 435 193 109 70 48 36 27 21 

. 70 1830 457 203 lilt 73 51 37 29 23 
• 75 1975 494 219 123 79 55 ItO 31 24 
.80 2143 536 238 134 86 60 "" 33 26 
.as 2346 586 2.60 147 94 65 48 37 29 

.90 2612. 653 290 163 JOlt 73 53 41 32 

.95 3030 758 337 189 121 84 62 47 37 

.99 3889 972. 432 243 156 108 79 61 48 
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TABLE 7.4.4 

N TO DETECT W BY Xz AT a= .01, u = 10, 12, 16 

~ 
w 

Power .10 .20 .)0 .Ito .so .60 • 70 .so .go 

.25 877 219 97 55 35 24 18 lit II 

.so lit I) 353 157 88 57 39 29 22 17 

.60 16)9 410 182 102 66 46 )) 26 20 
2/) 1805 451 201 II) 72 50 37 28 22 

.70 1896 474 211 119 76 53 39 )0 2) 
• 75 2046 511 227 128 82 57 42 )2 25 
.so 2218 554 246 1)9 89 62 ItS 35 27 
.85 2425 606 269 152 97 67 49 )8 )0 

.90 2698 675 300 169 108 75 55 42 33 

.95 3126 781 347 195 125 87 64 49 39 

.99 4002 1001 445 250 160 Ill 82 6) 49 

.!!..:.....!! 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 995 249 Ill 62 ItO 28 20 16 12 

.so 1513 378 168 95 61 42 )I 24 19 

.60 1750 438 194 109 70 49 36 27 22 
2/3 1925 481 214 120 77 53 39 30 Zit 

.70 2020 505 224 126 81 56 41 32 25 
• 75 2177 544 242 136 87 60 44 34 27 
.80 2356 589 262 147 94 65 48 37 29 
.85 2573 64) 286 161 103 71 53 40 32 

.90 2858 714 318 179 114 79 58 45 35 

.95 3302 826 367 206 132 92 67 52 41 

.99 4211 1053 468 263 168 117 86 66 52 

.!!...:...1i 
w 

Power .10 .20 .30 .40 .so .60 • 70 .80 .90 

.25 1072 268 119 67 43 30 22 17 13 

.so 1690 422 188 106 68 47 34 26 21 

.60 1948 487 216 121 78 54 Ito 30 24 
2/3 2137 534 237 134 85 59 "" 33 26 

. 70 2240 560 249 litO 90 62 46 35 28 

. 75 2408 602 268 150 96 67 49 38 30 

.80 2601 650 289 163 JOlt 72 53 41 32 

.as 2834 709 315 177 113 79 58 "" 35 

.90 3139 785 349 196 126 87 64 49 39 

.95 3614 903 402 226 145 100 74 56 45 

.99 4580 1145 509 286 183 127 93 72 57 
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TABLE 7.4.5 

N TO DETECT W BY X2 AT a= .01, U = 20,24 

.!!....!...1!!. 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .go 

.25 1181 295 131 71t lt7 33 24 18 15 

.so 1845 461 205 115 71t 51 38 29 23 

.60 2121 530 236 133 85 59 lt3 33 26 
2/3 2322 581 258 llt5 93 65 lt7 36 29 

.70 2lt32 608 270 152 97 68 50 38 30 

.75 2611 653 290 163 10it 73 53 lt1 32 

.so 2816 704 313 176 113 78 57 "" 35 

.85 3063 766 31t0 191 123 85 63 ItS 38 

.90 3385 81t6 376 212 135 94 69 53 lt2 

.95 3886 972 432 21t3 155 108 79 61 ItS 

.99 4903 1226 SitS 306 196 136 100 77 61 

~ 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .so .go 

.25 12SO 320 142 80 51 36 26 20 16 

.so 1986 496 221 124 79 55 lt1 31 25 

.60 2278 569 253 142 91 63 lt6 36 28 
2/3 2490 622 277 156 100 69 51 39 31 

• 70 2606 651 290 163 10it 72 53 It I 32 
• 75 2794 699 310 175 112 78 57 "" 31t 
.so 3010 753 331t 188 120 84 61 lt7 37 
.as 3269 817 363 20it 131 91 67 51 ItO 

.90 3607 902 ItO I 225 lltlt 100 71t 56 Its 
·95 ltl32 1033 459 258 165 liS 84 65 51 
.99 5193 1298 577 325 208 lltlt 106 81 61t 
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TABLE 7.4.6 

N TO DETECT W BY X2 AT a= .05, U= 1, 2, 3 

.!!...=-1. 
w 

Power .10 .20 .30 .Ito .so .60 . 70 .80 .90 

.25 165 ltl 18 10 7 5 3 3 2 

.so 381t 96 lt3 21t 15 II 8 6 5 

.60 lt90 122 54 31 20 lit 10 8 6 
2/3 571 llt2 63 36 23 16 12 9 7 

.70 617 151t 69 39 25 17 13 10 8 
-75 691t 175 77 lt3 28 19 lit 11 9 
.80 785 196 87 lt9 31 22 16 12 10 
.85 898 221t 100 56 36 25 18 lit 11 

.90 1051 263 117 66 lt2 29 21 16 13 

.95 1300 325 Jltlt 81 52 36 27 20 16 

.99 1837 It 59 201t I 15 73 51 37 29 23 

~ 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 226 56 25 lit 9 6 5 It 3 

.so lt96 121t 55 31 20 lit 10 8 6 

.60 621 155 69 39 25 17 13 10 8 
2/3 717 179 80 lt5 29 20 15 II 9 

• 70 770 193 86 ItS 31 21 16 12 10 
-75 859 215 95 54 34 24 18 13 II 
.80 961t 241 107 60 39 27 20 15 12 
.85 1092 273 121 68 44 30 22 17 13 

.90 1265 316 lit I 79 51 35 26 20 16 
-95 1544 386 172 97 62 lt3 32 24 19 
.99 2140 535 238 134 86 59 lt4 33 26 

!!..:...1. 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 258 65 29 16 10 7 5 4 3 

.so 576 lltlt 61t 36 23 16 12 9 7 

.60 715 179 79 Its 29 20 15 11 9 
2/3 820 205 91 51 33 23 17 13 10 

• 70 879 220 98 55 35 24 18 14 II 
• 75 976 21tlt 108 61 39 27 20 15 12 
.80 1090 273 121 68 lt4 30 22 17 13 
.85 1230 308 137 77 lt9 31t 25 19 15 

.90 1417 351t 157 89 57 39 29 22 17 
-95 1717 429 191 107 69 48 35 27 21 
-99 2352 588 261 Jlt7 94 65 48 37 29 
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TABLE 7.4.7 

N TO DETECT W BY X2 AT a= .05, U = 4, 5, 6 

.!L!....!!. 
w 

Power .10 .20 .30 .40 .so .60 . 70 .80 .90 

.25 308 n 34 19 12 9 6 5 4 

.50 642 160 71 40 26 18 13 10 8 

.60 792 198 88 50 32 22 16 12 10 
2/3 911 228 101 57 36 25 19 14 11 

. 70 968 242 108 61 39 27 20 15 12 

.75 1072 268 119 67 43 30 22 17 13 

.80 1194 298 133 75 48 33 24 19 15 

.85 1342 336 149 84 54 37 27 21 17 

.90 1540 385 171 96 62 43 31 24 19 

.95 1857 464 206 116 74 52 38 29 23 

.99 2524 631 280 158 101 70 52 39 31 

~ 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .so .90 

.25 341 85 38 21 14 9 7 5 4 

.so 699 175 78 44 28 19 14 11 9 

.60 859 215 95 54 34 24 18 13 II 
213 979 245 109 61 39 27 20 15 12 

. 70 1045 261 116 65 42 29 21 16 13 

. 75 1155 289 128 72 46 32 24 18 14 

.80 1283 321 143 80 51 36 26 20 16 

.8s 1439 360 160 90 58 40 29 22 18 

.90 1647 412 183 103 66 46 34 26 20 

.95 1978 494 220 124 79 55 40 31 24 

.99 2673 668 297 167 107 74 55 42 33 

u = 6 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .so .90 

.25 370 92 41 23 15 10 8 6 5 

.so 750 188 83 47 30 21 15 12 9 

.60 919 230 102 57 37 25 19 14 11 
2/3 1044 261 116 65 42 29 21 16 13 

• 70 1114 279 124 70 45 31 23 17 14 
• 75 1229 307 137 77 49 34 25 19 15 
.80 1362 341 151 85 54 38 28 21 17 
.as 1526 381 170 95 61 42 31 24 19 

.90 1742 435 194 109 70 48 36 27 22 

.95 2086 521 232 130 83 58 43 33 26 

.99 2805 701 312 175 112 78 57 44 35 
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TABLE 7.4.8 

N TO DETECT W BY X2 AT a= .05, U = 7, 8, 9 

~ 
w 

Power • 10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 397 99 44 25 16 II 8 6 5 

.so 797 199 89 50 32 22 16 12 10 

.60 973 243 108 61 39 27 20 15 12 
2/3 1104 276 123 69 44 31 23 17 14 

.]0 1177 294 131 74 lt7 33 24 18 15 
• 75 1296 324 lltlt 81 52 36 26 20 16 
.80 1435 359 159 90 57 4o 29 22 18 
.85 1604 ItO I 178 100 64 45 33 25 20 

.90 1828 457 203 114 73 51 37 29 23 

.95 2184 546 243 136 87 61 ItS 34 27 

.99 2925 731 325 183 117 81 60 46 36 

.\!...!..! 
w 

Power • 10 .20 .30 .40 .so .60 • 70 .80 .90 

.25 422 105 47 26 17 12 9 7 5 

.su 840 210 93 53 34 23 17 13 10 

.60 1024 256 114 64 41 28 21 16 13 
2/3 1160 290 129 72 46 32 24 18 14 

.70 1235 309 137 77 49 34 25 19 15 
• 75 1359 340 151 85 54 38 28 21 17 
.so 1502 376 167 94 60 42 31 23 19 
.85 1677 419 186 105 67 47 34 26 21 

.90 1908 477 212 119 76 53 39 30 24 

.95 2274 569 253 Jlt2 91 63 46 36 28 

.99 3036 759 337 189 121 84 62 47 37 

~ 
w 

Power .10 .20 .30 .40 .so .60 • 70 .80 .90 

.25 445 Ill 49 28 18 12 9 7 5 

.so 881 220 98 55 35 24 13 14 11 

.60 1071 268 119 67 43 30 22 17 13 
213 1212 303 135 76 48 34 25 19 15 

.]0 1289 322 143 81 52 36 26 20 16 
.• 75 1417 354 157 89 57 39 29 22 17 
.lio 1565 391 174 98 63 43 32 24 19 
.as 1745 436 194 109 70 48 36 27 22 

.90 1983 496 220 124 79 55 40 31 24 

.95 2359 590 262 147 94 66 48 37 29 

.99 3139 785 349 196 126 87 64 49 39 
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TABLE 7.4.9 

N TO DETECT W BY X2 AT a= .05, U = 10, 12, 16 

~ 
w 

Power .10 .20 .30 .40 .so .60 .70 .80 .90 

.25 467 117 52 29 19 13 10 7 6 

.so 919 230 102 57 37 26 19 14 11 

.60 1115 279 124 60 45 31 23 17 14 
2/3 1260 315 140 79 50 35 26 20 16 

. 70 1340 335 149 84 54 37 27 21 17 

.75 1472 368 164 92 59 41 30 23 18 

.so 1624 406 180 102 65 45 33 25 20 

.85 1809 452 201 113 72 50 37 28 22 

.90 2053 513 228 128 82 57 42 32 25 

.95 2438 610 271 152 98 68 50 38 30 

.99 3236 809 360 202 129 90 66 51 40 

.!!...:..11. 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .80 .90 

.25 508 127 56 32 20 14 10 8 6 

.so 990 248 110 62 40 28 20 15 12 

.60 1198 299 133 75 48 33 24 19 15 
2/3 1351 338 150 84 54 38 28 21 17 

• 70 1435 359 159 90 57 40 29 22 18 
. 75 1574 393 175 98 63 44 32 25 19 
.80 1734 433 193 108 69 48 35 27 21 
.as 1928 482 214 120 77 54 39 30 24 

.90 2183 546 243 136 87 61 45 34 27 

.95 2586 646 287 162 103 72 53 40 32 

.99 3416 854 380 214 137 95 70 53 42 

.!:!...=..li 
w 

Power .10 .20 .30 .40 .so .60 . 70 .80 .90 

.25 581 145 65 36 23 16 12 9 7 

.so 1116 279 124 70 45 31 23 17 14 

.60 1343 336 149 84 54 37 27 21 17 
2/3 1511 378 168 94 60 42 31 24 19 

. 70 1603 401 178 100 64 45 33 25 20 

.]5 1753 438 195 110 70 49 36 27 22 

.so 1927 482 214 120 77 54 39 30 24 

.as 2137 534 237 134 f35 59 44 33 26 

.90 2412 603 268 151 96 67 49 38 30 

.95 2845 711 316 178 114 79 58 44 35 

.99 3733 933 415 233 149 104 76 58 46 
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TABLE 7.4.10 

N TO DETECT W BY X2 AT a= .05, U = 20, 24 

u - 20 
w 

Power .10 .20 .30 .40 .so .60 . 70 .80 .90 

.25 646 161 72 40 26 18 13 10 8 

.so 1226 307 136 77 49 34 25 19 15 

.60 1471 368 163 92 59 41 30 23 18 
2/3 1651 413 183 103 66 46 34 26 20 

·.70 1750 437 194 109 70 49 36 27 22 
-75 1911 478 212 119 76 53 39 30 24 
.so 2096 524 233 131 84 53 43 33 26 
.85 2320 580 258 145 93 64 47 36 29 

.90 2613 653 290 163 105 73 53 41 32 

.95 3072 768 341 192 123 85 63 48 38 

.99 4010 1002 446 251 160 111 82 63 50 

u - 24 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .80 .90 

.25 704 176 78 44 28 20 14 II 9 

.so 1326 331 147 83 53 37 27 21 16 

.60 1587 397 176 99 63 44 32 25 20 
2/3 1778 444 198 111 71 49 36 28 22 

.]0 1882 470 209 118 75 52 38 29 23 

. 75 2053 513 228 128 82 57 42 32 25 

.so 2249 562 250 141 90 62 46 35 28 

.as 2484 621 276 155 99 59 51 39 31 

.90 2794 698 310 175 112 78 57 44 34 

.95 3276 819 364 205 131 91 67 51 40 

.99 4259 1065 473 266 170 118 87 67 53 
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TABLE 7.4.11 

N TO DETECT w BY X2 AT a= .10, u =I, 2, 3 

~ 
w 

Power • 10 .20 . 30 .Ito .so .60 :7o .so .90 

.25 91 23 10 6 It 3 2 I I 

.so 270 68 30 17 II 8 6 It 3 

.60 360 90 ItO 23 14 10 7 6 It 
2/3 430 JOB 48 27 17 12 _9 7 5 

• 70 470 118 52 29 19 13 10 7 6 
. 75 538 134 60 34 22 15 11 8 7 
.so 618 155 69 39 25 17 13 10 8 
. 85 719 180 80 ItS 29 20 15 11 9 

.90 856 214 95 53 34 24 17 13 11 

.95 1082 271 120 68 43 30 22 17 13 

.99 1577 394 175 99 63 ltlt 32 25 19 

.!!..-=....1. 
w 

Power • 10 .20 .30 • Ito .so .60 . 70 • .so .90 

.25 127 32 lit 8 5 It 3 2 2 

.so 356 89 ItO 22 14 10 7 6 It 

.60 465 I 16 52 29 19 13 9 7 6 
2/3 550 137 61 34 22 15 II 9 7 

.70 597 149 66 37 24 17 12 9 7 

.75 677 169 75 42 27 19 lit 11 8 

.80 771 193 86 48 31 21 16 12 10 

.as 888 222 99 55 36 25 18 14 II 

.90 1046 261 116 65 42 29 21 16 13 

.95 1302 326 145 81 52 36 27 20 16 

.99 1856 464 206 116 74 52 38 29 23 

!:!...:....1. 
w 

Power .10 .20 .JO .40 .so .60 . 70 .so .90 

.25 155 39 17 10 6 4 3 2 2 

.so 418 104 46 26 17 12 9 7 5 

.60 541 135 60 34 22 15 II 8 7 
2/3 636 159 71 Ito 25 18 I 3 10 8 

. 70 688 172 76 43 28 19 lit 11 8 

. 75 776 194 86 49 31 22 16 12 10 

.bo 880 220 98 55 35 24 18 14 II 

.85 1008 252 I 12 63 Ito 28 21 16 12 

.90 1180 295 131 74 47 33 24 18 15 

.95 1457 364 162 91 58 40 30 23 18 

.99 2051 513 228 128 82 57 42 32 25 
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TABLE 7.4.12 

N TO DETECT W BY X2 AT a= .10, U = 4, 5, 6 

!L!...!:!. 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 178 44 20 II 7 5 It 3 2 

.so 469 117 52 29 19 13 10 7 6 

.60 604 151 67 38 24 17 12 9 7 
2/3 706 176 78 44 28 20 14 II 9 

.70 763 191 85 48 31 21 16 12 9 
• 75 857 214 95 54 34 24 17 13 II 
.80 968 242 108 61 39 27 20 15 12 
.85 1105 276 123 69 44 31 23 17 14 

.90 1288 322 143 81 52 36 26 20 16 

.95 1583 396 176 99 63 44 32 25 20 

.99 2209 552 245 138 88 61 45 35 27 

~ 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 198 50 22 12 8 6 It 3 2 

.so 514 128 57 32 21 lit 10 8 6 

.60 658 164 73 41 26 18 13 10 8 
213 766 192 85 48 31 21 16 12 9 

• 70 827 207 92 52 33 23 17 13 10 
. 75 927 232 103 58 37 26 19 14 11 
.80 1045 261 116 65 42 29 21 16 13 
.85 1189 297 132 74 48 33 24 19 15 

.90 1382 345 154 86 55 38 28 22 17 

.95 1691 423 188 106 68 47 35 26 21 

.99 2344 586 260 147 94 65 48 37 29 

.!!...!...i 
w 

Power .10 .20 .30 .40 .so .60 • 70 .so .90 

.25 216 54 24 lit 9 6 It 3 3 

.so 553 138 61 35 22 15 11 9 7 

.60 706 176 78 ltlt 28 20 lit 11 9 
2/3 820 205 91 51 33 23 17 13 10 

. 70 884 221 98 55 35 25 18 lit 11 
• 75 990 247 110 62 Ito 27 20 15 12 
.so 1113 278 124 70 45 31 23 17 lit 
.85 1264 316 litO 79 51 35 26 20 16 

.90 1465 366 163 92 59 ltl 30 23 18 

.95 1787 447 199 112 71 50 36 28 22 

.99 2465 616 274 154 99 68 50 39 30 
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TABLE 7.4.13 

N TO DETECT W BY X2 AT&= .10, U = 7, 8, 9 

~ 
w 

P0o1er .10 .20 .30 .40 .so .60 . 70 .80 .90 

.25 233 58 26 15 9 6 5 4 3 

.so 590 147 66 37 24 16 12 9 7 

.60 750 187 83 47 30 21 15 12 9 
2/3 670 217 97 54 35 24 18 14 11 

• 70 936 234 104 59 37 26 19 15 12 
. 75 1047 262 116 65 42 29 21 16 13 
.80 1175 294 131 73 47 33 24 18 15 
.85 1332 333 148 83 53 37 27 21 16 

.90 1541 385 171 96 62 43 31 24 19 

.95 1875 469 208 117 75 52 38 29 23 

.99 2574 644 286 161 103 72 53 40 32 

~ 
w 

P0o1er .10 .20 . 30 .40 .so .60 . 70 .So .90 

.25 249 62 28 16 10 7 5 4 3 

.so 624 156 69 39 25 17 13 10 8 

.60 791 198 88 49 32 22 16 12 10 
2/3 916 229 102 57 37 25 19 14 11 

• 70 985 246 109 62 39 27 20 15 12 
• 75 1099 275 122 69 44 31 22 17 14 
.so 1232 308 137 77 49 34 25 19 15 
.85 1395 349 155 87 56 39 28 22 17 

.90 1611 403 179 101 64 45 33 25 20 

.95 1955 489 217 122 78 54 ItO 31 24 

.99 2676 669 297 167 107 74 55 42 33 

.!!.....:....2. 
w 

P0o1er .10 .20 .30 .Ito .so .60 . 70 .80 .90 

.25 263 66 29 16 11 7 5 " 3 

.so 655 164 73 It I 26 18 13 10 8 

.60 829 207 92 52 33 23 17 13 10 
213 958 240 106 60 38 27 20 15 12 

.]0 1030 258 114 64 41 29 21 16 13 

. 75 1148 287 128 72 46 32 23 18 14 

.so 1286 322 143 80 51 36 26 20 16 

.85 1454 364 162 91 58 40 30 23 18 

.90 1677 419 186 105 67 47 34 26 21 

.95 2031 508 226 127 81 56 41 32 25 

.99 2770 692 308 173 111 77 57 43 34 



266 7 CHI-SQUARE TESTS FOR GOODNESS OF FIT AND CONTINGENCY TABLES 

TABLE 7.4.14 

N TO DETECT W BY Xz AT a= .10, U = 10, 12, 16 

.!:!...=..J..Q. 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 277 69 31 17 II 8 6 It 3 

.so 685 171 76 43 27 19 lit II 8 

.60 865 216 96 54 35 24 18 lit II 
2/3 999 250 Ill 62 40 28 20 16 12 

.]0 1073 268 119 67 43 30 22 17 13 
• 75 1195 299 133 75 48 33 24 19 15 
.80 1337 334 149 84 53 37 27 21 17 
.85 1510 377 168 94 60 42 31 24 19 

.90 1739 435 193 109 70 48 35 27 21 

.95 2102 525 234 131 84 58 43 33 26 

.99 2858 715 318 179 lilt 79 58 45 35 

~ 
w 

Power .10 .20 .30 .Ito .so .60 • 70 .80 .90 

.25 303 76 34 19 12 8 6 5 It 

.so 740 185 82 46 30 21 15 12 9 

.60 931 233 103 58 37 26 19 15 II 
2/3 1073 268 119 67 43 30 22 17 13 

• 70 1152 288 128 72 46 32 24 18 14 
.]5 1281 320 142 80 51 36 26 20 16 
.80 1430 358 159 89 57 40 29 22 18 
.85 1612 403 179 101 64 ItS 33 25 20 

.90 1853 463 206 116 74 51 38 29 23 
·95 2233 558 248 140 89 62 46 35 28 
-99 3022 756 336 189 121 84 62 47 37 

.!L:...l§. 
w 

Power .10 .20 • 30 .40 .so .60 • 70 .80 .90 

.25 348 87 39 22 14 10 7 5 4 

.so 838 210 93 52 34 23 17 13 10 

.60 1049 262 117 66 42 29 21 16 13 
2/3 1205 301 134 75 48 33 25 19 15 

.70 1291 323 143 81 52 36 26 20 16 
• 75 1432 358 159 90 57 ItO 29 22 18 
.80 1595 399 177 100 64 44 33 25 20 
.85 1793 448 199 112 72 50 37 28 22 

.90 2054 513 228 128 82 57 42 32 25 
-95 2464 616 274 154 99 68 so 38 30 
-99 3310 828 368 207 132 92 68 52 41 
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TABLE 7.4.15 

N TO DETECT W BY X2 AT&= .10, U = 20,24 

~ 
w 

Power .10 .20 . 30 .40 .so .60 . 70 .80 .90 

.25 388 97 43 24 16 II 8 6 5 

.so 924 231 103 58 37 26 19 14 11 

.60 1153 288 128 72 46 32 24 18 14 
213 1321 330 147 83 53 37 27 21 16 

• 70 1414 353 157 88 57 39 29 22 17 
. 75 1565 391 174 98 63 43 32 24 19 
.80 1740 435 193 109 70 48 36 27 21 
.85 1951 488 217 122 78 54 40 30 24 

.90 2230 557 248 139 89 62 46 35 28 

.95 2666 667 296 167 107 74 54 42 33 

.99 3562 891 396 223 142 99 73 56 44 

u = 24 
w 

Power .10 .20 . 30 .40 .so .60 • 70 .80 .90 

.25 425 106 47 27 17 12 9 7 5 

.so 1002 250 111 63 40 28 20 16 12 

.60 1246 311 138 78 so 35 25 19 15 
2/3 1425 356 158 89 57 40 29 22 18 

.70 1524 381 169 95 61 42 31 24 19 
• 75 1685 421 187 105 67 47 34 26 21 
.so 1870 468 208 117 75 52 38 29 23 
.85 2094 524 233 131 84 58 43 33 26 

.90 2388 597 265 149 96 66 49 37 29 

.95 2848 712 316 178 114 79 58 44 35 

.99 3788 947 421 237 152 lOS 77 59 47 
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For typographic convenience, the 42 tables are arranged generally three 
to a table number, by a levels and successively tabled u values within each 
a level. The subtable for the relevant a, u combination is found and entered 
with w and desired power. The same provisions for a, u, and w are made as 
for the power tables in Section 7.3, as follows: 

I. Significance Criterion, a. Table sets are provided for nondirectional a 
of .01, .05, and .10, each set made up of tables for the values of u. 

2. Degrees of Freedom, u. For each a level, tables are provided in succes­
sion for the 14 values of u = 1 (I) 10, 12 (4) 24. 

3. Effect Size, w. w is defined by formula (7.2.1) and interpreted as de­
scribed in Section 7.2. As before, 9 values of ware given: .10 (.10), .90. 

For w values not tabled, find N by 

(7.4.1) 

where N.10 is the necessary sample size for the given a, u, and desired power 
at w = .10 (read from the table), and w is the nontabulated ES. Round to the 
nearest integer. This formula may be used not only for w values in the range 
covered by the table, but also for w less than .10 or greater than .90. 

4. Desired Power. Provision is made for desired power values of .25, 
.50, .60, 2/3, .70 (.05), .95, .99. See Section 2.4.1 for the basis for selection of 
these values, and a discussion of the proposal that .80 serve as a convention 
for desired power in the absence of another basis for a choice. 

A caveat is necessary at this point. Some values of N are given in the 
tables which are quite small (i.e., large w and a, small u and power). These 
are not to be taken as a sanction for the use of x2 tests where the null-hypo­
thetical frequencies (P 0;N) become very small, since such test.s are of question­
able validity. These small N values are given for the sake of completeness 
and for other applications of l, not illustrated here, which are not limited in 
this way. For useful guidance with regard to sample size requirements in x2 , 

the reader is referred to the textbooks cited in Section 7 .2. 

7.4.1 CASE 0: GOODNESS OF FIT. For Case 0 tests, one finds the subtable 
for the significance criterion (a) and degrees of freedom (u) which obtain, 
locates w and desired power, and finds N, the necessary total sample size. 
For nontabulated w, use formula (7.4.1). 
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Illustrative Examples 

7.6 Reconsider the problem posed in example 7.2, where a psycho­
metrician is testing by means of x2 the conformity of a sample distribution of 
test scores to the normal curve for m = 9 step intervals, the latter constituting 
H 0 • He wished a lenient (a= .10) test of H 0 . Given that the population de­
parture is w = .20, it was found that power was .66 for N = 200. On the 
assumption that the power is too small for a convincing" demonstration" (see 
Section 1.5.5) of normality, how many cases would he need for power to be .99? 

Recalling that in such applications, u = m - 3 = 6, his specification 
summary is 

a= .10, u =6, W=.20, power= .99 

He uses the last subtable of Table 7.4.12 for a= .10, u = 6, column 
w = .20, and row power= .99, and finds N = 616. With this sample size, he 
runs a b risk of only I - .99 = .01 that, if the departure from normality 
is w = .20, he will fail to detect it at a = .10. 

If this sample size is a great strain on his resources, he might consider 
settling for power = .95 (hence b = .05), where, from the same subtable, he 
finds the necessary N to be 447. 

7.7 Consider example 7.1 again, now from the point of view of sample 
size decision as part of experimental planning. The market researcher wishes 
to detect a departure in the population from equal preference among m = 4 
package designs by means of a x2 test with u = m - I = 3, using an a = .05 
significance criterion. The alternate hypothesis which was posited resulted in 
w = .289. From the power tables, it was found that, using N = 100, power 
was .67. If the conventional .80 power were desired, what N would be 
required? 

a= .05, u = 3, w = .289, power= .80. 

Since w = .289 is not tabled, the use of formula (7 .4.1) is required. 
For N.10, the sample size needed to detect w = .10 with power= .80 for 
a= .05 and u = 3, we use the third subtable of Table 7.4.6 (for a= .05, 
u = 3) for column w = .10 and row power= .80, and find N .to= 1090. 
Substituting in formula (7.4.1), 

N- 1090-35 
- 100(.2892) - I O. . 

Thus, 131 repondents will lead to a .80 probability of rejecting the null 
hypothesis of equal preference at a = .05, given that the population departure 
is indexed by w = .289. 
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7.4.2 CASE 1: CoNTINGENCY TEST. As in Case 0, one finds the necessary 
total sample size N in Case 1 by finding the subtable for the significance 
criterion (a) and degrees of freedom [u = (k- I)(r- I)] which obtain, and 
seeking w and the power desired. Formula (7.4.1) is again used for non­
tabulated w. 

IUustrative Examples 

7.8 In example 7.5, a community psychiatry research team was studying 
the relationship between religious-ethnic group membership ( r = 5) and 
diagnosis (k = 6) for child clinic referrals. To detect w = .10 at the a= .01 
significance level by a x2 contingency test with u = (5- 1)(6- 1) = 20, it 
was found that for N = 400, power was only .05. What sample size is required 
for conventional desired power of .80? The specification summary is 

a= .01, u = 20, w = .10, power= .80. 

The first subtable for Table 7.4.5 (for a= .01, u = 20) for column w = .10 
and row power= .80, is used to determine N = 2816. 

Later in example 7.5, the same problem was considered using the less 
stringent a= .10 significance criterion. To find N for power of .80, in the first 
subtable of Table 7.4.15 (for a= .10, u = 20) locate column w = .10 and row 
power = .80, the result is N = 1740, still a very large N. In contrast, if a 
medium ES (w = .30) could have been posited, power = .80 at a = .01 would 
be attained with N = 313 (first subtable of Table 7 .4.5). 

7.9 Reconsider example 7.3, where a political scientist was studying the 
relationship between sex (r = 2) and political preference (k = 3). Assuming 
the degree of relationship given by the alternate-hypothetical P 11 of Table 
7.2.1, and the null-hypothetical or no association P01 of Table 7.2.2, w was 
found to equal.346. For the x2 contingency test with u = (2- 1)(3- 1) = 2, 
at the a= .01level with N = 140 cases, power was found to be .55. Assume 
now that power is desired to be .99, so that b = .01 = a, i.e., that the Type I 
and Type II risks are equal and very small. What sample size is needed? 

a=.01, u =2, w = .346, power= .99. 

Since w = .346 is not tabulated, recourse will be taken to formula (7 .4.1 ). 
To find theN needed to detect w = .346 for a= .01, u = 2, and power= .99, 
the second subtable of Table 7.4.1 (for a= .01, u = 2) is used for column 
w = .10 and row power= .99, and N. 10 = 2742 is found. Substituting in 
formula (7.4.1), 

2742 
N = 100(.3462) = 229.0. 
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Thus 229 respondents are needed to yield a = b = .01 risks in a contin­
gency test of this 2 x 3 table, given an ES of w = .346. 

Maintaining the a = b requirement, but at .05, what N would be necessary? 

a = .05, u = 2, w = .346, power = .95. 

To find N.10, the second subtable of Table 7.4.6 (for a= .05, u = 2) is 
used for column w = .10 and row power = .95, and 1544 is found. Substituting 
in formula (7.4.1), 

N- 1544 - 29 
- 100(.3462) - I .O. 

The reduction in stringency from a= b = .01 to a= b = .05 results in a 
reduction in sample size demand from 229 to 129. 



The Analysis of 
Variance 

8.1 INTRODUCTION AND USE 

CHAPTER 8 

This chapter deals with an entire class of problems in tests of the equality 
of a set of k population means, where k equals two or more. The methods 
of this chapter can also be used for tests of the equality of sets of mean 
d(lferences, as in tests of interactions. The test statistic is the F ratio, and 
the model is that of the test on means of" fixed effect" variates in the analysis 
of variance and covariance (Edwards, 1972; Winer, 1971; Hays, 1981). In its 
simplest form, it is a "one-way" ("randomized groups") design with equal 
n in each sample. The power and sample size tables in this chapter are de­
signed for greatest simplicity in these applications (Case 0). More complicated 
designs involving fixed effects can also be power-analyzed with the help of 
these tables, as will be described below. In all cases, however, the null 
hypothesis states that the means or mean difference of specified ("fixed") 
populations are equal, or, equivalently, that "effects" defined as linear 
functions of means are all zero. Section 8.3.5 shows how power analysis 
on various tests of means, which will have been described in the context of 
the analysis of variance, can be performed in analogous analysis of co­
variance designs. 

The tests here can be viewed as extensions of the tests of Chapter 2, 
where only two fixed population means are involved. Or, conversely, the 
t test on two means is, in fact, merely a special case of the F test on k means 
where k = 2, as is detailed in most statistics textbooks. As such, the same 
formal model assumptions are made: that the values in the k populations 
are normally distributed and have the same variance, u 2 • It is, however, well 

273 
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established that moderate violations of these assumptions have generally 
negligible effects on the validity of null hypothesis tests and power analyses. 
For evidence on the issue of the "robustness" of F tests with regard to both 
Type I and Type II error in the face of assumption violation, see Scheffe 
(1959, Chapter 10), and for a less technical summary, Cohen (1965, pp. 
114-116).1 Note that no assumption is made about the distribution of the k 
population means for fixed effects. 

The F test on means for fixed effects can occur under a variety of circum­
stances for which the tables in this chapter may be used: 

Case 0. One-way analysis of variance with n's equal. This is the simplest 
design, where without other considerations, one compares k means based 
on samples of equal size. 

Case 1. One-way analysis of variance with unequal n's. 

Case 2. Tests of main effects in factorial and other complex designs. 

Case 3. Tests of interactions in factorial designs. 

Analysis of Covariance. Each of the above cases has its analog in the 
analysis of covariance. 

8.2 THE EFFECT SIZE INDEX: f 
Our need for a pure number to index the degree of departure from no 

effect (i.e., k equal population means) is here satisfied in a way related to 
the solution in Chapter 2, where there were only two means. Recall that the 
difference in means was "standardized" by dividing it by the (common) 
within-population standard deviation, i.e., 

(2.2.1) 

Since both numerator and denominator are expressed in the (frequently 
arbitrary) original unit of measurement, their ratio, d, is a pure or dimen­
sionless number. 

With k;;::: 2 means such as we deal with here, we represent the spread 
of the means not by their range as above (except secondarily, see below), 
but by a quantity formally like a standard deviation, again dividing by the 
common standard deviation of the populations involved. It is thus 

1 Budescu and Applebaum (1981) have shown that when the F test is applied to samples 
from binomial and Poisson population distributions, the use of variance stabilizing transfor­
mations results in little change in significance level or, in most cases, power. Budescu (1982) re­
ported that for normally distributed populations with heterogeneous variances, substituting for 
a in the denominator of Equation (8.2.1) the square root of the n;-weighted population variance 
results in good power approximations. 

Also, Koele (1982) shows how to calculate power for random and mixed models, and dem­
onstrates that they have much lower power than that for fixed effects. Barcikowski (1973) pro­
vides tables for optimum sample size/number of levels for the random effects model. 
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(8.2.1) f -um 
- ' u 

where, for equal n (Cases 0 and 2), 

(8.2.2) 
k 

u m = L< m; - m >2 
i=l 

k 
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the standard deviation of the population means expressed in original scale 
units. The values in the parentheses are the departures of the population 
means (m;) from the mean of the combined populations or the mean of 
the means for equal sample sizes (m), and are sometimes called the (fixed) 
"effects"; the a's of formulas (8.2.1) and (2.2.1) are the same, the standard 
deviation within the populations, also expressed in original scale units. f is 
thus also a pure number, the standard deviation of the standardized means. 
That is to say that if all the values in the combined populations were to be 
converted into z "standard" scores (Hays, 1973, p. 250f), using the within­
population standard deviation, f is the standard deviation of these k mean z 
scores. 

f can take on values between zero, when the population means are all 
equal (or the effects are all zero), and an indefinitely large number as am 

increases relative to u. 

The structure ofF ratio tests on means, hence the index f, is "naturally" 
nondirectional (as was the index w of the preceding chapter). Only when 
there are two population means are there only two directions in which 
discrepancies between null and alternative hypotheses can occur. With 
k > 2 means, departures can occur in many "directions." The result of all 
these departures from the null are included in the upper tail rejection region, 
and, as normally used, F tests do not discriminate among these and are 
therefore nondirectional. 

f is related to an index cp used in standard treatments of power, 2 nomo­
graphs for which are widely reprinted in statistical testbooks (e.g., Winer, 
1971 ; Scheffe, 1959) and books of tables (Owen, 1962). 4> standardizes by the 
standard error of the sample mean and is thus (in part) a function of the size 
of each sample, n, while f is solely a descriptor of the population. Their rela­
tionship is given by 

(8.2.3) 
, 

f=--=, 
Vn 

or 

(8.2.4) 4>= fvn 
2 This use of the symbol t/> is not to be confused with its other uses in the text, as the 

fourfold-point product-moment correlation in Chapter 7 or as the arcsine transformation 
of a proportion in Chapter 6. 
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The above description has, for the sake of simplicity, proceeded on the 
assumption that the sizes of the k samples are all the same. No change in 
the basic conception of f takes place when we use it to index the effect 
size for tests on means of samples of unequal size (Case I) or as an ES 
measure for tests on interactions (Case 3). In these applications, the defini­
tion off as the "standard deviation of standardized means" requires some 
further elaboration, which is left to the sections concerned with these cases. 

The remainder of this section provides systems for the translation of 
f into (a) a range measure, d, and (b) correlation ratio and variance propor­
tion measures, and offers operational definitions of "small," "medium," 
and "large" ES. Here, too, the exposition proceeds on the assumption of 
equal n per sample and is appropriate to the F test on means (Cases 0 and 2). 
In later discussion of Cases I and 3, qualifications will be offered, as necessary. 

8.2.1 (AND THE STANDARDIZED RANGE OF POPULATION MEANS, d. Al­
though our primary ES index is f, the standard deviation of the standardized 
k population means, it may facilitate the use and understanding of this 
index to translate it to and from d, the range of standardized means, i.e., the 
distance between the smallest and largest of the k means: 

(8.2.5) 

where mm .. = the largest of the k means, 
mmin = the smallest of the k means, and 

a= the (common) standard deviation within the populations 
(as before). 

Notice that in the case of k = 2 means (n equal), the d of (8.2.5.) becomes 
the d used as the ES index for the t test of Chapter 2. The relationship be­
tween f and d for 2 means is simply 

(8.2.6) f=ld, 

i.e., the standard deviation of two values is simply half their difference, 
and therefore 

(8.2.7) d=2f. 

As the number of means increases beyond two, the relationship between 
their standard deviation (f) and their range (d) depends upon exactly how 
the means are dispersed over their range. With k means, two (the largest and 
smallest) define d, but then the remaining k - 2 may fall variously over the 
d interval; thus, f is not uniquely determined without further specification 
of the pattern of separation of the means. We will identify three patterns 
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and describe the relationship each one has to f, which is also, in general, a 
function of the number of means. The patterns are: 

I. Minimum variability: one mean at each end of d, the remaining 
k- 2 means all at the midpoint. 

2. Intermediate variability: the k means equally spaced over d. 
3. Maximum variability: the means all at the end points of d. 

For each of these patterns, there is a fixed relationship between f and 
d for any given number of means, k. 

Pattern /. For any given range of means, d, the minimum standard 
deviation, f 1, results when the remaining k - 2 means are concentrated at 
the mean of the means (0 when expressed in standard units), i.e., half-way 
between the largest and smallest. For Pattern I, 

(8.2.8) '· = dJ2~ 
gives the value off for k means when the ranged is specified. For example, 
7 ( = k) means dispersed in Pattern I would have the (standardized) values 
- !d, 0, 0, 0, 0, 0, + !d. Their standard deviation would be 

'· = d J 2<~> = v.o7T4i9 = .267d, 

slightly more than one-quarter of the range. Thus, a set of 7 population 
means spanning half a within-population standard deviation would have 
f= .267(.5) = .13. 

The above gives f as a function of d. The reciprocal relationship is 
required to determine what value of the range is implied by any given (e.g., 
tabled) value off when Pattern 1 holds, and is 

(8.2.9) 

For example, for the 7 ( = k) means dispersed in Pattern 1 above, their range 
would be 

d1 = fv2(7) = fvl4 = 3.74f. 

A value off= .50 for these means would thus imply a standardized range 
of 3.74(.50) = 1.87. 

For the convenience of the user of this handbook, Table 8.2.1 gives the 
constants (c and b) relating f to d for this pattern and the others discussed 
below fork= 2(1) 16, 25, covering the power and sample size tables provided. 
Their use is illustrated later in the chapter. 
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Table 8.2.1 
Constants for Transforming d to fi and f to di for Patterns j = 1, 2, 3 

fi = cid dj = bjf 

k c. Cz c, bl bz b, 

2 .500 .500 .500 2.00 2.00 2.00 

3 .408 .408 .471 2.45 2.45 2.12 

4 .354 .373 .500 2.83 2.68 2.00 

5 .316 .354 .490 3.16 2.83 2.04 

6 .289 .342 .500 3.46 2.93 2.00 

7 .267 .333 .495 3.74 3.00 2.02 

8 .250 .327 .500 4.00 3.06 2.00 

9 .236 .323 .497 4.24 3.10 2.01 

10 .224 .319 .500 4.47 3.13 2.00 

11 .213 .316 .498 4.69 3.16 2.01 

12 .204 .314 .500 4.90 3.19 2.00 

13 .196 .312 .499 5.10 3.21 2.01 

14 .189 .310 .500 5.29 3.22 2.00 

15 .183 .309 .499 5.48 3.24 2.00 

16 .177 .307 .500 5.66 .325 2.00 

25 .141 .300 .500 7.07 3.01 2.00 

Pattern 2. A pattern of medium variability results when the k means 
are equally spaced over the range, and therefore at intervals of d/(k- 1). 
For Pattern 2, the f which results from any given ranged is 

(8.2.10) f-~jk+l 
2 - 2 3(k- I) . 

For example, fork= 7, 

dJ 7+1 dJ8 
fz = 2 3(7- I} = 2 18 = .JJJd, 

i.e., 7 equally spaced means would have the values - !d, - !d, -ld, 0, + ld, 
+ !d, and + !d, and a standard deviation equal to one-third of their range. 



8.2 THE EFFECT SIZE INDEX: f 179 

Note that this value for the same k is larger than f 1 = .267d for Pattern I. 
For a range of half a within-population standard deviation, f2 = .333(.5) = 
.17 {while comparably, f1 = .13). 

The reciprocal relationship for determining the range implied by a 
tabled (or any other) value off for Pattern 2 is 

d = 2fJ3(k- I) (8.2.11) 2 k +I . 

For 7 means in Pattern 2, their range would be 

d2 = 2fJ3(7 - I)= 2fJ18 = 3f. 
7+1 8 

Thus, a value of f = .50 for these equally spaced means would imply a 
standardized range of 3(.50) = 1.50). 

Table 8.2.1 gives the relevant constants {b2 and c2) for varying k, making 
the solution of formulas (8.2.10) and (8.2.11) generally unnecessary. 

Pattern 3. It is demonstrable and intuitively evident that for any given 
range the dispersion which yield~ the maximum standard deviation has the 
k means falling at both extremes of the range. When k is even, !k fall at 
- !d and the other !k fall at + !d; when k is odd, (k + I )/2 of the means 
fall at either end and the (k- 1)/2 remaining means at the other. With this 
pattern, for all even numbers of means, 

(8.2.12) 

When k is odd, and there is thus one more mean at one extreme than at 
the other, 

(8.2.13) f = dvkl=l 
3 2k 

For example, for k = 7 means in Pattern 3 (4 means at either - !d or 
+ !d, 3 means at the other), their standard deviation is 

v72 -l v48 
fJ = d 2{7) = d 14 = .495d. 

Note that f3 is larger (for k = 7) than f2 = .333d and f1 = .267d. If, 
as before, we posit a range of half a within-population standard deviation, 
fJ = .495{.5) = .25. 

The reciprocal relationship used to determine the range implied by a 
given value off when k is even is simply 

(8.2.14) 
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and when k is odd, 

(8.2.15) d =f 2k 
3 v'k2- 1 . 

For the running example of k = 7 means, in Pattern 3 their range would 
be 

d = f 2(7) = f 14 = 2.02f, 
3 v72 - I v48 

so that if we posit, as before, a value off= .50, for these 7 extremely placed 
means, d3 = 2.02(.5) = 1.01, i.e., slightly more than a within-population 
standard deviation. 

As can be seen from Table 8.2.1, there is not as much variability as a 
function of k in the relationship between f and d for Pattern 3 as for the 
others. f3 is either (fork even) exactly or (for k odd) approximately id, the 
minimum value being f3 = .47ld at k = 3. 

This section has described and tabled the relationship between the 
primary ES index for the F test, f, the standard deviation of standardized 
means, and d, the standardized range of means, for three patterns of dis­
tribution of the k means. This makes it possible to use d as an alternate 
index of effect size, or equivalently, to determine the d implied by tabled 
or other values off, and f implied by specified values of d. (The use of d 
will be illustrated in the problems of Sections 8.3 and 8.4) The reader is 
reminded that these relationships hold only for equal sample sizes (Cases 
0 and 2). 

8.2.2 f, THE CORRELATION RATIO, AND PROPORTION OF VARIANCE. 

Expressing f in terms of d provides one useful perspective on the appraisal 
of effect size with multiple means. Another frame of reference in which to 
understand f is described in this section, namely, in terms of correlation 
between population membership and the dependent variable, and in the 
related terms of the proportion of the total variance (PV) of the k populations 
combined which is accounted for by population membership. 

Just as the d of this chapter is a generalization to k populations of the d 
used as an ES index fort tests on two means of Chapter 2, so is 1J (eta), 
the correlation ratio, a similar generalization of the Pearson r, and TJ 2 a 
generalization of r 2 , the proportion of variance (PV) accounted for by 
population membership. 

To understand TJ 2 , consider the set of k populations, all of the same 
variance, u 2 , but each with its own mean, m; . The variance of the means 
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um 2 is some quantity which differs from zero when the k means are not all 
equal. If we square both sides of formula (8.2.1 ), we note that 

(8.2.16) 

is the ratio of the variance of the means to the variance of the values within 
the populations. 

Now consider that the populations are combined into a single "super­
population •• whose mean ism (the mean of the population m 1's when the 
populations are considered equally numerous; otherwise, their mean when 
each m 1 is weighted by its population size). The variance of the" superpopula­
tion," or total variance (ut 2), is larger than the within-population variance 
because it is augmented by the variance of the constituent population means. 
It is simply the sum of these two variances: 

(8.2.17) 

We now define TJ 2 as the proportion of the total superpopulation variance 
made up by the variance of the population means: 

(8.2.18) 

The combination of this formula with formula (8.2.16) and some simple 
algebraic manipulation yields 

(8.2.19) 

and 

(8.2.20) 
TJ = J~ :2

fl. 

Thus, a simple function of f 2 yields TJ 2 , a measure of dispersion ofthe 
m1 and hence of the implication of difference in population membership to 
the overall variability. When the population means are all equal, um 2 and 
hence f 2 is zero, and 7J 2 = 0, indicating that none of the total variance is due 
to difference in population membership. As formula (8.2.18) makes clear, 
when all the cases in each population have the same value, u 2 = 0, and all 
of the total variance is produced by the variance of the means, so that 
TJ 2 = 1.00. Table 8.2.2 provides 7J 2 and TJ values as a function of f. 

Note that 7J 2 , like all measures of ES, describes a population state of 
affairs. It can also be computed on samples and its population value esti­
mated therefrom. (See examples 8.17 and 8.19.) Depending on the basis 
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of the estimation, the estimate is variously called 71 2, e2 (Peters and Van 
Voorhis, 1940, pp. 312-325, 353-357; Cureton, 1966, pp. 605-607), or esti­
mated ui (Hays, 1981, pp. 349-366). In general, 712 is presented in applied 
statistics textbooks only in connection with its use in the appraisal of the 
curvilinear regression of Y on X, where the populations are defined by equal 
segments along the X variable, and am 2 is the variance of the X-segments' Y 
means. Although this is a useful application of r/, it is a rather limited special 
case. For the broader view, see Hays (1973) (under w2), Cohen (1965, pp. 
104-105), Cohen & Cohen (1983, pp. 196-198) and Friedman (1968, 1982). . . 

71 2 is literally a generalization of the (point-biserial) r 2 of Chapter 2 
which gives the PV for the case where there are k = 2 populations. It is pos­
sible to express the relationship between the dependent variable Y and 
population membership X as a simple (i.e., zero-order) product moment r 2 , 

when X is restricted to two possibilities, i.e., membership in A (X = 0) or 
membership in B (X = 1) (see Chapter 2). When we generalize X to represent 
a nominal scale of k possible alternative population memberships, r 2 no 
longer suffices, and the more general 7J 2 is used. It is interesting to note that 
if k-population membership is rendered as a set of independent variables 
(say, as dichotomous "dummy" variables), the simple r 2 generalizes to 
multiple R2, which is demonstrably equal to 1]2 (see Section 9.2.1). 

We have interpreted 71 2 as the PV associated with alternative member­
ship in populations. A mathematically equivalent description of 7]2 proceeds 
by the following contrast: Assume that we "predict" all the members of 
our populations as having the same Y value, the m of our superpopulation. 
The gross error of this "prediction" can be appraised by finding for each 
subject the discrepancy between his value and m, squaring this value, and 
adding such squared values over all subjects. Call this Et. Another "predic­
tion" can be made by assigning to each subject the mean of his population, 
m1• Again, we determine the discrepancy between his actual value and this 
"prediction" (m1), square and total over all subjects from all populations. 
Call this EP. To the extent to which the k population means are spread, 
EP will be smaller than Et . 

(8.2.21) 

i.e., the proportionate amount by which errors are reduced by using own 
population mean (m1) rather than superpopulation mean (m) as a basis for 
"prediction." Or, we can view these as alternative means of characterizing 
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the members of our populations, and 71 2 indexes the degree of increased 
incisiveness that results from using them; rather than m. 

The discussion has thus far proceeded with .,2, the PV measure. For pur-
poses of morale, and to offer a scale which is comparable to that of the fa-
miliar product moment r, we can indexES by means of.,, the correlation ra-
tio, in addition to or instead of the lower value yielded by 712 • As can be seen 
from taking the square root in formula (8.2.18), 71 is the ratio of the stand-
ard deviation of population means to the standard deviation of the values in 
the superpopulation, i.e., the combined populations. Since standard devia-

Table8.2.2 

112 and 11 as a Function off; fas a Function of 112 and 11 

f "2 " "2 f " f 

.00 .0000 .000 .00 .000 .00 .000 

.05 .0025 .050 .01 .101 .05 .050 

.10 .0099 .100 .02 .143 .10 .101 

.15 .0220 .148 .03 .176 .15 .152 

.20 .0385 .196 .04 .204 .20 .204 

.25 .0588 .243 .05 .229 .25 .258 

.30 .0826 .287 .06 .253 .30 .314 

.35 .1091 .330 .07 .274 .35 .374 

.40 .1379 .371 .08 .295 .40 .436 

.45 .1684 .410 .09 .314 .45 .504 

.50 .2000 .447 .10 .333 .50 .577 

.55 .2322 .482 .15 .420 .55 .659 

.60 .2647 .514 .20 .500 .60 .750 

.65 .2970 .545 .25 .577 .65 .855 

.70 .3289 .573 .30 .655 .70 .980 

.75 .3600 .600 .40 .816 .75 1.134 

.80 .3902 .625 .50 1.000 .80 1.333 

.85 .4194 .648 .60 1.225 .85 1.614 

.90 .4475 .669 .70 1.528 .90 2.065 

.95 .4744 .689 .80 2.000 .95 3.042 

1.00 .5000 .707 .90 3.000 1.00 
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tions are as respectable as variances, no special apology is required in work­
ing with ., rather than 712• 

In formulas (8.2.19) and (8.2.20), we have 712 and 7J as functions of f. 
This is useful for assessing the implication of a given value off (in terms 
of which our tables are organized) to PV or correlation. The reciprocal 
relation, f as a function of 7J, is also useful when the investigator, thinking 
in PV or correlational terms, needs to determine the f they imply, e.g., 
in order to use the tables: 

(8.2.22) J7--
f= --1 _7J2 

For the convenience of the user of this handbook, this formula is solved 
for various values of 7J and 71 2 and the results presented in Table 8.2.2. 

Table 8.2.2 deserves a moment's attention. As discussed in the next 
section and in Section 11.1 (and, indeed, as noted in previous chapters, par­
ticularly Chapter 3), effect sizes in behavioral science are generally small, 
and, in terms off, will generally be found in the .00-.40 range. With t small, t2 

is smaller, and 1 + f2 , the denominator of 712 [formula (8.2.19)] is only 
slightly greater than one. The result is that for small values of f such as are 
typically encountered,., is approximately equal to f, being only slightly small­
er, and therefore 712 is similarly only slightly smaller than f2 . Thus, in the 
range of our primary interest, f provides in itself an approximate correlation 
measure, and 12 an approximate PV measure. For very large effect sizes, say f 
> .40, f and ., diverge too much for this rough and ready approximation, and 
f2 and 712 even more so. 

8.2.3 "SMALL," "MEDIUM," AND "LARGE" f VALUES. It has already 
been suggested that values off as large as .50 are not common in behavioral 
science, thus providing a prelude to the work of this section. Again, as in 
previous chapters, we take on the task of helping the user of this hand­
book to achieve a workable frame of reference for the ES index or measure 
of the alternate-hypothetical state of affairs, in this case f. 

The optimal procedure for setting f in a given investigation is that the 
investigator, drawing on previous findings and theory in that area and 
his own scientific judgment, specify the k means and u he expects and com­
pute the resulting f from these values by means of formulas (8.2.1) and 
(8.2.2). If this demand for specification is too strong, he may specify the 
range of means, d, from formula (8.2.5), choose one of the patterns of mean 
dispersion of Section 8.2.1, and use Table 8.2.1 to determine the implied 
value of f. On the same footing as this procedure, which may be used instead 
of or in conjunction with it, is positing the expected results in terms of the 
proportion of total variance associated with membership in the k populations, 
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i.e., TJ 2 • Formula (8.2.22) and Table 8.2.2 then provide the translation from 
TJ 2 to f. (In the case off for interactions, see Section 8.3.4.) 

All the above procedures are characterized by their use of magnitudes 
selected by the investigator to represent the situation of the specific research 
he is planning. When experience with a given research area or variable 
is insufficient to formulate alternative hypotheses as "strong" as these 
procedures demand, and to serve as a set of conventions or operational 
definitions, we define specific values off for" small,"" medium," and "large" 
effects. The reader is referred to Sections 1.4 and 2.2.3 for review of the 
considerations leading to the setting of ES conventions, and the advantages 
and disadvantages inherent in them. Briefly, we note here that these qualita­
tive adjectives are relative, and, being general, may not be reasonably des­
criptive in any specific area. Thus, what a sociologist may consider a small 
effect size may well be appraised as medium by a clinical psychologist. 

It must be reiterated here that however problematic the setting of an 
ES, it is a task which simply cannot be shirked. The investigator who insists 
that he has absolutely no way of knowing how large an ES to posit fails to 
appreciate that this necessarily means that he has no rational basis for 
deciding whether he needs to make ten observations or ten thousand. 

Before presenting the operational definitions for f, a word about their 
consistency. They are fully consistent with the definitions of Chapter 2 for 
k = 2 populations in terms of d, which, as noted, is simply 2f. They are 
also generally consistent with the other ES indices which can be translated 
into PV measures (see Sections 3.2.2 and 6.2.1 ). 

We continue, for the present, to conceive of the populations as being 
sampled with equal n's. 

SMALL EFFECT SIZE: f = .10. We define a small effect as a standard 
deviation of k population means one-tenth as large as the standard deviation 
of the observations within the populations. For k = 2 populations, this defi­
nition is exactly equivalent to the comparable definition of a small difference, 
d = 2(.10) = .20 of Chapter 2 [formula (8.2.7) and, more generally, Table 
8.2.1 ]. As k increases, a given f implies a greater range for Patterns l and 2. 
Thus, with k = 6 means, one at each end of the range and the remaining 4 
at the middle (Pattern I), an f of .10 implies a range d 1 of 3.46(.10) = .35, 
while equal spacing (Pattern 2) implies a range d2 of 2.93(.10) = .29. (The 
constants 3.46 and 2.93 are respectively the b1 and b2 values at k = 6 in 
Table 8.2.1.) When f = .10 occurs with the extreme Pattern 3, the d3 is at 
(fork even) or slightly above (fork odd) 2f = .20 (Table 8.2.1). Thus, depend­
ing on k and the pattern of the means over the range, a small effect implies 
d at least .20, and, with large k disposed in Pattern I, a small effect can 
be expressed in a d1 of the order of .50 or larger (for example, see Table 
8.2.1 in column b1 fork> 12). 
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When expressed in correlation and PV terms, the f = .10 definition of 
a small effect is fully consistent with the definitions of Chapters 2, 3, and 6 
(various forms of product moment r). An f = .10 is equivalent to .,., = .100 
and 71 2 = .0099, about I % of the total superpopulation variance accounted 
for by group membership. As already noted (particularly in Section 2.2.3), 
scientifically important (or at least meaningful) effects may be of this modest 
order of magnitude. The investigator who is inclined to disregard ES criteria 
for effects this small on the grounds that he would never be seeking to 
establish such small effects needs to be reminded that he is likely to be think­
ing in terms of theoretical constructs, which are implicitly measured without 
error. Any source of irrelevant variance in his measures (psychometric 
unreliability, dirty test tubes, lack of experimental control, or whatever) 
will serve to reduce his effect sizes as measured, so that what would be a 
medium or even large effect if one could use "true" measures may be attenu­
ated to a small effect in practice (See Section 11.3 and Cohen, 1962, p. 151). 

MEDIUM EFFECT SIZE: f = .25. A standard deviation of k population 
means one-quarter as large as the standard deviation of the observa­
tions within the populations, is the operational definition of a medium effect 
size. With k = 2 populations, this accords with the d = 2(.25) = .50 definition 
of a medium difference between two means of Chapter 2, and this is a 
minimum value for the range over k means. With increasing k for either mini­
mum (Pattern 1) or intermediate (Pattern 2) variability, the range implied 
by f = .25 increases from d = .50. For example, with k = 7 population means, 
if k - 2 = 5 of them are at the middle of the range and the remaining two 
at the endpoints of the range (Pattern 1), a medium d1 = 3.74(.25) = .94 
(Table 8.2.1 gives b1 = 3.74 at k = 7). Thus, medium effect size for 7 means 
disposed in Pattern I implies a range of means of almost one standard devia­
tion. If the seven means are spaced equally over the range (Pattern 2), a 
medium d2 = 3.00(.25) = .75 (Table 8.2.1 gives b2 = 3.00 for k = 7), i.e., 
a span of means of three-quarters of a within-population standard deviation. 
As a concrete example of this, consider the IQ's of seven populations made 
up of certain occupational groups, e.g., house painters, chauffeurs, auto 
mechanics, carpenters, butchers, riveters, and linemen. Assume a within­
population standard deviation for IQ of 12 (=a) and that their IQ means are 
equally spaced. Now, assume a medium ES, hence f = .25. (Expressed in 
IQ units, this would mean that the standard deviation of the seven IQ 
means would be fa= .25(12) = 3.) The range of these means would be 
d2 = .75 of the within-population a. Expressed in units of IQ, this would 
be d2a = .75(12) = 9 IQ points, say from 98 to 107. {These values are about 
right [Berelson & Steiner, 1964, pp. 223-224], but of course any seven equally 
spaced values whose range is 9 would satisfy the criterion of a medium ES 
as defined here.) 
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Viewed from the perspective of correlation and proportion of variance 
accounted for, we note that f = .25 implies a correlation ratio (71) of .243 
and a PV (here 71 2) of .0588, i.e., not quite 6% of the total variance of the 
combined populations accounted for by population membership (Table 
8.2.2). Again, note that this is identical with the correlational-PV criterion 
of a medium difference between two means (Section 2.2), necessarily so 
since in this limiting case "1 = r (point biserial). It is also consistent with the 
definition of a medium difference between two proportions, when expressed 
as an r (fourfold point or <P correlation), which equals .238 to .248 when, 
the proportions are in the interval .20 to .80 (Section 6.2). It is, however 
smaller than the criterion for a medium ES in hypotheses concerning the 
Pearson r (Section 3.2), where the medium r is .30 (and r 2 = .09). 

LARGE EFFECT SIZE: f = .40. Our operational definition (or proposed 
convention) of a large spread of k means is that the standard deviation of 
the means be .40 of the standard deviation of the observations within 
th1: populations. This is consistent with the criterion of a large difference 
between two means of d = 2(.40) = .80 (Section 2.2.2) and is the minimum 
range (since k = 2) which can be called large by this definition. With the 
means disposed in Pattern 1, a large span for 6 means is d 1 = 3.46(.40) = 1.38, 
fer 7 means d 1 = 3.74(.40) = 1.50, for 8 means d1 = 4.00(.40) = 1.60, etc., 
i.e., about 1 i standard deviations (b1 constants from Table 8.2.1 ). For equally 
spaced means (Pattern 2), this implies for 6 means, a range ofd2 = 2.93(.40) = 
1.17, for 7 means a range ofd2 = 3.00(.40) = 1.20, and for 8 means a range 
of d2 = 3.06(.40) = 1.22, etc., i.e., about I! standard deviations (b2 constants 
from Table 8.2.1). We use a similar illustration to that given for medium 
effect size, where for k = 7 occupation groups with equally spaced popula­
tion mean IQs, we found the range d2 = b2f = 3.00(.25) = .75, or, expressed 
in IQ units, .15a = .75(12) = 9.0. Consider now a new set of 7 occupations: 
house painter, chauffeur, upholsterer, mechanic, lathe operator, machinist, 
laboratory assistant. Their mean IQ's, to have a large range, would need to 
cover uniformly the interval d2 = b2f = 3.00(.40) = 1.20, or expressed in 
IQ units, again assuming that a= 12, l.20a = 1.20(12) = 14.4, say from 98 
to 112 (Berelson & Steiner, 1964, pp. 223-224). Again note that any set of 7 
occupation groups with IQ means spanning the same range would represent 
a large effect as defined here, wherever that range occurs. 

In terms of correlation and proportion of variance accounted for, f = .40 
implies a correlation ratio (71) of .371 and a PV (here 71 2) of .1379, somewhat 
more than twice the PV for a medium effect (71 2 = .0588). Note the neces­
sary consistency with the definition in correlation-PV terms of a large 
difference between two means (71 =point biserial r; see Section 2.2). This 
definition is also fully consistent with the definition of a large difference 
between two proportions, when expressed as an r (fourfold point or <P 
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correlation), which equals .37-.39 when the proportions fall between .20 and 
.80 (Section 6.2). However, it is smaller than the criterion for a large ES in 
hypotheses concerning the Pearson r, where large r is defined as .50, r 2 = 
PV = .25 (Section 3.2). 

8.3 POWER TABLES 

The power tables for this section are given on pages 289-354; the text 
follows on page 3 55. 



8.3 POWER TABLES 

Table 8.3.1 

Power ofF test at a= .01, u = 1 

, 
n Fe .os .10 ,IS .20 .2S .30 .3S ,Ito .so .60 .70 .80 

2 98.503 01 01 01 01 02 02 03 Olt Olt OS 06 08 
3 21.198 01 01 01 02 02 02 03 Olt OS 07 09 II .. 13.71tS 01 01 01 02 02 03 Olt OS 07 10 lit 19 

s 11.259 01 01 02 02 03 03 OS 06 10 IS 21 29 
6 IO.oltlt 01 01 02 02 03 Olt 06 08 13 20 29 Ito 
7 9.330 01 01 02 03 Olt OS 07 10 17 26 38 so 
8 8,861 01 01 02 03 Olt 06 09 12 21 32 lt6 60 
9 8.531 01 02 02 03 OS 07 10 lit 2S 39 Sit 68 

10 8.285 01 02 02 Olt 06 08 12 17 29 ItS 61 7S 
II 8.096 01 02 03 Olt 06 09 lit 19 )It Sl 67 81 
12 7.946 01 02 03 OS 07 II 16 22 38 S6 73 86 
13 7.823 01 02 03 OS 08 12 18 2S lt2 61 78 89 
lit 7.721 01 02 03 OS 08 13 20 28 lt6 66 82 92 

IS 7.636 01 02 03 06 09 IS 22 30 so 70 as ,. 
16 7.562 01 02 Olt 06 10 16 21t 33 Sit 7lt 88 96 
17 7.1t99 01 02 Olt 07 II 17 26 36 sa 7a 91 97 
Ia 7 ....... 01 02 Olt 07 12 19 28 39 62 at 92 ,a 
19 7.396 OJ 02 Olt oa 13 20 30 .. , 6S 83 ,.. 98 

20 7.353 01 02 Olt 08 , .. 22 32 .... 6a a6 9S 99 
21 ],)lit 01 02 OS o8 IS 21t )It lt7 71 88 96 99 
22 7.2ao 01 03 OS 09 16 2S 37 .. , 73 90 97 99 
23 7.21ta 01 03 OS 09 17 27 39 S2 76 91 98 * 21t 7.220 Cl 03 OS 10 Ja 28 .. , Sit 7a 93 ,a 

2S 7.191t 01 03 06 10 19 30 .. , 57 ao ,.. 99 
26 7.171 01 03 06 II 20 31 ItS 59 a2 9S 99 
27 7,11t9 01 03 06 12 21 33 lt7 61 8lt 96 99 
28 7.129 01 03 06 12 22 3S lt9 63 86 96 99 
29 7.110 01 03 07 13 23 36 so 6S a7 97 * 
30 7.093 01 03 07 13 21t 38 S3 67 a, 97 
31 7.077 02 03 07 , .. 2S 39 ss 69 90 98 
32 7,0S2 02 03 07 IS 26 .. , 56 71 91 98 
33 7.01t8 02 Olt 08 IS 27 lt2 sa 73 92 99 
)It 7.035 02 Olt 08 16 28 .. ,. 60 75 93 99 

35 7.023 02 Olt 08 17 30 ItS 62 76 ,.. 99 
36 7.011 02 Olt 08 17 31 lt7 63 78 ,.. 99 
37 7.001 02 Olt 09 18 32 lt8 6S 79 9S 99 
38 6.990 02 Olt 09 19 33 so 66 ao 96 99 
39 6,981 02 Olt 09 19 )It Sl 68 82 96 * 
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Table 8.3.1 (continued) 

f 

n F c .os .10 ,IS ,20 .2S .30 .35 ,40 .so .60 .70 .eo 

40 6.971 02 04 10 20 3S 53 69 83 97 * * * 
42 6.954 02 04 10 21 37 ss 72 85 97 .... 6.939 02 OS II 23 39 58 75 87 98 
46 6.925 02 OS II 24 41 60 77 89 98 
48 6.912 02 OS 12 25 .... 63 79 90 99 

so 6.901 02 OS 13 27 46 65 81 92 99 
52 6.890 02 OS 13 28 48 67 83 93 99 
S4 6,880 02 06 14 30 so 70 85 94 99 
56 6.871 02 06 IS 31 52 72 86 95 * 58 6,862 02 06 16 33 54 73 88 95 

60 6.854 02 06 16 34 56 75 89 96 
64 6.840 02 01 18 37 59 79 91 91 
68 6.828 02 07 19 40 63 82 93 98 
72 6.817 02 08 21 42 66 84 95 99 
76 6,807 02 08 22 45 69 87 96 99 

80 6.798 02 09 24 48 72 89 97 99 
84 6.790 03 09 25 !0 74 90 97 * 88 6.783 03 10 27 53 77 92 98 
92 6.776 03 10 29 55 19 93 98 
96 6.770 03 11 30 57 81 94 99 

100 6.764 03 II 32 60 83 95 99 
120 6.742 03 14 40 70 90 98 * litO 6.727 04 17 lt7 78 95 99 
160 6.715 04 21 S4 84 97 * 180 6.706 04 24 61 89 99 

200 6.699 OS 28 67 92 99 
250 6,686 01 37 79 91 * 300 6.677 08 45 87 99 
350 6,671 10 53 92 * 400 6.667 11 60 95 
4SO 6.663 13 67 97 

soo 6,661 IS 73 99 
600 6.656 19 82 * 700 6.653 24 88 
800 6.651 28 93 
900 6.649 32 95 

1000 6,648 37 97 

* Power values below this pofnt are greater tlwln .995. 
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Teblt 8.3.2 

Power ofF test at a= .01, u • 2 

f 

n Fe .os • 10 • IS .20 .2S .30 .35 .Ito .so .60 .]0 .80 
··------

2 30.817 01 01 01 01 02 02 03 03 03 Olt 06 07 
3 10.92S 01 01 01 02 02 02 03 Olt OS 07 10 13 ,. 8.022 01 01 01 02 02 03 Olt 05 08 12 17 21t 

s 6.927 01 01 02 02 03 Olt OS 07 II 18 27 38 
6 6.3S9 01 01 02 02 03 OS 07 09 16 26 38 Sl 
7 6.013 01 01 02 03 Olt 06 08 II 21 n ItS 6] 
8 5.780 01 01 02 03 OS 07 10 lit 26 It I Sll 73 
9 s.611t 01 02 02 Olt OS 08 12 17 31 lt9 67 81 

10 S.lt88 01 02 03 Olt 06 10 14 21 37 S6 ]It 87 
II s.390 01 02 03 Olt 07 II 17 21t lt2 63 80 91 
12 s.313 01 02 03 OS 08 13 19 27 48 69 es ,. 
13 5.249 01 02 03 OS 09 lit 22 31 53 74 89 96 
lit S.I9S 01 02 03 06 10 16 21t ]It sa 79 92 98 

IS S.ISO 01 02 Olt 06 II 18 27 38 62 82 ,. 99 
16 S.ll 1 01 02 Olt 07 12 20 30 It I 67 86 " " 17 s.o78 01 02 Olt 07 13 21 32 tts 70 89 97 " 18 s.a~t8 01 02 04 08 lit 23 3S 48 74 91 ,. 

* 
19 s.o22 01 02 OS 09 15 25 38 S2 77 93 ,. 
20 lt.999 01 02 OS 09 17 27 40 ss 80 ,. 

" 21 4.977 01 0) OS 10 18 29 43 58 83 9S " 22 lt.9S9 01 03 05 10 19 31 4S 61 8S 96 * 23 lt.91t3 01 03 06 " 20 33 lt8 6/t 87 97 
21t lt.928 01 0) 06 12 22 3S 51 66 89 98 

2S 4.914 01 03 06 12 23 37 S3 69 91 98 
26 4.901 01 03 07 13 24 39 S6 71 92 " 27 4.889 01 03 07 14 26 41 58 7'+ 93 99 
28 4.878 01 0) 07 15 27 ,., 60 75 "' 99 
29 lt.868 01 03 07 IS 28 45 62 78 95 99 

)0 '+.8S9 02 03 08 16 30 '+7 6S 80 96 * )I lt.Bso 02 04 08 17 31 ,., 67 81 96 
32 4,842 02 04 08 18 33 51 69 83 97 
33 4.8)4 02 04 09 19 34 Sl 70 84 98 
)4 4.827 02 04 09 19 35 54 72 86 98 

3S 4.820 02 04 09 20 37 56 74 87 98 
36 4.811+ 02 04 10 21 38 58 76 88 99 
37 4.808 02 04 10 22 40 59 77 89 99 
)8 4.802 02 04 10 23 41 61 79 90 99 
39 4.797 02 04 II 24 42 6) 80 91 99 
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Table 8.3.2 (continued/ 

n Fe ,05 ,10 .IS .20 .25 .30 .35 ,Ito .so .60 .70 .eo 

ItO ... 791 02 OS II 25 .... 6lo 81 92 99 * * * lo2 ... 782 02 05 12 26 lo6 67 81o 94 * .... ... 77 .. 02 OS 13 28 lo9 70 86 95 
lo6 ... 766 02 OS lit 30 51 73 88 96 
loB ... 760 02 OS lit 32 Sit 75 90 97 

50 ... 753 02 06 15 33 56 77 91 97 
52 ... 7lo7 02 06 16 35 59 79 92 98 
Sit lt,7lo2 02 06 17 37 61 81 93 98 
56 ... 737 02 06 18 39 63 83 94 99 
S8 4.732 02 07 19 40 65 85 95 99 

60 4.728 02 07 20 lo2 67 86 96 99 
6lo 4.720 02 08 22 lo6 71 89 97 99 
68 4.713 02 08 24 49 75 91 98 * 72 ... 707 02 09 26 52 78 93 99 
76 4.702 02 09 28 55 81 95 99 

80 4,697 03 10 30 58 83 96 99 
8lo ... 693 03 10 32 61 85 97 * 88 4.689 03 II 3lo 6lo 88 97 
92 ... 685 03 12 36 67 89 98 
96 lo,682 03 13 38 69 91 98 

100 4.678 03 13 ItO 72 92 99 
120 4.666 Olo 17 49 82 97 * litO lo.6S7 Olo 21 58 89 99 
160 lt,651 OS 26 66 93 99 
180 lo,61oS OS 30 n 96 * 
200 lo.61o2 06 )It 79 98 
250 lo,6)1t 07 loS 89 99 
300 ... 629 09 S6 95 * 350 ... 626 II 6S 97 
loOO lo,623 13 72 99 
1t5o ... 621 16 79 * 
soo lt,620 18 8lo 
600 ... 617 zit 91 
700 ... 616 29 95 
800 lo.611o 35 98 
900 ... 613 ItO 99 

1000 ... 612 lo6 99 

* Power values below this point ere greeter than .995. 
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Table 8.3.3 

Power ofF test at a= .01, u = 3 

n Fe .os .10 .IS .20 .2S .30 .)S .40 .so .60 .70 .eo 

2 16.694 01 01 01 01 02 02 02 03 04 OS 06 07 
3 7.S91 01 01 01 02 02 03 03 04 06 08 12 16 
4 s.9S3 01 01 01 02 02 03 04 06 09 I S• 22 31 

5 s.292 01 01 02 02 03 04 06 08 14 23 34 48 
6 4.938 01 01 02 03 04 OS 08 11 20 32 47 63 
7 4.718 01 01 02 03 04 06 10 14 26 42 S9 75 
8 4.S68 01 02 02 03 OS 08 12 17 32 51 69 84 
9 4.460 01 02 02 04 06 10 IS 21 39 59 7B 90 

10 4.378 01 02 03 04 07 11 17 2S 4S 67 84 94 
11 4.313 01 02 03 OS 08 13 20 29 52 74 89 97 
12 4.262 01 02 03 OS 09 IS 23 34 s8 79 92 98 
13 4.219 01 02 03 06 10 17 27 38 63 84 95 99 
14 4.183 01 02 04 07 12 19 30 42 68 88 97 99 

IS 4.1S3 01 02 04 07 13 22 33 46 n 91 98 * 16 4.126 01 02 04 08 14 24 36 so 77 93 99 
17 4.104 01 02 04 09 16 26 40 54 81 9S 99 
18 4.084 01 02 OS 09 17 29 43 s8 84 96 99 
19 4.067 01 02 OS 10 19 31 46 62 86 97 * 
20 4.051 01 03 OS II 20 33 49 65 89 98 
21 4.038 01 03 06 II 22 36 S2 68 91 99 
22 4.025 01 03 06 12 23 38 ss 71 92 99 
23 4.013 01 03 06 13 25 40 58 74 94 99 
24 4.003 01 03 07 14 26 43 61 77 95 99 

25 3.993 01 03 07 IS 28 45 63 79 96 * 26 3.984 01 03 07 16 30 48 66 81 97 
27 3.976 01 03 08 17 31 so 68 83 97 
28 3.969 02 03 08 18 33 52 71 85 98 
29 3.962 02 04 08 19 35 S4 73 87 98 

30 3.955 02 04 09 20 36 56 75 88 99 
31 3.949 02 04 09 21 38 sa 77 90 99 
32 3.944 02 04 10 22 40 60 79 91 99 
33 3.939 02 04 10 23 41 62 ao 92 99 
34 3.934 02 04 10 24 43 64 82 93 99 

35 3.929 02 04 II 25 45 66 a3 94 * 36 3.925 02 04 II 26 46 68 as 94 
37 3.921 02 OS 12 27 48 70 86 95 
3a 3.917 02 OS 12 2a 49 71 a7 96 
39 3.914 02 OS 13 29 Sl 73 a a 96 
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Teble 8.3.3 (continued} 

f 

n 'c .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .80 

ItO 3.910 02 OS 13 30 53 7ft 89 97 • • • • 
lt2 3.9011 02 OS lit 32 S6 77 91 98 .... 3.898 02 06 IS 3ft sa 80 93 98 

"' 3.893 02 06 16 36 " 82 ,.. 99 
lt8 3.889 02 06 17 38 "' 8ft 95 99 

so 3.881t 02 06 18 It I " 86 96 99 
52 3.880 02 07 19 It) 69 88 97 99 
Sit ).876 02 07 21 ItS 71 90 97 • 
S6 ).873 02 07 22 lt7 73 91 98 
sa 3.870 02 08 23 .. , 7S 92 98 

60 3.867 02 08 2ft Sl 77 93 99 

"' 3.862 02 09 26 ss 81 95 99 
68 3.857 02 09 29 59 8ft 96 99 
72 3.853 03 10 31 62 87 97 • 
76 3.81t9 03 11 3ft 6S 89 98 

80 J.Bits 03 11 36 69 91 99 
8ft ).81t2 03 12 38 72 93 99 
88 3.839 03 13 It I 74 ,.. 99 
92 3.837 03 , .. 43 77 95 99 
96 ).83ft 03 15 45 79 96 • 

100 3.832 03 16 lt8 81 97 
120 ).82ft Oft 21 59 90 99 
litO 3.818 Oft 26 68 9S • 160 3.813 OS 31 76 97 
180 3.810 06 36 82 99 

200 3.807 07 42 87 99 
2SO ).802 09 Sit 95 • 
300 3.798 11 " 98 
3SO 3.796 13 7S 99 
400 3.791t 16 82 • 
4SO 3.793 19 87 

500 3.792 22 91 
600 3.790 29 96 
700 3.789 3S 98 
800 3.788 42 99 
900 3.787 49 • 

1000 3.787 55 

* P-r values below thfs pofnt ere gr .. ter then .995. 
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Table 8.3.4 

Power of F test at a = .01 . u = 4 

f 

n F c .os .10 .IS .20 .25 .JO .JS .Ito .so .60 .70 .80 

2 11.J92 01 01 01 01 02 02 02 OJ Olt OS o6 08 
J 5.994 01 01 01 02 02 02 OJ Olt o6 10 '" 20 

" 4.893 f;l 01 01 02 OJ 03 Olt 06 II 18 27 J9 

5 lt.lt31 01 01 02 02 03 OS 06 09 17 28 lt2 57 
6 4.177 01 01 02 OJ Olt o6 09 12 2J J9 56 73 
7 ... 018 01 01 02 OJ OS 08 II 16 31 so 69 8lt 
8 3.910 OJ 02 02 Olt o6 09 lit 21 J9 60 78 91 
9 3.828 01 02 03 Olt 07 11 17 25 46 69 86 95 

10 3.769 01 02 03 OS 08 13 21 30 54 76 91 97 
II 3.721 01 02 03 OS 09 15 24 35 60 82 94 99 
l2 3.682 01 02 03 06 II 18 28 r.o 67 87 96 99 
IJ 3 .61+9 01 02 Olt 07 12 20 32 45 72 90 98 * lit 3.623 01 02 Olt 07 13 23 35 50 77 93 99 

IS 3.601 01 02 Olt 08 15 26 39 54 81 95 99 
16 3.581 01 02 OS 09 17 28 It) 59 as 97 * 17 J.561+ 01 02 05 10 18 31 47 63 88 98 
18 3. Slt9 01 03 05 II 20 31o 50 67 90 98 
19 3.536 01 03 06 II 22 37 54 70 92 99 

20 3.524 01 03 06 12 24 39 57 74 94 99 
21 3.514 01 03 06 13 26 42 60 77 95 * 22 3. SOit 01 03 07 14 27 45 61+ 80 96 
23 3.495 01 03 07 IS 29 48 67 82 97 
24 3.487 01 03 07 16 31 50 69 8lt 98 

25 3.480 01 OJ 08 17 3J 53 72 86 98 
26 3.473 01 03 08 19 35 55 71t 88 99 
27 ).lt67 02 Olt 09 20 37 ss 77 90 99 
28 ).462 02 Olt 09 21 39 60 79 91 99 
29 3.lo57 02 Olt 10 22 "' 63 81 92 99 

30 ).452 02 Olt 10 23 43 65 83 93 * Jl 3.448 02 Olt II 21o loS 67 8lt 94 
32 3.443 02 04 II 25 47 69 86 95 
33 ).lo39 02 Olt 12 27 lo9 71 87 96 
34 3.436 02 05 12 28 so 73 89 97 

35 ).432 02 05 13 29 52 75 90 97 
36 3.429 02 05 13 30 Sit 76 91 98 
37 3.426 02 OS 14 32 56 78 92 98 
38 3.423 02 05 14 33 57 79 93 98 
39 3.420 02 OS IS 34 59 81 94 99 
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Table 8.3.4 (continued) 

f 

n , 
c .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

ItO ].lt18 02 05 IS 3S 61 82 "' 99 * * * * lt2 3.413 02 06 17 38 6ft 85 96 99 .... 3.409 02 06 18 Ito 67 87 97 99 

"' 3.1tos 02 06 19 It] 70 89 97 * lt8 ].ltOI 02 07 20 ItS 72 91 98 

so 3.398 02 07 22 lj8 75 92 98 
52 3.395 02 07 23 so 77 93 99 
Sit 3.392 02 08 2ft 52 79 "' 99 
56 3.389 02 08 26 55 81 95 99 
58 3.386 02 09 27 57 83 96 99 

60 3.384 02 09 28 59 85 97 * 6ft 3.380 02 10 31 63 88 98 
68 3.376 03 11 ]lj 67 90 98 
72 3.373 03 11 )7 71 92 99 
76 1.:m 03 12 39 7" "' 99 

8o 3.368 03 13 lt2 77 95 * 8lj ].366 03 1 .. "5 80 96 
88 3 .36ft 03 IS lj8 82 97 
92 3.361 03 16 so 8lj 98 
96 3.360 03 17 53 86 98 

100 3.358 03 19 ss 88 99 
120 3.352 Oft 2ft 67 "' * 1"0 3-3"7 OS 30 76 98 
160 ].3"'- o6 37 8lj 99 
180 3.3 .. 1 06 "' 89 * 
200 3.339 07 "' 93 
250 3.33S 10 63 98 
300 3.332 12 7" 99 
3SO 3.330 IS 82 * ljOO 3.329 19 89 
ljSO 3.328 22 93 

soo 3.327 26 96 
600 3.326 '" 98 
700 3.325 lt2 * Boo ).]2ft .. , 
900 3.323 S6 

1000 3.323 63 

* Power velues below thfs pofnt ere gr .. ter then .995. 
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Table8.3.5 

Power of F test at a = .01, u = 5 

n F .os c .10 ,IS .20 .25 .30 .3S ,40 .so .60 .70 .8o 

2 8.746 01 01 01 01 02 02 02 03 Olt OS 07 09 
3 s.061t 01 01 01 02 02 03 03 Olt 07 11 17 24 
4 4.248 01 01 02 02 03 Olt 05 07 12 21 32 46 

s 3.895 01 01 02 02 03 05 07 10 19 33 49 66 
6 3.699 01 01 02 03 Olt 07 10 14 28 4S 64 8o 
7 3.576 01 01 02 03 OS 08 13 19 36 57 76 90 
8 3.489 01 02 02 Olt 07 10 16 24 45 67 8s 95 
9 3.426 01 02 03 05 08 13 20 30 S3 76 91 98 

10 3.388 01 02 03 05 09 1S 24 35 61 83 95 99 
11 3.339 01 02 03 o6 10 18 28 lt1 68 88. 97 * 12 3.309 01 02 Oft 07 12 21 32 lt6 71t 92 98 
13 3.284 01 02 Oft 07 , .. 21t 37 52 79 95 99 , .. 3.263 01 02 Oft 08 IS 27 41 57 84 97 * 
IS 3.244 01 02 OS 09 17 30 4S 62 87 98 
16 3.229 01 02 05 10 19 n lt9 66 90 99 
17 3.215 01 03 OS 11 21 36 53 70 92 99 
18 3.203 01 03 06 12 23 39 57 71t 911 99 
19 3.192 01 03 06 13 25 lt2 61 77 96 * 
20 3.182 01 03 07 14 27 ItS 64 81 97 
21 3.171t 01 03 07 IS 30 lt8 68 83 98 
22 3.166 01 03 07 16 32 51 71 86 98 
23 3.159 01 03 08 18 )It 54 71t 88 99 
24 3.153 01 03 08 19 36 57 76 90 99 

25 3.147 01 Oft 09 20 38 60 79 91 99 
26 3.142 02 Oft 09 21 40 63 81 93 * 27 3.137 02 Oft 10 23 43 6S 83 911 
28 3.133 02 Oft 10 24 4S 67 8s 9S 
29 3.129 02 Oft 11 25 47 70 87 96 

30 3.125 02 04 11 27 49 72 88 97 
31 3.121 02 Oft 12 28 51 74 90 97 
32 3.118 02 OS 12 29 53 76 91 98 
33 3.115 02 OS 13 31 ss 78 92 98 
34 3.112 02 OS 14 32 57 eo 93 98 

35 3.109 02 OS ... 31t 59 81 911 99 
36 3.107 02 OS IS 35 61 83 95 99 
37 3.104 02 05 16 36 63 84 95 99 
38 3.102 02 06 16 38 64 86 96 99 
39 3.100 02 06 17 39 66 87 97 99 ···--------------------·---· 
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Tlble 8.3.5 (continued) 

f 

n Fe .os ,10 .IS ,20 .25 .)0 ,)5 ,Ito .so ,60 .70 .eo 

ItO ).097 02 06 18 It I 68 88 97 * * * * * lt2 3.093 02 06 19 lt3 71 90 98 .... ).090 02 07 20 lt6 71t 92 98 
lt6 3.087 02 07 22 lt9 77 93 99 
lt8 ),OBit 02 07 23 52 79 ,.. 99 

50 3.081 02 08 25 Sit 81 96 99 
52 3.079 02 08 26 57 Bit 96 * Sit 3.076 02 09 28 59 8S 97 
56 3.071t 02 09 30 61 87 98 
S8 3.072 02 10 31 6lt 89 98 

60 3.070 02 10 33 66 90 99 
611 3.067 03 " 36 70 92 99 
68 3.o61t 03 12 39 71t ,.. 99 
72 3.061 03 13 lt2 77 96 * 76 3.059 03 , .. ItS 80 97 

80 ).057 03 IS lt8 83 98 
Bit 3.055 03 16 Sl 86 98 
88 ),053 03 18 Sit 88 99 
92 3.052 03 19 57 90 99 
96 3.oso 04 20 60 91 99 

100 3.049 04 21 62 93 * 120 3.0itlt 04 28 71t 97 
lito 3.040 OS 35 83 99 
160 3.037 06 lt2 89 * 180 3.035 07 lt9 93 

200 3.033 08 55 96 
250 3.030 11 70 99 
300 3.028 , .. 80 * 350 3.026 18 88 
ltOO 3.025 22 93 
It 50 3.021t 26 96 

500 3.023 30 98 
600 ).022 39 99 
700 3.022 lt7 * 800 3.021 56 
900 ).021 63 

1000 3.020 70 

* Power velues below this point ere gr .. ter then .995, 
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Table8.3.6 

Power ofF test at a • .01. u = 6 

, 
n Fe .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

2 7.191 01 01 01 01 02 02 02 03 Oft 06 07 10 
3 lt.lts6 01 01 01 02 02 03 03 OS 08 13 19 28 .. ).812 01 01 02 02 03 Oft 06 08 lit 2ft 37 S3 

s ).528 01 01 02 03 Oft 06 08 12 22 38 56 73 
6 3.369 01 01 02 03 OS 07 II 16 32 51 71 86 
7 3.266 01 02 02 Oft 06 09 IS 22 .. , 64 83 94 
8 3.196 01 02 03 Oft 07 12 19 28 Sl 7ft 90 97 
9 3.143 01 02 03 OS 09 , .. 23 34 60 82 9S 99 

10 3.103 01 02 03 06 10 17 27 ItO 68 88 97 * II 3.072 01 02 03 06 12 20 32 46 7ft 92 99 
12 3.047 01 02 Oft 07 13 23 37 S2 80 9S 99 
13 3.026 01 02 Oft 08 IS 27 .. , s8 8s 97 * '" 3.008 01 02 OS 09 17 30 lt6 63 89 98 

IS 2.992 01 02 05 10 20 )It Sl 68 92 99 
16 2.979 01 02 OS II 22 37 ss 72 94 99 
17 2.968 01 03 06 12 2ft .. , S9 76 9S * 18 2.957 01 03 06 13 26 .... 63 80 97 
19 2.949 01 03 07 IS 29 48 67 83 98 

20 2.941 01 03 07 16 31 Sl 71 86 98 
21 2.934 01 03 08 17 34 Sit 7ft 88 99 
22 2.928 01 03 08 19 36 57 77 90 99 
23 2.922 01 03 09 20 38 60 80 92 99 
2ft 2.917 02 Oft 09 21 It I 63 82 93 * 
25 2.912 02 oft 10 23 43 66 8ft 95 
26 2.908 02 oft 10 24 46 69 86 96 
27 2.904 02 Oft II 26 48 71 88 96 
28 2.900 02 Oft II 27 so 7ft 90 97 
29 2.896 02 Oft 12 29 S3 76 91 98 

30 2.893 02 OS ,, 30 ss 78 92 98 
31 2.890 02 OS 13 32 57 80 93 99 
32 2.887 02 OS lit 33 59 82 94 99 
33 2.884 02 OS IS 35 61 83 95 99 ,.. 2.882 02 05 15 36 63 as 96 99 

35 2.88o 02 OS 16 38 65 86 97 99 
36 2.877 02 06 17 ItO 67 88 97 * 37 2.875 02 06 18 .. , 69 89 98 
38 2.873 02 06 18 .. , 71 90 98 
39 2.871 02 06 19 .... 72 91 98 
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Table 8.3.6 (continued} 

f 

n F c .os .10 .IS .20 .2S .30 .n .Ito .so .60 .70 .80 

ItO 2.870 02 06 20 lt6 74 92 99 * * * * * 42 2.866 02 07 22 49 77 ,.. 
" " 2.863 02 07 23 52 80 9S 99 

lt6 2.861 02 08 2S ss 82 96 * ItS 2.858 02 08 27 57 as 97 

so 2.856 02 09 za 60 a7 9a 
S2 2.8S't 02 09 30 63 88 9a 
Sit 2.as2 02 10 32 6S 90 99 
S6 2.8so 02 10 33 68 91 99 
sa 2.84a 02 II 3S 70 93 99 

60 2.847 02 II 37 72 ,.. 99 
64 2.81tlt 03 12 Ito 76 95 * 68 2.841 03 13 " 80 97 
72 2.8)9 03 lit 47 83 98 
76 2.837 03 16 Sl 86 98 

80 z.a35 03 17 Sit 88 99 
lilt 2.a34 03 18 57 90 99 
88 2.832 03 20 60 92 99 
92 2.831 04 21 63 93 * 96 2.830 04 23 66 9S 

100 2.a29 OS 24 69 96 
120 2.a25 OS 32 ao 99 
litO 2.a21 06 39 88 * 160 2.819 07 '-7 t3 
180 2.817 08 Sit " 
200 2.81S 09 61 98 
2SO 2.al3 12 76 * 300 2.all 16 86 
3SO 2.a1o 20 92 
ltoo 2.a09 24 96 
It SO 2.808 29 9a 

soo 2.ao7 31t 99 
600 2.a06 " * 700 2.a06 S3 
800 2.805 62 
900 2.80S 69 

1000 2.80S 76 

* ,_ ,.lues belw this point ere tr•ter then .995. 
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Table 8.3.7 

Power ofF test at a= .01, u = 8 

f 

n F .os ,10 .IS ,20 .25 .30 .35 .Ito .so ,60 .70 .80 c 

2 s.lt67 01 01 01 01 02 02 02 03 OS 06 09 12 
3 3.70S 01 01 01 02 02 03 Olt 06 10 " 2S 37 

" 3.256 01 01 02 02 03 OS 07 09 18 31 lt7 65 

5 ),OS) 01 01 02 03 Olt 06 10 lit 28 lt7 67 8lt 

' 2.936 01 01 02 03 OS 09 lit 20 ItO 63 82 93 
7 2.861 01 02 02 Olt 07 11 18 27 Sl 75 91 98 
8 2.808 01 02 03 OS 08 lit 23 31t 61 8lt 96 99 
9 2.770 01 02 03 06 10 18 28 lt2 71 90 98 * 

10 2.71t0 01 02 03 07 12 21 31t lt9 78 9lt 99 
11 2.716 01 02 Olt 08 lit 2S ItO 56 8lt 97 * 12 2.697 01 02 Olt 09 17 29 ItS 62 89 98 
13 2.681 01 02 OS 10 19 33 Sl 68 92 99 
lit 2,667 01 02 OS 11 22 37 S6 71t 9S * 
IS 2.6S6 01 03 06 12 21t lt2 61 78 96 

" 2.61t6 01 03 o6 13 27 lt6 66 82 98 
17 2.638 01 03 07 IS 30 so 70 86 98 
18 2.630 01 03 07 16 33 Sit 71t 88 99 
19 2.621t 01 03 08 18 3S 57 77 91 99 

20 2,618 01 03 08 20 38 61 81 93 * 21 2.612 01 03 09 21 It I 6lt 83 9lt 
22 2.608 01 Olt 10 23 ..,. 68 86 96 
23 2.603 02 Olt 10 2S lt7 71 88 97 
21t 2.599 02 Olt 11 26 so 71t 90 97 

2S 2.S96 02 Olt 12 28 S2 76 92 98 
26 2.592 02 Olt 12 30 ss 79 93 98 
27 2.S89 02 OS 13 32 58 81 9lt 99 
28 2.$86 02 OS , .. , .. 60 83 9S " 29 2.S83 02 OS IS 35 63 85 96 99 

30 2.581 02 OS IS 37 6S 87 97 * 31 2.S79 02 OS 16 39 67 88 97 
32 2.S76 02 06 17 lt1 70 90 98 
33 2,S71t 02 06 18 .. , 72 91 98 , .. 2.sn 02 06 19 ItS 7ft 92 " 3S 2.571 02 06 20 lt6 7S 93 " 36 2.S69 02 06 21 lt8 77 ,. 

" 37 2,S67 02 07 22 so 79 9S " 38 2.566 02 07 23 52 80 9S 99 
39 2.S61t 02 07 2lt Sit 82 96 * 
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Tmle 8.3.7 (continued) 

, 
n F'c .OS .to .ts .20 .2S .30 .3S .Ito .so .60 .70 .80 

40 2.S63 02 07 2S ss 83 97 * * * * * * lt2 2.S61 02 08 27 sa 86 97 .... 2.SS8 02 08 29 62 88 98 
lt6 2.SS6 02 09 31 65 90 " 48 2.SSit 02 10 33 68 92 " 
so 2.SS3 02 10 3S 70 " " 52 2.SS1 02 11 37 73 ,.. 

" Sit 2.550 02 11 39 75 95 * 56 2.548 03 12 Itt 78 96 
sa 2.Sit7 03 13 lt3 80 97 

60 2.Sit6 03 13 ItS 82 97 
64 2.543 0) IS 49 as 98 
68 2.541 03 16 53 88 " 72 2.540 03 18 57 90 " 76 2.538 03 20 61 92 * 
80 2.537 03 21 64 ,.. 
Bit 2.536 04 23 67 95 
88 2.535 04 24 70 96 
92 2.534 04 26 73 97 
96 2.533 04 28 76 98 

100 2.532 04 30 78 98 
120 2.529 OS 39 88 * 140 2.526 06 ltB ,.. 
160 z.szlt 07 S7 97 
180 2.523 09 65 " 
200 2.521 10 72 " 250 2.519 , .. as * )00 2.518 19 92 
350 2.517 25 97 
ltOO 2.St6 30 " It SO 2.S16 36 " 
500 2.515 lt2 * 600 2.515 53 
700 2.Stlt 63 
800 2.514 72 
900 2.Stlt 79 

1000 2.513 as 

* P-r vetuea below thfl point ere gr•t•r thlln .995. 
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Teble8.3.8 

.._ofF testata • .01, u • 10· 

, 
n Fe .os .10 .15 .20 .25 .30 .35 .40 .so .60 .70 .80 

2 4.539 01 01 01 01 02 02 03 03 OS 07 10 15 
3 3.258 01 01 02 02 02 03 04 06 11 20 31 ~ 
4 2.914 01 01 02 02 03 OS 08 11 22 38 57 7lt 

s 2.752 01 01 02 03 OS 07 11 17 34 56 77 91 
6 2.662 01 01 02 04 06 10 16 25 47 72 89 97 
7 2.603 01 02 03 OS 08 13 22 33 60 83 95 99 
8 2.561 01 03 03 06 10 17 28 41 70 91 98 * 9 2.530 01 03 03 07 12 21 34 49 79 95 99 

10 2.$06 01 03 04 08 14 25 40 57 86 97 • 
11 2.487 01 03 04 09 17 30 47 6S 97 99 
12 2.471 01 03 OS 10 20 :JS 53 71 ,.. 

99 
13 2.458 01 03 OS 11 23 40 59 77 96 * 14 2.448 01 0) o6 13 26 .... 65 82 98 

IS 2.4)9 01 0) 06 14 29 49 70 86 99 
16 2.431 01 03 07 16 32 53 74 89 99 
17 2.424 01 03 08 18 35 58 78 91 * 18 2.418 01 03 08 19 39 62 82 ,.. 
19 2.41) 01 03 09 21 42 66 as 95 

20 2.408 01 04 10 23 45 69 88 96 
21 2.403 02 04 10 25 49 73 90 97 
22 2.399 02 04 11 27 52 76 92 98 
23 2.396 02 04 12 29 ss 79 93 99 
24 2.393 02 04 13 31 58 81 95 99 

25 2.)90 02 OS 13 33 61 84 96 99 
26 2.387 02 OS 14 3S 6) 86 97 * 27 2.384 02 OS IS 38 66 88 97 
28 2.)82 02 OS 16 40 69 90 98 
29 2.310 02 OS 17 42 71 91 98 

30 2.378 02 06 18 .... 73 92 " 31 2.376 02 06 19 lt6 76 93 " 32 2.371t 02 06 20 lt8 78 ,.. 99 
33 2.372 02 06 21 so 80 95 " 31t 2.371 02 07 22 52 81 96 * 
3S 2.369 02 07 21t S4 83 97 
)6 2.368 02 07 25 S6 8S 97 
37 2.367 02 08 26 sa 86 98 
38 2.365 02 08 27 60 87 98 
39 2.364 02 08 28 62 89 98 



304 8 f TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCI 

Table 8.3.8 (continued} 

f 

·-·---
n Fe .os .10 .IS .20 .25 .)0 .35 ... o .so .60 .70 .eo 

lfO 2.363 02 08 29 63 90 99 • • • • • • 
.. 2 2.361 02 09 32 67 92 99 .... 2.359 02 10 3 .. 70 93 99 
.. 6 2.358 02 10 )6 73 9S • 
48 2.)56 02 11 39 76 96 

so 2.3SS 02 12 .. I 78 97 
52 2.353 03 12 "3 81 97 
S" 2.352 03 13 .. 6 83 98 
S6 2.351 03 1 .. .. a as 98 
sa 2.350 03 IS so 87 99 

60 2.3 .. 9 03 16 53 88 99 

"' 2.3 .. 7 03 17 57 91 99 
68 2.3 .. 6 03 19 61 93 • 
72 2.3 .... 03 21 6S 9S 
76 2.3 .. 3 Olf 23 69 96 

80 2.3 .. 2 Olf 25 72 97 
&If 2.3 .. 1 Olf 27 7S 98 
88 2.3 .. 0 Olf 29 78 99 
92 2.339 Olf 31 81 99 
96 2.338 OS 33 83 99 

100 2.338 OS 35 86 99 
120 2.335 06 .. 6 93 • ... o 2.333 07 S6 97 
160 2.)31 08 6S 99 
180 2.330 10 73 • 
200 2.329 12 79 
250 2.327 17 91 
300 2.326 23 96 
3SO 2.326 29 99 
.. 00 2.325 36 • 
"SO 2.325 .. 2 

soo 2.32 .. 51 
600 2.32 .. 61 
700 2.323 71 
800 2.323 80 
900 2.323 86 

1000 2.323 91 

• Power v•lues below this point •re gr .. ter t~n .995 • 
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Table 8.3.9 

Power ofF test at a= .01, u = 12 

f 

n Fe .os .10 
·' s 

.20 .2S .30 .35 .40 .so .60 .70 .eo 

2 3.960 01 01 01 01 02 02 03 04 OS 08 12 18 
3 2.9S8 01 01 01 02 03 04 OS 07 13 23 37 S4 
4 2.679 01 01 02 03 04 06 09 13 26 44 6S 82 

s 2.S48 01 01 02 03 OS 08 13 20 40 64 84 9S 
6 2.472 01 02 02 04 07 12 19 29 S4 79 94 99 
7 2.422 01 02 OJ OS 09 IS 2S 38 67 89 98 * 8 2.387 01 02 03 06 II 20 32 48 78 9S 99 
9 2.361 01 02 04 07 14 2S 39 S7 as 98 * 

10 2.340 01 02 04 08 17 30 47 6S 91 99 
11 2.325 01 02 OS 10 20 3S S4 72 94 * 12 2.312 01 02 OS 11 23 40 60 7e 97 
13 2.301 01 03 06 13 26 4S 66 e3 9e 
14 2.292 01 03 06 IS 30 Sl 72 e7 99 

IS 2.2es 01 03 07 16 33 S6 77 91 99 
16 2.278 01 03 oe 18 37 60 81 93 * 17 2.272 01 03 oe 20 41 6S 84 9S 
te 2.267 01 03 09 23 4S 69 87 97 
19 2.262 01 04 10 2S 48 73 90 9e 

20 2.2se 02 04 11 27 S2 76 92 9e 
21 2.2SS 02 04 12 29 ss eo 94 99 
22 2.2S1 02 04 13 32 S9 e) 9S 99 
23 2.248 02 OS 14 34 62 es 96 99 
24 2.246 02 OS IS 36 6S e7 97 * 
2S 2.243 02 OS 16 39 68 e9 9e 
26 2.241 02 OS 17 41 71 91 9e 
27 2.239 02 OS 1e 43 73 92 99 
28 2.237 02 06 19 46 76 94 99 
29 2.23S 02 06 20 4e 78 9S 99 

30 2.233 02 06 21 so eo 96 * 31 2.231 02 07 22 53 e2 96 
32 2.230 02 07 24 ss 84 97 
33 2.22e 02 07 2S S7 e6 9e 
34 2.227 02 07 26 S9 e7 98 

3S 2.226 02 08 27 61 ee 98 
36 2.225 02 08 29 63 90 99 
37 2.224 02 08 30 6S 91 99 
38 2.223 02 09 31 67 92 99 
39 2.222 02 09 32 69 93 99 
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Table 8.3.9 (conrinued) 

f 

n Fe .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

40 2.221 02 09 34 71 94 99 • • • • • • 
42 2.219 02 10 36 74 95 • .... 2.217 02 II 39 77 96 
46 2.216 02 12 42 80 97 
48 2.215 02 12 .... 82 98 

so 2.213 03 13 lt7 as 98 
52 2.212 03 14 so 87 99 
Sit 2.211 03 IS 52 88 99 
S6 2.210 03 16 ss 90 99 
sa 2.209 03 17 57 91 • 
60 2.209 03 18 59 93 
64 2.207 03 20 64 95 
68 2.206 03 22 68 96 
72 2.204 04 2lt 72 97 
76 2.203 04 26 76 98 

80 2.202 04 29 79 99 
84 2.202 04 31 82 99 
88 2.201 04 33 84 99 
92 2.200 05 36 87 • 
96 2.199 05 38 89 

100 2.199 OS 40 91 
120 2.197 07 52 96 
140 2.195 08 63 99 
160 2.194 10 72 • 
180 2.193 12 79 

200 2.192 14 as 
250 2.191 20 94 
300 2.190 26 98 
)SO 2.189 34 99 
ltOO 2.188 lt1 • 
450 2.188 ItS 

soo 2.188 ss 
600 2.187 68 
700 2.187 78 
800 2.187 86 
900 2.186 91 

1000 2.186 ,.. 
• P-r values below thfs point are greater than .995 • 
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Table 8.3.10 

Power of F test at a= .01, u = 15 

f 

n Fe .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

2 3.lt09 01 01 01 01 02 02 03 Olt 06 10 IS 23 
3 2.6S6 01 01 02 02 03 Olt 06 08 16 29 lt6 6lt .. 2.1t)7 01 01 02 03 Olt 07 10 IS 31 S3 7S ~ 

s 2.332 01 01 02 Olt 06 10 16 2S lt8 71t 91 ,a 
6 2.272 01 02 03 OS 08 lit 23 3S 6lt 87 97 • 
7 2.232 01 02 03 06 10 19 31 lt6 77 ,.. 

" 8 2.203 01 02 03 07 13 2lt " S6 86 ,a • 
9 2.182 01 02 Olt 08 16 30 lt7 66 92 " 10 2.166 01 02 OS 10 20 36 ss 71t 9S • 

11 2.1S3 01 02 OS 11 2lt lt2 63 81 98 
12 2.11t3 01 03 06 13 28 lt8 69 86 " 13 2.13/t 01 03 07 IS 32 Sit 7S 90 " 1lt 2.127 01 03 07 17 36 59 80 93 • 
IS 2.120 01 03 08 20 ItO 6S as 9S 
16 2.11S 01 03 09 22 .... 69 88 97 
17 2.110 01 Olt 10 2S .. , 71t ,, 98 
18 2.106 01 Olt 11 27 S3 78 93 " 19 2.102 02 Olt 12 30 S7 81 95 " 20 2.0, 02 Olt 13 32 60 8lt " " 21 2.096 02 Olt lit 3S 6lt 87 97 • 
22 2.093 02 OS IS 38 68 89 98 
23 2.091 02 OS 16 ... 71 ,, 

" 2lt 2.088 02 OS 17 lt3 71t 93 " 25 2.086 02 06 19 lt6 77 ,.. 
" 26 2.08lt 02 06 20 .. , 79 9S • 27 2.08) 02 06 21 Sl 81 96 

28 2.081 02 07 23 Sit 8lt 97 
29 2.079 02 07 2lt S6 86 98 

30 2.078 02 07 2S S9 87 98 
31 2.077 02 08 27 61 89 " 32 2.076 02 08 28 63 90 " 33 2.07/t 02 08 30 66 92 " 3lt 2.on 02 09 31 68 93 " 
3S 2.072 02 09 33 70 ,.. 

" 36 2.071 02 09 3lt 72 9S • 
37 2.070 02 10 36 7lt 9S 
38 2.070 02 10 37 76 " 39 2.069 02 11 39 77 97 
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Table 8.3.10 (continued/ 

f 

n Fe .os .10 .IS .20 .2S .30 .3S .40 .so .60 .70 .80 

40 2.068 02 11 40 79 97 * * * * * * * 42 2.066 02 12 43 82 98 .... 2.06S 02 13 46 BS 99 
46 2.064 03 14 49 87 99 
48 2.063 03 IS S2 89 99 

so 2.062 03 16 ss 91 99 
S2 2.061 03 17 S8 92 * S4 2.060 03 18 61 9'+ 
S6 2.0S9 03 19 63 9S 
S8 2.0S9 03 20 66 96 

60 2.osB 03 22 68 96 
6lt 2.0S7 03 24 73 98 
68 2.0S6 04 26 77 98 
72 z.oss 04 29 80 99 
76 2.054 04 32 84 99 

80 2.0S3 04 )It 86 * 84 2.0S2 OS 37 89 
88 2.0S2 OS ItO 91 
92 2.0SI OS 43 92 
96 2.0SI 06 Its 9'+ 

100 2.0SO 06 48 9S 
120 2.048 07 61 98 
litO 2.047 09 71 * 160 2.046 II 80 
180 2.04s lit 87 

200 2.0itlt 16 91 
2SO 2.043 24 97 
300 2.042 32 99 
350 2.042 40 * 400 2.041 48 
4SO 2.041 57 

soo 2.041 6lt 
600 2.040 76 
700 2.040 86 
BOO 2.040 92 
900 2.040 9S 

1000 2.040 98 

* "-r ve1ues below thfs point ere gr .. ter then .99S. 
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Table 8.3.11 

Power ofF test at a= .01, u • 24 

f 

n Fe .os .10 .15 .20 .25 .JO .35 .40 .so .60 .70 .80 

2 2.620 01 01 01 02 02 03 04 OS 09 15 25 38 
3 2.184 01 01 02 02 04 OS 08 12 26 46 68 as 
4 2.049 01 01 02 03 06 09 IS 24 48 75 92 98 

s 1.983 01 02 03 05 08 15 24 38 69 91 99 * 6 1.944 01 02 03 06 II 21 35 52 84 97 * 7 1.918 01 02 04 08 15 29 46 66 92 99 
8 1.900 01 02 04 10 20 37 57 76 97 * 9 1.886 01 02 OS 12 25 45 67 85 99 

10 1.876 01 03 06 14 30 53 75 90 * II 1.867 02 03 07 17 36 60 82 94 
12 1.860 02 03 08 20 41 67 87 96 
13 1.854 02 03 09 23 47 73 91 98 
14 1.850 02 04 10 26 53 79 94 99 

15 1.846 02 04 II 30 58 83 96 99 
16 1.842 02 04 13 33 63 87 97 * 17 1.839 02 04 14 37 68 90 98 
18 1.836 02 OS 16 41 72 93 99 
19 1.833 02 OS 17 44 76 9S 99 

20 1.831 02 OS 19 48 80 96 * 21 1.829 02 06 20 51 83 97 
22 1.827 02 06 22 ss 86 98 
23 1.826 02 07 24 58 88 99 
24 1.824 02 07 26 62 90 99 

2S 1.823 02 07 28 65 92 99 
26 1.821 02 08 30 68 93 99 
27 1.820 02 08 32 71 95 * 28 1.819 02 09 34 73 96 
29 1.818 02 09 36 76 96 

30 1.817 02 10 JB 78 97 
31 1.816 02 10 40 80 98 
32 1.815 02 11 42 82 98 
J3 1.815 02 12 .... 84 99 
34 1.814 02 12 46 86 99 

35 1.813 02 13 48 87 99 
36 1.813 02 13 50 89 99 
37 1.812 03 14 52 90 99 
38 1.811 OJ 15 54 91 * 39 1.811 03 15 S6 92 
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Table 8.3.11 (contiiWed) 

f 

n r .os c .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

Ito 1.810 03 16 58 93 * * * * * * * * lt2 1.809 03 17 62 95 .... 1.809 03 19 65 96 
lt6 1.808 03 20 68 " lt8 1.807 03 22 72 98 

so 1.806 03 21t 71t " 52 1.806 03 25 77 99 
Sit 1.80S Olt 27 80 99 
S6 t.eos Olt 29 82 99 
58 1.801t Olt 30 Bit * 
60 I.BOit Olt 32 86 
6lt 1.803 Olt )6 89 
68 1.802 OS 39 92 
72 1.802 OS It) ,.. 
76 1.801 OS lt7 9S 

80 1.800 06 so 97 
Bit 1.800 06 Sit 98 
88 1.800 06 57 " 92 1.799 07 60 99 
96 1.799 07 6lt 99 

100 1.799 08 67 99 
120 1.797 10 79 * litO 1.796 13 88 
160 1.796 16 ,.. 
180 1.79S 20 97 

200 1.795 2lt 98 
250 1.791t 3S * 300 1.793 lt6 
3SO 1.793 57 
ltOO 1.793 67 
r.so 1.793 7S 

500 1.792 82 
600 1.792 92 
700 1.792 " 800 1.792 99 
900 1.792 99 

1000 1.792 * 

* ,_ .,.,_ belaw thia point ara greatw than .99S. 
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Table 8.3. 12 

Power of F test at a = .05, u = 1 

f 

" Fe .os .10 .15 ,20 .25 .30 .35 ,40 .so .60 .70 .eo 

2 1B.S13 05 05 06 06 07 07 08 09 10 12 14 16 
3 7.709 05 05 06 07 08 09 10 12 16 20 26 32 
4 5.987 OS 06 06 07 09 11 13 16 23 30 39 48 

s 5.318 OS 06 07 08 11 13 16 20 29 39 so 61 
6 4.965 OS 06 07 09 12 15 20 24 35 47 60 71 
7 4.747 OS 06 08 10 14 18 23 28 41 ss 68 79 
8 4.600 OS 06 08 II 15 20 26 32 47 62 75 as 
9 4.494 OS 07 09 12 17 22 29 36 52 68 80 89 

10 4.414 OS 07 09 13 18 25 32 40 57 73 as 93 
11 4.351 OS 07 10 14 20 27 35 44 62 77 88 9S 
12 4.301 OS 07 10 IS 22 29 38 47 66 81 91 97 
13 4,260 OS 07 11 16 23 32 41 51 70 84 93 98 
14 4.225 05 08 11 17 25 34 .... 54 73 87 95 98 

15 4.196 06 08 12 18 26 36 47 57 76 89 96 99 
16 4.171 06 08 12 19 28 38 49 60 79 91 97 99 
17 4.149 06 08 13 20 30 40 52 63 82 93 98 ... 
18 4,130 06 08 14 21 31 42 54 66 84 ,.. 98 
19 4,113 06 09 14 22 33 .... 57 68 86 9S 99 

20 4.098 06 09 15 23 34 46 59 70 88 96 99 
21 4.085 06 09 15 24 36 48 61 73 89 97 99 
22 4.073 06 09 16 26 37 so 63 75 91 97 ... 
23 4,062 06 10 16 27 39 52 65 17 92 98 
2ft 4.052 06 10 17 28 40 54 67 78 93 98 

25 4.043 06 10 18 29 42 56 69 80 ,.. 99 
26 4.034 06 10 18 30 43 58 71 82 95 99 
27 4.026 o6 10 19 31 4S 59 72 83 95 99 
28 4.020 06 11 19 32 46 61 74 84 96 99 
29 4.013 06 11 20 33 47 62 76 86 97 99 

30 4.007 06 11 21 34 49 64 77 87 97 ... 
31 4.001 o6 11 21 35 so 65 78 88 97 
32 3.996 06 12 22 36 51 67 eo 89 98 
33 3.991 06 12 22 37 53 68 81 90 98 
34 3.986 07 12 23 38 54 69 82 91 98 

35 ).982 07 12 24 39 55 71 83 92 99 
36 3.978 07 13 24 40 56 72 84 92 99 
37 3.974 07 13 25 40 58 73 es 93 99 
38 3.970 07 13 25 41 59 74 86 ,.. 99 
39 3.967 07 13 26 42 60 75 87 ,.. 99 
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Table 8.3.12 (continuedl 

f 

n Fe .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .so 
- --- ---·· -----

Ito 3.963 07 lit 27 It) 61 77 88 95 99 * * * lt2 3.957 07 lit 28 ItS 63 79 89 96 * 
"" ).952 07 IS 29 47 65 80 91 96 
46 ).91t7 07 IS 30 49 67 82 92 97 
lt8 3.91t2 07 16 31 so 69 Sit 93 97 

so 3.938 07 16 32 52 71 as 9lt 98 
52 3.934 08 17 33 53 73 87 95 98 
Sit 3.931 08 17 )It 55 74 88 95 99 
56 ).928 08 18 )6 57 76 89 96 99 
S8 3.924 08 18 37 58 77 90 97 99 

60 ).922 08 19 )8 60 79 91 97 99 
6lt 3.916 08 20 Ito 62 81 93 98 * 68 ).912 08 21 42 65 83 9lt 98 
72 ).908 09 22 .... 68 85 95 99 
76 3.901t 09 23 46 70 87 96 99 

80 ).901 09 24 48 72 89 97 99 
Sit ).898 09 25 so 74 90 97 * 88 3.895 09 26 52 76 92 98 
92 3.893 10 27 Sit 78 93 98 
96 3.891 10 28 55 80 9lt 99 

100 ).889 10 29 57 81 9lt 99 
120 3.881 11 )It 65 88 97 * litO 3.875 13 39 72 92 99 
160 3.871 lit .... 77 95 99 
ISO 3.868 IS ItS 82 97 * 
200 3.865 16 52 86 98 
250 3.860 20 62 92 99 
300 3.857 23 70 96 * 350 3.sss 26 76 98 
ltoo 3.853 30 82 99 
450 3.852 33 86 * 
soo 3.851 36 89 
600 3.81t9 42 9lt 
700 ).SitS 47 97 
BOO ).81t7 53 98 
900 3.8lt7 58 99 

1000 3.81t6 62 99 

* P-r v•lues below this point •re grNter t~n .995. 
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Table 8.3. 13 

Power of F test at a = .05, u = 2 

f 

n F .os c .10 .IS .20 .zs .30 .35 ,40 .so ,60 .70 ,80 

2 9.SS2 OS OS 06 06 07 07 08 08 10 12 15 18 
3 5.143 OS OS 06 07 08 09 10 12 17 22 29 37 
4 4.256 OS 06 06 08 09 11 14 17 24 33 44 S4 

s 3.BBs OS 06 07 09 11 14 17 22 32 44 S6 69 
6 3.682 OS 06 07 10 13 16 21 26 39 S3 67 79 
7 3.sss OS 06 08 11 14 19 25 31 46 62 76 87 
8 3.467 OS 06 08 12 16 22 28 36 53 69 83 92 
9 3.403 OS 07 09 13 18 24 32 40 59 75 88 9S 

10 3.354 OS 07 10 14 20 27 3S 4S 64 81 91 97 
11 3.316 OS 07 10 IS 21 30 39 49 69 8S 94 98 
12 3.285 06 07 11 16 23 32 42 53 74 88 96 99 
13 3.260 06 08 11 17 25 35 46 57 77 91 97 99 
14 3.238 06 08 12 18 27 38 49 61 81 93 98 * 
15 3.220 06 08 13 20 29 40 52 64 84 95 99 
16 3.205 06 08 13 21 31 43 ss 67 86 96 99 
17 3.191 06 09 14 22 33 45 58 70 89 97 99 
18 3.179 06 09 14 23 34 48 61 73 90 98 * 19 3.168 06 09 15 24 36 so 64 76 92 99 

20 3.159 06 09 16 26 38 52 66 78 93 99 
21 3.150 06 09 16 27 40 S4 69 80 95 99 
22 3.143 06 10 17 28 42 57 71 82 96 99 
23 3.136 06 10 18 29 43 59 73 84 96 * 24 3.130 06 10 18 30 4S 61 7S 86 97 

2S 3.124 06 10 19 32 47 63 77 87 98 
26 3.119 06 11 20 33 48 6S 79 89 98 
27 3.114 06 11 20 34 so 66 80 90 98 
28 3.110 06 11 21 35 52 68 82 91 99 
29 3.105 06 12 22 36 53 70 83 92 99 

30 3.102 06 12 22 37 ss 71 es 93 99 
31 3.098 07 12 23 39 56 73 86 94 99 
32 3.095 07 12 24 40 58 75 87 94 99 
33 3.091 07 13 24 41 59 76 88 9S * 34 3.088 07 13 25 42 61 77 89 96 

3S 3.086 07 13 26 43 62 79 90 96 
36 3.083 07 13 26 44 63 80 91 97 
37 3.081 07 14 27 45 65 81 92 97 
38 3.078 07 14 28 46 66 82 92 97 
39 3.076 07 14 28 47 67 83 93 98 
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Table 8.3.13 (continued} 

f 

n 'c .os .10 .IS .20 .:zs .30 .3S .Ito .so .60 .70 .80 

Ito 3.071t 07 IS 29 lt8 68 8ft ,.. 98 * * * * lt2 3.070 07 IS 30 51 71 86 9S 98 .... 3.066 07 16 32 S3 73 88 96 " lt6 3.063 07 16 33 ss ·7s 89 96 " lt8 3.060 08 17 34 57 77 90 97 , 
so 3.058 08 18 36 s8 79 92 98 " S2 3.0SS 08 18 37 60 80 93 98 * Sit 3.053 08 19 38 62 82 ,.. 98 
S6 3.0SI 08 19 Ito 6ft 83 ,.. 

" 58 3.049 08 20 It I 6S 85 95 " 
60 3.047 08 21 lt2 67 86 96 " 6ft 3.01tft 08 22 ItS 70 88 97 " 68 3.041 09 23 It] 73 90 98 * 72 3.039 09 2ft lt9 75 92 98 
76 3.036 09 2S 52 78 93 " 
80 3.031t 09 27 S4 80 ,.. 

" 8ft 3.032 10 28 S6 82 9S " 88 3.031 10 29 s8 8ft 96 , 
92 3.029 10 30 60 8s 97 * 96 3.028 10 31 62 87 97 

100 3.026 II 32 6ft 88 98 
120 3.021 12 38 73 ,.. 

" 140 3.018 lit .... 79 97 * 160 3.0IS IS .. , es 98 
180 3.013 16 Sit 89 " 
200 3.011 18 S9 92 * 2SO 3.008 22 69 97 
300 3.006 2S 78 " 350 3.004 29 8ft * ltoo 3.003 33 89 
It SO 3.002 36 92 

500 3.002 40 9S 
600 3.001 lt7 98 
700 3.000 53 " 800 3.000 59 * 900 2.999 6S 

1000 2.999 70 

* P-r values below thh pofnt are gr81ter than .99S. 
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T1ble 8.3.14 

Power of F test at a = .05, u z 3 

f 

n Fe .os .10 .IS .20 .2S .30 .3s .40 .so .60 .70 .eo 

2 6.S91 OS OS 06 06 07 07 08 09 II 13 17 20 
3 4.066 OS OS 06 07 08 09 II 13 18 2S 33 42 
4 3.490 OS 06 07 08 10 12 IS 18 27 38 so 62 

s 3.239 OS 06 07 09 12 IS 19 24 36 so 64 76 
6 3.098 OS 06 08 10 13 18 23 29 ..,. 60 7S 86 
7 3.009 OS 06 08 II IS 21 27 3S S2 69 83 92 
8 2.947 OS 07 09 12 17 24 31 40 59 77 89 96 
9 2.901 OS 07 09 14 19 27 36 46 66 82 93 98 

10 2.867 OS 07 10 IS 21 30 40 Sl 71 87 96 99 
II 2.839 06 07 II 16 Zit 33 ..,. ss 76 91 97 99 
12 2.817 06 08 II 17 26 36 48 60 81 93 98 .. 
13 2.798 06 08 12 19 28 39 S2 64 8lt 9S 99 
14 2.783 06 08 13 20 30 42 ss 68 87 97 99 

IS 2.770 06 08 13 21 32 4S 59 71 90 98 .. 
16 2.7S8 06 09 14 23 34 48 62 7S 92 98 
17 2.748 06 09 IS 24 37 Sl 6S 78 ,. 99 
18 2.740 06 09 16 26 39 S3 68 80 9S 99 
19 2.732 06 09 16 27 41 S6 71 83 96 99 

20 2.72S 06 10 17 28 43 S9 73 as 97 .. 
21 2.719 06 10 18 30 4S 61 76 87 98 
22 2.714 06 10 18 31 47 63 78 88 98 
23 2.709 06 10 19 32 49 66 80 90 99 
24 2.704 06 II 20 34 Sl 68 82 91 99 

2S 2.700 06 II 21 3S S3 70 8lt 93 99 
26 2.696 06 II 22 37 S4 72 8S ,. 99 
27 2.692 07 12 22 38 S6 74 87 ,. 99 
28 2.689 07 12 23 39 ~8 7S 88 9S * 29 2.686 07 12 24 It I 60 77 89 96 

30 2.683 07 13 2S 42 61 79 90 96 
31 2.680 07 13 2S 43 63 80 91 97 
32 2.678 07 13 26 ItS 6S 81 92 97 
33 2.675 07 14 27 46 66 83 93 98 ,. 2.673 07 lit 28 47 68 S4 ,. 98 

35 2.671 07 14 29 48 69 8S ,. 98 
36 2.669 07 14 29 so 70 86 95 99 
37 2.668 07 IS 30 51 72 87 96 99 
38 2.666 07 IS 31 S2 73 88 96 99 
39 2.664 07 IS 32 S3 74 89 97 99 
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Table 8.3.14 (continued} 

f 

n Fe .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .so 

ItO 2.663 07 16 32 54 76 90 97 99 ... ... ... ... 
lt2 2.660 07 16 34 57 78 91 98 ... 
.... 2.657 o8 17 35 59 80 93 98 
46 2.6SS o8 18 37 61 82 9lt 99 
ItS 2.653 o8 18 39 63 84 95 99 

50 2.651 o8 19 40 65 85 96 99 
52 2.6lt9 o8 20 lt2 67 87 96 99 
Sit 2.61t8 o8 20 lt3 69 88 97 99 
56 2.61t6 o8 21 45 71 89 97 ... 
58 2.61ts o8 22 46 72 90 98 

60 2.61t3 09 22 47 71t 91 98 
6lt 2.61tl 09 24 so 77 93 99 
68 2.639 09 25 53 80 95 99 
72 2.637 09 27 56 82 96 99 
76 2.635 10 28 58 84 97 ... 
80 2.633 10 29 61 86 97 
84 2.632 10 31 63 88 98 
88 2.631 10 32 65 90 98 
92 2.630 11 34 67 91 99 
96 2.629 11 3S 69 92 99 

100 2.628 11 36 71 93 99 
120 2.624 13 43 80 97 ... 
litO 2.621 lit 49 86 99 
160 2.619 16 ss 91 99 
180 2.618 18 61 9lt ... 
200 2.616 19 66 96 
250 2.614 24 77 99 
300 2.612 28 84 ... 
)50 2.611 32 90 
ltoo 2.611 37 93 
It so 2.610 41 96 

500 2.609 45 98 
600 2.609 53 99 
700 2.6o8 60 ... 
800 2.6o8 66 
900 2.607 72 

1000 2.607 77 

* ,_ values belaw this point ere gr•ter then .995. 
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Table 8.3.15 

Power of F test at a = .05, u = 4 

n Fe .os .10 .IS .20 .2S .)0 .)S .Ito .so .60 .70 .Bo 

2 S.l92 OS OS 06 07 08 08 09 10 13 IS 19 24 
3 3.478 OS OS 06 07 09 10 12 lit 20 28 38 48 

" ).OS6 OS 06 07 08 10 13 16 20 30 lt2 S6 69 

s 2.866 OS 06 07 09 12 16 21 26 Ito ss 70 83 
6 2.759 OS 06 08 10 '" 19 25 32 lo9 66 81 91 
7 2.690 05 06 09 12 16 22 30 39 sa 76 88 96 
8 2.642 OS 07 09 13 19 26 35 ItS 65 83 93 98 
9 2.606 OS 07 10 lit 21 29 Ito Sl 72 88 96 99 

10 2.579 06 07 10 16 23 33 ltlt S6 78 92 98 * II 2.SS8 06 08 II 17 26 37 49 61 82 94 99 
12 2.s1to 06 08 12 19 28 ItO S3 66 86 96 99 
13 2.S2S 06 08 13 20 31 It) 57 70 89 98 * lit 2.513 06 08 13 22 33 47 61 7/o 92 98 

IS 2.503 06 09 lit 23 36 so 65 78 94 99 
16 2.494 06 09 IS 25 38 S3 68 81 95 99 
17 2.486 06 09 16 26 Ito 56 71 83 96 * 18 2.479 06 09 17 28 It) 59 74 86 97 
19 2.473 06 10 17 30 ItS 62 77 88 98 

20 2.468 06 10 18 31 47 6S 79 90 99 
21 2.463 06 10 19 33 so 67 82 91 99 
22 2.458 06 11 20 )It 52 69 Sit 93 99 
23 2.1ts1t 06 11 21 )6 Sit 72 as 94 99 
24 2.451 06 11 22 37 56 74 87 95 * 
25 2.1t1t7 06 12 23 39 58 76 89 96 
26 2.ltltlt 07 12 23 Ito 60 78 90 96 
27 2.ltlt1 07 12 2/o lt2 62 80 91 97 
28 z.lt39 07 13 25 It) 6lt 81 92 98 
29 2.1t)6 07 13 26 Its 66 8) 93 98 

30 2.434 07 13 27 46 67 8lt 9lt 98 
31 2.432 07 lit 28 48 69 86 95 99 
32 2.430 07 lit 29 49 71 87 96 99 
33 2.428 07 lit 30 51 72 88 96 99 
)It 2.427 07 IS 30 52 74 89 97 99 

35 2.lt25 07 IS 31 Sit 75 90 97 99 
36 2.424 07 15 32 55 76 91 97 * 37 2.422 07 16 33 56 78 92 98 
38 2.421 07 16 )It 57 79 92 98 
39 2.419 07 16 35 59 Bo 93 98 
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Tlble 8.3. 15 (continu«JJ 

f 

n Fe .os .10 .IS .20 .2S .30 .35 .Ito .so .60 .70 .80 

ItO 2.418 07 17 36 60 81 ,.. 99 * * * * * lt2 2.1t16 o8 18 37 62 83 9S 99 .... 2 ...... o8 18 39 65 8s 96 99 
lt6 2.lt12 08 19 ... 67 87 97 99 
lt8 2.1t10 08 20 lt3 69 89 97 * 
so 2.409 08 21 .... 71 90 98 
52 z.lt07 o8 21 lt6 n 91 98 
Sit 2.406 08 22 ItS 75 92 99 
56 2.405 09 23 lt9 77 93 99 
S8 2.1t01t 09 Zit 51 78 ,.. 99 

60 2.403 09 Zit 52 80 95 99 
6lt 2.1t01 09 26 ss 83 96 * 68 2.399 09 28 58 ss 97 
72 2.397 10 29 61 87 98 
76 2.396 10 31 6lt 89 98 

80 2.395 '10 32 66 91 99 
8lt 2.3,.. 11 )It 69 92 99 
88 2.393 11 35 71 ,.. 99 
92 2.392 11 37 73 95 * 96 2.391 11 39 75 96 

100 2.390 12 ItO 77 96 
120 2.387 13 lt7 8S 99 
litO 2.385 IS Sit 91 99 
160 2.)8) 17 61 ,.. 

* 180 2.)82 18 67 97 

200 2.)81 20 72 98 
250 2.379 25 82 * 300 2.378 29 89 
350 2.377 ,.. ,.. 
ltOO 2.376 39 96 
It SO 2.376 .... 98 

soo 2.376 .. , 99 
600 2.375 57 * 700 2.371t 65 
800 2.371t 72 
900 2.371t 78 

1000 2.371t 82 

* ,_ wlues Mlow this pofnt oro greater than .995, 
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Tmle8.3.16 

Power of F test at a • .05. u = 5 

f 

n Fe .os .10 • 15 .20 .25 .30 .35 .40 .so .60 .70 .80 

2 4.387 OS OS 06 07 08 08 09 10 13 17 21 26 
3 3.106 05 06 06 07 09 " 13 IS 22 31 42 53 
4 2.773 05 06 07 08 " 14 17 22 33 47 61 75 

5 2.621 05 06 07 10 13 17 22 29 44 61 76 88 
6 2.534 OS 06 08 " IS 21 27 35 S4 72 86 94 
7 2.478 OS 07 09 12 18 24 33 42 63 81 92 98 
8 2.438 OS 07 09 14 20 28 38 49 71 87 96 99 
9 2.409 OS 07 10 15 23 32 43 ss 77 92 98 * 

10 2.391 06 07 II 17 2S 36 48 61 83 95 99 
II 2.368 06 08 12 19 28 40 53 66 87 97 99 
12 2.354 06 08 13 20 31 44 58 71 90 98 * 13 2.342 06 08 13 22 33 47 62 75 93 99 
14 2.332 06 09 14 24 36 51 66 79 95 " 
IS 2.324 06 09 15 25 39 55 70 82 96 * 16 2.316 06 09 16 27 42 s8 n 8s 97 
17 2.310 06 10 17 29 44 61 76 88 98 
18 2.304 06 10 18 30 47 64 79 90 " 19 2.299 06 10 19 32 49 67 82 92 " 
20 2.294 06 II 20 34 52 70 84 93 " 21 2.290 06 II 21 36 S4 72 86 94 * 22 2.286 06 " 22 )7 57 75 88 95 
23 2.283 06 II 22 39 59 77 90 96 
24 2.280 06 12 23 41 61 79 91 97 

25 2.277 07 12 24 43 63 81 92 98 
26 2.275 07 13 25 44 65 83 93 98 
27 2.272 07 13 26 46 67 84 ,. 98 
28 2.270 07 13 27 lt7 69 86 95 " 29 2.268 07 14 28 49 71 87 96 " 
30 2.266 07 14 29 51 73 88 96 " 31 2.265 07 14 30 52 7lo 90 97 " 32 2.263 07 IS 31 S4 76 91 97 * 33 2.262 07 15 32 ss 77 92 98 
34 2.260 07 16 33 57 " 93 98 

3S 2.259 07 16 )It 58 8o 93 98 
36 2.257 07 16 3S 6o 81 ,. 

" )7 2.256 07 17 ,, 61 83 95 " 38 2.255 07 17 37 62 Bit 95 99 
39 2.2S4 08 18 38 64 85 96 99 
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Tillie 8.3. 16 fcontinutld) 

, 
n F c .os .10 .1S .20 .2S .30 .3S .Ito .so .60 .70 .80 

ItO 2.253 08 18 39 6S 86 96 " * * * * * lt2 2.2S1 08 19 41 68 88 97 * .... 2.249 08 20 lt3 70 89 98 

"' 2.248 08 21 4S 72 91 98 
lt8 2.2116 08 21 47 74 92 " so 2.245 08 22 48 76 93 99 
52 2.244 09 23 so 78 94 " S4 2.243 09 24 52 80 95 " 56 2.242 09 25 S4 82 96 * 58 2.241 09 26 55 83 96 

60 2.240 09 26 57 85 97 
64 2.238 09 28 60 87 98 
68 2.237 10 30 63 89 " 72 2.235 10 32 66 91 " 76 2.234 10 33 69 93 " 80 2.233 11 35 72 94 " 84 2.232 11 37 74 95 * 88 2.232 11 , 76 96 
92 2.231 12 40 78 97 
96 2.230 12 42 80 97 

100 2.229 12 44 82 98 
120 2.227 14 52 89 " 11t0 2.22S 16 59 94 * 160 2.224 18 66 97 
180 2.223 20 72 98 

200 2.222 23 77 " 250 2,220 28 87 * 300 2.219 33 93 
350 2.218 , 96 
400 2.218 44 98 
4SO 2.217 49 " 
soo 2.217 54 * 600 2.217 63 
700 2.216 71 
800 2.216 77 
900 2.216 83 

1000 2.216 87 

* ,_ velues below thh point ere grMter then .995, 
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Table 8.3.17 

Power of F test at a = .05. u = 6 

f 

n Fe .os .to ,IS .zo .zs .30 .3S ,Ito .so ,60 ,]0 .eo 

2 3.866 OS OS 06 07 08 08 09 II '" 18 23 29 
3 z.BitB OS 06 06 08 09 II 13 16 24 34 46 51 

" 2.5n OS 06 07 09 II lit 18 23 36 51 66 80 

5 z.lt45 OS 06 08 10 13 18 zit 31 48 66 81 91 
6 2.372 OS 06 08 II 16 22 30 38 58 77 90 96 
7 2.324 OS 07 09 13 19 26 35 46 68 85 95 99 
8 2.291 OS 07 10 IS 21 30 41 53 76 91 98 * 9 2.266 06 07 II 16 zit 35 47 60 82 9lt 99 

10 2.246 06 08 II 18 27 39 52 66 87 97 * II 2.231 06 08 12 20 30 43 57 71 90 98 
12 2.219 06 08 13 22 33 47 62 76 93 99 
13 2.209 06 09 14 23 36 51 67 eo 95 99 
14 2.200 06 09 IS 25 39 55 71 83 97 * 
IS 2.193 06 09 16 27 42 59 74 86 98 
16 2.186 06 10 17 29 Its 62 78 89 98 
17 2.181 06 10 18 31 48 66 81 91 99 
18 2.176 06 10 19 33 St 69 83 93 99 
19 2.171 06 II 20 3S 53 72 86 9lt * 
20 2.168 06 II 21 37 56 74 88 9S 
21 2, I 6lt 06 II 22 39 58 77 90 96 
22 2.161 06 12 23 Ito 61 79 91 97 
23 2.158 07 12 24 ltz 63 81 93 98 
24 2.156 07 12 zs .... 6S 83 9lt 98 

zs 2,153 07 13 26 46 68 es 9S 99 
26 2. lSI 07 13 27 48 70 87 96 99 
27 2,149 07 14 28 so 72 88 96 99 
28 2.147 07 14 29 Sl 74 89 97 99 
29 2.145 07 14 30 S3 7S 91 97 * 
30 Z,lltlt 07 IS 31 ,ss 77 92 98 
31 2,142 07 IS 33 56 79 93 98 
32 2.141 07 16 34 se 80 93 99 
33 2.140 07 16 3S 60 82 9lt " 34 2.138 07 17 36 61 83 9S 99 

3S 2.137 07 17 37 63 8ft 96 99 
36 2.136 07 17 38 6lt es 96 99 
37 2.135 08 18 39 66 87 97 99 
38 2.134 08 18 ItO 67 88 97 * 39 2.133 08 19 Itt 68 89 97 
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Tlble 8.3.17 (continued} 

f 

II Fe .os .10 .IS .zo .2S .30 .35 .Ito .so .60 .70 .80 

Ito 2.132 08 19 lt2 70 89 98 * * * * * * lt2 2.1)1 08 20 .... 72 91 98 .... 2.129 08 21 lt6 75 92 " lt6 2.128 08 22 lt8 77 ,.. 
" ... 2.126 08 23 so 79 95 " 

so 2.125 09 21t 52 81 " " 52 2.12 .. 09 25 511 82 " * 511 2.123 09 26 56 8lt 97 
S6 2.122 09 27 58 86 97 
S8 2.122 09 27 60 87 98 

60 2.121 09 28 61 88 98 
611 2.119 10 30 65 91 " 68 2.118 10 32 68 92 , 
72 2.117 10 , .. 71 ,.. , 
76 2.116 II 36 711 95 * 
80 2.115 II 38 76 " 8lt 2.lllt 12 ItO 78 97 
88 2.11 .. 12 lt2 81 98 
92 2.113 12 .... 83 98 

" 2.112 13 ItS 8lt " 
100 2.112 13 lt7 86 " 120 2.110 IS 56 92 * litO 2.108 17 611 " 160 2.107 19 71 98 
180 2.106 21 76 " 
200 2.105 23 81 * 250 2.1011 29 90 
)00 2.103 3S 9S 
350 2.102 Ito 98 
ltoo 2.102 116 " It so 2.102 52 * 
soo 2.101 57 
600 2.101 67 
700 2.100 75 
800 2.100 82 
900 2.100 87 

1000 2.100 91 

* ,_r ,.luea belaw thla point ere gr•t•r thlln .995. 
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Table 1.3.18 

Power of F test at a • .05. u z 8 

f 

ft Fe .os .to .IS .20 .2S .30 .)S .40 .so .60 .70 .so 

2 3.230 OS OS 06 07 08 09 10 II IS 20 26 34 
3 2.510 OS 06 06 08 10 12 IS 18 28 40 53 67 
4 2.305 OS 06 07 09 12 16 21 27 42 59 7S 87 

s 2.208 OS 06 08 II IS 20 27 3S ss 74 Ill " 6 2.1S2 OS 07 09 12 18 25 34 44 66 84 9S 99 
7 2.115 OS 07 10 14 21 30 ,., 53 76 91 " * 8 2.089 06 07 10 16 24 3S 47 60 83 9S " 9 2.070 06 08 II 18 27 110 Sit 67 18 ,a • 

10 2.055 06 08 12 20 31 ItS 60 73 92 99 
II 2.043 06 08 n 22 34 49 65 79 95 " 12 2.033 06 09 ... 24 38 54 70 83 97 * n 2.025 06 09 IS 26 ,., 58 74 87 98 
tit 2.018 06 09 17 29 ItS 62 78 90 " 
IS 2.013 06 10 18 31 48 66 82 92 99 
16 2.008 06 10 19 33 St 70 8S ,.. 

* 17 2.004 06 10 20 3S Sit 73 87 9S 
18 2.000 06 II 21 37 57 76 90 97 
19 1.996 06 II 22 40 60 79 91 f7 

20 1.993 06 12 23 42 63 82 93 98 
21 1.990 07 12 2S 44 66 84 ,.. 

" 22 1.988 07 I) 26 46 68 86 95 " 23 1.986 07 13 27 48 71 88 96 " 2lt 1.984 07 13 28 so 73 ., 97 " 
2S 1.982 07 '" 29 S2 75 91 98 * 26 1.98o 07 14 31 Sit 77 92 98 
27 1.978 07 IS 32 56 79 93 " 28 1.977 07 IS 33 sa 81 ,.. 99 
29 1.976 07 16 34 60 83 9S 99 

30 1.974 07 16 36 62 Bit 96 " 31 1.973 07 17 37 64 86 96 " 32 1.972 07 17 38 6S 87 97 * 33 1.971 08 18 39 67 88 97 
34 1.970 08 18 41 69 89 98 

35 1.969 08 19 42 70 90 98 
36 1.968 08 19 43 72 91 98 
37 1.967 08 20 "" 73 92 " 38 1.967 08 20 46 7S 93 " n 1.966 08 21 lt7 76 ,.. 

" 
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Tlble 8.3.18 (continued} 

, 
n Fe .os .10 .IS .20 .2S .)0 .3S .Ito .so .60 .70 .80 

Ito 1.96s 08 21 lt8 77 ,.. 99 * * * * * * lt2 1.961t 08 22 so 80 9S 99 .... 1.963 08 23 53 82 96 * lt6 1.962 09 25 ss Bit 97 
lt8 1.961 09 26 S7 86 'J8 

so 1.960 09 27 S9 87 'J8 
S2 1.959 09 28 61 89 99 
Sit 1.958 09 29 63 90 99 
56 1.957 09 30 6S 91 99 
S8 1.957 10 31 67 92 99 

60 1.956 10 32 69 93 99 
6lt I .95S 10 )It 72 95 * 68 1.9Sit 11 37 7S 96 
72 1.953 11 39 78 97 
76 1.952 12 It I 81 'J8 

80 1.9S2 12 It) 83 'J8 
Bit 1.951 12 ItS as 99 
88 1.950 13 It& 87 99 
92 1.9SO 13 so 89 99 
96 1.91t9 lit 52 90 * 

100 1.91t9 lit Sit 92 
120 1.91t7 17 63 96 
lito 1.91t6 19 71 98 
160 1.91ts 22 78 99 
180 .. ,.... Zit 83 * 
200 .. ,.... 27 88 
2SO 1.91t3 , .. 95 
300 1.91tz It I 'J8 
3SO 1.91tl 48 99 
400 1.91t1 Sit * It SO 1.91t1 60 

soo I. 'Jito 66 
600 1.91to 7S 
700 1.91to 82 
800 1.91to 88 
900 1.91to 92 

1000 1.939 9S 

* P-r ,., .. , below thfa pofnt ere grMter then .995. 
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Table 8.3. 19 

Power of F test at a = .05, u • 10 

f 

n F .os c .10 .IS .20 .zs .30 .3S .40 .so .60 .70 .eo 

2 2.854 OS OS o6 07 08 09 10 12 16 23 30 39 
3 2.2S8 OS o6 07 09 II 13 17 21 32 46 62 76 
4 2.133 OS o6 07 10 13 17 23 30 47 65 81 92 

s 2.053 OS 06 08 II 16 22 30 40 61 80 92 98 
6 2.008 OS 07 09 13 19 28 38 so 73 90 97 * 7 1.978 OS 07 10 IS 23 33 4S 59 82 95 99 
8 1.956 o6 07 II 17 27 39 53 67 88 98 * 9 1.940 06 08 12 20 31 44 60 74 93 99 

10 1.928 06 08 13 22 34 so 66 80 96 * II 1.91·~ o6 09 14 24 38 55 71 84 97 
12 1.910 06 09 IS 27 42 60 76 88 98 
13 1.903 o6 09 17 29 46 65 81 91 99 
14 1.898 06 10 18 32 so 69 84 94 * 
15 1.893 06 10 19 34 53 73 87 95 
16 1.889 06 II 20 37 57 76 90 97 
17 1.885 06 II 22 39 60 79 92 98 
18 1.882 06 12 23 42 64 82 94 98 
19 1.879 06 12 24 44 67 es 95 99 

20 1.877 07 12 26 47 69 87 96 99 
21 1.874 07 13 27 49 72 89 97 99 
22 1.872 07 13 29 51 75 91 98 * 23 1.870 07 14 30 S4 77 92 98 
24 1.869 07 14 31 S6 79 93 99 

2S 1.867 07 15 33 58 81 94 99 
26 1.866 07 15 34 60 83 95 99 
27 1.864 07 16 36 62 8S 96 99 
28 1.863 07 17 37 64 86 97 * 29 1.862 07 17 38 66 88 97 

30 1.861 07 18 40 68 89 98 
31 1.860 08 18 41 70 90 98 
32 1.8S9 08 19 43 72 91 99 
33 1.858 08 19 44 73 92 99 
34 1.857 08 20 45 7S 93 99 

35 1.8S6 08 21 47 76 94 99 
36 1.8S6 08 21 48 78 9S 99 
37 1.855 08 22 49 79 95 99 
38 1.8$4 08 22 51 81 96 * 39 1.854 08 23 52 82 96 
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Table 8.3. 19 (continu«<) 

, 
n Fe .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .80 

ItO l.as3 08 23 53 83 97 * * * * * * * lt2 l.as2 09 25 56 as 98 ..,. l.asl 09 26 sa a7 98 

"' l.aso 09 27 61 89 " lt8 1.849 09 28 63 90 " 
so I .81t8 09 30 6S 92 " 52 I .81t8 10 31 6"7 93 " Sit 1.847 10 32 69 tit * S6 I .846 10 33 71 95 
sa I .846 10 35 73 96 

60 1 .Sits 10 36 75 96 
6lt 1.81ts " 38 78 97 
68 I .Sijft " It I 81 98 
72 I .843 12 .. , 84 " 76 I .842 12 "' 86 " 
80 I .842 13 lt8 88 " 84 I .lilt I 13 51 90 * 88 I .lilt I lit 53 92 
92 I .840 lit 55 93 
96 I .840 15 57 ,. 

100 1.839 IS 60 95 
120 1.838 18 69 98 
litO l.a37 21 77 " 160 1.836 24 Bit * 180 1.836 27 88 

200 1.835 30 92 
250 1.831t 38 97 
300 1.831t lt6 " 350 1.833 S3 * ltoo 1.833 60 
ltSO 1.833 66 

500 1.832 72 
600 1.832 81 
700 1.832 88 
800 1.832 92 
900 1.832 95 

1000 1.832 97 

* P-r ¥111ues bel• thfs potnt are gr•ter tNn .995. 
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Table 8.3.20 

Power of F test at a • .05, u ~ 12 

n Fe .os .10 .IS .20 .25 .)0 .35 .Ito .so .60 .70 .80 

2 2.604 OS OS 06 07 08 09 II I) 18 25 )It " 3 2.148 OS 06 07 08 10 I) 17 22 34 so 66 80 .. 2.010 OS 06 08 10 14 18 25 33 52 71 86 95 

s '·'" OS 06 09 12 17 24 33 " 67 as 9S 99 
6 1.905 05 07 10 , .. 21 )0 42 Sit 78 93 99 * 7 1.879 06 07 II 16 25 36 so 6lt 87 97 * 8 1.860 06 08 12 19 29 43 58 72 92 99 
9 1.847 06 08 13 21 33 lt9 6S 79 95 * 

10 1.8)6 06 08 14 24 38 ss 71 as 98 
11 1.827 06 09 15 26 lt2 60 77 89 99 
12 1.821 06 09 17 29 lt6 65 81 92 99 
13 1.815 06 10 18 32 51 70 as 94 * lit 1.810 06 10 19 35 55 71t 88 96 

IS 1.806 06 11 21 37 sa 78 91 97 
16 1.802 06 II 22 40 62 81 93 98 
17 1.799 06 12 21t lt3 66 84 95 99 
18 1.796 07 12 25 46 69 87 96 99 
19 1.794 07 13 27 48 72 89 97 99 

20 1.792 07 13 28 Sl 75 91 98 * 21 1.790 07 , .. )0 Sit 77 92 98 
22 1.788 07 lit )I 56 80 94 99 
23 1.786 07 15 33 59 82 95 99 
24 1.785 07 IS )It 61 84 96 99 

25 I .784 07 16 36 63 86 97 * 26 1.782 07 17 37 65 88 97 
27 1.781 07 17 39 68 89 98 
28 1.780 07 18 41 70 90 98 
29 1.779 08 18 42 72 92 99 

30 1.778 08 19 " 73 93 99 
31 1.777 08 20 45 75 94 99 
32 1.776 08 20 47 77 94 99 
33 1.776 08 21 48 78 95 99 
)4 1.775 08 22 so 80 96 * 
35 1.77 .. 08 22 Sl 81 96 
36 1.774 08 23 53 83 97 
37 1.773 08 24 54 84 97 
)8 1.773 08 24 ss as 98 
39 1.772 09 25 57 86 98 
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Table 8.3.20 I continued} 

f 

n , .os c .10 .15 .20 .25 .30 .)S .Ito .so .60 .70 .80 

Ito 1.771 09 26 58 87 98 * * * * * * * lt2 I .771 09 27 61 89 99 
ltlt 1.770 09 28 63 91 99 
lt6 1.769 09 30 66 92 99 
lt8 1.768 10 31 68 9lt * 
so 1.768 10 32 71 95 
52 1.767 10 31t 73 96 
Sit 1.766 10 3S 7~ 96 
56 1.766 11 36 77 97 
58 1.766 11 38 78 97 

60 1.765 11 39 eo 98 
6lt 1. 76lt 11 lt2 83 99 
68 1.763 12 ItS 8~ 99 
72 I .763 12 117 88 99 
76 1. 762 13 so 90 * 
80 I .762 111 53 92 
811 1.761 Ill 55 93 
88 I. 761 IS 58 95 
92 1.760 15 60 96 
96 1.760 16 62 96 

100 I. 760 16 65 97 
120 1.759 19 7'+ 99 
140 1.758 23 82 * 160 1.7S7 26 88 
180 1.756 29 92 

200 1.756 33 95 
250 I .755 ltl 98 
300 I. 755 so * )SO 1. 7511 58 
1100 1.75'+ 65 
1150 I. 75'+ 71 

500 1.7511 77 
600 1.753 86 
700 1. 753 91 
800 1.753 95 
900 I .753 91 

1000 1. 753 98 

* Power values below this pofnt ere greeter then .995. 
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Table 8.3.21 

Power ofF test at a= .05. u = 15 

f 

n Fe: .05 ,10 ,IS ,20 .25 ,30 .3s .40 .so ,60 .70 .eo 

2 2.352 OS OS 06 07 08 10 12 14 20 28 39 51 
3 1.992 OS 06 07 09 II IS 19 25 39 57 74 87 
4 1.880 OS 06 08 II IS 20 28 37 51! 78 92 98 

s 1.826 OS 07 09 13 19 27 38 so 74 91 98 * 6 1.794 OS 07 10 IS 23 34 47 61 as 96 * 7 1.772 06 07 II 18 28 41 56 71 92 99 
8 1,7S7 06 08 12 21 33 48 6S 79 96 * 9 1.745 06 08 14 24 38 ss 72 as 98 

10 1.736 06 09 IS 27 43 61 78 90 99 
II 1,729 06 09 17 30 47 67 83 93 * 12 1.724 06 10 18 33 52 72 87 96 
13 I, 719 06 10 20 36 57 77 90 97 
14 1.715 06 II 21 39 61 81 93 98 

IS 1.711 06 II 23 42 6S 84 95 99 
16 1,708 06 12 25 45 69 87 96 99 
17 1.706 07 12 26 48 72 90 97 * 18 1.704 07 13 28 51 76 92 98 
19 1,702 07 14 30 54 78 93 99 

20 1,700 07 14 31 57 81 95 99 
21 1.698 07 IS 3J 60 84 96 99 
22 1,696 07 16 35 63 86 97 * 23 1.695 07 16 37 65 88 97 
24 1.694 07 17 39 68 89 98 

25 1,693 07 17 40 70 91 98 
26 1.692 07 18 42 72 92 99 
27 1.691 08 19 44 74 93 99 
28 1.690 08 20 46 75 94 99 
29 1.689 08 20 47 78 95 * 
30 1.688 08 21 49 80 96 
31 1.687 08 22 51 82 97 
32 1.687 08 22 52 83 97 
33 1,686 08 23 S4 84 98 
34 1.686 08 24 56 86 98 

35 1.685 09 25 57 87 98 
36 1.684 09 25 59 88 99 
37 1,684 09 26 60 89 99 
38 1.683 09 27 62 90 99 
39 1.683 09 28 63 91 99 
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Tlble 8.3.21 (continued} 

f 

n Fe .os .to .IS .20 .25 .30 .35 ,Ito .so ,60 .70 .80 

ItO 1,683 09 28 65 92 99 * * * * * * * lt2 1,682 09 30 68 93 * 
"" 1,681 10 )2 70 9S 
lt6 1,680 10 )3 73 96 
lt8 1,680 10 35 75 97 

so 1.679 10 )6 77 97 
52 1,679 II 38 79 98 
Sit 1.678 II 39 81 98 
56 1.678 II Itt 83 99 
58 1.677 II It) 84 99 

60 1,677 12 .... 86 99 
64 1.676 12 47 89 99 
68 1.676 13 so 91 * 72 1,675 13 S3 93 
76 1,675 , .. 56 ,.. 
80 1.674 IS 59 95 
84 1,674 IS 62 96 
88 1.674 16 64 97 
92 1.673 17 67 98 
96 1.67) 17 69 98 

100 1,673 18 71 99 
120 1.672 21 81 * litO 1.671 25 88 
160 1.670 2!J !J2 
180 1,670 33 96 

200 1.670 37 97 
250 1.669 47 99 
300 1.669 56 * 3SO 1.668 64 
400 1,668 72 
It SO 1,668 78 

soo 1.668 83 
600 1.667 91 
700 1,667 95 
800 1.667 97 
900 1.667 99 

1000 1.667 99 

* P-r Wllues be1- this point are greater than ,995, 
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Teble 8.3.22 

Power of F test at a = .05, u = 24 

f 

n F .os c 
,10 .IS ,20 .2S .30 .3S ·"0 .so .60 .70 .80 

2 I ,9611 OS 06 06 08 09 II 1" 17 26 39 53 69 
3 1.737 OS 06 07 10 13 1a 2" 32 S2 73 aa 96 

" 1.663 OS 07 09 12 Ia 26 37 "9 7" 91 9a * 
s 1.627 OS 07 10 IS 2" 35 "9 61! aa 9a * 6 1,60S 06 08 12 19 30 "S 61 76 9S * 7 I.S90 06 08 13 22 36 Sli 71 as 9a 
a 1 .sao 06 09 IS 26 "3 62 79 91 99 
9 1 .sn 06 09 17 30 "9 69 a6 9S * 

10 1 .s66 06 10 19 3" ss 76 90 97 
II I .S61 06 II 21 )a 61 al 91! 99 
12 I.SS7 06 II 23 "2 66 a6 96 99 
13 I.SSI! 06 12 2S "7 71 89 9a * I" I.SSI 07 13 27 Sl 76 92 9a 

IS I ,5li9 07 13 29 S4 80 94 99 
16 I .Sli6 07 14 32 sa a) 96 99 
17 I,Sl!S 07 IS 34 62 86 97 * 18 1.543 07 16 36 6S 89 98 
19 I .Sli2 07 16 )a 69 91 99 

20 l,Sl!O 07 17 "I 72 92 99 
21 1.539 07 18 43 75 91! 99 
22 I,S3a 08 19 "S 77 9S * 23 1.S37 oa 20 "a 80 96 
24 1.536 08 21 so 82 97 

2S I.S36 oa 22 S2 84 98 
26 I.S3S 08 23 S4 86 98 
27 I.S34 o8 2 .. 57 87 99 
28 1.533 08 25 59 89 ~ 
29 1.533 09 25 61 90 99 

30 1.532 09 26 63 92 99 
31 1.532 09 27 6S 93 * 32 1.531 09 28 66 91! 
33 1,531 09 29 68 91! 
34 I .S31 09 30 70 9S 

3S I.S30 09 31 72 96 
36 1.530 10 32 73 96 
37 I,S29 10 34 75 97 
38 1.529 10 3S 76 97 
39 1,S29 10 36 7a 98 
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Tmle 8.3.22 (continuedl 

f 

" Fe .05 .10 .IS ,20 .25 .30 .35 .Ito .so .60 .70 .80 

Ito 1.529 10 37 79 98 * * * * * * * * lt2 1.528 11 39 82 99 .... 1.528 11 .. , 8lt 99 
lt6 1.527 11 lt3 86 99 
lt8 1.527 12 ItS 88 * 
so 1.526 12 lt7 90 
52 1.526 12 49 91 
54 1.526 13 51 92 
56 1.525 13 53 93 
58 1.525 13 55 94 

60 1.525 14 57 95 
6lt 1.524 , .. 60 97 
68 1.524 IS 6lt 98 
72 1.S23 16 67 98 
76 1.523 17 70 99 

80 1.523 18 73 99 
8lt 1.523 18 76 99 
88 1.522 19 79 * 92 1.522 20 81 
96 1.522 21 83 

100 1.522 22 85 
120 1.521 26 92 
litO 1.520 31 96 
160 1.520 36 98 
180 1.520 41 99 

200 1,519 47 * 250 1.519 59 
300 1.519 70 
350 1.519 78 
ltoo 1.518 85 
450 1.518 90 

soo 1.518 94 
600 1,518 98 
700 1,518 99 
800 1.518 * 900 1.518 

1000 1.518 

* Power velues below this point ere greeter then ,995, 
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Table 8.3.23 

Power of F test at a E .10. u = 1 

n F .os c .10 ,IS .20 .25 .30 .35 ,40 .so ,60 .70 ,80 

2 8.526 10 II 12 13 13 14 IS 17 20 23 27 30 
3 4,S4S 10 II 12 13 IS 17 19 22 28 35 42 so .. 3.776 10 II 13 14 17 20 23 27 36 ItS ss 64 

s 3.458 10 II 13 16 19 23 27 32 43 ss 66 76 
6 3.285 10 12 14 17 21 26 )I 37 so 6) 74 83 
7 3.177 10 12 IS 19 23 29 3S 42 56 69 80 89 
8 ),102 10 12 IS 20 25 32 39 47 62 75 85 92 
9 3.048 10 13 16 21 28 35 43 51 66 80 89 95 

10 3.007 10 13 17 23 30 37 46 ss 71 83 92 97 
II 2.975 II 13 18 24 32 40 49 58 75 87 94 98 
12 2.949 II 14 19 25 34 43 52 62 78 89 96 99 
13 2,927 II 14 19 27 36 4S ss 65 81 91 97 99 
14 2.909 II 14 20 28 37 48 s8 68 83 93 98 99 

IS 2.894 II IS 21 29 39 so 60 70 86 95 98 * 16 2.881 II IS 22 31 41 52 6) 73 88 96 99 
17 2,869 II IS 23 32 4) 54 6S 75 89 97 99 
18 2.859 II 16 23 33 45 56 68 77 91 97 99 
19 2.850 II 16 24 34 46 58 70 79 92 98 * 
20 2.843 II 16 25 36 48 60 72 81 93 98 
21 2.836 II 17 26 37 so 62 73 83 94 99 
22 2.829 II 17 26 38 51 64 75 84 95 99 
23 2.823 II 18 27 39 53 66 77 86 96 99 
24 2,818 12 18 28 40 54 67 78 87 96 99 

25 2.813 12 18 29 42 56 69 eo 8& 97 99 
26 2.809 12 19 29 43 57 70 81 89 97 * 27 2.805 12 19 30 44 58 72 8) 90 98 
28 2.801 12 19 31 45 60 73 84 91 98 
29 2.797 12 20 32 46 61 74 8s 92 98 

30 2.794 12 20 32 47 62 76 86 93 99 
31 2.791 12 20 33 48 63 77 87 93 99 
32 2.788 12 21 34 49 65 78 88 94 99 
33 2.786 12 21 34 so 66 79 89 95 99 
34 2,783 12 21 35 51 67 80 90 95 99 

35 2.781 13 22 36 52 68 81 90 96 99 
36 2.779 13 22 36 53 69 82 91 96 * 37 2.777 13 22 37 54 70 83 92 96 
)8 2.77S 13 23 38 ss 71 84 92 97 
39 2.773 13 23 38 56 72 es 93 97 
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Table 8.3.23 (continued} 

f 

n Fe .os .10 .IS .20 .zs .]0 .35 ... o .so .60 .70 .eo 

.. 0 2.771 13 2 .. 39 57 73 85 93 97 * * * * .. 2 2.768 13 2 .. .. 0 59 75 87 94 98 .... 2.765 13 25 .. 2 60 77 88 95 98 

.. 6 2.762 ... 26 .. 3 62 78 90 96 99 
118 2.760 ... 26 .... 63 80 91 96 99 

so 2.758 ... 27 .. s 65 81 92 97 99 
52 2.756 ... 28 47 66 82 92 97 99 
5I! 2.751! 14 28 .. 8 68 811 93 98 99 
56 2.752 ... 29 .. 9 69 85 94 98 * 
S8 2.750 IS 30 so 71 86 9S 98 

60 2.7 .. 9 15 30 51 72 87 9S 99 
611 2. 7116 IS 31 53 7 .. 89 96 99 
68 2.7 .. 3 16 33 56 76 90 97 99 
72 2.7 .. 1 16 3 .. 58 78 92 98 99 
76 2.739 16 35 59 80 93 98 * 
80 2.738 17 36 61 82 94 99 
811 2.736 17 38 63 84 95 " 88 2.735 17 39 6S &5 96 99 
92 2.733 18 40 67 86 96 " 96 2.732 18 41 68 88 97 " 

100 2.731 18 42 70 89 97 * 120 2.727 20 .. 8 76 93 99 
lito 2.724 22 53 82 96 99 
160 2.721 24 57 86 98 * 180 2.719 2S 62 89 99 

200 2.718 27 6S 92 99 
250 2.716 31 711 96 * 300 2.71 .. 35 80 98 
350 2.713 39 es 99 
.. 00 2.712 42 89 * .. so 2.711 46 92 

soo 2.711 49 94 
600 2.710 ss 97 
700 2.709 61 98 
800 2.709 66 99 
900 2.708 70 * 1000 2.708 7 .. 

* P-r values below this point are gr•ter then .995. 
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Table 8.3.24 

Power ofF test at a • .10. u = 2 

f 

n Fe .os .10 .IS .20 .2S .30 .35 .Ito .so .60 .70 .eo 

2 s.lt6z 10 II 12 13 13 lit IS 17 20 23 27 32 
3 3.'+63 10 II 12 lit IS 17 20 22 29 36 ItS 53 
It ).Oo6 10 II 13 IS 17 20 zit 28 38 lt8 59 70 

s 2.807 10 IZ 13 16 zo Zit Z9 )It lt6 59 71 81 
6 Z.69S 10 IZ ,,. 18 zz Z7 33 ItO Sit 68 80 89 
7 Z.6Zit 10 IZ IS 19 Zit 30 37 '+s 61 7S 86 93 
8 Z.S7S II 13 16 Zl 27 )It ,., so 67 81 90 96 
9 2.538 II 13 17 22 29 37 ItS ss 72 es 9lt 98 

10 2.511 II 13 18 21t 31 Ito lt9 59 76 89 96 99 
II 2.lt89 II lit 18 25 33 It) 53 63 80 92 97 99 
12 2.1t71 II lit 19 27 36 lt6 S6 67 8lt 9lt 98 * 13 2.1tS6 II lit 20 28 38 '+9 60 70 86 9S 99 
lit 2.ltltlt II IS 21 30 ItO Sl 63 73 89 97 99 

IS 2.1t31t II IS 22 31 lt2 Sit 66 76 91 97 * 16 2.1t2S II 16 23 32 ..,. S6 68 79 92 98 
17 2.1t17 II 16 21t )It lt6 59 71 81 9lt 99 
18 2.lt10 II 16 2lt 35 lt8 61 73 8) 95 99 
19 2.1t01t II 17 2S 37 so 63 75 85 96 99 

20 2.398 12 17 26 38 52 6S 77 87 97 * 21 2.393 12 17 27 39 53 67 79 88 97 
22 2.389 12 18 Z8 It I ss 69 81 90 98 
23 2.385 12 18 29 lt2 57 71 83 91 98 
2lt 2.381 12 19 Z9 4) 59 73 8lt 92 99 

2S 2.378 12 19 30 4S 60 74 86 93 99 
26 2.375 12 19 31 46 62 76 87 9lt 99 
27 2.372 12 20 32 47 63 78 88 95 99 
Z8 Z.369 IZ zo 33 48 6S 79 89 9S 99 
29 2.367 12 20 33 so 66 80 90 96 * 
30 2.365 12 21 34 Sl 68 82 91 96 
31 2.363 13 21 3S 52 69 83 92 97 
32 2.361 13 22 36 S3 70 8lt 93 97 
33 2.359 13 22 37 Sit 71 8S 93 98 
34 2.357 13 22 37 ss 73 86 9lt 98 

35 2.3SS 13 23 38 S6 74 87 9S 98 
36 2.3Sit 13 23 39 S7 75 88 95 98 
37 2.352 13 24 Ito 59 76 89 96 99 
38 2.351 13 21t Ito 60 77 89 96 99 
39 2.350 13 2lt It I 61 78 90 96 99 
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Tlble 8.3.24 (continued} 

f 

n 'c .os .to .IS .20 .25 .)0 .:JS .Ito .so .60 .70 .80 

Ito 2.)118 13 25 lt2 62 79 91 97 , * * * * lt2 2.:Jit6 ... 25 .. , 6ft 81 92 " 
, 

.... 2.:Jitlt '" 26 ItS 6S 82 , ,a * 
"' 2.31t2 '" 27 lt6 67 8ft ,.. -ItS 2.:Jitt ... 28 lt8 " as 95 , 
so 2.,, '" 2a lt9 71 a7 " 

, 
52 2.33a IS 29 so 72 88 " 

, 
Sit 2.336 IS 30 52 7ft a9 " 

, 
56 2.335 IS 31 53 75 ~ " 

, 
sa 2.:J31t IS 31 Sit 76 91 ,a * 
60 2.m IS )2 ss 78 n -"' 2.331 16 , 58 80 , -68 2.:JU 16 35 60 82 " 

, 
72 2.32a 17 36 62 8ft " " 76 2.326 17 3a 6S 86 " " 
80 2.325 17 , 67 88 " * 8ft 2.)21t ta ItO 69 a9 -88 2.323 18 lt2 70 ~ -92 2.322 18 lt3 72 92 " " 2.321 19 .... 7ft , 

" 100 2.321 " ItS 75 , 
" 120 2.3ta 21 52 82 " * litO 2.315 23 57 87 98 

16o 2,311t 25 62 91 " 180 2.313 27 67 ,.. 
* 

200 2.312 29 7i " 250 2.310 33 80 -300 2.309 37 86 " 350 2.308 lt2 90 * ltoo 2.307 lt6 ,.. 
It SO 2.307 lt9 " soo 2.306 53 97 
600 2.)06 60 " 700 2.305 66 * 800 2.305 71 
900 2.305 76 

1000 2.301t 80 

* ,_ values below this point are gr .. ter then ,995, 
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Table 8.3.25 

Power ofF test at a • .10, u = 3 

, 
n Fe .os • 10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

2 ... 191 10 II 12 12 13 IS 16 17 20 25 29 35 
3 2.921t 10 II 12 lit IS 18 20 23 31 39 lt9 59 .. 2.606 10 II 13 15 18 21 25 30 It I 53 65 76 

5 2.1t62 10 12 lit 17 20 25 30 37 50 6lt 77 87 
6 2.381 10 12 IS 18 23 29 35 43 59 73 8S 93 
7 2.327 II 12 IS 20 26 32 40 49 66 81 91 96 
s 2.291 II 13 16 22 28 36 45 Sit 72 86 91! 98 
9 2.26'+ II 13 17 23 31 ItO lt9 59 78 90 97 99 

10 2.21t3 II lit 18 25 33 It) Sit 6lt 82 93 98 * II 2.226 II 14 19 27 36 lt6 58 68 86 95 99 
12 2.213 II 14 20 28 38 so 61 72 89 97 99 
13 2.202 II IS 21 30 41 53 65 76 91 98 * 14 2.192 II IS 22 31 43 56 68 79 93 98 

IS 2.184 II 16 23 33 45 59 71 82 95 99 
6 2.177 II 16 21t 35 48 61 74 84 96 99 
7 2.171 II 16 25 36 so 6lt 77 86 97 * 18 2.166 II 17 26 38 52 66 79 88 98 

19 2.162 12 17 27 39 54 69 81 90 98 

20 2.157 12 18 28 41 56 71 83 91 99 
21 2.154 12 18 29 43 s8 73 8S 93 99 
22 2.150 12 18 29 .... 60 75 86 91! 99 
23 2.147 12 19 30 46 62 77 88 95 99 
24 2.14'+ 12 19 31 47 6lt 79 89 95 * 
25 2.142 12 20 32 48 66 80 90 96 
26 2.139 12 20 33 so 67 82 91 97 
27 2.137 12 21 34 Sl 69 83 91 97 
28 2.135 12 21 35 53 70 84 93 98 
29 2.133 13 21 36 Sit 72 86 91! 98 

30 2.132 13 22 37 ss 73 87 95 98 
31 2.130 13 22 38 57 75 88 95 99 
32 2.129 13 23 39 58 76 89 96 99 
33 2.127 13 23 39 59 77 90 96 99 
34 2.126 13 23 ItO 60 78 91 97 99 

35 2.121t 13 24 41 61 79 91 97 99 
36 2.123 13 24 42 63 81 92 98 99 
37 2.122 13 25 43 6lt 82 93 98 * 38 2.121 14 25 "" 6S 83 93 98 
39 2.120 14 26 45 66 84 91! 98 
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T•bl• 8.3.25 (continued} 

f 

n F c .os .10 .IS .20 .zs .30 .3S .Ito .so .60 .70 .eo 

ItO 2.119 14 26 45 67 84 ,.. 99 * * * * * 42 2.118 14 27 47 69 86 95 " .... 2.116 14 28 49 71 88 96 " 46 2.115 14 28 so 73 89 97 99 
48 2.113 IS 29 S2 75 90 97 * 
so 2.112 IS 30 53 76 91 98 
52 2.111 IS 31 ss 78 92 98 
Sit 2.110 IS 32 S6 79 93 " S6 2.109 IS 33 S8 81 ,.. 99 
S8 2.108 16 33 59 112 9S 99 

60 2.107 16 34 60 83 95 99 
64 2.106 16 36 63 8S 96 99 
68 2.104 17 37 66 88 97 * 72 2.103 17 39 68 89 98 
76 2.102 17 41 70 91 98 

80 2.101 18 lt2 72 92 99 
8ft 2.101 18 .... 74 93 " 88 2.100 19 Its 76 ,.. 

" 92 2.099 19 lt6 78 95 " 96 2.098 20 lt8 80 96 * 
100 2.098 20 49 81 96 
120 2.096 22 S6 87 " 140 2.094 Zit 62 92 " 160 2.093 26 68 'JS * 180 2.092 28 72 97 

200 2.091 30 77 98 
250 2.089 3S es " 300 2.088 ItO 91 * 350 2.088 Its ,.. 
ltOO 2.087 so 97 
It so 2.087 S4 98 

soo 2.087 S8 " 600 2.086 6S * 700 2.086 71 
800 2.086 77 
900 2.085 81 

1000 2.08s 85 

* P-r qluu below this point •r• gr•ter then .995. 
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Table 8.3.26 

Power ofF test at a= .10, u = 4 

f 

n F .os ,10 ,IS ,20 .25 .30 .35 ,40 .so .60 .70 .80 c 

2 ).520 10 11 11 12 13 IS 16 18 21 26 32 38 
3 2.605 10 11 12 14 16 18 21 25 33 4) S3 64 
4 2.361 10 11 13 IS 18 22 27 '32 44 57 70 81 

s 2.249 10 12 14 17 21 26 32 ~l 54 69 82 91 
6 2.184 10 12 15 19 24 31 )8 63 79 89 96 
7 2.142 11 13 16 21 27 35 4) 53 71 8S 94 98 
8 2.113 11 I) 17 23 )0 39 48 59 77 90 97 99 
9 2.091 11 13 18 24 33 43 53 64 82 94 98 * 

10 2.074 11 14 19 26 )6 47 58 69 87 96 99 
11 2.061 11 14 20 28 )8 so 62 73 90 97 * 12 2.050 11 IS 21 30 41 54 66 77 92 98 
13 2.041 11 IS 22 32 44 57 70 81 94 99 
14 2.034 11 16 23 34 46 60 73 84 96 99 

IS 2.027 11 16 24 35 49 6) 76 86 97 * 16 2.022 11 16 25 37 51 66 79 88 98 
17 2.017 11 17 26 39 54 69 81 90 98 
18 2.012 12 17 27 "' 56 71 84 92 99 
19 2.009 12 18 28 42 58 74 86 93 99 

20 2.005 12 18 29 44 61 75 87 94 99 
21 2.002 12 19 30 46 63 78 89 95 * 22 1.999 12 19 )I 47 65 80 90 96 
23 1.997 12 20 32 49 67 82 92 97 
24 1.994 12 20 33 51 69 8) 93 97 

25 1.992 12 21 34 52 70 85 94 98 
26 1.990 12 21 35 54 72 86 95 98 
27 1.989 I) 21 36 ss 74 87 95 99 
28 1.987 13 22 37 57 7S 89 96 99 
29 1.986 13 22 38 sa 77 90 97 99 

30 1.984 13 23 39 60 78 91 97 99 
31 1.983 13 23 40 61 79 92 97 99 
32 1.982 13 24 41 62 81 92 98 * 33 1.980 13 24 42 64 82 93 98 
34 1.979 13 2S 43 65 83 94 98 

35 1.978 •3 25 44 66 84 94 99 
36 1.977 '" 26 4S 67 85 95 99 
37 1.977 '" 26 46 69 86 96 99 
38 1.976 14 26 47 70 87 96 99 
39 1.975 14 27 48 71 88 96 99 
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Table 8.3.26 (continued) 

f 

n Fe .os .10 .IS .20 .zs .30 .35 .40 .so .60 .70 .so 

40 1.974 14 27 49 72 89 97 99 * * * * * 42 1.973 lit 28 51 74 90 97 * 44 1.971 lit 29 52 76 91 98 
46 1.970 IS 30 S4 78 93 98 
48 1.969 IS 31 S6 79 9lt 99 

so 1.968 IS 32 57 81 9lt 99 
52 1.967 IS 33 59 83 9S 99 
54 1.966 16 34 61 84 96 99 
56 1.966 16 3S 62 as 96 * sa 1.965 16 36 64 86 97 

60 1.964 16 37 6S 88 97 
64 1.963 17 38 68 90 98 
68 1.962 17 40 70 91 99 
72 1.961 18 42 73 93 99 
76 1.960 18 44 75 9lt 99 

80 1.9S9 19 4S 77 9S * 84 1.9S9 19 47 79 96 
88 1.9S8 19 48 81 97 
92 1.9S7 20 so 83 97 
96 1.9S7 20 52 84 98 

100 1.9S6 21 S3 86 98 
120 1.954 23 60 91 99 
140 1.953 2S 67 9S * 160 1.952 28 73 97 
180 1.951 30 77 98 

200 1.951 32 82 99 
250 1.9SO 38 89 * 300 1.9"9 43 9lt 
350 1.91t8 49 97 
400 1.91t8 53 98 
4SO 1.9"7 sa 99 

soo 1.9"7 62 * 600 1.91t7 70 
700 1.9"7 76 
800 1.91t6 al 
900 1.91t6 86 

1000 I. 91t6 89 

* P-r values below this point are greater than· .99S. 
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Table 8.3.27 

Power ofF test at a= .10. u = 5 

n Fe .os • 10 .IS .20 .25 .30 .3S ,40 .so ,60 .70 .80 

2 3.108 10 II II 12 13 IS 16 18 22 21J 34 41 
3 2.394 10 II 12 14 16 19 22 26 35 46 58 69 
4 2.196 10 II 13 16 19 23 28 34 47 62 75 8S 

s 2.103 10 12 lit 18 22 28 34 lt2 S8 74 86 94 
6 2.049 10 12 IS 20 25 32 r.o 49 68 83 93 97 
7 2.011t II 13 16 22 28 37 46 56 75 89 96 99 
8 1.990 II 13 17 23 32 It I 52 63 81 93 98 * 9 1.971 II lit 18 26 35 46 57 68 86 96 99 

10 1.957 II 14 19 28 38 so 62 73 90 97 * II 1.946 II 14 21 30 It I Sit 66 78 93 99 
12 1.937 II IS 22 32 .... 57 70 81 95 99 
13 1.929 II IS 23 34 lt7 61 74 8lt 96 * 14 1.923 II 16 24 36 so 64 77 87 97 

IS 1.917 II 16 25 38 52 67 80 90 98 
16 1.912 II 17 26 Ito ss 70 83 92 99 
17 1,908 12 17 27 41 58 73 8S 93 99 
18 1.905 12 18 29 It) 60 76 87 95 99 
19 1.902 12 18 30 4S 62 78 89 96 * 
20 1.899 12 19 31 47 65 so 91 96 
21 1,896 12 19 32 49 67 82 92 97 
22 1,894 12 20 33 51 69 8lt 93 98 
23 1.891 12 20 34 52 71 86 94 98 
24 1,890 12 21 35 54 73 87 95 99 

25 1.888 12 21 36 56 75 88 96 99 
26 1.886 13 22 38 57 76 90 97 99 
27 1.885 13 22 39 59 78 91 97 99 
28 1.883 13 23 40 61 79 92 98 99 
29 1.882 13 23 41 62 81 93 98 * 
30 1.881 13 21t lt2 64 82 94 98 
31 1,880 13 24 It) 6S 83 94 99 
32 1.879 13 25 44 66 85 95 99 
33 1.878 13 25 4S 68 86 96 99 
34 1.877 lit 26 46 69 87 96 99 

35 1.876 11t 26 47 70 88 97 99 
36 1.875 14 27 48 72 89 97 99 
37 1.874 14 27 49 73 90 97 * 38 1.874 14 28 so 74 90 98 
39 1.873 , .. 28 Sl 75 91 98 
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Table 8.3.27 (continued) 

, 
n Fe .os ,10 ,IS ,20 ,2S .30 .3S .Ito .so .60 .70 .eo 

40 1,872 14 29 S2 76 92 98 * * * * * * lt2 1.871 14 30 Sit 78 93 99 .... 1,870 IS 31 S6 80 9lt 99 
lt6 1,869 IS 32 sa 82 9S 99 
48 1.868 IS 33 60 83 96 99 

so 1.867 IS 34 61 as 96 * 52 1.866 16 3S 63 86 97 
54 1.866 16 36 6S 88 98 
S6 1.86S 16 37 66 89 98 
58 1.864 16 38 68 90 98 

60 1.864 17 39 69 91 99 
64 1,863 17 41 72 93 99 
68 1,862 18 43 7S 9lt 99 
72 1,861 18 4S 77 95 * 
76 1.860 19 46 79 96 

80 1,860 19 48 81 97 
84 1.8S9 20 so 83 98 
88 1.8S8 20 S2 8S 98 
92 1.8S8 21 Sit 86 98 
96 1.858 21 ss 88 99 

100 I,BS7 22 57 89 99 
120 I.BSS 24 64 9lt * 140 1.854 27 71 97 
160 1,8S3 29 77 98 
ISO 1,8S3 32 81 99 

200 1.852 34 as * 2SO 1.851 40 92 
300 I.BSI 46 96 
3SO 1.8so 52 98 
400 1.8so 57 99 
4SO 1.849 62 * 
soo 1.849 66 
600 1.849 71t 
700 1.849 8o 
800 1.849 84 
900 1.848 89 

1000 1,848 92 

* P~ values below this point are gr .. ter thin .995. 
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Table 8.3.28 

Power ofF test at a= .10, u = 6 

n Fe .os .10 .15 .20 .25 .30 .35 .Ito .so .60 .70 .so 

2 2.a27 10 11 11 12 13 14 17 19 23 29 36 "" 3 2.243 10 11 12 14 16 19 23 27 37 49 61 73 

" 2.075 10 11 13 16 20 24 30 )6 50 66 79 a9 

5 1.996 10 12 14 18 23 29 36 ~os 62 78 89 96 
6 1.950 II 12 15 20 26 34 4) 53 71 a6 95 99 
7 1.919 11 13 17 22 30 39 49 60 79 92 98 * a l.a9a II 13 18 24 33 "" 55 66 as 95 99 
9 1.aa2 11 14 19 27 37 48 61 72 89 97 * 

10 l.a70 II 14 20 29 40 53 66 74 93 99 
II 1.860 II IS 21 31 43 57 70 al 95 99 
12 l.as2 11 IS 23 33 46 61 74 as 97 * 13 1.846 II 16 24 35 so 64 78 a8 9a 

'" 1.840 11 16 25 38 53 68 81 90 98 

IS 1.835 II 17 26 40 56 71 84 92 99 
16 1.831 12 17 27 42 sa 74 86 94 99 
17 1.827 12 Ja 29 "" 61 77 a8 95 * 18 J.a24 12 18 30 46 64 79 90 96 
19 J.a21 12 19 31 48 66 82 92 97 

20 1.819 12 19 32 so 68 84 93 98 
21 l,al7 12 20 )It 52 71 as 94 98 
22 1.815 12 20 35 54 73 87 95 99 
23 1,813 12 21 36 56 75 a9 96 99 
24 1.811 13 21 37 57 77 90 97 99 

25 t.ato 13 22 38 59 78 91 97 99 
26 1.ao8 13 23 40 61 80 92 98 * 27 1.807 I) 23 41 6) 82 9) 98 
2a l.a06 I) 24 42 64 83 94 99 
29 l.aos 13 24 43 66 84 95 99 

30 1.803 13 25 "" 67 86 96 99 
31 l.ao2 13 25 46 69 87 96 99 
32 1.802 14 26 47 70 88 97 99 
33 l.aol 14 26 48 71 a9 97 * )4 1.800 14 27 49 73 90 97 

35 1.799 14 27 so 74 91 98 
36 1.798 '" 2a 51 75 91 98 
37 1.798 14 29 52 76 92 98 
38 1.797 '" 29 53 78 93 99 
39 1.797 14 30 54 79 94 99 
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Table 8.3.28 (continued} 

f 

n Fe .os .10 ,IS ,20 .25 .30 .)S .Ito .so ,60 .70 .so 

Ito 1.796 IS 30 ss 80 9lt 99 * * * * * * lt2 1.795 IS 31 57 82 95 99 .... I. 79'+ IS 32 59 Bit 96 99 
lt6 1.793 IS 33 61 as 97 * ItS 1.792 16 35 63 87 97 

so 1.791 16 36 65 88 98 
52 1.791 16 37 67 89 98 
Sit 1.790 16 38 68 91 99 
56 1.790 17 39 70 92 99 
S8 1.789 17 Ito 71 92 99 

60 1.789 17 lt1 73 93 99 
6lt 1.788 18 lt3 76 95 * 68 1.787 18 ItS 78 96 
72 1.786 19 lt7 81 97 
76 1.785 19 lt9 83 98 

8o 1.785 20 S1 as 98 
Bit 1. 78lt 20 53 86 99 
88 I, 78lt 21 ss 88 99 
92 1.783 21 57 89 99 
96 1,783 22 sa 91 99 

100 1.783 22 60 92 * 120 1.781 25 68 96 
140 1.780 28 7S 98 
160 1.779 31 80 99 
180 1.779 33 as * 
200 1.778 36 89 
250 1.778 It) 9lt 
300 1.777 lt9 97 
350 1.777 ss 99 
ltOO 1.776 60 * 450 1.776 66 

soo 1.776 70 
600 1.776 78 
700 1.775 Bit 
800 1.775 89 
900 1.775 92 

1000 1.77S 9lt 

* P-r values below this point ere greeter then .995. 
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Table8.3.29 

Power ofF test at a= .10. u = 8 

f 

n Fe .os .to • 1 s .20 ,25 .30 .35 ,40 .so ,60 .70 .80 

2 2.469 10 " " 12 14 15 17 20 2S 33 41 so 
3 2.038 10 " 13 IS 17 21 2S 30 41 ss 68 80 
4 1.909 10 12 14 17 21 26 32 40 S6 72 8s 93 

s 1.847 10 12 IS 19 2S 32 40 49 68 84 94 98 
6 1.811 " 13 16 21 29 37 48 58 78 91 98 * 7 1.787 " 13 17 24 33 43 ss 66 8s 9S 99 
8 1.770 " 14 19 26 36 48 61 73 90 98 * 9 1.757 " 14 20 29 40 53 67 79 94 99 

10 1.747 " IS 21 )I 44 S8 72 83 96 99 

" 1.740 " 15 23 34 48 63 76 87 98 * 12 1.733 " 16 24 36 St 67 80 90 99 
13 1.728 " 16 26 39 55 71 84 93 99 
14 1.723 " 17 27 41 58 74 87 94 99 

IS 1.720 12 18 28 44 61 77 89 96 * 16 1.716 12 18 30 46 64 80 91 97 
17 1.713 12 19 31 48 67 83 93 98 
18 1. 711 12 19 33 51 70 85 94 98 
19 1.709 12 20 34 53 72 87 95 99 

20 1.707 12 20 3S 55 75 89 96 99 
21 1.705 12 21 37 57 77 91 97 99 
22 1.703 13 22 38 59 79 92 98 * 23 1.702 13 22 loO 61 81 93 98 
24 1.700 13 23 41 63 8) 94 99 

25 1,699 13 2lo lo2 6S 8lo 95 99 
26 1,698 13 2lo 44 67 86 96 99 
27 1.697 13 25 loS 69 87 96 99 
28 1.696 13 25 lo6 70 88 97 * 29 1.695 13 26 loS 72 90 97 

30 1.694 llo 27 49 74 91 98 
31 1.693 tlo 27 so 75 92 98 
32 1.692 14 28 52 76 92 99 
33 1,692 llo 29 53 78 93 99 
)lo 1,691 14 29 Slo 79 94 99 

35 1.691 llo 30 55 80 95 99 
36 1,690 14 30 S6 81 95 99 
37 1.689 IS 31 S8 83 9b 99 
38 1,689 IS 32 59 84 96 * 39 1.688 IS 32 60 85 97 
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Table 8.3.29 (conrinued) 

f 

n Fe .os .10 .IS .20 .2S .)0 .35 .Ito .so .60 .70 .eo 

Ito 1.68a IS 33 61 a6 97 * * * * * * * 
lt2 1.6a7 IS )It 63 a7 98 .... 1.6a6 16 3S 6S a9 98 
lt6 1.6a6 16 37 67 90 99 
Ita 1.68S 16 )a 69 92 99 

so 1.681t 16 39 71 93 99 
S2 1.681t 17 ItO 73 94 99 
Sit 1.683 17 42 7S 94 99 
S6 1.683 17 It) 76 9S * sa 1.6a2 Ia lt4 7a 96 

60 1.6a2 Ia ItS 79 96 
6lt 1.681 Ia Ita a2 97 
6a 1.681 19 so 84 9a 
72 1.6ao 20 S2 a6 99 
76 1.679 20 Sit 88 99 

ao 1.679 21 S6 90 99 
84 1.679 21 sa 91 99 
88 1.67a 22 60 93 * 
92 1.67a 23 62 94 
96 1.677 23 6lt 9S 

100 1.677 21t 66 9S 
120 1.676 27 74 9a 
140 1.67S 30 81 99 
160 1.67S 33 86 * lao 1.674 36 90 

200 1.674 39 93 
2SO 1.673 47 97 
300 1.673 S4 99 
)SO 1.672 61 * ltoo 1.672 66 
4SO 1.672 72 

soo 1.672 76 
600 1.671 84 
700 1.671 a9 
800 1.671 9) 
900 1.671 96 

1000 1.671 97 

* Power values below thh point are !lreater than .99S. 
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Table 8.3.30 

Power ofF test at a= .10, u = 10 

f 

n Fe .os ,I 0 .IS ,20 ,2S .30 .3S ·"0 .so ,60 .70 .eo 

2 2,2,.8 10 11 12 13 I" 16 18 21 27 36 "S Sl 
3 I, 90't 10 II 13 IS 18 22 26 32 "S 60 7" 8S 

" 1.799 10 12 I" 17 22 28 3S "3 61 78 90 96 

s 1,7,.7 II 12 IS 20 26 3" "" S" 7" 89 96 99 
6 1,717 II 13 17 23 31 "I S2 63 83 9S 99 * 7 1.697 II 13 18 2S 3S "7 S9 71 90 98 * 8 1,683 II I" 20 28 39 S3 66 78 "' 99 
9 1.672 II IS 21 31 "" se 72 Ll+ 96 * 

10 1,661! II IS 23 3" lj8 63 77 88 98 
II 1.6S7 II 16 2" 37 S2 68 82 91 99 
12 1,6S2 II 16 26 39 S6 72 8S 93 99 
13 1,61!8 II 17 27 "2 59 76 88 95 * I" I ,&ljlj 12 18 29 "S 63 79 91 97 

IS 1,61!1 12 18 30 lj] 66 82 93 98 
16 1,638 12 19 32 so 69 85 "' 98 
17 1,63S 12 20 33 S3 72 87 96 99 
18 1,633 12 20 3S ss 75 89 97 99 
19 1.631 12 21 37 S7 78 91 98 * 
20 1.630 12 22 38 60 80 93 98 
21 1.628 13 22 ljO 62 82 "' 99 
22 1.627 13 23 "I 61! 81! 9S 99 
23 1,62S 13 2" "3 66 86 96 99 
2" 1.62" 13 2" "" 68 87 97 99 

2S 1.623 13 2S "6 70 89 97 * 26 1.622 13 26 "7 72 90 98 
27 1.621 I" 26 "9 7" 91 98 
28 1,620 14 27 so 76 92 98 
29 1.620 I" 28 52 77 93 99 

30 1.619 I" 28 S3 79 "' 99 
31 1,618 I" 29 ss 80 95 99 
32 1.618 I" 30 56 81 9S 99 
33 1.617 I" 31 57 83 96 99 
3" 1.616 IS 31 S9 81! 96 * 
35 1,615 IS 32 60 85 97 
36 1,615 IS 33 61 86 97 
37 1,61S IS 33 62 87 98 
38 1,61S IS 34 61! 88 98 
39 1.61" IS 3S 65 89 98 
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Teble 8.3.30 (conrinutldJ 

, 
n Fe .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

ItO 1.614 15 35 66 90 98 * * * * * * • 
lt2 1.613 16 37 68 91 " 44 1.612 16 38 70 93 " lt6 1.612 16 Ito 72 ,. 

" lt8 1.611 17 lt1 74 95 * 
so 1.611 17 lt2 76 95 
52 1.610 17 44 78 96 
Sit 1.610 18 ItS 80 97 
S6 1.609 18 lt6 81 97 
S8 1.609 18 48 83 98 

60 1.609 19 lt9 84 98 
64 1.608 19 52 86 " 68 1.607 20 Sit 89 " 72 1.607 21 S6 90 " 76 1.607 21 S9 92 • 
80 1.606 22 61 93 
84 1.606 23 63 ,. 
88 1.605 23 66 9S 
92 1.605 24 68 96 
96 1.605 2S 70 97 

100 !.60S 2S 71 97 
120 1.604 29 79 " 140 1.603 32 86 * 160 1.603 36 90 
180 1.602 " " 
200 1.602 43 96 
2SO 1.601 S1 " 300 1.601 S9 * 350 1.600 66 
400 1.600 72 
It SO 1.600 77 

soo 1.600 81 
600 1.600 88 
700 1.600 93 
800 I.S99 96 
900 I.S99 98 

1000 I.S99 " 
• P-r values below thfl potnt ara gr•ter than .995 • 
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Table 8.3.31 

Power ofF test at a= .10. u = 12 

f 

" 'c .os ,10 ,IS ,20 .2S .30 .35 .40 .so .60 .70 .80 

2 2.097 10 11 11 13 IS 17 19 22 29 39 49 61 
3 1.809 10 11 13 IS 19 23 28 34 49 6S 79 89 
4 1.719 10 12 14 18 23 30 38 47 66 82 93 98 

s 1.67S 11 12 16 21 28 37 47 S8 78 92 98 • 
6 1.649 11 13 17 24 33 .... 56 68 87 97 99 
7 1.631 11 14 19 27 37 50 64 76 93 99 • 
8 1.619 11 14 20 30 42 S6 70 82 96 * 9 1.610 II 15 22 33 47 62 76 87 98 

10 1,60) II 16 24 )6 51 68 81 91 99 
11 1.597 II 16 25 39 56 72 86 ,.. 99 
12 1.592 II 17 27 42 60 77 89 96 * 13 1.588 12 18 29 4S 64 80 92 97 
14 1.585 12 18 31 48 67 84 ,.. 98 

IS 1.582 12 19 32 51 71 86 95 99 
16 1,580 12 20 34 S4 74 89 96 99 
17 I.S78 12 20 36 56 77 91 97 * 18 1.576 12 21 37 59 79 92 98 
19 1.574 13 22 39 62 82 ,.. 99 

20 1.573 I) 2) 41 64 84 95 99 
21 1.571 I) 23 43 66 86 96 99 
22 1.570 I) 24 .... 69 88 97 * 2) 1.569 I) 2S 46 71 89 97 
24 I.S68 I) 26 48 73 91 98 

25 1.567 13 26 49 75 92 98 
26 1.566 14 27 Sl 77 93 99 
27 1.565 14 28 52 78 ,.. 99 
28 l.S6S lit 29 54 80 95 99 
29 I.S64 lit 29 ss 81 95 99 

)0 1.563 14 30 57 8) 96 * 31 1.56) 14 31 S8 84 97 
)2 1.562 IS )2 60 85 97 
33 1.562 IS 32 61 87 98 ,.. 1.561 IS 33 6) 88 98 

35 1.561 IS )4 611 89 98 
36 1.560 IS 35• 65 90 99 
37 1.560 15 35 67 90 99 
38 1.560 16 36 68 91 99 
39 1.559 16 37 69 92 99 
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Tlblto 8.3.31 (continu«J} 

f 

n Fe .os .10 .IS .20 .2S .)0 .)S .Ito .so .60 .70 .eo 

Ito 1.SS9 16 ,a 70 93 99 * * * * * * * lt2 1.ssa 16 , 73 ,.. 99 .... 1.s5a 17 It I 7S 9S * lt6 I.SS7 17 lt2 77 96 
Ita I.SS7 17 .... 79 97 

so 1.SS6 Ia ItS 81 97 
S2 1.SS6 Ia lt7 a2 98 
Sit I.SSS Ia Ita 8ft 98 
S6 1.SS5 19 so as 99 
sa I.SSS 19 Sl 86 99 

60 I.SSit 19 53 88 99 
6lt I.SSit 20 ss 90 99 
68 1.553 21 sa 92 * 72 1.SS3 22 60 93 
76 1.553 22 63 95 

80 1.552 23 65 96 
811 1.SS2 24 68 96 
88 1.552 24 70 97 
92 1.551 2S 72 98 
96 1.551 26 71t 98 

100 1.551 27 76 99 
120 1.550 31 8ft * litO 1.549 31t a9 
160 1.549 38 93 
180 I.Sit9 42 96 

200 1.548 lt6 97 
250 1.Sita 55 99 
300 1.548 63 * 350 1.547 70 
ltOO 1.547 76 
ltSO I.Sit7 81 

500 I.Sit7 as 
600 1.Sit7 91 
700 1.547 95 
800 1.546 97 
900 1.546 99 

1000 1.5'6 99 

* P-r velues below thfl pofnt are greater thlln .995. 
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T•ble 8.3.32 

Power ofF test at a= .10, u = 15 

, 
n Fe .os .10 .15 .20 .2S .30 .35 .40 .so .60 .70 .eo 

2 1.940 10 II 12 13 IS 17 20 24 32 lt3 ss 67 
3 1.707 10 II 13 16 20 24 30 38 54 71 es 93 
4 1.633 10 12 IS 19 2S 32 41 Sl 72 87 96 " 
s 1.S96 II 13 16 22 30 40 52 63 8ft 95 " * 6 I.S74 II 13 18 25 35 48 61 7ft 91 98 * 7 1.S60 II '" 20 29 41 ss 69 81 96 " 8 1.549 II IS 22 32 lt6 62 76 87 98 * 9 1.541 11 IS 23 36 51 68 82 92 " 10 1.S3S 11 16 2S 39 S6 73 86 95 * 11 1.531 12 17 27 lt3 61 78 90 97 

12 1.527 12 18 29 lt6 6S 82 93 98 
13 1.523 12 18 31 lt9 69 es 9S 99 , .. I.S21 12 19 33 52 73 88 96 " 
IS I.S18 12 20 3S S6 76 91 97 * 16 1.S16 12 21 37 S9 79 93 98 
17 1.S14 12 22 39 62 82 94 " 18 1.SI3 13 22 41 6lt as 96 " 19 I.SII 13 23 43 67 87 97 " 
20 I.SIO 13 24 4S 70 89 97 * 21 I.S09 13 2S lt6 72 90 98 
22 1.S08 13 26 48 74 92 98 
23 1.S07 13 26 so 76 93 " 24 1.506 14 27 52 78 94 " 
2S 1.sos lit 28 54 eo 9S " 26 I.SOit lit 29 56 82 96 * 27 1.SOit , .. 30 57 83 97 
28 1.503 , .. 31 S9 es 97 
29 1.503 IS 32 61 86 98 

·30 1.502 IS 32 62 88 98 
31 1.502 IS 33 6lt 89 98 
32 I.SOI IS )It 6S 90 " 33 I.SOI IS 35 67 91 " 34 1.500 IS 36 68 92 " 
35 I.SOO 16 37 70 93 " )6 I.SOO 16 38 71 93 " 37 1.499 16 39 !2 94 * 38 1.499 16 39 7ft 95 
39 1.499 16 ItO 7S 9S 
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Table 8.3.32 (continued) 

f 

n Fe .os • to • tS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

40 t.lt98 t7 4t 76 96 * * * * * * * * lt2 t.498 t7 43 78 97 .... t.497 17 ItS 80 97 
46 t.lt97 t8 46 82 98 
48 t.496 t8 48 84 98 

so t.496 18 49 86 99 
52 1.496 19 Sl 87 99 
S4 1.495 t9 53 88 99 
S6 t.49S 20 S4 90 99 
S8 t.49S 20 S6 9t * 
60 t.494 20 57 92 
64 1.494 21 60 94 
68 t.494 22 63 95 
72 t.493 23 66 96 
76 t.493 24 68 97 

80 1.493 24 7t 98 
84 t.492 zs 73 98 
88 t.492 26 75 99 
92 t.492 27 77 99 
96 1.492 28 79 99 

tOO 1.491 29 81 99 
t20 t.491 33 88 * t40 t.490 37 93 
t60 1.490 42 96 
180 l.lt'JO lt6 98 

200 t.489 so 99 
250 1.489 60 * 300 t.489 68 
350 t.488 7S 
ltOO t.488 81 
4SO t.488 86 

soo 1.488 90 
600 t.488 95 
700 1.488 97 
800 t.488 99 
900 1.488 99 

tooo t.488 * 

* p_,. values below thfs pofnt .,.. g,.•te,. then .995. 
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Table 8.3.33 

Power of F test at a = . 10, u = 24 

f 

n Fe .os .10 .IS .20 .2S .30 .35 .Ito .so .60 .70 .80 

2 1.689 10 II 12 tit 16 19 23 28 ItO 54 69 81 
3 1.536 10 12 ... 17 22 29 37 46 66 84 94 99 .. 1.48S II 12 16 21 29 39 Sl 63 84 96 99 * 
s 1.460 II 13 18 26 36 49 63 76 93 99 * 6 1.1t1t5 II lit 20 30 43 sa 73 as 98 * 7 1.431t II 15 22 31t so 67 82 92 99 
8 1.427 II 16 2S 39 S6 74 88 95 * 9 l.lt22 II 17 27 43 62 ao 92 98 

10 1.417 12 Ia 29 Ita 68 a5 9S 99 
II 1.414 ·u 19 32 52 73 a9 97 99 
12 1.411 12 20 3S 56 78 92 98 * 13 1.409 12 21 37 60 al 94 99 ... 1.407 12 22 ItO 64 8s 96 99 

15 .... os 13 23 42 67 88 97 * 16 1.1t04 13 21t ItS 71 90 9a 
17 .... 02 13 25 47 74 92 99 
18 1.1t01 13 26 50 77 94 99 
19 1.400 13 27 52 79 9S 99 

20 1.399 , .. 2a 54 82 96 * 21 1.399 , .. 29 57 84 97 
22 1.398 , .. 30 59 86 98 
23 1.397 , .. 31 61 88 98 
2lt 1.397 15 32 63 a9 99 

25 1.396 15 33 6S 91 99 
26 1.395 IS 3S 67 92 99 
27 1.395 15 36 S9 93 99 
28 1.395 IS 37 71 94 * 29 1.394 16 3a 73 95 

30 1.394 16 39 74 9S 
31 1.393 16 Ito 76 96 
32 1.393 16 41 77 97 
33 1.393 17 lt2 79 97 
31t 1.393 17 43 ao 98 

35 1.392 17 ItS a2 98 
36 1.392 17 46 a3 98 
37 1.392 17 lt7 84 99 
3a 1.392 18 Ita as 99 
39 1.391 18 49 86 99 
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Tlble 8.3.33 (continued} 

f 

n Fe .os .to .IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

ItO 1.391 18 50 87 99 * * * * * * * * 42 1.391 19 S2 89 99 .... 1.391 19 Sit 91 * 
"' 1.390 20 S6 92 
48 1.390 20 S8 93 

so 1.389 21 60 ,.. 
52 1.389 21 62 9S 
54 1.389 22 64 96 
S6 1.389 22 66 97 
S8 1.389 23 67 97 

60 1.388 23 " 98 
64 1.388 24 72 98 
68 1.388 2S 7S 99 
72 1.388 26 78 99 
76 1.387 27 80 * 
80 1.387 29 83 
8lt 1.387 30 8S 
88 1.387 31 87 
92 1.387 32 88 
96 1.)86 33 90 

100 1.386 34 91 
120 1.386 ItO 96 
140 1.38S ItS 98 
160 1.385 Sl " 180 1.385 56 * 
200 1.385 61 
250 1.381t 72 
300 1.381t 80 
350 1.384 87 
ltoo 1.384 91 
It so 1.384 ,.. 
500 1.3811 97 
600 1.384 99 
700 1.384 * 800 1.384 
900 1.3811 

1000 1.)811 

* P-r ¥111uea lle1GW thh point are gr•ter than .995. 
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The 33 tables in this section yield power values for the F test when, 
in addition to the significance criterion (a) and ES (f), the degrees of free­
dom for the numerator of the F ratio (u) and sample size (n) are specified. 
They are most directly used to appraise the power of F tests in a completed 
research post hoc, but can, of course, be similarly used for a research plan, 
the details of which (e.g., significance criterion, sample size) can be varied 
to study consequences to power. 

The tables give values for a, u, f, and n: 

1. Significance Criterion, a. Since F is naturally nondirectional (see 
above, Section 8.1 ), II tables (for varying u) are provided at each of the a 
levels, .01, .05, and .10. 

2. Degrees of Freedom of the Numerator of the F Ratio, u. At each signi­
ficance criterion, a table is provided for each of the following II values 
ofu: I (I) 6 (2) 12, 15, 24. For cases 0, I, and 2, all of which involve a com­
parison of k = u + I means, the number of means which can be compared 
using the tables is thus k = 2 (I) 7 (2) 13, 16, and 25. For tests on interactions 
(Case 3}, u is the interaction df, and equals (k- l)(r- 1), or (k- l)(r- I) 
(p- 1), etc., where k, r, pare the number of levels of interacting main effects. 
Thus, u = 12 for the interaction of a 4 x 5 or a 3 x 7 or a 2 x 13 factorial 
design or the three-way interaction of a 2 x 4 x 5, a 2 x 3 x 7, or a 3 x 3 x 4 
factorial design. 

For missing values ofu (7, 9, II, etc.), linear interpolation between tables 
will yield quite adequate approximations. 

3. Effect Size, f. Provision is made for 12 values off: .05 (.05) .40 (.10) 
.80. For Cases 0 and 2, f is simply defined as the standard deviation of stan­
dardized means [formula (8.2.1)]. Its definition is generalized for unequal 
n (Case I) and for interactions (Case 3), and the relevant formulas are given 
in the sections dealing with those cases. For all applications, conventional 
levels have been proposed (Section 8.2.3), as follows: 

small: f = . 10, 

medium: f = .25, 

large: f = .40. 

4. Sample Size, n. This is, for Cases 0 and 2, then for each of the k 
sample means being compared. For the other cases, n is a function of the 
sizes of the samples or "cells" involved; see Sections 8.3.2, 8.3.4. The power 
tables provide for n = 2 (I) 40 (2) 60 (4) 100 (20) 200 (50) 500 (100) 1000. 
Here, too, linear interpolation is quite adequate. 
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The values in the body of the tables are power times 100, i.e., the percent 
of tests carried out under the specified conditions which will result in rejec­
tion of the null hypothesis. They are rounded to the nearest unit and are 
generally accurate to within one unit as tabled. 

8.3.1 CASE 0: k MEANS WITH EQUAL n. The simplest case is the one-way 
analysis of variance of k samples, each with the same number of observations, 
n (Case 0). The F test is based on u = k- I numerator df, and k(n- I) 
denominator df. The power tables were designed for Case 0 conditions, 
and this section describes and illustrates their use under these conditions. 
Later sections describe their application with unequal n's (Case 1), in fac­
torial and other designs (Case 2), and for tests of interactions (Case 3). 

In Case 0, the investigator posits an alternate hypothesis or ES in terms 
of f, the standard deviation of standardized means, by one or more of the 
following procedures: 

I. By hypothesizing the k varying population means expressed in the 
raw unit of measurement, finding the standard deviation of these means, 
and dividing this by the estimated within-population standard deviation. 
This is a literal application of formula (8.2.1). (See example 8.8 in Section 
8.3.4.) 

2. By hypothesizing the range of the k means (d) and their pattern, and 
using the formulas of Section 8.2.1. or the c1 values of Table 8.2.1 to convert 
d to f. 

3. By hypothesizing the ES as a proportion of the total variance for 
which population membership accounts (712) or as a correlation ratio (71), 
and using the formulas of Section 8.2.2 [particularly formula (8.2.22)] or 
Table 8.2.2 to convert 71 or 712 to f. 

4. With experience, or perhaps by using the proposed operational defi­
nitions of small, medium, and large f values as a framework, he can work 
directly with f, i.e., simply directly specify his alternate hypothesis or ES 
by selecting an appropriate value of f. 

Since the specification of a value of f which correctly reflects the investi­
gator's ES expectations is crucial, cross-checking among the above routes is 
recommended. Thus, for example, having reached an f by specifying an 
712, it would be worthwhile to determine what range of means (d) for a given 
anticipated pattern that value of f implies, and to ascertain whether this d 
is consistent with expectation. 

Once f is selected, the rest is simple in Case 0 applications. Find the 
table for the a and u ( = k - I) of the problem and locate n, the common 
sample size, and f. This determines their power ( x 100). For nontabulated 
f or u, linear interpolation is reasonably accurate. 
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Dlustrative Examples 

8.1 An educational psychologist performs an experiment in which 
k = 4 different teaching methods are to be contrasted. A total of N = 80 
pupils are randomly assigned to samples ofn = 20 pupils per methods group 
and are tested on an achievement criterion test following instruction. The 
resulting data are tested by an overall F test of a one-way analysis of variance 
design, using an a = .05 significance criterion. 

In setting the ES which she expects in the population (i.e., the alternate hy­
pothesis), she believes that the 4 means should span a range d of three­
quarters of a within-population standard deviation. This judgment is based 
on past experience and knowledge of the characteristics of the teaching 
methods. On this basis, she further expects that the four means will be about 
equally spaced along this range, thus in Pattern 2 (Section 8.2.1). From Table 
8.2.1, she reads that fork = 4 in Pattern 2, f = .373d, so that, given an an­
ticipated d = . 75, f = .373(. 75) = .280. Having reached this value, she 
cross-checks by noting [from formula (8.2.19)] that this implies an 712 = f2 /(I 
+ f2) = .2802 /(I + .2802) = .0727, i.e., about 7~0'/o of the measure's total 
variance is accounted for by group membership, or in correlation ratio terms, 
71 = .../.0727 = .270. She observes further that f = .280 is just slightly above 
the operational definition of a medium ES (f = .25). She accepts the results 
of this cross-checking as consonant with her expectations. The necessary 
specifications for determining the power of the F test are complete. Note 
that in a one-way analysis of variance on k "levels," the numerator df are 
u = k - I = 3. Thus, 

•=.05, u=3, f= .28, n=20. 

In Table 8.3.14 for a = .05 and u = 3, at row n = 20, she finds power for 
column f = .25 to be .43 and for f = .30 to be .59. Linear interpolation yields 
(approximate) power of 

(.28- .25) 
.43 + (.30- .25) (.59- .43) = .43 + .10 =.53. 

Thus, if the standard deviation of the 4 standardized population means, 
f, is .28 of a within-population standard deviation, with n = 20 cases per 
sample, the F test has had only a .53 probability of rejecting the null hypoth­
esis at the .05 level. Note that the operative condition is the value of f 
of .28, whether the range and pattern of population means was as predicted 
or whether another range and pattern, which would yield the same f, applied. 

An experiment whose power is as low as .53 for detecting its anticipated 
ES is relatively inconclusive when it fails to reject the null hypothesis. Given 
a population f = .28, rather than f = 0 as posited by the null hypothesis, it is 
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a "toss-up" whether his results will be significant at the a and n conditions 
which obtain. Note that even if the a criterion were liberalized to .10, linear 
interpolation in Table 8.3.25 (for a = .10, u = 3) between f = .25 and .30 
gives approximate power at n = 20 of only .56 + .09 = .65. 

This problem has been presented as if the experiment were already 
completed (or at least committed), with a post hoc determination of power 
under the given conditions. See problem 8.9 below for a consideration o( 
this problem as one of experimental planning, where, under stated conditions, 
the purpose is the determination of sample size to attain a specified power. 

8.2 A large scale research on mental hospital treatment programs of 
chronic schizophrenics is undertaken by a psychiatric research team. A 
pool of N = 600 suitable patients is randomly divided into 3 ( = k) equal 
samples, each assigned to a different building, and in each building a differ­
ent microsocial system of roles, functions, responsibilities, and rewards of 
staff and patients is instituted following training. After a suitable interval, 
patients are assessed by the research team by means of behavior rating scales. 
The social-scientific "cost" of mistakenly rejecting the null hypothesis 
leads the team to decide on a= .01. The team is split, however, on the ques­
tion of how large an effect the difference in the three systems will have, 
some expecting that 5% of behavior rating variance will be accounted for 
by system membership, the others expecting 10%. Hence 7] 2 = .05 or .10. 
In their discussion, they agree in their expectation that the population 
means are at equal intervals, hence in Pattern 2 (but note that for k = 3, 
Pattern 2 and Pattern 1 are the same). From Table 8.2.2, they note that at 
7J2 = .05, f = .229, and at 7J2 = .1 0, f = .333. They determine, using the con­
stants of Table 8.2.1, that the span of means for Pattern 2 for f = .229 is 
d2 = 2.45(.229) = .56, and for f = .333, d2 = 2.45(.333) = .82. Thus the 
proponents of 7]2 = .05 expect a spread of the three means of a little more 
than half a within-population standard deviation, while the 7J 2 = .10 faction 
expect a spread of almost five-sixths of a u. This translation brings them no 
closer to agreement. What is the power of the eventual F test under each 
of these two alternative hypotheses? 

a=.Ol, U=k-1=2, f ={·23 200 .33' n= · 

In Table 8.3.2 (for a= .01, u = 2) at row n = 200, they find that at f = .20, 
power is .98, and at f = .25, power is greater than .995. This means they need 
have no dispute-if the f = .23 (7]2 = .05) faction is right, power is about 
.99; if the f = .33 (7J2 = .10) faction is right, power is greater than .995. If 
either is correct, they are virtually certain to reject the null hypothesis at 
a= .01 with the F test. 
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In a circumstance like this, where there is "power to spare" (and assum­
ing that the .,., 2 = .OS "pessimists" are not substantially overestimating the 
ES), there may be an opportunity to capitalize on these riches by enlarging 
on the experimental issues. For example, assume that there was a fourth 
microsocial system that had been a candidate for inclusion in the experi­
ment and that adequate physical and staff resources are available for its 
inclusion. It might then be worth exploring the statistical power consequences 
of dividing the available 600 chronic patients into k = 4 equal groups. 
Assuming no change in the conditions, and for the same f values, interpola­
tion in Table 8.3.3 (for a= .01, k- I =U = 3) shows that at n = 140 (ISO 
is not tabulated), power at f = .23 is about .97 and at f = .33, power again 
exceeds .99S. Thus, this experiment could be enlarged at no substantial loss 
in power, assuming f is not materially lower than .23. But note that iff is 
really .IS, the original k = 3, n = 200 experiment has still creditable power of 
.79 (Table 8.3.2), but the power of the revised k = 4, n = ISO experiment is 
only about .72 (interpolating between n = 140 and 160 in Table 8.3.3). 

8.3.2 CASE I : k MEANS WITH UNEQUAL n. When the sample sizes 
(n1) drawn up from the k populations whose means (m1) are being compared 
are not all the same, no fundamental conceptual change occurs, but further 
attention to the definition off is required and procedures for power analysis 
require accommodation from those of Case 0. 

f was defined as the standard deviation of standardized means, umfu 
[formula (8.2.1}], where um was given for equal n in formula (8.2.2) as 

When n's are not equal, it is no longer true that the reference point from 
which the "effects" are calculated, m, is a simple mean of the k population 
means, i.e., m = Im1/k, but rather a weighted mean of these means, the weight 
of each m1 being p1, the proportion of the total N = ~)1 which its sample 
n1 comprises. Thus, for Case I 

(8.3.1) 

The m for equal n is a special case of this formula, where all the p1 = 
n/N = nJkn = 1/k. 

Similarly, in computing the standard deviations of the means, um, the 
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separate effects of the k populations, m 1 -m, must be weighted by their 
proportionate sample sizes: 

(8.3.2) 

Here, too, the formula given for am for equal n in the previous section 
(8.2.2) is a special case of formula (8.3.2), where all p1 = 1/k. 

Thus, with the understanding that for unequal n each population mean 
"counts" to the extent of the relative proportion of its sample size, no 
change in the definition off is required; it is the standard deviation of the 
(weighted) standardized means. 

The implication of this weighting requires comment. If the populations 
whose means are extreme, i.e., have large (m1 -m)2, also have large n's 
relative to the others, f will be larger than with equal n; conversely, if ex­
treme populations have small n's, f will be smaller, This suggests that in 
circumstances where the researcher has reason to believe that certain of the 
k populations will provide particularly discrepant means, dividing the 
total N unequally with larger sample n's drawn from these populations will 
increase f (over equal n), and thereby increase power. 

This statistical fact, however, cannot necessarily be taken as a mandate 
to so design experiments. Its utilization depends on whether the purpose 
of the research is solely to (a) test with a view to reject the null hypothesis 
of equal population means, or whether it (b) seeks to reflect a "natural" 
population state of affairs. When there is no "natural" population, as 
when the populations are of different experimental manipulations of ran­
domly assigned subjects, as in a true experiment, we are perforce in situation 
(a). When a natural population exists, our purpose may be either (a) or 
(b). 

An illustration should clarify the distinction. In an experiment where 
the effect on a dependent variable of three different experimental condi­
tions is under scrutiny, each condition is a systematic artificial creation 
of the experimenter. The populations are hypothetical collections of results 
of a given condition being applied to all subjects. Consider, by way of con­
trast, a survey research designed to inquire into differences among Protes­
tants, Catholics, and Jews in scores on a scale of attitude toward the United 
Nations (AUN). Here there are also three populations, but population 
membership is not an artificial creation of the manipulative efforts of the 
investigator. These are natural populations, and their properties as popula­
tions include their relative sizes in their combined superpopulation. There 
is now a choice with regard to how sampling is to proceed. The investigator 



8.3 POWER TABLES 361 

can draw a random sample ofN cases of the total population and administer 
the AUN scale to all N cases, then sort them into religious groups. The pro­
portions in each religious group will then not be equal, but reflect (within 
sampling error) the relative sizes of the religious affiliation populations. 
Alternatively, having decided to study a total ofN cases, he can draw equal 
samples from each religion. 

Now, assume that the Jews yield a small p, and that their AUN population 
mean is quite extreme. In the former sampling plan, the f, based on the 
small weight given the Jews, would be smaller than the f obtained with 
equal sample sizes, where the mean of the Jews would be weighted equally 
with the others. The larger f would have associated with it a larger TJ 2 (as 
well as greater power). But if TJ 2 is to be interpreted as giving the proportion 
of AUN variance associated with religion in the general population, i.e., 
in the natural population, where there are relatively few Jews, it is the first 
sampling plan and the smaller TJ 2 which is appropriate. The TJ 2 from equal 
sampling would have to be interpreted as the proportion of AUN variance 
associated with (artificially) equiprobable religious group membership. The 
equal-sampling TJ 2 is not objectionable if the investigator wishes to consider 
membership in a given religious group as an abstract effect quite apart 
from the relative frequency with which that effect (i.e., that religious group) 
occurs in the population, but it clearly cannot be referred to the natural 
population with its varying group frequencies. 

On the other hand, assume that the purpose of the investigator is solely 
to determine whether religious population means differ on AUN, i.e., to 
determine the status of the overall null hypothesis. Thus, no issue as to the 
interpretation of 77 2 need arise. On this assumption, if his alternate hypoth­
esis gives him confidence that the population mean of the Jews will be 
discrepant, he may advantageously oversample Jews by having their n 
equal (or even draw a larger sample of Jews than of the other groups) in 
order to make f larger (if his alternate hypothesis is valid), and thus increase 
his power. 

As has already been implied, the weighting of the population means 
does not change the meaning of 77 2 nor disturb its relationship to f. Thus, 
formulas (8.2.16)-(8.2.22) and Table 8.2.2 all obtain for Case I. This is not 
the case for the translation between f and d measures of range in the vari­
ous patterns detailed in Section 8.2.1 [formulas (8.2.5)-(8.2.15) and Table 
8.2.1]. The assumption throughout that material is one of equal sample sizes, 
and it is clear that any given d value for some pattern of k means will lead 
to differing f's depending upon how the varying p; are assigned to the m;. 
The proposed conventions in regard to small, medium, and large f values 
continue to be applicable for Case I (except, of course, for their explication 
in terms of d values). 
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Finally, in Case I, where there is no common n value to use in the power 
tables, one enters with their arithmetic mean: 

(8.3.3) 

Aside from the use of the mean sample size, the procedure for the use 
of Table 8.3 is identical with that of Case 0. 

Illustrative Examples 

8.3 A university political science class has designed a poll to inquire 
into student opinion about the relative responsibilities and rights of local, 
state, and federal governments. An index score on centralism (CI) is derived 
and its relationship to various respondent characteristics is studied. One 
such characteristic is academic area, i.e., science, humanities, social science, 
etc., of which there are k = 6 in all. Data are available on a random sample 
of 300 respondents drawn from the university student roster. In considering 
the ES that they anticipate, they note that since they intend to generalize to 
the natural population of the college and are sampling accordingly, they will 
have unequal sample sizes and their conception off must take into account 
the differential weighting of effects in the am of formula (8.3.2). So computed, 
they posit f at .15. They note ruefully that they expect the greatest effects 
[departures from the grand weighted mean of formula (8.3.1)] to come 
from the smallest academic area samples, and that if they had sampled the 
academic areas equally, they could anticipate an f of .20. However, sampling 
academic areas equally would result in inequalities on the "breaks" of the 
data which are to be studied, e.g., sex, political party affiliation, ethnic 
background. In any case, their interest lies in the correlates of CI in the 
"natural" university population. 

What is the power at a = .05 under the conditions which obtain, namely 

a=.05, u =k-1 = 5, f= .15, n =N/k= 50. 

Note that n is entered at the average sample size, 300/6 = 50. Table 
8.3.16 (for a = .05, u = 5) for row n = 50, column f = .15, indicates that 
power= .48. Clearly, the a priori probability of the F test's rejecting the null 
hypothesis given under these conditions is not very high. 

Assume that it is undesirable to increase a to .10 (which would increase 
power to .61-see Table 8.3.27) or to draw a larger sample; is there some other 
possible strategem to improve the prognosis for this significance test? The 
following might be acceptable: The division of the cases into as many as six 
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academic areas niigbt be reconsidered, given the partially arbitrary nature 
of such a partitioning. The class might discover that a somewhat less fine 
discrimination into three more broadly defined academic areas such as 
science, humanities-arts, and engineering might be acceptable. Assume 
that under these conditions f [still based on the am of formula (8.3.1 )] is 
again computed to be about .15. The revised plan has the conditions 

a=.05, U=3-1=2, f= .15, n = 300/3 = 100. 

In Table 8.3.13 for a = .05 and u = 2, n = I 00, and f = .15, power = .64, 
a distinct improvement over the .48 value of the previous plan. If this pro­
cess can, without doing violence to the issue, be carried a step further to a 
partitioning into two areas, and if the same f can be assumed, Table 8.3.12 
(for a = .05, u = 1) gives power at n = 300/2 = 150 for f = .15 of about . 74 
(by linear interpolation). It must again be stressed that all this reasoning 
takes place without recourse to the data which are to be analyzed, i.e., we 
are in the area of planning the data analysis. 

Thus, when there is some freedom available in the partitioning of a 
sample into groups, power considerations may advantageously enter into the 
decision. With f (and total N) constant, fewer groups and hence smaller 
u with larger n will result in increased power. Although f will not in general 
remain constant over changes in partitioning, this too may become a useful 
lever in planning analyses, since some partitions of the total sample will lead 
to larger anticipated f values, and hence greater power, than others. There­
fore, when alternative partitions are possible, the investigator should seek 
the one whose combined effect on u and expected f is such as to maximize 
power. See problems 8.13 and 8.14 for further discussion. 

8.4 As part of an inquiry into the differential effectiveness of psychiatric 
hospitals in a national system, an analysis is to be performed on the issue 
as to whether the psychiatric nurses in the various hospitals differ from 
hospital to hospital with regard to scores on an attitude scale of Social 
Restrictiveness (Cohen & Struening, 1963; 1964). There are k = 12 psychiatric 
hospitals of wide geographic distribution which have supplied quasi-random 
samples of their nursing personnel of varying sizes, depending upon adminis­
trative considerations and the size of their nursing staffs. The total N = 326, 
so that the average n per hospital is 326/12 = 27.2. The investigators antici­
pate that the ES of hospital on attitude is of medium size, i.e., that f = .25. 
They note that the f in question includes the differential weighting of the 
um of formula (8.2.3), but since they have no reason to expect any relation­
ship between the size of a hospital mean's discrepancy from the grand mean 
(i.e., the hospital's "effect") and the size of its sample, there is no need to 
modify the conception of a medium ES being operationalized by f = .25. 
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What is the power of the F test on means at a= .05? The conditions of the 
test, in summary, are 

a=.05, U=k-J=JI, f= .25, n=27. 

There are no tables for u =II, so that interpolation between Tables 
8.3.19 (for a= .05, u = 10) and 8.3.20 (for a= .05, u = 12) is necessary. 
Table 8.3.19 for row n = 27 and column f = .25 yields power of .85. Table 
8.3.20 for the same n and f gives power of .89. Linear interpolation between 
these values yields a power estimate of .87. Thus, given that the (weighted) 
standard deviation of the standardized means of the populations of nurses 
in these 12 hospitals is .25, the probability that F will meet the a= .05 cri­
terion is .87, a value that would probably be deemed quite satisfactory. 

8.3.3 CASE 2: FIXED MAIN EFFECTS IN FACTORIAL AND COMPLEX DESIGNS. 

In any experimental design of whatever structural complexity, a "fixed main 
effect" can be subjected to approximate power analysis with the aid of 
the tables of this chapter. In factorial, randomized blocks, split-plot, Latin 
square (etc.) designs, the F test on a fixed main effect involving k levels is 
a test of the equality of the k population means, whatever other fixed or 
random main or interaction effects may be included in the design (Winer, 
1971; Hays, 1973; Edwards, 1972). We will illustrate the principles involved 
in this extension by examining power analysis of a main effect in a fixed 
factorial design. Except for a minor complication due to denominator df, and 
some qualification in the interpretation of 7J 2, this test proceeds as in Cases 0 
and 1 above. 

Consider, for example, an I x J factorial design, where there are i = 3 
levels of I, j = 4 levels of J, and each of the ij = 12 cells contains nc = 10 
observations. The structure of the analysis in the usual model which includes 
interaction is: 

Effect 

I 
J 

I X J 
Within cell (error) 

Total 

df 

u, =1-1 =2 
UJ =J -1 =3 
UlxJ =(i -1)(j -1) =6 
ij(n.- 1) = 12(9) = 108 

ijn.-1=119 
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Now, consider the null hypothesis for the J effect, i.e., that the 4 popu­
lation means of J 1 through J4 are equal. The 4 sample means for J are each 
computed on n; = inc=3(10) = 30 observations. (Similarly, each of the 3 
means for I is computed on n1 =inc= 4(10) = 40 observations.) The minor 
complication arises at the point where one wants to determine the power 
of the test on J by applying the appropriate uJ = 3 table at n = nJ = 30. 
This procedure is equivalent to ignoring the fact that the I main effect and 
I x J interaction exist in the design, i.e., a Case 0 test of 4 means, each 
of n = 30. But the latter test has for its F-ratio denominator (within cell, or 
error) df, 4(30- I) = 116. More generally, the denominator df presumed 
in the calculation of the table entries is, fork means each ofn cases, k(n- I) 
= (u + I)(n- 1). Thus, in this case, the table's value is based on 3 and 116 
df, while the F test to be performed is for 3 and l08df. 

To cope with this problem of the discrepancy in denominator (error) df 
between the presumption of a single source of nonerror variance of one-way 
design on which the tables are based and the varying numbers of sources of 
nonerror variance (main effects, interactions) of factorial and other complex 
designs, for all tests of effects in the latter, we adjust the n used for table 
entry to 

, denominator df 
n = +I. 

u+l 
(8.3.4) 

The denominator df for a factorial design is the total N minus the total 
number of cells, and u is the df of the effect in question, as exemplified above 
for the I x J factorial design. Concretely, the J effect is tested as if it were 
based on samples of size 

n'=~ +I =28 
3 +I ' 

which together with the f value posited for the J effect, is used for entry 
into the appropriate table (for a and u) to determine power. 

What happens to the interpretation of f when the basis of classification 
K into k levels is present together with others, as it is in factorial design? 
However complicated the factorial design, i.e., no matter how many other 
factors (1, J, etc.) and interactions (K x I, K x J, K x I x J, etc.) may be 
involved, the definition of f for the k means of K remains the same-the 
standard deviation of the k standardized means, where the standardization 
is by the common within (cell) population standard deviation [formulas 
(8.2.1) and (8.2.2)]. Thus, there is no need to adjust one's conception of f 
for a set of k means when one moves from the one-way analysis of variance 
(Cases 0 and I) to the case where additional bases of partitioning of the 
data exist. Furthermore, the translation between f and the d measures con-



J66 8 f TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE 

sidered in 7.2.1 is also not affected. It is, however, necessary to consider the 
interpretation of 712 in Case 2. 

In Section 8.2.2, 71 2 was defined as the proportion of the total variance 
made up by the variance of the means [formula 8.2.18)]. The total variance, 
in turn, was simply the sum of the within-population variance and the 
variance of the means [formula (8.2.17)]. The framework of that exposition 
was the analysis of variance into two components, between-populations 
and within-populations. In factorial design, the total variance is made up 
not only of the within (cell) population variance and the variance of the 
means of the levels of the factor under study, but also the variances of the 
means of the other factor(s) and also of the interactions. Therefore, the 
variance base of 712 of formula (8.2.18), namely a2 + am 2, is no longer the 
total variance, and the formulas involving "1 and 71 2 [(8.2.19), (8.2.20), 
(8.2.22)] and Table 8.2.2 require the reinterpretation of 71 as a partial corre­
lation ratio, and 71 2 as a proportion, not of the total variance, but of the 
total from which there has been excluded (partialled out) the variance due 
to the other factor(s) and interactions. 

This can be made concrete by reference to the I x J (3 x 4) factorial 
illustration. Consider the four population means of the levels of J and 
assume their fJ is .30. Assume further that f1 is .50 and f~xJ is .20. When 71 2 

for J is computed from formula (8.2.19) (or looked up in Table 8.2.2): 

f2 .302 

"12 = I + f2 = I + .302 = .0826, 

the results for J clearly are not in the slightest affected by the size of the 
I or I x J effects. The 71 2 for J in this design might be written in the con­
ventional notation of partial correlation, with Y as the dependent variable 
under study, as 71 2YJoJ,IxJ• i.e., the proportion of the Y variance associated 
with J population membership, when variance due to I and to I x J is 
excluded from consideration. Thus, given fJ = .30, the variance of the J 
means accounts for .0826 of the quantity made up of itself plus the within­
cell population variance. 

In higher order factorial designs, the 1J 2 computed from an f for a given 
source J might be represented as 71 2 y J· au othen the "all other" meaning all 
the other sources of total variance, main effects, and interactions. Each 
source's "size" may be assessed by such a partial PV. Because of their 
construction, however, they do not cumulate to a meaningful total. 

The proposed operational definitions of small, medium, and large ES 
in terms of f have their usual meaning. When assessing power in testing 
the effects of the above I x J factorial, f1 and fJ (and also f~xJ-see Section 
8.3.4) can each be set quite independently of the others (because of their 
partial nature), by using the operational definitions or by whatever other 
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means suit the investigator. They can, for example, be set by stating the 
alternative-hypothetical cell means and a, and computing the resulting f 
values for all effects (illustrated in example 8.9 of the next section). 

The scope of the present treatment precludes a detailed discussion of 
the power analysis of fixed effects in complex designs other than the fac­
torial. Such analyses can be accomplished using the tables of this chapter if 
the following principles are kept in mind: 

1. The basic ES index, f, represents the standard deviation of standardized 
means, the standardization being accomplished by division by the appro­
priate a. We have seen that for fixed factorial designs, a is the square root 
of the within cell population variance. In other designs, and more generally, 
a is the square root of the variance being estimated by the denominator 
("error") mean square of the F test which is to be performed. For example, 
in repeated measurements designs using multiple groups of subjects ("split 
plot" designs), there are at least two error terms, (a) a "subjects within 
groups" or between-subjects error, and (b) an interaction term involving 
subjects, or within-subject error. In the definition of f for any source (i.e., 
set of means), the standardization or scaling of the am will come from either 
(a) or (b), depending on whether the source is a between or a within source, 
just as wilftheir F ratio denominators (Winer, 1971). 

2. The adjustment to n' of formula (8.3.4) calls for the denominator df, 
i.e., the df for the actual error term of the F ratio that is appropriate for the 
test of that source of variance in that design. For example, consider the test 
of the treatment effect in an unreplicated 6 x 6 Latin square (Edwards, 1972, 
pp. 285-317). Six treatment means, each based on n = 6 observations, are to 
be compared, so u = 5. Since the Latin square residual (error) mean square, 
which is the denominator of the F ratio, is based on (n - l)(n - 2) = 20 df, 
then' for table entry is, from (8.3.4), 20/(6 + 1) + 1 = 3.86. Power would then 
be found by linear interpolation between n = 3 and 4 at the f value posited 
in the power table for u = 5 for the specified a level. 

lllustrative Examples 

8.5 An experimental psychologist has designed an experiment to 
investigate the effect of genetic strain (I) at i = 3 levels and conditions 
of irradiation (J) at j = 4 levels on maze learning in rats. He draws 24 
animals randomly from a supply of each genetic strain and apportions each 
strain sample randomly and equally to the four conditions, so that his 
3 x 4 = 12 cells each contain a maze score for each of nc = 6 animals for a 
total N of 12(6) = 72 animals. The denominator df for the F tests in this 
analysis is therefore 72- 12 = 60. He expects a medium ES for I and a large 
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ES for J, and following the operational definitions of Section 8.2.3, sets 
f1 = .25 and fJ = .40. Note that these values are standardized by the within 
cell population and each of the main effects is independent of the other. (The 
question of the I x J interaction is considered in the next section under Case 
3.) What is the power of these two main effect F tests at the a = .05 criterion? 

For the test on the equality of the mean maze scores for the 3 strains 
(I), u = i = 2, and each mean is taken over 24 animals. However, for table 
entry, we require the n' of formula (8.3.4): 60/(2 + 1) + I = 21. Thus, the 
specifications are: 

a=.05, u =2, f= .25, n' = 21. 

Table 8.3.13 (a= .05, u = 2) at row n = 21 and column f = .25 indicates 
power of .40. The chances of detecting a medium effect in strain differences 
for these specifications are only two in five. 

For a test of equality of means of the four irradiation conditions (J), 
u = j- 1 = 3, and each mean is taken over 18 animals. Again it is n' of 
formula (8.3.4) that is required, and it is 60/(3 + 1) + 1 = 16. The specification 
summary for the test on J is thus: 

a= .05, u =3, f = .40, n' = 16. 

In Table 8.3.14 (a= 05, u = 3), at row n = 16 and column f = .40, he 
finds power = .75. The power of the test on irradiation conditions (J), given 
the large effect anticipated, is distinctly better than that for genetic strains (I); 
a probability of. 75 of rejecting the null hypothesis means . 75/.25, or three to 
one odds for rejection under these specifications. 

8.6 An experiment in developmental social psychology is designed to 
study the effect of sex of experimenter (S at s = 2 levels}, age of subject 
(A at a = 3 levels), instruction conditions (C; at c = 4), and their interactions 
(which are considered in the next section) on the persuasibility of elementary 
school boys. A total N of 120 subjects is assigned randomly (within age 
groups and equally) to the 2 x 3 x 4 = 24 cells of the design; thus, there are 
5 cases in each cell. Expectations from theory and previous research lead 
the experimenter to posit, for each effect, the following ES for the three 
effects: f5 = .I 0, fA = .25, and fc = .40. (Note that these f values imply partial 
r/, respectively, of .01, .06, and .14.) Using as a significance criterion a= .05, 
what is the power of each of the main effects F tests? 

This is a 2 x 3 x 4 fixed factorial design, and although we will not here 
consider the power testing of the four interaction effects (S x A, S x C, 
A x C, and S x A x C), they are part of the model (see Illustrative Example 
8.7 in Section 8.3.4). The correct df for the denominator (within cell mean 
square) of all the F tests is 120- 24 = 96. 
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For the test of the S effect, u = 2- I = I, and although each mean is 
based on 60 cases, the n' for table entry is 96/(1 + I)+ I = 49. Thus, the 
specifications are 

a= .05, u =I, f= .10, n' =49. 

In Table 8.3.12 for a = .05 and u = I, at column f = .I 0, for both rows 
n = 48 and 50, power is given as .16. The probability of detecting f = .10 (a 
conventionally small effect) is very poor. 

For the three age groups (hence u = 2), the n' obtained by formula (8.3.4) 
is 96/(2 + 1) + I = 33. The specifications for the determination of the power 
of the F test on the A main effect are thus: 

a= .05, u =2, f= .25, n' = 33. 

In Table 8.3.13 (a= .05, u = 2), at row n = 33 and column f = .25, 
power = .59. Note that f = .25 is our conventional definition of a medium 
effect. 

Finally, the test of the means of the four instruction conditions (hence 
u = 3) has for its n' 96/(3 + I)+ I = 25. The specification summary: 

a= .05, u = 3, f = .40, n' = 25. 

Table 8.3.14 at row n = 25, column f = .40 yields power of .93. Under 
these conditions, the b (Type II) error (I - power) is about the same as the 
a (Type I) error, but note that a large effect has been posited. 

In summary, the experimenter has a very poor (.16) expectation of detect­
ing the small S effect, a no better than fair (.59) chance of detecting the 
medium A effect, and an excellent (.93) chance of finding a significant C effect, 
assuming the validity of his alternate hypotheses (i.e., his f values), a= .05, 
and N = 120. As an exercise, the reader may determine that changing the 
specifications to 6 cases per cell (N = 144), and leaving the other specifications 
unchanged, the tabled power values become .19 for S, . 70 for A, and .97 for C. 
Note the inconsequential improvement this 20% increase in the size of the 
experiment has for the S and C effects, although bringing A from power of 
.59 to . 70 might be worthwhile. Reaching significant power for S seems hope­
Jess, but we have repeated!y seen that very large samples are required to obtain 
good power to detect small effects. 

8.3.4 CASE 3: TESTS OF INTERACTIONS. A detailed exposition of inter-
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action effects in experimental design is beyond the scope of this handbook; 
the reader is referred to one of the standard treatments (e.g., Hays, 1981; 
Winer, 1971; Edwards, 1972). We assume throughout equal nc in the cells of 
the factorial. 

For our present purposes, we note that an R x C interaction can be 
understood in the following ways: 

1. Differences in effects between two levels of R, say R; anc\ Rk (i, k = 
1, 2, 3, ... , r; i < k) with regard to differences in pairs of C, say C;- c, 
(j, p = 1, 2, 3, ... , c; j < p). More simply, a contribution to an R x C inter­
action would be a difference between two levels of R with regard to a 
difference between two levels of C. Thus, if in the population, the sex differ­
ence (males minus females) in conditioning to sound (C;) is algebraically 
larger than the sex difference in conditioning to electric shock (C,), a sex 
by conditioning stimulus (R x C) interaction would be said to exist. A first­
order interaction (R x C) is equivalent to differences between differences; 
a second-order interaction (R x C x H) equivalent to differences between 
differences of differences; etc. (see example 8.8 below). 

2. Equivalently, a first-order interaction (R x C) can be thought of 
as a residual effect after the separate main effects of R and C have 
been taken out or allowed for. Thus, after any systematic (averaged over 
stimulus) sex difference in conditioning is allowed for, and any systematic 
(averaged over sex) difference in conditioning stimulus is also allowed 
for, if there remains any variation in the sex-stimulus cells, a sex by con­
ditioning stimulus (R x C) interaction would be said to exist. A second­
order interaction (R x C x H) would be said to exist if there was residual 
variation after the R, C, H, R x C, R x H, and C x H effects were removed, 
etc. 

3. A third equivalent conception of an R x C interaction implied by 
either of the above is simply that the effect of R varies from one level of 
C to another (and conversely). Thus, a nonzero sex by conditioning 
stimulus interaction means (and is meant by): The effect of a given stimulus 
(relative to others) varies between sexes or depends upon which sex is 
under consideration. This, in turn, means that there is a joint effect of 
sex and stimulus over and above any separate (main) effect of the two 
variables. Equivalently, the effect of each is conditional on the other. 

To index the size of an interaction, we use f defined in a way which is a 
generalization of the basic definition set forth in equations (8.2.1) and 
(8.2.2). First we return to the second conception of an R x C interaction 
above, where we spoke of a "residual effect" after the main effects of R 
and C have been taken out. Consider the cell defined by the ith level of R 
and the jth level of C, the ijth cell of the table, which contains in all rc 
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cells. That cell's population mean is m 11• Its value depends on (a) the main 
effect of R;, ~·e:, m 1• - m, the departure of the population mean of level 
i of R, (b) the main effect of C1, i.e., m.1 - m, the departure of the popu­
lation mean of level j of C, (c) the value ofm, and (d) the interaction effect 
for that cell, x11, the quantity in which we are particularly interested. 
Simple algebra leads to the following definition of X;; in terms of the 
cell mean (m11), the main effect means m1., m1 ), and the total population 
mean (m): 

(8.3.5) 

When a cell has x11 = 0, it has no interaction effect, i.e., its mean is 
accounted for by the R1 and C; main effects and the total population mean. 
When all the rc cells have x values of zero, the R x C interaction is zero. 
Thus, the degree of variability of the x values about their (necessarily) zero 
mean is indicative of the size of the R x C interaction. 

Thus, as a measure of the size of the interaction of the R x C factorial 
design, we use the standard deviation of the x 11 values in the rc cells. As an 
exact analogy to our (raw) measure of the size of a main effect, um of formula 
(8.2.2). we find 

(8.3.6) 

the square root of the mean of the squared interaction effect values for the 
rc cells. 

To obtain a standardized ES measure of interaction, we proceed as 
before to divide by u, the within-cell population standard deviation, to obtain 
f: 

(8.3.7) f - u. - . 
u 

The f for an interaction of formula (8.3.7) can be interpreted in the same 
way as throughout this chapter, as a measure of variability and hence size of 
(interaction) effects, whose mean is zero, standardized by the common within 
(cell) population standard deviation. Because it is the same measure, it can 
be understood: 

I. in the framework which relates it to TJ and the proportion of variance 
of Section 8.2.2, as modified in terms of partial TJ for Case 2 in Section 8.3.3; 
or 

2. By using the operational definitions of small, medium, and large f 
values of Section 8.2.3 (even though the discussion in these sections was 



372 8 f TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE 

particularized in terms of the variability of means, rather than of interaction 
effects); or 

3. By writing the alternate-hypothetical cell means and computing the 
x values and u. and f by formulas (8.3.5)-(8.3.7). (This latter procedure is 
illustrated in example 8.9 below.) 

For the sake of simplicity of exposition, the above discussion has been of 
f for a two-way (first-order) interaction. The generalization of f for higher­
order interactions is fairly straightforward. For example, given a three-way 
interaction, R x C x H, with R at r levels, C at c levels, and H at h levels, 
there are now rch cells. Consider the cell defined by the ith level of R, the 
jth level of C, and the kth level of H. Its interaction effect is 

x 11k = m 11k -m1 -m1 -mk- x 11 - x1k- x1k +2m, 

where the x11, x1k, and X;k are the two-way interaction effects as defined in 
formula (8.3.4). Analogous to formula (8.3.6), the raw variability measure is 

(8.3.8) -JL:x;f~ 
a.- h ' rc 

i.e., the square root of the mean of the squared interaction effect values for 
the rch cells. It is then standardized by formula (8.3.7) to give f, the ES for a 
three-way interaction. 

The number of degrees of freedom (u) for an interaction is the product of 
the dfs of its constituent factors: (r- 1)(c- 1) for a two-way interaction, 
(r- 1)(c- 1)(h- 1) for a three-way interaction, etc. 

For the reasons discussed in the preceding section on main effects, the test 
on interactions in factorial designs require that n' be used for table entry. 
Formula (8.3.4) is again used with the same denominator df as for the main 
effects and with u the appropriate df for the interaction. 

In summary, power determination for interaction tests proceeds as follows: 
u is the df for the interaction and, together with the significance criterion a, 
determines the relevant power table. The table is then entered with f, which is 
determined by using one or more of the methods detailed above or by using 
the ES conventions, and n', a function of the denominator df and u (8.3.4). 
The power value is then read from the table. Linear interpolation for f, n, 
and u (between tables) is used where necessary and provides a good approxi­
mation. 

mustrative Examples 

8.7 Reconsider the experiment described in example 8.6, an inquiry 
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in developmental social psychology in which the factors were sex of experi­
menter (S at s = 2 levels), age of subject (A at a = 3 levels), and instruction 
conditions (C at c = 4 levels), i.e., a 2 x 3 x 4 factorial design, and the 
dependent variable a measure of persuasibility. There are n = 5 subjects 
in each of the 24 cells of the design, a total N of 1 20, and the denominator 
df is 120- 24 = 96. For convenience, we restate the specifications and result­
ing tabled power value for each of the main effect F tests: 

5: a= .05, u = 1, f = .10, n' = .49; power= .16 
A: a= .05, u = 2, f = .25, n' = .33; power= .59 
C: a= .05, u = 3, f = .40, n' = .25; power= .93 

Consider first the interaction of sex of experimenter by age of subject 
(S x A), which is posited to be of medium size, i.e., f = .25, and the same 
significance criterion. a = .05, is to be used. Note that this interaction con­
cerns the residuals in the 2 x 3 table which results when the 4 levels of C are 
collapsed. The df for this interaction is therefore u = (2- 1)(3- 1) = 2. All 
the effects in this fixed factorial design, including the S x A effect, use as their 
error term the within-cell mean square, hence the denominator df, as noted 
above, is 120 - 24 = 96. This latter value and u are used in formula (8.3.4) 
to determine n' for table entry: n' = 96/(2 + l) + I = 33. The specifications 
for the power of the S x A effect are thus: 

a= .05, u = 2, f= .25, n' = 33. 

In Table 8.3.13 for a= .05 and u = 2, with row n = 33 and column f = .25, 
the power of the test is found as .59, a rather unimpressive value. Note that 
this is exactly the same value as was found for the A main effect, which is 
necessarily the case, since the specifications are the same. For A, we also used 
a = .05 and f = .25. and its u is also 2. Since S x A and A (as well as the 
other effects) also share the same denominator df, their n' values are also 
necessarily the same. 

Let us also specify a = .05 and f = .25 for the S x C interaction. It is based 
on the 2 x 4 table which results when the three levels of A are collapsed, and 
its u is therefore (2- 1)(4- l) = 3. With the same denominator df of96, the 
n' for this effect is 96/(3- + 1 ) + l = 25. Thus, 

a = .05, u = 3, f = .25, n' = 25, 

and Table 8.3.14 (for a= .05, u = 3) gives at row n = 33 and column f = .25 
the power value .53. For the specifications for a and f the power is even 
poorer than for the S x A interaction. This is because the increase in u results 
in a decrease in n'. 

The A x C interaction is defined by the 3 x 4 table that results when the 
sex of experimenters is ignored, and its u is therefore (3 - 1)(4- 1) = 6. For 
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this u and denominator df = 96, then' here is 96/(6 + 1) + 1 = 14.7. For the 
sake of comparability, we again posit a = .05 and f = .25. The specifications 
for the test of the A x C interaction, then, are: 

a= .05, u = 6, f= .25, n' = 14.7. 

In Table 8.3.17 (a= .05, u = 6 ), column f = .25 gives power values of .39 
at n = 14 and .42 at n = 15; linear interpolation gives power of .41 for 
n' = 14.7. Note that, although the specifications remain a= .05 and f = .25, 
since u is now 6, the resulting drop in n' has produced a reduction in power 
relative to the other two two-way interactions. 

Finally, the three-way S x A x C interaction has u = (2- 1)(3 - 1) 
(4- 1) = 6, the same as for the A x C interaction, and thus the same n' = 
96/(6 + 1) + 1 = 14. 7. If we posit, as before. a= .05, and f = .25, the speci­
fications are exactly the same as for the A x C interaction, 

a= .05, u =6, f= .25, n' = 14.7, 

and necessarily the same power of .41 is found (Table 8.3.17). 
Because the df for interactions are products of the dfs of their constituent 

main effect factors (e.g., for A x C. u = 2 x 3 = 6), the interactions in a fac­
torial design will generally have larger u values than do the main effects, and, 
given the structure of the formula for n' (8.3.4), their n' values will generally 
be smaller than those for the main effects. This in turn means that, for any 
given size of effect (f) and significance criterion (a), the power of the inter­
action tests in a factorial design will, on the average. be smaller than that of 
main effects (excepting 2K designs, where they will be the same). This principle 
is even more clearly illustrated in the next example. 

8.8 Consider an A x 8 x C fixed factorial design, 3 x 4 x 5 ( = 60 cells), 
with three observations in each cell, so that N = 60 x 3 = 180. The within­
cell error term for the denominator of the F tests will thus have 180- 60 = 
120 df. To help the reader get a feel for the power of main effect and inter­
action tests in factorial design as a function off, a, u, and the n' of formula 
(8.3.4), tabled power values for the F tests in this experiment are given in 
Table 8.3.34 for the conventional f values for small, medium, and large ES at 
a= .01, .05, and .10. Note that although this is a rather large experiment, for 
many combinations of the parameters, the power values are low. Study of the 
table shows that 

1. Unless a large ES off= .40 is posited, power is generally poor. Even at 
f = .40, when a= .01 governs the test, two of the two-way interactions have 
power less than .80, and for the triple interaction it is only .49. It seems clear 
that unless unusually large experiments are undertaken, tests of small effects 
have abysmally low power, and those for medium interaction effects for u > 4 
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have poor power even at a = .I 0. 
2. For a medium ES off= .25, only the main effect tests at a= .10 have 

power values that give better than two to one odds for rejecting the null 
hypothesis. At a= .05. power ranges from poor to hopeless, and at .01, not 
even the tests of main effects have power as large as .50. 

TABLE 8.3.34 

POWER AS A FUNCTION OF f, a, u, AND n' IN A 3 X 4 X 5 DESIGN 

WITH nc = 3 AND DENOMINATOR df = 120 

f= .10 f= .25 f= .40 

Effect u n' a= .01 .05 .10 .oi .05 .10 .01 .05 .10 

A 2 41 05 15 25 45 70 80 93 98 99 
B 3 31 04 13 22 38 63 75 90 97 99 
c 4 25 03 12 21 33 58 70 86 96 98 

AxB 6 18.1 03 10 18 26 51 64 80 93 97 
AxC 8 14.3 02 09 17 23 46 59 75 91 95 
B :< C 12 10.2 02 08 16 18 39 52 66 86 92 

AxBxC 24 5.8 02 08 14 10 29 42 49 74 83 

3. For ESs no larger than what is conventionally defined as small (f = .10), 
there is little point in carrying out the experiment: even at the most lenient 
a= .10 criterion, the largest power value is .25. 

4. At the popular a = .05 level, only at f = .40 are the power values high 
(excepting even here the .74 value for the A x B x C effect). 

5. The table clearly exemplifies the principle of lower power values for 
interactions, progressively so as the order of the interaction increases (or, 
more exactly, as u increases). For example, only for f ="' .40 at a= .10 docs 
the power value for A x B x C exceed .80. 

The preparation and study of such tables in experimental planning and 
post hoc power analysis is strongly recommended. The reader is invited, as an 
exercise, to compute such a table for a 3 x 4 design with 15 observations per 
cell, and hence the same N = 180 as above. Comparison of this table with 
Table 8.3.34 should help clarify the implications of few cells (hence smaller u, 
larger denominator df, and larger n' values) to power. 

Because of the relative infirmity of tests of interactions due to their often 
large u, the research planner should entertain the possibility of setting, a 
priori, larger a values for the interaction tests than for the tests of main ef­
fects, usually .10 rather than .05. The price paid in credibility when the null 
hypothesis for an interaction is rejected may well be worth the increase in 
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power thus attained. This decision must, of course, be made on the basis not 
only of the design andES parameters which obtain, but also with the substan­
tive issues of the research kept in mind. 

8.9 A psychologist designs an experiment in which he will study the 
effects of age (R) at r = 2 levels, nature of contingency of reinforcement (C) 
at c = 4levels, and their interaction (R x C) on a dependent learning variable. 
There are to be 12 subjects in each of the rc = 8 cells, and a = .05 throughout. 

We will use this example to illustrate the direct specification of the 
alternate hypothesis and hence the ES. Assume that the area has been well 
studied and the psychologist has a "strong" theory, so that he can estimate 
the within-cell population standard deviation a= 8, and further, he can 
state as an alternative to the overall null hypothesis specific hypothetical values 
for each of the eight cell's population means, them;;· The latter then imply 
the R means (m;.), the C means (m.1), and the grand mean m. They are as 
follows: 

m.; 

41 
33 

37 

34 
24 

29 

30 
22 

26 

27 
29 

28 

33 
27 

30=m 

These values, in raw form, comprise his ES for the effects of R, C, and 
R x C. Their conversion to f values for the main effects is quite straight­
forward. Applying formula (8.2.2) for R and C, 

a =J(33- 30)2 + (27- 30)2 . = v9 = 3, 
mR 2 

and 

a =J(31- 30)2 + (29- 30)2 + (26- 30)2 + (28- 30)2 = .y17.5 = 4.l&3. 
me 4 

When these are each standardized by dividing by the within-population 
a= 8 [formula (8.2.1)], he finds 

fR = 3/8 = .375 

and 
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fc = 4.183/8 = .523. 

For the R x C interaction ES, he finds the interaction effects for each cell 
using formula (8.3.4) 

Thus, 

X;;= m;; -m;. -m.1 + m. 

x 11 = 41-33-37 + 30 = +I 

x 12 = 34-33-29 + 30 = +2 

These X;; values for the 2 x 4 table of means are 

+I 
-I 

+2 
-2 

+I 
-I 

-4 
+4 

Note that they are so defined that they must sum to zero in every row 
and column; these constraints are what result in the df for the R x C inter­
action being u = (r- I )(c- I); in this case, u = 3. 

Applying formula (8.3.6) to these values, 

(1 = JI X~= J? + 1)2 + ( +2)2 + ( + 1)2 + ... + ( +4)2 
• rc 2(4) 

= J~ =2.345. 

Standardizing to find f [formula (8.3.7)], 

fRxC = qxfq = 2.345/8 = .293!. 

Thus, his alternative-hypothetical cell population means, together with 
an estimate of a, have provided an f for the R x C effect (as well as for the 
main effects). 

One of the ways in which to understand interactions, described in the 
introduction to this section, was as differences among differences. This is 
readily illustrated for this problem. Return to the cell means and consider 
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such quantities as m 11 -m 21 , i.e., the difference (with sign) between the 
means of A, and A 2 for each level of C. They are, respectively, (41 - 33 =) 
+ 8, (34- 24 =) + 10, + 8, and -2. Were these four values ( + 8, + 10, + 8, 
and - 2) all equal, there would be zero interaction. Calling these values D; 
and their mean D (here + 6) for simplicity, a. can be found for a 2 x c table 
by 

a =jJ. (D1-Di 
• 4c 

J--
88 

= - = 2.345 
16 ' 

as before. 

Since there are 8 ( = rc) cells with 12 subjects in each for a total N = 96, 
the denominator df for the F tests of the main effects and the interaction is 
96- 8 = 88. For the interaction test, u = (2- 1)(4- 1) = 3; therefore, the 
n' for table entry from formula (8.3.4) is 88/(3 + 1) + l = 23. The specifica­
tions for the test on the R x C interaction are thus: 

a= .05, u = 3, f = .293, n' =23. 

In Table 8.3.14 (for a = .05, u = 3) at row n' = 23, we find power at 
f = .25 to be .49 and at f = .30 to be .66. Linear interpolation for f = .293 
gives the approximate power value of .64. The power for the main effects: 

R: a= .05, u = 3, f = .375, n' = 45, power= .94; 

C: a= .05, u = 3, f = .523, n' = 23, power= .99. 

Power under these specifications for Rand C is very good, but is only .64 
for the interaction, despite the fact that its f of .293 is larger than a conven­
tionally defined medium effect and that the experiment is fairly large. Since 
the interaction is likely to be the central issue in this experiment, the power of 
.64 is hardly adequate. To increase it, the experimenter should weigh the 
alternatives of increasing the _size of the experiment or using the more modest 
a= .10 for the interaction test. If, for example, he increases the cell size from 
12 to 17, the total N becomes 136, the denominator df = 136- 8 = 128, and 
n' for R x C is 128/(3 + 1) + 1 = 33. The specifications then are 

a = .05, u = 3, f = .293, n' = 33, 
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and power is found (by interpolation) to be .81. The size of the experiment 
must be increased by 42 ~~ to raise the power of the interaction test from .64 
to .81. On the other hand, increasing the a to .10 for the experiment as 
originally planned, i.e., for 

a= .10, 

power is found to be .75. 

u = 3, f = .293, n' = 23, 

8.3.5 THE ANALYSIS OF COVARIANCE. With a simple conceptual adjust­
ment of frame of reference, all the previous material in this chapter can 
be applied to power analysis in the analysis of covariance. 

In the analysis of covariance (with a single covariate), each member of the 
population has, in addition to a value Y (the variable of interest or dependent 
variable) a value on another variable, X. called the concomitant or adjusting 
variable. or covariate. A covariance design is a procedure for statistically con­
trolling for X by means of a regression adjustment so that one can study Y 
freed of that portion of its variance linearly associated with X. In addition to 
the assumptions of the analysis of variance, the method of covariance adjust­
ment also assumes that the regression coefficients in the separate populations 
are equal. Detailed discussion of the analysis of covariance is beyond the scope 
of this treatment; the reader is referred to one of the standard texts: Blalock 
(1972), Winer (1971). 

Instead of analyzing Y, the analysis of covariance analyzes Y', a regres­
sion-adjusted or statistically controlled value, which is 

(8.3.9) Y' = Y -b(X -X), 

where b is the (common) regression coefficient of Y on X in each of the 
populations and X is the grand population mean of the concomitant variable. 
Y' is also called a residual, since it is the departure of the Y value from the 
YX regression line common to the various populations. 

The analysis of covariance is essentially the analysis of variance of the 
Y' measures. Given this, if one reinterprets the preceding material in this 
chapter as referring to means and variances of the adjusted or residual 
Y' values, it is all applicable to the analysis of covariance. 

For example, the basic formula for f (8.2.1) is um/u. For covariance 
analysis, um is the standard deviation of the k population's adjusted means 
ofY', that is,m', and u is the (common) standard deviation of theY' values 
within the populations. The d measure of Section 8.2.1 is the difference 
between the largest and smallest of the k adjusted means divided by the 
within-population standard deviation of the Y' values. The use and inter­
pretation of 71 2 as a proportion of variance and 11 as a correlation ratio 
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now refers to Y', the dependent variable Y freed from that portion of its 
variance linearly associated withX. And so on. 

An academic point: In the analysis of covariance, the denominator 
df is reduced by one (due to the estimation of the regression coefficient b). 
This discrepancy from the denominator df on which the tabled power values 
are based is of no practical consequence in most applications, say when 
(u + l)(n- 1) is as large as 15 or 20. 

The analysis of covariance can proceed with multiple covariates X; 
(i = 1, 2, ... , p) as readily, in principle, as with one. The adjustment proceeds 
by multiple linear regression, so that 

(8.3.10) Y' = y- bl(Xl -XI)- bl (Xl -Xl)- ... - bp (Xp- Xp)· 
Whether Y' comes about from one or several adjusting variables, it remains 
conceptually the same. The loss in denominator df is now p instead of I, 
but unless p is large and N is small (say less than 40), the resulting overesti­
mation of the tabled power values is not material. 

The procedural emphasis should not be permitted to obscure the fact 
that the analysis of covariance designs when appropriately used yield greater 
power, in general, than analogous analysis of variance designs. This is 
fundamentally because the within-population a of the adjusted Y' variable 
will be smaller than a of the unadjusted Y variable. Specifically, where r is 

the population coefficient between X and Y, a,' =a, VI - r 2 . Since a 
is the denominator off [formula (8.2.1)] and since the numerator undergoes 
no such systematic change (it may, indeed, increase), the effective f in an 
analysis of covariance will be larger than f in the analysis of variance of 
Y. This is true, of course, only for the proper use of the analysis of co­
variance, for discussion of which the reader is referred to the references cited 
above. 

No illustrative examples are offered here because all of the eight examples 
which precede can be reconsidered in a covariance framework by merely 
assuming for each the existence of one or more relevant covariates. Each 
problem then proceeds with adjusted (Y') values in place of the unadjusted 
(Y) values in which they are couched. 

A very general approach to the analysis of covariance (and also the anal­
ysis of variance) is provided by multiple regression/correlation analysis, as 
described by Cohen and Cohen (1983). Some insight into this method and a 
treatment of its power-analytic procedures are given in Chapter 9. 

8.4 SAMPLE SIZE TABLES 

The sample size tables for this section are given on pages 381-389; the 
text follows on page 390. 
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Teble 8.4.1 

n to detect f by F test at a • .01 
tor u: 1. 2. 3. 4 

u • 1 -,-
,_ .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

.10 336 as , 2Z IS II 9 7 5 ft ft 3 

.so 1329 333 llt9 85 55 39 29 22 15 II 9 7 

.70 192ft lt82 215 122 79 55 ftl 32 21 IS 12 9 

.80 2338 sa& 259 lite 95 67 ft9 38 25 18 lit II 

.90 2978 71t6 332 188 120 8lt 62 lt8 31 22 17 13 

.95 3S&It 892 398 22ft lltlt 101 74 57 37 26 20 16 

·" lt808 1203 $36 302 194 136 100 n so 35 26 21 

u • 2 -,-
,_ .os .10 .1S .20 .2S .30 .35 .r.o .so .60 .70 .80 

.10 307 79 36 21 lit 10 8 6 5 .. 3 3 

.so 1093 275 123 70 r.s 32 24 19 13 9 7 6 

.70 IS't3 387 173 98 63 .... 33 26 17 12 10 8 

.80 1851 lt&lt 207 117 76 " 39 30 20 lit " ' 

.90 2325 $82 260 llt7 9S " .. , 38 25 18 lit " .95 27$6 690 308 17ft 112 78 S8 ItS 29 21 16 12 

·" 3658 916 lt08 230 1lt8 103 76 59 38 27 20 16 

u•3 -,-
,_ .os .10 .15 .20 .2S .30 .)5 .Ito .so .60 .70 .80 

.10 278 71 32 19 13 9 7 6 " 3 ' 2 

.so 933 234 lOS 59 38 27 20 16 " 8 6 s 

.70 1299 326 lit& 83 " 37 28 22 lit 10 8 7 

.80 I Site 388 175 98 63 .... 33 25 17 12 9 8 

.90 1927 ItS) 215 122 78 55 lt1 31 21 IS " ' .95 2270 568 253 11t3 92 6lt ItS 37 2ft 17 13 10 

·" 298& 7ft7 333 188 121 8lt 62 ItS 31 22 17 13 

u ... -,-
,_ .os .10 .1S .20 .2S .30 .)5 .Ito .so .60 .70 .80 

• 10 253 6lt 29 17 12 8 7 s .. 3 3 2 
.so 820 206 92 52 "' 2lt 18 lit 10 7 6 s 
.70 1128 283 127 72 " 

, Zit 19 13 ' 7 6 
.80 13ft I 336 ISO as ss 38 29 22 IS 11 8 7 

.90 1661 lt16 186 lOS 68 lt7 35 27 18 13 10 8 

.9$ 191t8 lt88 218 123 79 ss ... 32 21 JS " ' ·" 2$1t6 &ItO 28& 160 103 76 53 It I 27 19 lit 11 
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Table 8.4.2 

n to detect I by F test at a = .01 
for u = S, 6. 8, 1 0 

..l!....!J... 
f 

P-r .os .to .IS .20 .2S .30 .35 .Ito .so .60 .70 .ao 

.10 233 59 27 16 11 8 6 5 It 3 2 2 

.so 737 185 82 lt7 30 22 16 13 9 6 5 It 

.70 1009 253 113 6lt Itt 29 22 17 11 8 6 s 

.eo 1193 299 131t 76 .. , 34 26 20 13 10 7 6 

.90 1469 368 16lt 93 60 42 31 24 16 12 9 7 

.9S 1719 431 192 109 70 .. , 36 28 18 13 10 8 

.99 2235 S60 249 141 91 63 47 36 24 17 13 10 

u • 6 -,-
P-r .os .to .IS .20 .2S .30 .35 .Ito .so .60 .70 .80 

.to 218 ss 25 IS 10 7 6 s 3 3 2 2 

.so 673 169 76 .. , 28 20 IS 12 8 6 s .. 

.70 917 230 103 sa 38 27 20 IS 10 8 6 s 

.eo 1080 271 121 68 .... 31 23 18 12 9 7 6 

.90 1326 332 tlta 84 54 3a 2a 22 , .. 10 8 t 

.9S 1547 388 173 ,a 63 .... 33 25 17 12 9 7 

.99 2003 502 224 126 at 57 42 33 21 IS 11 9 

u. a --,---
P-r .os .to ·' s 

.20 .2S .30 .JS .Ito .so .60 .70 .80 

.10 194 .. , 23 13 9 6 s .. 3 3 2 2 

.so sao 146 6S 37 24 17 13 10 7 s .. 3 

.70 78S 197 88 so 32 23 17 13 9 7 s .. 

.eo 9ta 230 103 sa 3a 27 20 IS 10 a 6 s 

.90 1122 2at 126 71 46 32 24 19 12 9 7 6 

.9S 1303 327 146 83 S3 37 28 22 ... 10 8 6 

.99 1676 420 187 106 68 48 36 27 18 13 10 8 

u • 10 --,-
P-r .os • 10 • IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

.to 176 ItS 21 12 8 6 s .. 3 2 2 2 

.so SIS 129 sa 33 21 IS 12 9 6 s .. 3 

.70 691 173 78 .... 29 20 IS 12 8 6 s .. 
• so 810 203 91 Sl 33 23 ta ... 9 7 s .. 
.90 982 246 110 62 40 28 21 16 11 a 6 s 
.9S 113a 2as 127 72 47 33 24 19 12 9 7 6 
.99 1456 36S 163 92 60 42 31 24 16 11 9 7 
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Table8.4.3 

n to detect f by F test at a • .01 
for u ~ 12, 15,24 

u. 12 -,-
P-r .os .10 .IS .20 .2S .30 .35 .40 .so .60 .70 .80 

.10 162 41 19 11 8 s 4 4 3 2 2 2 

.so 467 117 S3 30 20 14 10 8 6 4 3 3 

.70 623 157 70 40 26 18 14 11 7 s 4 3 

.80 726 182 82 46 30 21 16 12 8 6 s 4 

.90 881 221 99 S6 36 2S 19 IS 10 7 6 s 

.9S 1017 2SS 114 6S 42 29 22 17 II 8 6 s 

.99 1297 32S 14S 83 S3 37 28 21 14 10 8 6 

~ 
f 

P-r .os .10 .15 .20 .25 .30 .35 .40 .so .60 .70 .80 

.10 147 37 17 10 7 s .. 3 2 2 2 

.so 413 104 47 27 17 12 9 7 5 ' 3 3 

.70 548 138 62 3S 23 16 12 10 6 5 4 3 

.eo 632 159 71 41 26 19 14 II 7 s 4 .. 

.90 769 193 86 49 32 22 17 13 9 6 s .. 

.95 885 222 99 56 36 26 19 15 10 7 6 4 

.99 112S 282 126 72 46 32 24 19 12 9 7 s 
u. 24 -,--

P-r .os .10 .IS .20 .25 .30 .35 .40 .so .60 .70 .80 

.10 118 30 14 8 6 4 3 3 2 2 

.so 318 80 36 21 14 10 7 6 4 3 3 2 

.70 417 lOS 47 27 17 12 9 7 5 .. 3 3 

.80 48S 121 5S 31 20 IS 11 8 6 4 3 3 

.90 S78 145 65 37 24 17 13 10 7 5 4 3 

.95 662 166 74 42 27 19 14 11 8 6 4 4 

·" 831 209 92 53 34 24 18 14 9 7 s .. 
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T .aM 8.4.4 

n to detect f by F test at a • .05 
foru•1234 

u • I -,-
Power .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 
.10 84 22 10 6 s .. 3 3 2 
.so 769 193 86 lt9 32 22 17 13 9 7 s .. 
.70 1235 310 138 78 so 35 26 20 13 10 7 6 .eo 1571 393 175 99 6ft ItS 33 26 17 12 9 7 

.90 2102 526 234 132 as 59 44 34 22 16 12 9 

.9s 2600 6SI 290 163 lOS 73 Sit 42 27 19 14 11 

·" 3675 920 lt09 231 I ItS 103 76 sa 38 27 20 IS 

u • 2 -,-
P-r .os .10 .IS .20 .25 .30 .n .Ito .so .60 .70 .eo 
.10 8ft 22 10 6 s .. 3 3 2 
.so 662 166 7ft 42 27 19 IS 11 8 6 s .. 
.70 1028 258 liS 6S 42 29 22 17 11 8 6 s 
.so 1286 322 144 81 52 36 27 21 14 10 8 6 

.90 1682 421 188 106 68 ItS 35 27 18 13 10 8 

.95 2060 SIS 230 130 83 sa lt3 33 22 IS 12 9 

.99 2BSS 714 318 179 115 80 59 46 29 21 16 12 

u=3 ----,--
Power .os .10 .IS .20 .2S .30 .35 .Ito .so .60 .70 .eo 

.10 79 21 10 6 .. 3 3 2 2 

.so 577 I ItS 65 37 2ft 16 13 10 7 s .. 3 

.70 881 221 " 56 36 2S 19 15 10 7 6 s .eo 1096 27ft 123 69 ItS 31 23 18 12 9 7 s 

.90 1415 354 158 89 sa ItO 30 23 15 11 8 7 

.95 1718 430 192 108 70 .. , 36 28 18 " 10 8 

·" 2353 SB9 262 11t8 9S 66 .. , 38 24 17 13 10 

u•lt -,-
P-r .os .10 .IS .20 .25 .30 .n .Ito .so .60 .70 .eo 
.10 7ft 19 9 6 .. 3 2 2 
.so Slit 129 58 33 21 15 11 9 6 s 4 3 
.70 776 195 87 49 32 22 17 13 9 6 s 4 
.so 956 21t0 107 61 39 27 20 16 10 8 6 s 

.90 1231 309 138 78 so 35 26 20 13 10 7 6 

.95 1486 372 166 9ft 60 42 31 24 16 11 9 7 

·" 2021 506 22S 127 82 57 lt2 33 21 1S 11 9 
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Teble 8.4.5 

n to detect f by F test at a • .05 
for u • 5, 6. 8. 10 

u.s -,-
,_r .os .10 .IS .20 .25 .30 .35 .Ito .so .60 .70 .80 

.10 69 18 9 s .. 3 2 2 

.so lt67 117 53 30 19 lit 10 8 ' .. 3 3 

.70 698 175 78 .... 29 20 IS 12 8 6 s .. 

.80 8$6 215 96 Sit 3S 2S 18 lit 9 7 s .. 

.90 1098 27S 123 69 ItS 31 23 18 12 9 7 s 

.9S 1320 331 11t8 83 Sit 38 28 22 ... 10 8 6 

.99 1783 ltlt7 199 112 72 so 37 29 19 13 10 8 

u•6 -,-
,_r .os .10 .IS .20 .zs .30 .35 .Ito .so .60 .70 .80 

.10 66 17 8 s .. 3 2 z 

.so ltZ9 to8 lt9 28 18 13 10 8 s ft 3 3 

.70 638 160 7Z ftt 26 18 , .. " 7 s .. .. 

.80 780 195 87 so 32 22 17 13 9 6 s .. 

.90 99S 250 112 63 lt1 29 21 16 " 8 6 s 
.9S 1192 299 133 7S lt9 ]It zs 20 13 9 7 6 
.99 1601t lt02 179 tot 6S lt6 ]It 26 17 12 9 7 

u. 8 -,-
,_r .os .10 • IS .20 .2S .30 .35 .Ito .so .60 .70 .80 

• 10 60 ,, 7 s 3 z 2 
.so 37ft ,.. ft2 2ft 16 " 8 7 s .. 3 2 
.70 SitS 138 61 3S 23 16 12 9 6 s .. 3 
.eo 669 168 7S ltz 27 19 1ft " 8 6 ft ft 

.90 BitS 213 9S Sit 3S Zit 18 , .. 9 7 s .. 

.9S 1012 2Sit 113 6ft .. , 29 22 17 " 8 6 s 

.99 13SI 338 lSI 86 ss 39 29 22 1ft 10 8 6 

u • 10 -,-
,_ .os .to .IS .20 .zs .30 .3S .Ito .so .60 .70 .80 

.to ss 1ft 7 .. 3 2 2 

.so 33S 8lt 38 21 , .. 10 8 6 .. 3 3 2 

.70 488 123 ss 31 20 , .. " 8 6 .. 3 3 

.eo 591 148 66 38 2ft 17 13 10 7 s .. 3 

• 90 71t7 187 8lt lt8 31 22 16 13 8 6 s .. 
.9S 888 223 99 56 36 26 19 1S 10 7 s .. 
.99 1177 295 132 7S lt8 ]It 2S 19 13 9 7 6 
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Tllble 8.4.6 

n to detect f by F test at a ~ .05 
for u • 12, 15, 24 

u. 12 -,--
P-r .os .to .IS .20 .2S .30 .3S .Ito .so .60 .70 .80 

.to Sl 13 7 .. 3 2 2 

.so 306 77 3S 20 t3 9 7 6 .. 3 3 2 

.70 .... 3 111 so 28 t8 13 to 8 s .. 3 3 

.eo 53ft 131t 60 31t 22 t6 t2 9 6 s .. 3 

.90 673 t69 7S lt3 28 20 IS 11 8 6 .. .. 

.9S 796 200 89 Sl 33 23 t7 13 9 6 s .. 
·" tOS2 26ft 118 67 lt3 30 22 t7 11 8 6 s 

.!!....!....!!. 
f 

P-r .os .10 .IS .20 .2S .30 .3S .Ito .so .60 .70 .eo 

.to lt7 12 6 .. 3 2 

.so 272 69 31 18 12 8 6 s .. 3 2 2 

.70 391 98 .... 2S 16 12 9 7 s .. 3 2 
• eo lt71 118 S3 30 20 , .. 10 8 6 .. 3 3 

.90 see titS 66 38 21t 17 13 10 7 s .. 3 

.9S 697 t7S 78 .... 29 20 tS 12 8 6 .. .. 
·" 91S 229 102 S8 38 26 20 tS 10 7 6 .. 

u. 21t --..,---
P-r .os .to .IS .20 .2S .30 .3S .Ito .so .60 .70 .so 

.10 38 10 s 3 2 

.so 213 Sit 21t lit 9 7 s .. 3 2 2 

.70 303 76 31t 20 t3 9 7 s .. 3 2 2 

.80 363 91 It I 23 tS 11 8 6 .. 3 3 2 

.90 ltS7 11S Sl 29 19 13 to 8 s It 3 3 

.9S S2S 132 S9 31t 22 IS It 9 6 It It 3 

.99 680 17t 76 .... 28 20 IS 11 8 6 .. It 
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Table8.4.7 

n to detect f by F test at a= .10 
for u = 1, 2, 3, 4 

u • 1 -,-
Power .os .to .15 .20 .25 ,)0 .35 ,Ito .so .60 .70 .80 

.so Slt2 136 61 35 22 16 12 9 6 5 4 3 

.70 942 236 105 60 38 27 20 15 10 7 6 5 

.80 1237 310 138 78 50 35 26 20 13 9 7 6 

.90 1713 429 191 to8 69 48 36 27 18 13 10 8 

.95 2165 542 241 136 87 61 45 35 22 16 12 9 

.99 3155 789 351 198 127 88 65 50 32 23 17 13 

u. 2 -,-
Power .05 ,10 .15 .20 .25 .30 .35 .40 .so .60 .70 .eo 
.so 475 119 53 30 20 tit 11 8 6 4 3 3 
.70 797 200 89 so 32 23 17 13 9 6 s 4 
.80 1029 258 115 65 It I 29 22 17 11 8 6 s 
.90 1395 349 156 88 57 40 29 23 15 11 8 6 
.95 1738 435 194 109 70 49 36 28 18 13 10 8 
.99 2475 619 276 155 100 70 51 33 21 15 11 9 

u • 3 --,--
Power .os ,10 .ts .20 .25 .)0 ,)5 .Ito .so .60 .70 .eo 
.so lt19 lOS lt7 27 18 12 9 7 5 .. ) ) 

.70 690 173 77 It) 28 20 IS 11 8 6 .. .. 
,80 883 221 99 56 36 25 19 IS 10 7 5 .. 
.90 1180 296 132 71t 48 )It 25 19 13 9 7 5 
.95 lltSB 365 163 92 59 It I 30 21t IS 11 8 7 
.99 2051 513 229 129 83 sa .. , 33 21 15 11 9 

u = .. -,-
Power .os .to .15 .20 .25 ,)0 .35 .40 .so .60 .70 .eo 
.so 376 95 43 24 16 11 9 7 5 4 3 3 
• 70 612 154 68 38 25 18 13 10 7 5 .. 3 
.80 773 193 87 49 32 22 17 13 9 6 5 4 

.90 1031 258 115 65 42 29 22 17 11 8 6 s 

.95 1267 317 141 80 51 36 27 21 13 10 7 6 

.99 1768 443 197 111 71 so 37 28 19 13 10 8 
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Tlble8.4.8 

n to detect f by F test at a= .10 
for u = 5, 6, 8, 10 

~ 
f 

Power .os .10 .IS .20 .25 .30 .35 .40 .so .60 .70 .so 
.so 343 86 39 22 14 10 8 6 4 3 3 2 
.70 SS1 139 61 35 23 16 12 9 6 s 4 3 
.80 693 174 77 lt4 28 20 15 12 8 6 It 4 

.90 922 231 103. sa 37 26 20 15 10 7 6 It 

.95 1128 283 126 71 46 32 24 18 12 9 7 s 
·" 1564 392 175 98 63 lt4 33 25 16 12 9 7 

u. 6 -,-
Power .os .10 .1 s .20 .25 .30 .35 .Ito .so .60 .70 .so 
.so 317 80 36 20 13 9 7 6 4 3 3 2 
.70 506 127 57 32 21 15 11 9 6 It 3 3 .so 635 159 71 40 26 18 14 11 7 5 4 3 

.90 838 210 94 53 34 24 18 14 9 7 s .. 

.95 1022 256 .... 65 42 29 22 17 11 8 6 s 
·" 11to8 353 157 89 57 Ito 30 23 15 11 8 6 

u. 8 -,-
Power .os .10 .1S .20 .2S .30 .3S .40 .so .60 .70 .so 
.so 278 70 32 18 12 9 6 s 4 3 2 2 
• 70 436 110 49 28 18 13 10 8 s .. 3 3 
.80 SitS 137 61 35 23 16 12 9 6 s .. 3 

.90 717 180 80 46 29 21 15 12 8 6 .. .. 

.95 870 218 97 55 36 2S 19 14 9 7 s .. 
·" 1190 298 133 75 49 34 25 19 13 9 7 s 

u • 10 
f 

,_ .os .to .1 s .20 .25 .30 .3$ .40 .so .60 .70 .so 
.so 2SO 63 28 16 11 8 6 s 3 3 2 2 
.70 390 98 lt4 25 16 11 9 7 s 4 3 2 
.so 482 121 54 31 20 14 11 8 6 It 3 3 

.90 633 1S9 71 ItO 26 18 14 11 7 s It 3 

.95 76S 192 86 49 31 22 16 13 8 6 s .. 

.99 1040 261 116 66 42 30 22 17 11 8 6 s 
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Table 8.4.9 

n to detect f by F testata= .10 
for u = 12, 15,24 

u. 12 -,-
P-r .os .10 .15 .20 .25 .30 .35 .Ito .so .60 .70 .eo 
.so 229 sa 26 15 10 7 s 4 3 2 2 2 
.70 3SS 89 Ito 23 15 11 8 6 It 3 3 2 
.80 437 110 49 28 18 13 10 8 s It 3 3 

.90 571 143 6ft 36 24 17 12 10 6 s It 3 

.95 688 173 77 .... 28 20 15 11 8 s It It 

.99 931 233 104 59 38 27 20 IS 10 7 s It 

.!!...!..!i_ , 
P-r .OS .10 • IS .20 .25 .30 .35 .Ito .so .60 .70 .eo 

.so 205 52 23 13 9 6 s It 3 2 2 2 

.70 315 79 35 20 13 9 7 6 It 3 2 2 

.eo 386 97 43 25 16 12 9 7 s It 3 2 

.90 502 126 S6 32 21 IS 11 9 6 It 3 3 

.95 603 151 68 38 25 17 13 10 7 s It 3 

.99 812 203 91 51 33 23 17 13 9 6 s It 

u = 24 -,-
P-r .os .10 ·' s .20 .25 .30 .35 .Ito .so .60 .70 .80 

.so 161 It I 18 11 7 s 4 3 2 2 

.70 246 62 27 16 10 7 6 s 3 2 2 2 

.80 298 75 34 19 12 9 7 s It 3 2 2 

.90 382 96 43 25 16 11 8 7 s 3 3 2 

.95 ltS6 114 52 30 19 13 10 8 s It 3 , 

.99 607 152 68 39 25 17 13 10 7 s It , 
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The tables in this section list values for the significance criterion (a), 
the numerator degrees of freedom (u), the ES to be detected (f), and the 
desired power. The required size per sample, n, may then be determined. 
The chief use of these tables is in the planning of experiments where they 
provide a basis for decisions about sample size requirements. 

The 33 tables are laid out generally four to a table number, by a levels 
and successively tabled u values within each a level. The subtable for the 
required a, u combination is found and f and desired power are located. 
The same provisions for a, u, and fare made as for the tables in Section 8 .3, 
as follows: 

1. Significance Criterion, a. Table sets are provided for nondirectional 
a of .01, .05, and .10, each set made up of tables for varying values of u. 

2. Numerator Degrees of Freedom, u. For each a level, tables are provided 
in succession for the I I values of u = I (I) 6 (2) 12, 15, 24. Since the num­
ber of means to be compared is k = u + I, the tables can be used directly 
for sets of means numbering k = 2 (I) 7 (2) 13, 16, and 25, and for inter­
actions whose df equal the above II values of u. For missing values of u 
(7, 9, II, etc.), linear interpolation between tables will yield adequate approxi­
mations to the desired n. 

3. Effect Size, f. f was defined and interpreted for equal n in Sections 
8.2, and generalized for unequal n in Section 8.3.2 and for interactions in 
Section 8.3.4. As in the power tables, provision is made in the sample size 
tables for the 12 values: .05 (.05) .40 (.10) .80. Conventional levels have 
been proposed (Section 8.2.3), as follows: small ES: f = .10, medium ES: 
f = .25, and large ES: f = .40. (No values of n less than 2 are given, since 
there would then be no within-population variance estimate from the data.) 

To find n for a value off not tabled, substitute in 

(8.4.1) "·OS 
n = 400f2 +I, 

where n.os is the necessary sample size for the given a, u, and desired power 
at f = .05 (read from the table), and f is the nontabled ES. Round to the 
nearest integer. 

4. Desired Power. Provision is made for desired power values of .10 
(except at a= .10 where it would be meaningless), .50, .70, .80, .90, .95, .99. 
See 2.4.1 for the rationale for selecting such values for tabling, and particu­
larly for a discussion of the proposal that .80 serve as a convention for 
desired power in the absence of another basis for a choice. 
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8.4.1 CASE 0: k MEANS WITH EQUAL n. The sample size tables were 
designed for. t~is, the simplest case. Find the subtable for the significance 
criterion (a) and numerator df (k- I = u) which obtain and locate f and 
desired power, to determine n, the necessary size per each sample mean. 
For nontabled f, use the tables to find n.os and substitute in formula (8.4.1). 

Illustrative Examples 

8.10 Reconsider the educational experiment on the differential effective­
ness of k = 4 teaching methods to equal sized samples of n = 20 (example 
8.1 ). Using a= .05 as the significance criterion, and f = .28, it was found that 
power was approximately .53. Now we recast this as a problem in experi­
mental planning, where we wish to determine the sample size necessary to 
achieve a specified power value, say .80. Initially, to illustrate the simplicity 
of the use of the sample size tables for tabled values of f, we change her 
specification of f to .25, our operational definition of a medium ES. Sum­
marizing, the conditions for determining n for this test are 

a=.05, u =k- I= 3, f= .25, power= .80. 

In the third subtable of Table 8.4.4 (for a= .05, u = 3) with column 
f = .25, and row power = .80, we find that we need n = 45 cases in each of 
the 4 method groups. Thus, slightly scaling down herES from .28 to .25, she 
needs 4(45) = 180 = N to have .80 probability of a significant result at a = 
.05. 

Since her f was originally .28, we illustrate the determination of n for this 
non tabled value, leaving the other specifications unchanged: 

a= .05, U=3, f= .28, power= .80. 

For nontabled f, we use formula (8.4.1). For n. 05 , the sample size needed 
to detect f = .05 for a = .05, u = 3 with power= .80, we use the same subtable 
as above, the third subtable of Table 8.4.4 (for a = .05, u = 3) with column 
f = .05 and row power= .80 and find n.os = 1096. Sul:stituting in formula 
(8.4.1 ), 

1096 1096 
n = 400(.282) + 1 = 31.36 + 1 = 35.9. 

Thus, she would need 36 cases in each of the 4 groups to have power of 
.80 to detect f = .28 at a = .05. (This value of n is, as it should be, smaller 
than that which resulted when a smaller f of .25 was posited above.) 

8.11 We reconsider the social psychiatric research of example 8.2, 
now as a problem in experimental planning. A pool of suitable in-patients 
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is to be randomly assigned to k = 3 equal samples, and each subjected to 
a different microsocial system. Following this treatment, ·criterion measures 
will then be F-tested at a= .01. Temporarily, we revise the team's two 
proposed ES measures (the basis for which is described in example 8.2), 
f = .229 and .333, to a range of four tabled values: f = .20, .25, .30,. 35. It 
is desired that power be .90 and we seek the n required for each of these 
specifications, which, in summary, are 

a=.Ol, U=k-1 =2, {
.20 

f= .25 
.30' 
.35 

power= .90. 

We use the second subtable of Table 8.4.1 (for a= .01, u = 2) at row 
power = .90 and columns f = .20, .25, .30, and .35 and find the respective 
per sample n's of 147, 95, 66, and 49. Thus, for these conditions, an f of 
.20 requires three times as large an experiment as an f of .35. Note that in 
terms of proportion of variance, the respective .,2 for these values are .0385 
and .1 091 (Table 8.2.2). 

Having illustrated the direct table look-up afforded by tabled f values, 
we turn to the actual f values posited by the two factions on the research 
team in the original example, .229 and .333. These nontabled values require 
the use of formula (8.4.1). The specifications are 

a= .01, u=2, f= {.229 
. 333' power= .90 . 

For n.05 , the sample size needed to detect f = .05 for a= .01, u = 2, 
with power .90, we use the second subtable of Table 8.4.1 (for a = .01, u = 2) 
with column f = .05 and row power = .90 and find n.05 = 2325. Substituting 
it and f = .229 in formula (8.4.1 ), 

2325 
n = 400(.2292) + 1 = 111.8, 

and for f = .333, 

2325 
n = 400(.3332) + 1 = 53.8. 

Thus, if the .. weak effect" faction (f = .229) is correct, samples of 112 
cases are required, while if the .. strong effect" faction (f = .333) is correct, 
only 54, less than half that number, are required per sample. 

If they compromise by splitting the difference in n and use (Ill + 53)/2 = 
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82 cases, we can solve formula (8.4.1) for f, the "detectable effect size,"3 

for given a, desired power, and n: 

(8.4.2) f-J n.os 
- 400(n- I) 

J 2325 
= 400(81) = .268. 

393 

The interpretation of this result is that for an F test at a= .01 of three 
means each based on 82 cases to have power of .90, the population ES 
must be f = .268. Since the relationship involved is not linear, splitting the 
difference in n does not split the difference on f. The latter would be f = 
(.229 + .333)/2 = .281. If the latter was the basis for compromise, the experi­
ment would demand, applying formula (8.4.1) to these specifications, 

2325 
n = 400(.2812) + l = 74.6, 

or 75 cases. 
There is yet a third way of splitting the difference, i.e., between the .05 

and . 10 proportion of variance of criterion accounted for by experimental 
group membership, 11 2• If the compromise is effected on this basis, 11 2 = 
(.05 + . 10)/2 = .075. Then, from formula (8.2.22), 

f =J "015 = 285 I- .075 . . 

Substituting this value of f with the n.05 = 2325 for these conditions in 
formula (8.4.1 ), 

2325 
n = 400(.2852) +I = 72.6, 

or 73 cases, which hardly differs from the n demanded by averaging the f's 
(75). This will generally be the case unless the two f's are very widely separ­
ated. 

8.4.2 CASE 2: k MEANS WITH UNEQUAL n. Sample size decisions for re­
search planning in Case 2 offer no special problems. One must keep in mind 

3 The concept "detectable effect size" transcends its applications here. It is useful in 
post hoc power analysis, particularly in the assessment of failures to reject the null hypo­
thesis and in summarizing the results of a series of experiments bearing on the same issue. 
See Cohen (1965, p. 100; 1970, p.828). 
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that with unequal n1 , f is the standard deviation of the p1-weighted standar­
dized means, as described in Section 8.3.2. When the sample size tables are 
applied with the usual specifications, the n indicated in Case 2 is the average 
sample size of the k samples, i.e., n = N/k. Similarly, for nontabled f, the n 
found from formula (8.4.1) is the average sample size. 

The unequal n1 case arises in research planning in various circumstances. 

I. In political opinion, market research, or other surveys, where a 
total natural population is sampled and constitutent populations are of 
varying frequency, e.g., religious affiliations (as illustrated in Section 8.3.2), 
socioeconomic categories, etc. (See example 8.12 below.). 

2. In experiments where one or more samples of fixed size are to be used, 
and the size of one or more samples is open to the determination of the 
experimenter. For example, scheduling problems may dictate that a control 
sample is to have 50 cases, but the sample sizes of two experimental groups 
can be determined using considerations of desired power. 

3. In some experiments, it may be desired that a reference or control 
sample have larger n than the other k - I samples. (See example 8.12 
below.) 

In each of these circumstances, the average n which is read from the 
tables [or computed from formula (8.4.1)] is multiplied by k to yield the 
total N. 

Illustrative Examples 

8.12 To illustrate Case I in surveys of natural populations, return 
to example 8.3, where a political science class designs an opinion survey of 
college students on government centralism. A source of variance to be 
studied is the academic areas of respondents of which there are 6 ( = k). 
The f for the anticipated unequal n1 is posited at .15, and a= .05. Now, 
instead of treating this as a completed or committed experiment (where 
total N was set at 300 and power then found to be .48), let us ask what N 
is required to attain power of .80. The specifications are 

a=.05, u = k-1 = 5, f= .15, power= .80. 

In the first subtable of Table 8.4.5 (for a= .05, u = 5) at column f = 15 
and row power= .80, n = 96. This is the average size necessary for the 6 
academic area samples. The quantity we need is the total sample size, N = 
6(96) = 576. 

Example 8.3 went on to consider the effect on power of a reduction of 
k from 6 to 3 more broadly defined academic areas. Paralleling this, we 
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determine ~ needed for k = 3, keeping the other specifications unchanged: 

a=.OS, U=k-1 =2, f= .15, power= .80. 

From the second subtable of Table 8.4.4 (for a = .OS, u = 2) for column 
f= .IS, row power= .80, we find n = 144, so that N = 3(144) = 432. Note 
that going from 6 to 3 groups results here in a 25% reduction of the N 
demanded (from 576 to 432). Of course, we assumed f to remain the same, 
which would probably not be the case. 

8.13 A psychophysiologist is. planning an experiment in which he 
will study the effect of two drugs (A and B) on neural regeneration relative 
to a control (C). He plans that nA = n8 (which we call nE) but nc is to be 
40% larger, i.e., nc = 1.4nE. He posits that the three within-population­
standardized mean differences will be (mA -m) =- .S, (m8 -m) = + .S, and 
(me -m) =0, that a= .OS, and he wishes power to be .90. To determine 
the necessary sample size, he must first find the f implied by his alternate­
hypothetical means. His total sample size is 

so 

N =nE +nE + 1.4nE = 3.4nE, 

nE nE 
PA=Pa= -= --=.294 

N 3.4nE 

and 

_ 1.4nE _ 1.4nE _ 412 Pc- ------. · 
N 3.4nE 

Combining formulas (8.3.1), (8.3.2), and (8.2.1),4 

(8.4.3) f = J "f..p{ ml :my 
= v.294( -.s2> + .294( +.5 2)+ .4t2(o2) = -v.--f47o-= .38. 

Collecting the specifications, 

8=.05, U=k-1 =2, f= .38, power= .90. 

4 Although the means are equally spaced, we cannot use the d procedures of Section 
8.2.1, which are predicated on equal n. 
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Since f is not tabled, we proceed to find the average n by formula (8.4.1), 
which calls for n.05 , then required for these specifications of a, u, and power 
when f = .05. In the second subtable of Table 8.4.4, a = .05 and u = 2, row 
power= .90, and f = .05, n.05 = 1682. Applying formula (8.4.1), 

1682 
n = 400(.382) +I = 30.1. 

But this n is for Case I, the average n per sample. The total N = 3(30.1) = 
90.3. The sample sizes are unequal portions of this, as specified: The sample 
size of groups A and Bare each .294(90.3) = 27 and of group Cis .412(90.3) = 
37. Thus, with sample sizes respectively for A, B, and C of 27, 27, and 37, 
he will have a .90 probability that his F test on the 3 sample means will meet 
the .05 significance criterion, given that f = .38. 

8.4.3 CASES 2 AND 3: FIXED MAIN AND INTERACTION EFFECTS IN FAC­
TORIAL AND CoMPLEX DESIGNS. In factorial design, the power values of tests 
of both main and interaction effects are determined by the design's denomina­
tor df, which in turn depends upon a single given cell sample size (nc). It is 
therefore convenient to present sample size determination for all the effects 
together for any given design. (In other complex designs. i.e., those with more 
than one source of nonerror variance, the same methods apply, although there 
may be different denominator dfs for different effects.) The reader is referred 
to Sections 8.3.3 and 8.3.4 for discussions of interaction effects and the 
interpretation of T'J and 7J 2 as partial values. 

The procedure for using the tables to determine the sample size required 
by an effect is essentially the same as for Cases 0 and 1. The sample size table 
(for specified a and u) is entered with f and the desired power, and the n is 
read from the table. However, this n must be understood as then' of formula 
(8.3.4), a function of the denominator df and the df for the effect, u. The cell 
sample size implied by the n' value read from the table is then found from 

(n' - l)(u + l) 
nc = + 1, 

number of cells 
(8.4.4) 

where u is the df for the effect being analyzed, and "number of cells" is the 
number of (the highest order of) cells in the analysis, e.g., for all main and 
interaction effects in an R x C x H design it is rch. We assume throughout 
that all cells have the same nc. The nc thus computed need not be an integer. 
It is therefore rounded up to the next higher integer (or down, if it is very close 
to the lower integer) to determine the cell sample size that must actually be 
employed. Multiplying this integral nc value by the number of cells in the 
design then gives the actual total N required by the specifications for the effect 
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in question. 
When f is not a tabled value, one proceeds as in Cases 0 and I to find n 

by formula (8.4.1). This is again n', and one proceeds as above to determine 
n., and N. 

Since the tests of the various effects in a factorial (or other complex) design 
will demand different Ns. these must then be resolved into a single N which 
will then be used in the experiment. 

IUustrative Examples 

8.14 Reconsider example 8.6, now as a problem in sample size deter­
mination to achieve specified power. The experiment is concerned with the 
effects on persuasibility in elementary school boys of sex of experimenter 
(S), age of subject (A), and instruction conditions (C), in respectively a 
2 x 3 x 4 ( = 24 cells) factorial design. The ES posited for the three main 
effects are f5 = . 10, fA = .25 and fc = .40 and for all interaction tests, f = .25; 
all the tests are to be performed at a = .05. Assume that power of .80 is de­
sired for all of the tests, subject to reconsideration and reconciliation of the 
differing N's which will result. 

For the S effect, the specifications are thus: 

a = .05, u = 2 - 1 = 1, f = .1 0, power = .80. 

In the first subtable of Table 8.4.4 for a= .05, u = 1, with column f = .10 
and power= .80, we find the value 394. Treating it as n', we then find from 
formula (8.4.4) that the cell sample size implied by n' is 

n = (394 - l)(l + I)+ I = (33.75) = 34 
" 24 ' 

and the actual total N required for the S effect by these specifications is 
24(34) = 816 (!).Although conceivable, it seems unlikely that an experiment 
of this size would be attempted. Note that f = . 10 operationally defines a small 
ES, and we have seen in previous chapters that to have power of .80 to detect 
small ES requires very large sample sizes. This virtually restricts such at­
tempts to large scale survey research of the type used in political polling and 
to sociological, market, and economic research. 

Consider now the N demanded by the specifications for the age effect, 
which are 

a=.05, u =3 -I =2, f= .25, power= .80. 

In the second subtable of Table 8.4.4, for a= .05 and u = 2, with column 
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f = .25, and row power = .80, we find the n ( = n') value of 52. Substituting 
in (8.4.4), nc =(52- 1)(2 + 1)/24 + I = (7.38 =) 8, hence the actual total 
N = 24(8) = 192. This more modest n demand is primarily due to positing 
f = .25 (medium ES). 

Finally, we find n required for the test on C, as specified: 

a= .05, u =4-1 = 3, f = .40, power= .80. 

The third subtable of Table 8.4.4 (for a= .05, u = 3) at f = .40, power= 
.80, yields the value 18 for n ( = n'). nc = (18- 1)(3 + 1)/24 + I = (3.8 =) 4, 
so the total N required is 24(4) = 96. This relatively small required N is 
primarily a consequence of positing f = .40, a large ES. 

Taking stock at this point, the three tests of the main effects, of varying 
specifications, have led to varying N demands of 816 for S, 192 for A, and 
96 for C. 

Turning now to the tests of the interactions, they all share the same 
a = .05, f = .25. and the power desired specified at .80. They differ only in 
their u values, but this means that they will differ in n' and therefore N: 

For S x A, u = (2- 1)(3- I)= 2. The specifications are the same as for 
the A main effect (a = .05, u = 2. f = .25, power = .80), so the results are 
the same: eight cases per cell, hence N = 192. 

For S x C, u = (2- 1)(4- I)= 3. From the third subtable of Table 8.4.4 
(a= .05, u = 3), for power = .80 when f = .25, the value n' = 45 is found. 
Formula (8.4.4) then gives nc = (45- 1)(3 + 1)/24 + I)= (8.33 =) 9, and 
N = 24(9) = 216. 

For Ax C, u = (3- 1)(4- 1) = 6. The second subtable of Table 8.4.5 
(a= .05, u = 6) gives n' = 32 for power= .80, f = .25. Formula (8.4.4) then 
gives nc = (32- 1)(6 + 1)/24 +I= ( 10.04 =) 10 (We round down here 
since 10.04 is only trivially larger than 10.) N is therefore 24(10) = 240. 

Finally, for the test of the S x A x C interaction effect, u = (2 - I) 
(3- 1)(4- 1) = 6. and the specifications are the same as for Ax C, therefore 
nc = I 0 and N = 240. 

We have thus had an array of N values demanded by the three main and 
four interaction effects ranging from 96 to 816, and some choice must be made. 
Table 8.4.10 summarizes the specifications and resulting sample size demands 
for the seven tests of this 2 x 3 x 4 factorial design. Surveying the results of 
this analysis, the researcher planning this experiment may reason as follows: 

The central issues in this research are the interactions, so the fact that 
adequate power for the small S effect is beyond practical reach (816 cases in 
a manipulative experiment is virtually unheard of) is not fatal. If an experi­
ment as large as N = 240 can be mounted, power of at least .80 at a = .05 
can be attained for the ES values specified. The actual power values for all 
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the tests are then determined by the methods of Sections 8.3.3 and 8.3.4. They 
turn out to be: S .31, A .91, C >.995, S x A .92, S x C .88, Ax C .80, and 
s X A X c .80. 

TABLE 8.4.10 

SAMPLE SIZE DEMANDS FOR THE MAIN AND INTERACTION EFFECTS IN THE 

5 X A XC (2 X 3 X 4) FACTORIAL DESIGN 

Specifications 

Effect a u f Power nc N 

s .05 I .10 .80 34 816 
A .05 2 .25 .80 8 192 
c .05 3 .40 .80 4 96 
SxA .05 2 .25 .80 8 192 
SxC .05 3 .25 .80 9 216 
Axe .05 6 .25 .80 10 240 
SxAxC .05 6 .25 .80 10 240 

Alternatively, it may well be the case that N = 240 exceeds the resources 
of the researcher, but after studying Table 8.4.10 he decides that he can 
(barely) manage eight cases per cell and N = 192; this will provide adequate 
power for A, C, and S x A (Sis hopeless. anyway). The actual power values 
with N = 192 for the tests of the interactions are then determined to be: 
S x A .84, S x C .79, Ax C .68, and S x Ax C .68. The planner may be 
willing to settle for these values and proceed with N = 192. 

On the other hand, we may judge that the two-to-one odds for rejection 
in the F tests of the A x C and S x A x C interactions are not good enough. 
He may be willing to decide, a priori, that he is prepared to test these inter­
actions at a = .10. Note that he need not shift to a = .I 0 for the other tests. 
He is simply prepared to offer a somewhat less credible rejection of these two 
null hypotheses if it should turn out that the increase in power is sufficient to 
make it worthwhile. These tests will thus have the same specifications: a = .1 0, 
u = 6, f = .25, and, since N = 192. denominator df = 192 - 24 = 168, and 
n' = 168/(6 + I)+ 1 = 25. Looking up n = 25 at f = .25 in Table 8.3.28 (for 
a= .10, u = 6), he finds power= .78. He may then consider whether he pre­
fers power of .68 at a = .05 or power of . 78 at a = .10 for these two tests, a 
not very happy pair of alternatives. (A factor in his decision may be his 
judgment as to whether f = .25 is a possibly overoptimistic estimation of the 
true ES. If so, he had better opt for the a = .10 alternative since, at a = .05, 
power would be Jess than .68). 

There is another device available in research planning to bring sample size 
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demands into conformity with available resources, already illustrated in prob­
lem 8.3. One should consider dropping the number of levels of a research 
factor in order to reduce the size of u, particularly in interactions. In this 
illustration, if only two age groups are used, u = 3 for A x C and S x A x C. 
For N = 192, now in 2 x 2 x 4 = 16 cells (hence, nc = 12), the denominator 
df will be 192- 16 = 176, and n' will be 176/(3 + 1) = 1 = 45. For a= .05 
and u = 3, Table 8.3.14 gives power= .81 at f = .25 for n = 45. This appears 
to be the preferred resolution of the problem in this illustration. In other cir­
cumstances an entire research factor may be dropped in the interests of in­
creasing power or decreasing sample size demand for the remainder of the 
experiment. 

8.15 We return to example 8.9 which described a learning experiment of 
the effects of age (R) at r = 2 levels and contingency of reinforcement (C) at 
c = 4 levels on a measure of learning, so that there are 2 x 4 = 8 cells. Al­
though f may be specified by using the operational definition conventions, 
example 8.9 illustrated how f values for the main effects and interaction are 
arrived at by positing values for the alternate-hypothetical cell means and 
within-population a and computing them from these values. We found there 
that f for R was .375, for C .523, and for R x C .293. The problem is now 
recast into one in which sample size is to be determined, given the desired 
power and the other specifications. Assume initially that all three tests are to 
be performed at a = .05 and that the power desired is at least .80. 

For the test of the R (age) effect, the specification summary is thus: 

a = .05, u = r - 1 = 1. f = .375, power = .80. 

Since f = .375 is not a tabled value. we proceed by means of formulas (8.4.1) 
and (8.4.4). In the first subtable of Table 8.4.4 (a= .05, u = 1), at power= 
.80, the value at f = .05 is 1571. Thus, from (8.4.1), 

n' _ 1571 _ 2 3 
- 400(.3752) + 1 - 8"9 ' 

and then applying formula (8.4.4), 

nc = (28.93 - 81)(1 + 1) + 1 = (7.98 =) 8, 

so that each of the eight cells will have eight cases, and N = 64 cases are 
required for the test of the R effect. 

For the test of the reinforcement contingency (C) effect, the specifications 
are: 

a= .05, u = c- 1 = 3, f = .523, power= .80. 
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The third subtable of Table 8.4.4 (a= .05, u = 3), gives n.os = 1096 for 
power= .80. Formula (8.4.1) then gives, for f = .523, 

' 1096 
n = 400(.5232) + 1 = 11.02 

and formula (8.4.4) gives 

nc = (11.02-81)(3 +I)+ I = (6.01 =) 6, 

so that N = 8 x 6 = 48, a substantially smaller demand for the test of the C 
effect. 

The specifications for the test of the R x C interaction effect are: 

a= .05, u = (r- 1)(c- 1) = 3, f = .293, power= .80, 

and, since a, u, and power are the same as for the R main effect, the n.os = 
1096 is the same. For f = .293, 

' 1096 
n = 400(.2932) + 1 = 32.92, 

and 

nc = (32.92 -81)(3 +I)+ I= (16.96 =) 17 

so N = 8 x 17 = 136 for the R x C test. 
So again, as will so often be the case for interactions. the sample size de­

mand is large relative to those for the main effects. If the experimenter is pre­
pared to mount that large an experiment, power for testing the interaction 
effect will be .80, and it will be much better than that for the main effects: 

R: a=.05, U=l, f=.375, n'=(l36-8)/(1+1)+1=65. 

From Table 8.3.12, power= .99. 

C: a=.05, u=3, f=.523, n'=(l36-8)/(3+1)+1=33. 

From Table 8.3.14, power> .995. 

If the experimenter finds N = 136 a larger experiment than he can manage, 
he may investigate the consequence to the N required by switching to an 
a= .10 criterion for the R x C test. For this change in the specifications, 
n.os for a= .10, u = 3 (third subtable of Table 8.4.7) is 883, n' = 26.71, 
nc = 14 and N = 112. 

As another possibility, he may retain a= .05, but settle for power= .70 
for the R x C test. From Table 8.4.4 for a = .05, u = 3, n .os is found to be 
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881, son' is computed as 26.66, n. as 14 and N = 112. Thus, for the reduction 
in N from 136 to 112, he may either use the lenient a= .10 criterion with 
power = .80, or the conventional a = .05 but with power = . 70. 

Finally, as in the preceding problem, he may consider giving up one of the 
reinforcement conditions so that there are only 2 x 3 = 6 cells and the u for 
R x C is reduced to (2- 1)(3 - 1) = 2. If the choice of which condition to 
omit may be made on purely statistical grounds, the table of alternate-hypo­
thetical population means presented in problem 8.9 above suggests that C3 is 
the best candidate. Note that the omission of the means for C3 will change all 
three f values. The f for R x C increases to .328 (and is slightly decreased for 
the main effects). For the revised 2 x 3 design, then, the specifications for 
R x Care: 

a = .05, u = 2, f = .328, power = .80, 
and via formulas (8.4.1) and (8.4.4), n. is found to be 16 and N = 6 x 16 = 
96. (The reader may wish to check the above as an exercise.) Thus, by re­
moving the condition that makes the least contribution to the interaction, its 
f is increased (from .293 to .328), its u is decreased, and the result is that for 
a= .05 and power= .80, 96 rather than 136 cases are required. The experi­
menter might well decide to follow this course. 

This and the preceding problem tell a morality tale about research design. 
The possibility of studying many issues within a single experiment, so well 
described in the standard textbooks on experimental design and the analysis 
of variance, should be accompanied by a warning that the power of the result­
ing tests will be inadequate unless N is (usually unrealistically) large or the 
ESs are (also usually unrealistically) large. Recall that this principle is notre-

TABLE 8.4.11 

n PER GROUP AND TOTAL N AS A FUNCTION OF k FOR k GROUPS: 

UNDER THE CONDITIONS a= .05 AND POWER= .80 FOR f = .25 

k u n N 

2 I 64 128 
3 2 52 156 
4 3 45 180 
5 4 39 195 

6 5 35 210 
7 6 32 224 
9 8 27 243 

II lO 24 264 

13 12 22 286 
16 15 20 320 
25 24 15 375 
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stricted to factorial or other complex designs; a simple one-way analysis of 
variance on k groups will, unless f is large, require relatively large N (as 
illustrated in problem 8.3). Consider the standard conditions a = .05, f = .25 
(medium ES), and desired power= .80 for a one-way design with k groups. 
Table 8.4.11 shows now the required n per group and total N ( = nk) vary 
ask increases (then values are simply read from Tables 8.4.4-8.4.6). Although 
the required sample size per group decreases as k increases, the total N in­
creases with k. Although for a medium ES 150 subjects provide adequate 
power to appraise two or three treatments, that number is not sufficient for 
six or seven. The reader might find it instructive to construct and study tables 
like 8.4.11 for other values off and a. 

8.4.5 THE ANALYSIS OF CovARIANCE. As was discussed in the section 
on the use of the power tables in the analysis of covariance (8.3.5), no special 
procedural change takes place from analogous analysis of variance designs. 
What changes is the conception of the dependent variable, which becomes 
Y', a regression-adjusted or statistically controlled value [defined in formula 
(8.3.9)], whose use may result in a larger ES than the use of the unadjusted 
Y. Population means, variances, ranges, etc., now merely refer to this adjusted 
variable in place of the unadjusted variable of the analysis of variance. For 
more detail, see Section 8.3.5. See also the alternative approach to data­
analytic problems of this kind by means of multiple regression/correlation 
analysis in Chapter 9. 

Thus, sample size estimation in the analysis of covariance proceeds in 
exactly the same way as in analogous analysis of variance designs. 

8.5 THE USE OF THE TABLES FOR SIGNifiCANCE TESTING 

8.5.1 INTRODUCTION. As is the case in most of the chapters in this 
handbook, provision for facilitating significance testing has been made in 
the power tables as a convenience to the reader. While power analysis is 
primarily relevant to experimental planning and has as an important para­
meter the alternative-hypothetical population ES, once the research data 
are collected, attention turns to the assessment of the null hypothesis in the 
light of the data (Cohen, 1973). (See Section 1.5, and for some of the advan­
tages of the corollary approach in t tests, Section 2.5.) 

Because of the discrepancy between the actual denominator df in a fac­
torial or other complex design and the one-way design (Cases 0 and I) as­
sumed in the construction of the tables, it does not pay to undertake the 
adjustments that would be necessary to use the tabled values of F. for sig­
nificance testing in Cases 2 and 3, since F tables are widely available in 
statistical textbooks and specialized collections (e.g., Owen, 1962). Accord­
ingly, we do not discuss or exemplify the use of the F. values in the power 
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tables in this handbook for significance testing of fixed main effects or inter­
actions (Cases 2 and 3). 

For significance testing, the function of the data of interest to us in the 
Case 0 and I applications of this chapter is the F ratio for the relevant null 
hypothesis which is found in the sample, F,. 

In each power table (8.3) for a given significance criterion a and numerator 
df, u, the second column contains Fe, the minimum F necessary for signifi­
cance at the a level for that u. The Fe values vary with n, the relevant sample 
size. Significance testing proceeds by simply comparing the computed F, 
with the tabled Fe. 

8.5.2 SIGNIFICANCE TESTING IN CASE 0: k MEANS WITH EQUAL n. Find 
the power table for the significance criterion (a) and numerator df, u = k - I, 
which obtain. Enter with n, the size per sample mean, and read out Fe. If 
the computed F. equals or exceeds the tabulated Fe, the null hypothesis is 
rejected. 

IUustrative Examples 

8.16 Assume that the educational experiment described in 8.1 has been 
performed: a comparison (at a = .05) of the differential effectiveness of 
k = 4 teaching methods, for each of which there is a random sample of 
n = 20. Whatever the history of the planning of this experiment, including 
most particularly the anticipated ES (f = .280), what is now relevant is the 
F value (between groups mean square/within groups mean square) com­
puted from the 4(20) = 80 achievement scores found in the completed experi­
ment, F,. Assume F, is found to equal 2.316. Thus, the specifications for the 
significance test are 

a=.05, u =k -I= 3, n=20, F, = 2.316. 

To determine the significance status of the results, checking column 
Fe of Table 8.3.14 (a= .05, u = 3) for n = 20 gives Fe= 2.725. Since the 
computed F, of 2.316 is smaller than the criterion value, the results are not 
significant at a = .05, i.e., the data do not warrant the conclusion that the 
population achievement means of the four teaching methods differ. 

8.17 In example 8.2, a power analysis of an experiment in social psy­
chiatry was described in which k = 3 equal samples of n = 200 each were 
subjected to different microsocial systems. Consider the experiment com­
pleted and the data analyzed. In planning ihe experiment, it was found that 
for the population ES values which were posited, at a= .01, power would 



8.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 405 

be very large. This is, however, not relevant to the significance-testing proce­
dure. Assume that the F. is found to equal 4.912. What is the status of the 
null hypotheses on the three population means? The relevant specifications 
are 

a= .01, u =k-1 =2, n = 200, F.= 4.912. 

Table 8.3.2 (for a= .01 and u = 2) with row n = 200 yields Fe= 4.642. 
Since F. exceeds this value, the null hypothesis is rejected, and it is concluded 
(at a= .01) that the three population means are not all equal. Note that one 
does not conclude that the population ES of the power specifications (in 
this case there were two values, "7 2 = .05 and . 10, or f = .23 and .33) neces­
sarily obtains. In fact, the sample "1/ 2 is uF./[uF. + (u + l)(n- I)]= .016 
and the best estimate of the population "f/ 2 is .013 ( =£ 2 ). See section 8.2.2 
above and Cohen (1965, pp. 101-106 and ref.). 

8.5.2 SIGNIFICANCE TESTING IN CASE I: k MEANS WITH UNEQUAL n. 
When the sample n's are not all equal, the significance testing procedure 
is as in Case 0 except that one enters the table with their arithmetic mean, 
i.e., N/k [for'mula (8.3.3)]. This will generally not yield a tabled value of n, 
but then scale is such that on the rare occasions when it is necessary, linear 
interpolation between Fe values is quite adequate. 

Dlustrative Examples 

8.18 Example 8.3 described an opinion poll on government centralism 
on a college campus in which there would be a comparison among means 
of k = 6 academic area groups of unequal size, with a total sample size of 
approximately 300. The F test is to be performed at a = .05. Assume that 
when the survey is concluded, the actual total N = 293, and F. = 2.405. 
Since N = 293, the n needed for entry is N/k = 293/6 = 48.8. What is the 
status of the null hypothesis of equal population means, for these specifi­
cations, i.e., 

a=.05, u = k- 1 = 5, n = 48.8, F.= 2.405. 

In Table 8.3.16 (for a= .05, u = 5) see column Fe. There is no need for 
interpolation, since, using the conservative n of 48, Fe= 2.246, which is 
exceeded by F. = 2.405. Therefore, the null hypothesis is rejected, and it 
can be concluded that the academic area population means on the centralism 
index are not all equal. (Note again the irrelevance to conclusions about the 
null hypothesis of the alternate-hypothetical ES of the power analysis 
described in example 8.3. ) 
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8.19 In example 8.4, samples of varying n of psychiatric nurses from 
k = 12 hospitals were to be studied with regard to differences in mean 
scores on an attitude scale of Social Restrictiveness towards psychiatric 
patients. The total N = 326, so the average n per hospital is N/k = 27.2. 
The significance criterion is a = .05. When the data are analyzed, the F. 
of the test of H 0 : m 1 = m 2 = •.• = m 12 equals 3.467. The specifications 
for the significance test, thus, are 

a=.05, U=k-J=II, n = 27.2, F.= 3.467. 

There are no tables for u = 11. Although we can linearly interpolate 
between Fe values for u = 10 and u = 12 to find Fe for u = 11, it would 
only be necessary to do so if F. fell between these two Fe values. The Fe 
value for the smaller u (here 10) will always be larger than that of the larger 
u (here 12). Thus, if F. exceeds the Fe for u = 10, it must be significant, 
and ifF, is smaller than Fe for u = 12, it must be nonsignificant. Accordingly, 
we use Table 8.3.19 (for a = .05, u = I 0) with row n = 27, and find Fe = 1.864. 
Since F. = 3.467 is greater than this value, we conclude that the null hypothe­
sis is rejected at a = .05. Again we call to the reader's attention that we do 
not conclude that the population ES used in the power analysis of example 
8.4 necessarily obtains (Cohen, 1973). That value was f = .25, hence (Table 
8.2.2) the population .,2 posited was .0588. For the sample, .,2 is .1083 and 
E2, the best estimate of the population .,2, is .0771 (Section 8.2.2). 



CHAPTER 

Multiple Regression and 
Correlation Analysis 

9.1 INTRODUCTION AND USE 

9 

During the past decade, under the impetus of the computer revolution 
and increasing sophistication in statistics and research design among be­
havioral scientists, multiple regression and correlation analysis (MRC) has 
come to be understood as an exceedingly flexible data-analytic procedure re­
markably suited to the variety and types of problems encountered in be­
havioral research (Cohen & Cohen, 1983; Pedhazur, 1982; McNeil, Kelly & 
McNeil, 1975; Ward & Jennings, 1973). Although long a part of the con­
tent of statistics textbooks, it had been relegated to the limited 
role of studying linear relationships among quantitative variables, usually in 
the applied technology of social science. For example, in psychology it was 
largely employed in the forecasting of success or outcome using psychological 
tests and ratings as predictors in personnel selection, college admission, 
psychodiagnosis, and the like. In its" new look," fixed model MRC is a highly 
general data-analytic system that can be employed whenever a quantitative 
"dependent variable" (Y) is to be studied in its relationship to one or more 
research factors of interest, where each research factor (A, B, etc.) is a set 
made up of one or more" independent variables" {IVs). The form of there­
lationship is not constrained: it may be straight-line or curvilinear, general or 

407 
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conditional, whole or partial. The nature of the research factors is also not 
constrained: they may be quantitative or qualitative (nominal scales), main 
effects or interactions, variates of direct interest, or covariates to be partialled 
(as in the analysis of covariance). Research factors and their constituent IVs 
may be correlated with each other or uncorrelated (as in the factorial designs 
discussed in the preceding chapter), naturally occurring properties like sex or 
religion or IQ or, alternatively, experimentally manipulated "treatments." 
In short, virtually any information may be represented as a research factor and 
its relationship to (or effect on) Y studied by MRC. 1 

The details of the methods of representation and study of research factors 
in general MRC are obviously beyond the scope of this chapter. The reader 
is referred to Cohen & Cohen (1983), which provides a comprehensive expo­
sition of the system. Its major features will, however, be conveyed in the 
course of describing and exemplifying its power analysis. 

One of the interesting properties of general MRC, already implied, is that 
its generality is such as to incorporate the analysis of variance and the analysis 
of covariance as special cases (Cohen, 1968; Cohen & Cohen, 1983; Overall & 
Spiegel, 1969; Overall, Spiegel, & Cohen, 197 5). Being more general, however, 
it allows greater scope in data analyses. For example, it can represent in sets 
of IVs interactions of quantitative as well as qualitative (nominal) variables 
and can employ as covariates variables that are curvilinearly related, variables 
with missing data, and nominal scales. An important advantage when one 
leaves the beaten path of simple experimental designs is that any data structure 
containing a dependent variable can be fully analyzed using any "canned" 
multiple regression computer program. 

The statistical assumptions are those of all fixed model least-squares pro­
cedures that use the F (or t) distribution: the IVs are taken to be fixed, and 
for each combination of values of the IVs, the Y observations are assumed to 
be independent, normally distributed, and of constant variance across com­
binations. These F tests are, however," robust" (Scheffe, 1959, Chapter 10; 
Cohen, 1983, pp. 112-114), so that moderate departures from these assump­
tions will have generally little effect on the validity of null hypothesis tests and 
power analyses. 

The F test in fixed MRC analysis can be understood as a test of the null 
hypothesis that the proportion of the variance in Y accounted for by some 
source (PV 5) is zero in the population. It can be most generally written 

(9.1.1) (df = u, v), 

where PV 5 is the proportion of Y variance accounted for by that source (S) 
in the sample; PV E is the proportion of error (E) or residual variance; u is the 

1See Chapter 10 for power analysis in set correlation, a multivariate generalization of 
MRC. 
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number ofiVs for the source, hence the dffor the numerator; vis the number 
of df for the error variance, i.e., the denominator df. 

As written, (9.1.1) contains in both numerator and denominator a pro­
portion of Y variance divided by its df, hence a normalized mean square. Thus, 
as in the analysis of variance, F is a ratio of mean squares, each based on a 
given number of df. We shall shortly see that the PVs are functions of squared 
multiple correlations (R2s). 

It is useful to rewrite equation (9.1.1) as 

(9.1.2) 
PVs v 

f=-X­
pyE U 

(df = u, v). 

The left-hand term is a measure of effect size (ES) in the sample, the propor­
tion of Y variance accounted for by the source in question relative to the 
proportion of error, a signal-to-noise ratio. The right-hand term carries infor­
mation about the size of the experiment ( N) and the number of variables 
required to represent the source. The degree of significance, as always, is a 
multiplicative function of effect size and experiment size. The power of the 
test is the same type of function, but now it is the population ES that is 
involved. 

Dependent on how the source and error are defined, the formulas for F 
given above are variously specialized, and, in parallel, so are their respective 
power-analytic procedures. Three cases may be distinguished: 

Case 0. A set B, made up of u variables, is related to Y, and R~.8 is 
determined; its complement, 1 - Ri.8 , is the error variance proportion. The 
null hypothesis is that the population value of R~.8 is zero. 

Case 1. The proportion of Y variance accounted for by a set B, over and 
above what is accounted for by another set A, is determined. This quantity is 
given by R?.A,a- Ri.A· The source ofYvariance under test may be repre­
sented as B · A, i.e., set B from which set A has been partialled, or, the 
unique contribution of set B in accounting for Y variance. The null hypothesis 
is that B · A accounts for no Y variance in the population. In Case I, the 
error variance proportion is 1 - R?. A, a· 

Case 2. As in Case 1, the source of variance under test is B · A, its sample 
value is R?.A,B - Ri·A• and the null hypothesis holds that the latter value is 
zero in the population. In Case 2, however, there are yet other variables (set C) 
employed in the definition of the error term, which is now 1 - R~·A,a,c· It 
will be shown that this is the most general case-Cases 0 and 1 (and others) 
may be derived from it as special cases. 
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9.2 THE EFFECT SIZE INDEX: f 2 

Since the same F sampling distribution is used here as in the analysis of 
variance, the same ES index, f, is employed. However, since the MRC system 
proceeds more naturally with PVs, i.e., squared correlation values, it is more 
convenient to work directly with f 2 rather than f. We emphasize, however, 
that the index is fundamentally the same, and that the properties and relation­
ships described for fin the context of Chapter 8, e.g., as a standard deviation 
of standardized means, continue to hold here. 

The left-hand term of the general F formula (9.1.2) above is defined on 
the sample, but if we instead define it on the population, it becomes the general 
formula for f 2 , thus 

(9.2.1) f2 = PVs 
PVE' 

a population signal-to-noise ratio. For each of the Cases 0, l, and 2, the 
source/error population variances are differently operationalized, as they are 
in the F tests, but they have the same conceptual meaning. 

In the simple Case 0 applications, with the source of Y variance of interest 
defined as set B, only a single population parameter is involved: PV 5 is R?. 8 , 

PVE is I - R? .•. so 

(9.2.2) f 2- R?.a 
- 2 I- Ry. 8 

Thus, if the alternate hypothesis for a set B comprised of u variables is that 
R~ .• = .20, then the ES employed in power and sample size analyses is 
.20/(1 - .20) = .25. 

In Case l applications, it is the partialled B · A that is the source of in­
terest, so the PV 5 is R?.A,a - R?.A· Since the proportion R~·A,B of the Y 
variance in the population has been accounted for by sets A and B, PV E = 

I - R~·A,a (Model I error; see Cohen & Cohen, 1983, pp. 155 -158); thus, 
(9 .2.1) specializes to 

(9.2.3) f 2- R?.A,B- R?.A 
- 2 

I- Ry.A,B 

Note that two population R2s must be posited to determine f 2 (but see the 
next section.) If it is assumed that set A accounts for .30 ( = R?.A) of the Y 
variance, and that sets A and B account together for .45 ( = R?.A,a) of the 
Y variance, then B ·A (orB uniquely) accounts for .15 ( = R?.A,B- R?.A) of 
theY variance; .55 ( = l - R?.A,a) is the Case 1 error variance proportion, 
and f 2 = .I5/.55 = .2727. 
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Finally, in Case 2 applications, the same B · A source of Y variance is 
under scrutiny, so PV s is again R~. A,a - R~. A· But the "noise" is further 
reduced by the other variables, comprising a set C, so PVE = I - R~·A,a,c 
(Model II error, Cohen & Cohen, 1983, pp. 158-160). With the PVs thus 
specified, formula (9.2.1) becomes 

f2 = R~·A,.- R~.A 
R2 • 

I - Y·A,B,C 
(9.2.4) 

Here, three population parameter R2 values must be posited (or, at least the 
difference between two for the numerator and a third for the denominator) 
in order to determine f 2 . Thus, if as before, set B accounts uniquely (relative 
to set A) for .15 (= R~·A,a- R~.A = .45- .30) of theY variance, and 
R?.A.a,c = .60, then the Model II error is 1 - R~·A,a,c = .40, and f 2 = 
.15/.40 = .3750. Note that for the same proportion of Y variance accounted 
for by B · A, f 2 in Case 2 cannot be smaller than in Case 1 and will generally 
be larger. This is because R?.A.a,c is generally larger than R?.A,B• and in any 
case cannot be smaller. 

9.2.1 f 2 , R2 , SEMIPARTIAL AND PARTIAL R2 , AND rt We have seen 
above that f 2 for a set B is, in general, a function of R2 values and that in 
Case 0 it is simply R?.a/(1 - R~. 8). If this; relationship is inverted, one can 
determine what value of R~. 8 is implied by any given value off 2 in Case 0: 

(9.2.5) 
f2 

R?.a = 1 + f2. 

If this relationship seems familiar, it is because the right-hand expression is 
identically what was given in the formula for 7] 2 in Chapter 8 (8.2.19). As was 
briefly noted there, when group membership (a nominal scale) is rendered as 
a set of IVs (set B here), the proportion of Y variance it accounts for is R~. 8 . 

Thus, as an example of the generality of the MRC system, we see that the 7]2 

of the one-way analysis of variance is a special case of R2 . 

But set B need not, of course, represent group membership. It may carry 
any kind of information (e.g., linear and nonlinear aspects of quantitative 
research factors), and R?.a is interpreted as the PV in Y for which it accounts 
(Cohen & Cohen, 1983, Chapter 4-7). 

In Cases I and 2, the PV5 is R?.A,a- R?·A• the proportion of Y variance 
accounted for by B ·A. So conceived, it may be symbolized as R?·<B·A>• a 
squared multiple semiportial (or part) correlation. Thus, as above, if R?.A = 
.30 and R?.A,a = .45, then the increment due to Bover A is R~·A,B- R~.A = 
.15 = R?. < 8 . A)· The notation and conception are analogous to those for 
single variables; as the subscripts indicate, it relates Y to B · A. It is a semi­
partial R2 because A is partialled from B, but not from Y. When A is par-
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tialled from both B and Y, the resulting coefficient is a squared multiple 
partial correlation, symbolized as R?8 .A, whose formula is 

R2 - R?.A,8- R?.A- R?·(8·A) 
Y8. A - I R2 - I R2 . 

- Y·A - Y·A 
(9.2.6) 

Instead of expressing the Y variance due to B · A as a proportion of the total 
Y variance, as does the semipartial R2 , the partial R2 expresses it as a propor­
tion of that part of the total Y variance not accounted for by set A, i.e., of 
1- R?.A· Thus, with R?.A.8 - R?.A = .45- .30 = .15 = R?.<8·A)• R?8.A = 
.15/(1 - .30) = .2143. Another and perhaps most useful conception of R?8 .A 

is that it is the proportion of Y variance accounted for by set B (on the 
average) in subsets of the cases in the population having the same scores on 
the variables in set A; therefore, it is R?. 8 when set A is" held constant," or 
"statistically controlled." Thus, the interpretation of multiple partial cor­
relation follows, for sets, the same interpretation as for partial correlations 
for single variables. 

In Case I circumstances, when an investigator can express his alternate 
hypothesis in terms of a value for R?8 . A, that is the only parameter necessary 
to determine f 2 . Some simple algebraic manipulation demonstrates that the 
Case I f 2 can be written as 

(9.2.7) f2 _ R?8·A 
-I- R? •.• 

i.e., exactly as for Case 0, but substituting the R?8.A for R?. 8. For the 
R?8 .A = .2143 exemplified above, (9.2.7) gives .2143/(1 - .2143) = .2727, the 
same f 2 as was found from (9.2.3). 

If (9.2.7) is inverted, one ·obtains the partial R2 implied by f 2 in a Case I 
application, 

f2 
R?8. A = 1 + f 2 ' (9.2.8) 

exactly the same expression as for R?. 8 in Case 0, formula (9.2.5). Note that 
these relationships are the same as between f 2 and partial7J2 (Section 8.3.3), 
thus demonstrating that partial 7]2 is merely a special case of partial R 2 , just 
as 7]2 is a special case of R2 . 

9.2.2 "SMALL," "MEDIUM," AND "LARGE" f 2 VALUES. In MRC ap­
plications, the natural means of expressing alternate hypotheses is in terms of 
proportions of variance in Y (the dependent variable) accounted for by the 
source under study, i.e., as an R2 , partial R2 , or semipartial R2 . These may 
then be translated into f 2 values using the formulas of the preceding section. 
Since, as we have seen throughout this book, PV constitutes a quasi-universal 
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and fairly readily understood measure of strength of relationship or effect 
size when the dependent variable is an interval, ratio, or dichotomous scale, 
the need to think in terms of f 2 is reduced, and with it, the need to rely on 
conventional operational definitions of " small," " medium," and "large" 
values for f 2 . We nevertheless offer such conventions for the frame of re­
ference that they provide, and for use in power surveys and other methodo­
logical investigations. We reiterate the caveat that they can represent only a 
crude guide in as diverse a colleciton of areas as fall under the rubric of 
behavioral science. 

The values for f 2 that follow are somewhat larger than strict equivalence 
with the operational definitions for the other tests in this book would dictate. 
For example, when there is only 1 ( = u) independent variable, the F test for 
R2 specializes to t 2 of the t test for r, whose ES operational definitions are 
respectively .10, .30, and .50 (Section 3.2.1), hence, for r 2 , .01, .09, and .25. 
These in turn yield f 2 values (for Case 0), respectively, of .01, .10, and .33 
(from formula 9.2.2), each smaller than the respective f 2 value given below. 
The reason for somewhat higher standards for f 2 for the operational defini­
tions in MRC is the expectation that the number of IVs in typical applications 
will be several (if not many). It seems intuitively evident that, for example, 
if f 2 = .10 defines a "medium" r 2 (= .09), it is reasonable for f 2 = .15 to 
define a" medium" R2 (or partial R2) of .15 when several IVs are involved. 

SMALL EFFECT SIZE: f 2 = .02. Translated into R2 (9.2.5) or partial R2 

for Case I (9.1.8), this gives .02/(l + .02) = .0196. We thus define a small 
effect as one that accounts for 2% of the Y variance (in contrast with l % for 
r), and translate to an R = J.0196 = .14 (compared to .10 for r). This is a 
modest enough amount, just barely escaping triviality and (alas!) all too fre­
quently in practice represents the true order of magnitude of the effect being 
tested. The discussion under " Small Effect Size" in Section 3.2.1 is relevant 
here: what may be a moderate theoretical ES may easily, in a "noisy" 
research, be no larger than what is defined here as small. 

MEDIUM EFFECT SIZE: f 2 = .15. In PV terms, this amounts to an R2 or 
partial R2 of .15/(1 + .15) = .13, hence R or partial R = .36 (compared to 
r = .30 for a medium ES). It may seem that 13% is a paltry amount of 
variance to define as "medium" when a set made up of several variables is 
used, but keep in mind that we are defining population values-these are not 
subject to the inflation (least squares overfitting) which requires correction for 
shrinkage of a sample R2 (Cohen & Cohen, 1983, pp. 105-107). In any case, 
if an investigator finds this criterion too small (or, for that matter, too large) 
for an area in which he is experienced, he clearly has no need for conventions 
-he should specify the R2 (or partial R2) appropriate to his substantive con­
tent and type ofF test, and determine the f 2 from the relevant formula in the 
preceding material. 
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LARGE EFFECT SIZE: f2 = .35. This translates into PV = .26 for R2 

and partial R2, which in terms of correlation, gives .51 (slightly larger than 
the r = .50 defining a "large mount" of correlation). This value seems about 
right for defining a large effect in the middle of the range of fields we cover. 
It will undoubtedly be often found to be small in sociology, economics, and 
psychophysics on the one hand, and too large in personality, clinical, and so­
cial psychology on the other. As always, this criterion is a compromise that 
should be rejected when it seems unsuited to the substantive content of any 
given investigation. 

9.3 POWERTABLES 

The determination of power as a function of the other parameters pro­
ceeds differently in this chapter than in those preceding. Whereas for the 
other tests, the power tables were entered with the ES index and sample size, 
here the noncentrality parameter of the noncentral F distribution, A, is 
used. A is a simple function of the ES index and the numerator and denomi­
nator df, respectively u and v: 

(9.3.1) A = f2 (u + v + 1). 

We have seen that f2 and the error model differ in the three cases, so each 
case has its own function of population R2 values for f and its own function 
of Nand number of IVs (u) for v. These will be made explicit as each case is 
discussed. 

The three tables in this section yield power values for the F tests on the 
proportion of Y variance accounted for by a set of u variables B (or a 
partialled set, B·A). To read out power, the tables are entered with a, A, u, 
andv. 

1. Significance Criterion, a. Tables 9.3.1 and 9.3.2 are for a = .01 and 
.OS, respectively. 

2. A, the Noncentrality Parameter. A is tabled over the most useful range 
for typical MRC applications.Power values are provided at the following 15 
A values: 2 (2) 20 (4) 40. Since A is a continuous function, interpolation will 
generally be necessary. Linear interpolation is quite adequate for virtually 
all purposes, and, because of the intervals tabled, can frequently be done by 
mental arithmetic. (For interpolation when A < 2, note that at A = 0, for all 
values ofu, power= a.) 

3. Degrees of Freedom of the Numerator of the F Ratio, u. This is also 
the number of variables in the set B which represents the source of variance 
under study. Each table provides entries for the following 23 values of u: 1 
(1) 15, 18, 20, 24, 30, 40, 48, 60, 120. (The larger values are rarely used in 
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MRC.) When necessary, linear interpolation will yield good approxima­
tions. 

4. Degrees of Freedom of the Denominator of the F Ratio, v. For each 
value of u, power entries for the following four values of v are provided: 20, 
60, 120, and oo. Interpolation between v values should be linear in the recip­
rocals ofv, specifically in 1/20, 1/60, 1/120, and 0, respectively. 

In a typical problem, power is to be found for a given A for a given v, 
where v falls between vL and Yu, the lower and upper values tabled in 9.3.1 
and 9.3.2, e.g., vL = 60, vu = 120. The power values Power Land Power u 
are obtained for A at vL and at Vu by linear interpolation. Then, to obtain 
power for the given v, substitute in 

) 1/vL- 1/v 
(9.3.2 Power = PowerL + 11 11 (Poweru - PowerL). 

VL- Vu 

Note that for Vu = oo, llvu = 0, so that for v > 120, the denominator 
of (9.3.2) = 1/120 - 0 = .0833. 

As throughout this manual, the values in the table are power times 100, 
the percent of significance tests performed on random samples (under the 
conditions specified for a, u, v, and A) which will yield a value of F that re­
sults in rejecting the null hypothesis. They are rounded to the nearest unit 
and are accurate to within one unit as tabled. 

9.3.1 CASE 0: TEST OF R2• The simplest case is one in which a set B, 
made up of a number (u) of independent variables, is correlated with a de­
pendent variable Y, and R;,. 8 , the PV of Y accounted for by the set B, is de­
termined. The null hypothesis is simply that the population R2v.a is zero. 
Specializing the general F test of formula (9 .1.2) for Case 0, PV s is the sam­
ple R;_. 8 , PVE = 1 - R;_. 8 , and N = u + v + 1. 

For the power analysis, only the alternate-hypothetical population R2v.a 
is required, since f2 = R;,. 8 /(1 - R;.. 8 ), as given in (9.2.2). (Alternatively, a 
conventional f2 value may be used.) Thus, formula (9 .3 .1) becomes for Case 0 

~ = R~.~ N 
n. I R X • 

- Y·B 
(9.3.3) 

Since in the MRC system virtually any information can be represented as 
a set of IVs, the MRC Case 0 test is a very general test which, in addition to 
its conventional application with multiple quantitative IVs, subsumes a great 
variety of other test procedures as special cases. Some examples: 

1. The u variables of set B may represent group membership in u + 1 = 
k groups, so the one-way analysis of variance F test for equal (Chapter 8, 
Case 0) or unequal (Chapter 8, Case 1) sample sizes are special cases. As 
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already noted, the 712 of Chapter 8 equals the R~.8 when group membership 
has been coded as IVs, by any of several methods, to yield set B (Cohen & 
Cohen, 1983, Chapter 5). The MRC approach will produce exactly the same 
power-analytic results since it is not a different method, but rather a general­
ization. See examples 9.3-9.5 for a demonstration of this point. 

2. When Y is related to some quantitative variable W, several methods 
are available for representing W in such a way as to allow for possible 
nonlinearity of the relationship. Among these are methods that represent W 
as a set of variables (Cohen & Cohen, 1983, Chapter 6). The method of 
"power polynomials," for example, may represent the construct W as the set 
of IVs: X, X2, and X3• These 3 (= u) variables, then, comprise set B, and 
R~.a is the proportion of Y variance accounted for by the construct W, not 
constrained by the presumption that the relationship is straight-line ("lin­
ear"). See example 9.2. 

In Case 0 applications, the power of the F test is determined by entering 
the table for the given a significance criterion at the block u for the number 
of variables in set B, in the row v for the denominator df and with). as com­
puted from (9.3.3), linearly interpolating, as necessary. 

Illustrative Examples 

9.1 Consider a conventional application of MRC, in which a personnel 
psychologist seeks to determine the efficacy of the prediction of sales success 
in a sample of 95 ( = N) applicants for sales positions using as IVs age, edu­
cation, amount of prior sales experience, and scores on a verbal aptitude test 
and extraversion questionnaire. These 5 ( = u) variables comprise set B. 
What is the power of the F test at a = .05 if the population R~.8 is .10? 

When R~.a = .10, 12 = .10/(1 - .10) = .1111. For N =95 and u = 5, 
the error df, v = (N - u - 1 = 95 - 5 - 1 =) 89. Thus, from (9.3.1) or 
(9.3.3), A= .1111 X 95 = 10.6. 

The specification summary thus is 

a= .05, u = 5, v = 89, A= 10.6. 

Entering Table 9.3.2 (for a = .05) at block u = 5 for v = 60, power at A = 
10 is .62 and at). = 12 is . 72. Linear interpolation finds the power at v = 60 
for). = 10.6 to be .66. Similarly, linear interpolation at v = 120 between A 
= 10 (.65) and). = 12 (. 75) finds power for A = 10.6 to be .68. Finally, using 
equation (9.3.2) for inverse linear interpolation of our v = 89 between .66 
(for v = 60) and .68 (for v = 120) gives: 

. 66 + 1160- 1189 
1160- 11120 

(.68 - .66) = .67 . 
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As is frequently the case, we could just as well have done this double interpo­
lation by eye and estimated the interpolated power value within .01 of the 
computed value. Such "guestimated" interpolated power values are usually 
of quite sufficient accuracy. Thus, if these five IVs together account for lODJo 
of the variance in sales success in the population, the odds are only two to 
one that a sample of 95 cases will yield a sample R2 that is significant at a = 
.05. 

9.2 A sociologist is investigating the correlates of scores on a scale of 
attitude toward socialized medicine (ASM) in a sample of 90 adult males 
ranging in age from 25 to 75. One such correlate is age. He assumes a me­
dium ES, f2 = .15, i.e., he expects that age accounts for some .15/(1 + 
.15) = 13 OJo of the ASM ( = Y) variance in the population sampled, although 
not necessarily linearly. To provide for the possibility of a curvilinear rela­
tionship, he generates a polynomial in the first three powers of age (Cohen & 
Cohen, 1983, pp. 224-232), i.e., he represents the construct age as a set of 
variables made up of age (X), age-squared (X2), and age-cubed (X3) and then 
performs an MRC analysis, using these 3 ( = u) IVs as the set B. Since many 
other correlates of ASM are to be studied, in the interests of minimizing the 
rate of spurious rejections of the null hypotheses "investigation wise" (Cohen 
& Cohen, 1983, pp. 166-176), a = .01 is to be used throughout. The param­
eters are now completely specified: formula (9.3.2) gives v = 90 - 3 - 1 = 
86,andformula(9.3.1)or(9.3.3)gives). = .15(90) = 13.5. Thus, 

a= .01 u = 3, v = 86, ). = 13.5. 

In block u = 3 of Table 9.3.1 (for a = .01), linear interpolation between 
A = 12 and 14 for v = 60 (.60 and .69) gives .68 and for v = 120 (.62 and. 72) 
gives .70, so interpolation via (9.3.2) between .68 and .70 (or inspection) 
gives power = .69. 

9.3 A laboratory experiment in social psychology is performed in 
which subjects are observed in the presence of 1, 2, 3, or 4 ( = p) peers and 
some quantitative response variable (Y) is noted. A total of N = 90 subjects 
are run in each of the four experimental conditions (note, incidentally, that 
the sample ns cannot be equal). These data may be analyzed by the analysis 
of variance, but also by MRC. Set B may carry the information about the ex­
perimental condition in any one of several ways, e.g., by power polynomials 
as in the preceding example (p, p2, p3), or by orthogonal polynomial coding 
into three variables, etc. (Cohen & Cohen, 1983, Chapter 6).With u = 3, 
however represented, the same R~.a and therefore f2 will result. For u = 3, a 
= .01, and selecting f2 = .15 as in example 9.2, the specifications are all the 
same (since v = 90 - 3 - 1 = 86 again, and A = .15[90) = 13.5), so neces­
sarily, the same power of .69 is found. 
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The primary point of this example is to underscore the fact that the MRC 
system may be applied to the data arising from manipulative experiments as 
readily as to those arising from nonexperimental surveys as in the preceding 
example, in contradiction to the longstanding association of MRC with the 
latter in the culture of the behavioral and biological sciences. 

9.4 This example is offered to demonstrate explicitly the fact that Case 
0 MRC applications subsume, as a special case, the one-way analysis of vari­
ance, and therefore yield the same results. Example 8.4 in the preceding 
chapter described a research on the differential effectiveness of 12 ( = k) psy­
chiatric hospitals, a phase of which involved a comparison between the 
means of the psychiatric nurses in the hospitals on an attitude scale of Social 
Restrictiveness. The total N = 326, a = .OS, and f was posited as .2S; the 
data were there analyzed as a one-way analysis of variance. 

These data could just as well be analyzed by MRC. Using any of the sim­
ple coding techniques for representing group membership (i.e., a nominal 
scale) described in Cohen & Cohen (1983, ChapterS), one would create a set 
(B) of k - 1 = 11 = u artificial variates on which the 326 nurses would be 
"scored." An MRC could then be performed with Y the Social Restrictive­
ness score and the 11 variables carrying the information of the hospital from 
which each score came as a set of IVs, and R2 v.a determined and F-tested. 
No special analytic attention need be paid to the inequality of sample sizes 
from hospital to hospital. 

The f used as an ES in the analysis of variance was defined as the stand­
ard deviation of standardized means. This again is a special case off as inter­
preted in the MRC context. In the context of the analysis of variance, it 
yields 712 as a PV measure, given in formula (8.2.19), by finding 12/(1 + 12). 

But, as we have seen, this too is the formula for R2 as a function of I in Case 
0, given in (9.2.5). Positing f = .25 in example 8.4 is equivalent to positing 712 

= R~.8 = .252/(1 + .252) + .0588, not quite 60Jo of the attitude score vari­
ance accounted for by hospitals. 

Since t = .2S, t2 = .062S. N = 326 and the error df from (9.3.2) is v = 
326 - 11 - 1 = 314. Thus, (9.3.1) gives>.. = .062S(326) = 20.4. The speci­
fication summary for the F test of R~.8 is 

a= .OS, u = 11, v = 314, )., = 20.4. 

Table 9.3.2 (for a = .OS) gives in block u = 11 for v = 120 power = .8S 
and .91 for>.. = 20 and 24, respectively; linear interpolation gives power 
for>.. = 20.4 to be .86. Similarly, at v = oo,linear interpolation between .89 
and .94 gives power = .90. Finally, inverse linear interpolation for v = 314 
between .86 and .90 via Equation (9.3.2) gives power = .88. The power 
found for these specifications in example 8.4 was .87. 
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In practice, errors in the approximation of noncentral F (Section 10.8.2), 
rounding, and interpolation may lead to discrepancies between the two pro­
cedures of one or two units, but they are theoretically identical. 

9.5 As further illustration of the point, we do as a Case 0 MRC power 
analysis example 8.1 of the preceding chapter: an educational experiment in 
which k = 4 teaching methods are each applied to n = 20 randomly assigned 
pupils (so total N = 80) and their means on a criterion achievement test are 
compared at a = .05. By the route described there, f = .28 is posited. 

For an MRC analysis, teaching methods are represented as a nominal 
scale by means of a set (B) of u = k - 1 = 3 IVs. Since t2 = .282 = .0784, 
error df (Case 0) v = 80 - 3 - 1 = 76 and N = 80, the A value from (9.3.1) 
or (9.3.3) is .0784(80) = 6.3. The specification summary: 

a= .05, u = 3, v = 76, A= 6.3. 

Linear interpolation in Table 9.3.2 (for a = .05) in block u = 3 in line v 
= 60 for A = 6.3 between A = 6 and 8 (power = .49 and .62, respectively) 
gives power = .51 and in line v = 120 (power = .50 and .64, respectively) 
gives power = .52: inverse interpolation for v = 76 between .51 and .52 via 
(9.3.2) gives power = .51. Chapter 8 gave power = .53, the discrepancy be­
ing due to approximation/rounding/interpolation. 

Note that in this and the two preceding examples, the actual analysis em­
ployed may be the analysis of variance; because of their equivalence, the 
MRC power analysis may nevertheless be applied, and will give the correct 
power for the analysis of variance. 

9.6 As another example of the generality of the MRC system of data 
analysis, reconsider the significance test of a simple product moment r be­
tween two variables X andY. It may be treated as the special case of a Case 0 
MRC, where set B contains only one IV, X, hence R~. 8 = ~.and u = 1. 

Chapter 3 was devoted to the test of r, and example 3.1 concerned are­
search study in personality psychology in which, for N = 50 subjects, scores 
on an extraversion questionnaire and a neurophysiological measure were ob­
tained and correlated. The test was a nondirectional t test performed at a2 = 
.05, where the alternate hypothesis was specified as r = .30. The power of 
the test for these specifications was found to be .57. 

Analyzed as a Case 0 MRC test, we note first that F tests are naturally 
nondirectional so the a2 = a = .05. Substituting~ for R~.a in (9.2.2) gives 

(9.3.4) 2 ~ 
f=t="7· 



428 9 MULTIPLE REGRESSION AND CORRELATION ANALYSIS 

so t2 = .30Z/(1 - .302) = .09/.91 = .0989. Since u = 1 and N = 50, the er­
ror df v = 50 - 1 - I = 48, and A = .0989(50) = 4.9. Thus, the specifica­
tions to test H0: r = 0 by Case 0 of MRC are: 

a= .05, u = 1, v = 48 A= 4.9. 

Table 9.3.2 (for a = .05) for u = 1 in row v = 20 gives power of .48 and 
.64 for A = 4 and 6, respectively. Linear interpolation yields power = .55 at 
A = 4.9; similarly, in row v = 60, linear interpolation between .50 and .67 
gives power = .58 at A= 4.9. Inverse linear interpolation (9.3.2) for v = 
48 between .55 at v = 20 and .58 at v = 60 yields power for A = 4.9, u = I, 
and v = 48 equal to .58. (The power value found in example 3.1, analyzed by 
the method of Chapter 3, was .57.) 

9.7 As yet another example of the generality of MRC, return to Chap­
ter 2, where the t test for two means was presented. It was shown there that 
the point biserial r between group membership and Y could be written as a 
function of d, the standardized difference between the two means (Section 
2.2.2). Point biserial r is a special case of r and thus also a special case of 
R2 v.a where set B contains a single (dichotomous) IV, sou = I. (An alterna­
tive route to the same point proceeds from specializing the one-way analysis 
of variance of the k groups fork = 2, utilizing the relationship between f and 
d, and then invoking point biserial r = 712 = R2v.a·) One can then find the 
point biserial r from d by formula (2.2. 7), and then t2 from formula (9.3.4); 
or, with some algebraic manipulation, one can find t2 for the two-group case 
directly by 

(9.3.5) 

where p is the proportion of the total N in either of the two samples, and q = 
I - p. For sample of the same size, p = q = .5, so (9.3.5) simplifies further 
to 

(9.3.6) 

To illustrate the MRC Case 0 approach to the test of the difference be­
tween two independent means, return to example 2.3, where two samples of 
cases in a psychological service center have been treated by a standard (A) 
and innovative (B) psychotherapeutic technique. The t test is performed for 
d = .6, and nA = 90, n8 = 60. We will redo the second version of 2.3, where 
a2 = .05. N = 150, p = 90/150 = .60, q = 1 - .60, = .40. Formula (9.3.5) 
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then gives f2 = .60(.40)(.62) = .0864. With u = 1, the (Case 0) v = 150 - 1 
- 1 = 148. The value on. is thus .0864(150) = 13.0. In summary, 

a = .05, u = 1, v = 148, A= 13.0. 

Table 9.3.2 (for a = .05) gives in block u = 1 for both v = 120 and v = 
oo, power= .93 at A = 12 and .96 at A = 14, and, rounding down, linear in­
terpolation for A = 13 gives power = .94. 

This example was used in Chapter 2 to illustrate that chapter's Case 1-
two independent samples of unequal size. Actually all the cases in Chapter 2 
may be analyzed by MRC methods; the one outlined above will apply to 
Cases 0 and 2 in Chapter 2 as well. 

Note that it does not matter whether the data analyst actually performs 
the usual t test in the usual way. Being equivalent, the power analysis as Case 
0 MRC correctly gives the power of the t test. 

9.3.2 CASE 1: TEST OF R~·A,B - R~·A• MODEL 1 ERROR. The source 
of Y variance under test is the proportion accounted by set 8 (comprised of u 
IVs) over and above what is accounted for by set A (comprised of w vari­
ables). H0 states that its population value is zero. Recall that this quantity, 
computed as R~·A,a - R~·A• may be symbolized as R~·<B·Al• the squared 
semipartial (or part) multiple correlation, and may be thought of as the pro­
portion of theY variance accounted for by B·A, or uniquely by 8 relative to 
A. It constitutes a generalization of the methods used to control statistically 
for ("hold constant," "partial out") a source of Y variance (set A) whose op­
eration is undesirable for substantive reasons. When used for this purpose, a 
causal model is implied in which whatever causality exists runs from set A to 
set 8 and not vice versa (Cohen & Cohen, 1983, pp. 423-425). One reason 
for its use then is to remove set A's Y variance to void its spurious attribution 
to set B, or its attenuation of theY, 8 relationship. A quite distinct and im­
portant second reason for its use is to reduce the proportion of Y variance 
which makes up the error term by removing from it the variance that can be 
accounted for by set A, thus resulting in an increase in the power of the sta­
tistical test. Special cases of this statistical control procedure include simple 
partial correlation with one or more variables partialled and the analysis of 
covariance. 

In Case 1, the error variance has had excluded from it not only the Y vari­
ance accounted for by set 8, but also whatever additional variance set A ac­
counts for, i.e., it is 1 - R~·A,B• which (to distinguish it from Case 2) is des­
ignated as Model I error. Since set 8 contains u variables and set A contains 
w variables, R~·A,a is based on u + w variables, and the Model I error df is 

(9.3.7) v=N-u-w-1. 
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Case 1 power analysis proceeds by positing R~·A• R2v.A,a• and their dif­
ference, which is the quantity under test. Formula (9.2.3) divides this quan­
tity by the Model I error to give 12 for Case 1. Alternatively, 12 can be found 
as a function of R~a-A from formula (9.2.7). Multiplying 12 by u + v + I 
gives A (Eq. 9.3.1); thus 

(9.3.8) 
A= 

R2 - R2 
Y•A.B 2 Y·A X (U + V + 1), 
I X Rv.A.a 

or, as a function of the squared multiple partial correlation, 

(9.3.9) R~a-A 
A = 1 R2 X (u + v + 1). 

- YB·A 

The table for the a specified (9.3.1 or 9.3.2) is entered in the block u and 
power is found by linear interpolation of A between the columns and inverse 
interpolation of v between the rows using (9.3.2), exactly as in Case 0. 

CASE 1-1. A frequently occurring special case of Case I is the test of 
the null hypothesis that a given single IV makes no unique contribution to 
the population R2, i.e., accounts for no Y variance that is not accounted for 
by the remaining IVs, which comprise set A. Case 1 is then specialized for a 
set B containing only 1 ( = u) IV. 

If we call this variable X, then the numerator for 12 of formula (9.2.3) 
specializes to the squared semipartial (or part) correlation of Y with X•A, 
rv.(X•A)• the increase in R2 that occurs when X is added to the other variables. 
The alternate formula (9.2. 7) for 12 gives it now as a function of the squared 
partial correlation rvx.A· Since it is conceptually and computationally conve­
nient to work with such PV measures, it is important to note that the results 
of the significance test using F for the PV are identical with the t test per­
formed on the raw score (Bvx.Al or standardized (f3vx.Al partial regression 
coefficient for X, which is the significance test value usually reported in com­
puter output. Since the tests of all these alternative ways of expressing Xs 
unique contribution to Y are equivalent, the power analysis of the test of the 
PV for X by means of the specialization of formulas (9.2.3) or (9.2. 7) is at 
the same time a power analysis of the test of X's partial regression coeffi­
cient. The latter null hypothesis is that the population's Bvx-A (or f3vx.Al = 
0, i.e., that X makes no contribution to the multiple regression equation that 
estimates Y. 

Illustrative Examples 

9.8 As part of the sociological investigation of correlates of attitudes 
toward socialized medicine (ASM) described in example 9.2, the effect of ed-
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ucation (set B) on ASM ( = Y) is also under scrutiny in the sample of 90 adult 
males. It seems clear, however, that since there has been a progressive in­
crease in the educational level over the last half century, on the average, 
older subjects have had less education (i.e., age and education are corre­
lated), and some of the observed relationship of education to ASM may be 
due to this contaminating effect of age. (Note that the causal direction is 
from age to education, not vice versa.) It would then be desirable to partial 
out the effect of age, i.e., to remove from the ASM variance that portion of 
it for which age can account, so as to hold age constant statistically in relat­
ing ASM to education. Age is thus here designated as set A, the set to be 
partialled, and the source of variance of focal interest is B·A. Since error 
variance will be I - R~ ·A,B• we have the conditions of Case I. 

Age as set A is defined and has the same parameters as in example 9.2 
(where it was set B): for the reasons given there, it is represented by three 
variables as a power polynomial, hence it has (w = ) 3 df, and its f2 is .15, so 
R~.A = .13 from (9.2.5). Assume that the sociologist anticipates the possi­
bility of curvilinearity in the relationships of years of education and consid­
ers it adequate to represent education as two polynomial terms in set B (edu­
cation and education-squared), so u = 2. 

To set a value for the Case 1 f2 for B·A, the sociologist may proceed in 
any of the following ways: 

1. By positing the increase in R2 when set B is added to set A, explicitly as 
the semipartial R~·<B·A) ( = R~·A,a - R~.A), or implicitly by positing R~·A,a 
(since the value for R~.A is already set). f2 may then be found by formula 
(9.2.3). For example, he may posit an increase in R~.A.a over R~.A of .12, 
therefore R~·A.a = .25, and t2 for B·A is .12/(1 - .25) = .16. 

2. By estimating the partial R~a-A of formula (9.2.6), and then entering 
it in formula (9.2.8) to find f2• For example, he may decide that he expects 
that .14 of theY variance that is not age-related is accounted for by educa­
tion controlled for age, B·A, i.e., R~a-A = .14. Therefore, t2 = .14/(1 -
.14)= .1628. 

3. He may simply select an operationally defined ES, e.g., t2 = .15 
("medium"). 

Assume he selects the first alternative: f2 = .16. With u = 2, w = 3, and 
N = 90, formula (9.3.7) gives v = 90 - 2 - 3 - 1 = 84; then formula 
(9.3.l)givesA = .16(2 + 84 +I)= 13.9. Thespecificationsforthetestof 
the null hypothesis that R~·<B·A) (or R~a-A) equals zero in the population, 
i.e., that any observed relationship of education to ASM can be wholly ac­
counted for by the concomitant effects of age, using Model I error (Case 1) 
are: 
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a= .01, u = 2, v = 84, >.. = 13.9. 

Table 9.3.1 (for a = .01) in block u = 2 gives at>.. = 12, 14, for row v = 
60, power = .68, . 76, and for row v = 120, power = . 70, . 78. By linear in­
terpolation, for>..= 13.9, power= .76 at v = 60 and .78 at v = 120. Equa­
tion (9.3.2) (or inspection) then gives power = .77 at v = 84. 

The provision for curvilinearity in the case of both education and age 
should not mislead the reader into the belief that quantitative variables are 
routinely so treated in MRC. Such is not the case. It is appropriate in this ex­
ample because of the nature of these variables- variables scored in units of 
time are frequently related curvilinearly to other variables. This tends, inci­
dentally, also to be the case for variables measured in monetary units and in 
frequencies and percentages (see Cohen & Cohen, 1983, Chapter 6). 

9.9 Let us return again to the research in instructional methods origi­
nally presented in example 8.1 as a one-way analysis of variance, and then 
redone as a Case 0 application of MRC in example 9.5. Set B represented 
membership in one of four methods groups (hence, u = 3), total N = 80, a 
= .05, andY was a postexperiment achievement test score. 

Now, f was set at .28, which in turn implies that R~.8 = .282/1 + .282) 

= .07 (from formula (9.2.5)), and power was found to be .51. Thus, only 
some 711/o of the postexperiment achievement variance is expected to be ac­
counted for by the methods effect, with only a "fifty-fifty" chance of attain­
ing a significant F-test result. The reason for the relatively weak effect (and 
poor power) is that many factors which operate to produce variance (indi­
vidual differences) in Y are not controlled. Chief among these is the 
preexperiment achievement levels of the pupils. If this source of variance 
were removed from Y, what remains would be that portion of the post vari­
ance that is not predictable from prescores, hence the variance of (regressed) 
change. Another way of stating this is that the prescores are being "held con­
stant," or that the postscore Y is being "adjusted" for differences in prescore 
both within and between methods groups. The latter is the formulation of 
the analysis of covariance. It is thus proposed that the design be changed 
from a one-way analysis of variance to a one-way analysis of covariance, us­
ing the prescore as the covariate. This is a Case 1 application of MRC, with 
set A containing the prescore as a single variate. (It is presumed that the post­
on-pre regression is linear, else there would be required some nonlinear rep­
resentation of the prescore.) 

One approach to determining the Case l 12 is first to estimate the propor­
tion of (within-group) Y variance accounted for by the covariate. Assuming 
that r = .60 is a reasonable estimate of pre-post correlation, r and hence 
R~.A equals .36. Since cases are randomly assigned to method groups, it may 
be assumed that this variance is simply additive with that due to methods, 
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R~. 8 ; therefore, R~·A,a is posited to be .36 + .07 = .43. The ingredients for 
the Case I f2 for set B are thus all assembled, and can be entered in formula 
(9.2.3): (.43 - .36)/(1 - .43) = .07/.57 = .1228 (compared with .0784 for 
Case 0 f2 in the original). The error df will be somewhat smaller since for 
Case I, formula (9.3.7) also debits w from N: v = N - u - w- I = 80- 3 
- 2 - I = 74 (compared to 76 in the original). The result, by formula 
(9.3.l)isA = .1228(78) = 9.6. Thesummaryofthespecifications: 

a= .05, u = 3, v = 74, A= 9.6. 

Table 9.3.2 (for a = .05) gives in block u = 3 for row v = 60 at A = 8, 
10, power of .62, .73, and for row v = 120, power of .64 and .75. The 
linearly interpolated power values for A = 9.6 are .71 for v = 60 and. 73 for 
v = 120. Equation (9.3.2) then gives power = . 72, a rather substantial im­
provement over the .51 found when the total Y (post) variance was analyzed. 

The reason for the improved power is the reduction in the PV E from 1 -
R~.a of Case 0 (the analysis of variance) to 1 - R~·A,a of Case 1 (the analysis 
of covariance). As can be seen from the example, this is a powerful(!) data­
analytic device which should be employed when possible. The potential in­
crease in power provides sufficient motivation for partialling procedures in 
general and the analysis of covariance in particular, but, interestingly 
enough, receives little emphasis in textbook expositions of the analysis of 
covariance or in its use. Rather the emphasis is on the "adjustment" of the 
groups' Y means to take into account differences in their means of 
covariates, which differences would otherwise leave ambiguous theY differ­
ences observed. This type of application, in which an effort is made at statis­
tical and post hoc "equation" of groups on relevant concomitant variables, 
will be illustrated in the next example. Note that randomization (as in the 
present example) assures that the population R2s between covariates and 
group membership are zero- there are no expected group differences. In­
deed, that is the very purpose of randomization. When the analysis of 
covariance is used in randomized experiments, the adjusted Y means differ 
from the unadjusted means only because of sampling error, hence typically 
only trivially. The purpose here is not to adjust the means but rather tore­
duce the error variance, and thereby increase power. 

A detailed exposition of the use of MRC in the analysis of covariance 
and its generalization is beyond the scope of this treatment. For example, the 
analysis of covariance presumes that the regression of Yon set A is the same 
in each of the groups being compared; this hypothesis is tested in MRC by 
creating a new set of IVs which carries the interaction of sets A and Band 
testing the significance of its unique contribution. The reader is referred to 
Chapters 8 and 10 in Cohen & Cohen (1983). 
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9.10 Let us return yet again to the sociological survey of attitudes to­
ward socialized medicine (ASM) described in examples 9.2 and 9.8. An im­
portant hypothesis concerns difference in ASM among the five ethnic 
groups into which the N = 90 cases are classified. Since these groups differ 
with regard to age and education, however, a simple comparison among 
them on ASM may yield differences (or nondifferences) that are a conse­
quence of their age and/or educational differences, and hence, on the causal 
model that is being entertained, spurious. An analysis of covariance may be 
undertaken, then, to adjust the ethnic group differences for age and educa­
tion. 

As an MRC Case 1 application, set B is now made up of IVs that repre­
sent ethnic group membership (with u = 5 - 1 = 4), and age and education 
together comprise the set A to be partialled or adjusted for. Age and educa­
tion are represented polynomially to allow for curvilinearity (see examples 
9.2 and 9.8) using three and two IVs respectively, hence set A contains 5 ( = 
w) IVs. In example 9.8, it was posited that they yield a population R2 of .25, 
hence, as set A is redefined here, R~.A = .25. If it is expected that the addi­
tion of ethnic group membership (set B) to age and education (set A) results 
in an R~·A.B = .30, then, by formula (9.2.4), 12 = (.30 - .25)/(1 - .30) = 
.05/.70 = .0714. TheerrordfinCase 1 isv = N- u- w- 1 = 90- 4- 5 
- 1 = 80. Formula (9.3.1) or (9.3.8) thus gives}. = .0714(85) = 6.1, and 
the specifications are: 

a= .01, u = 4, v = 80, }. = 6.1. 

Interpolation in Table 9.3.1 in block u = 4 in row v = 60 for}. = 6.1 
gives power = .22 and in row v = 120 gives power = .24; (9.3.2) then gives 
for v = 80, power = .24. Thus, the expected unique contribution of 
ethnicity in accounting for ASM variance, R~·<B·Al = .05, is not likely to be 
detected in this research. Even if theN were twice as large, v = 180 - 4 - 5 
- 1 = 170,}. = .0714(175) = 12.5, and power would still be only .61. 

Note the important distinction between proportion of ASM variance ac­
counted for by ethnicity, R~,8, and the proportion of ASM variance ac­
counted for by ethnicity partialling (holding constant, allowing for differ­
ences in) age and education, i.e., the net contribution of ethnicity, R~·<B·Al· 
The former may well be larger than .05 (or smaller when "suppression" is op­
erating). It is in any case a different quantity and a different null hypothesis 
is being tested, exactly the difference between the analysis of variance and 
the analysis of covariance. Whatever Y variance is shared by the covariates 
(set A) and ethnic group membership (set B) is attributed to A (or, at least, 
denied to B) in the causal model being employed. 
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9.11 Three different methods of infant day care are subjected to a com­
parative evaluation by means of a longitudinal quasi-experiment, using cog­
nitive, affective, and health outcomes over a two-year period as criteria. 
There are available three different centers for the study, and the methods are 
assigned to the centers consistent with the wishes of their respective boards 
of directors. This is indeed a far cry from a randomized experiment, yet it is 
consistent with the realities of much evaluative field research, which must be 
done with dirty test-tubes, or not at all. Such a research can hardly produce 
definitive conclusions, yet, when carefully done, can yield results of limited 
but useful generalizability. 

The largest threat to the validity of the findings lies in the fact that the 
children, not having been randomly assigned from a single population to the 
centers, cannot be assumed to be similar upon entry. Nor is it reasonable to 
suppose that they are like random samples from the same population since 
the social ecology of urban settings will make it very likely that selective fac­
tors are operating to make children in any given center representative of an 
at least somewhat different portion of the total child population than chil­
dren in another center. Since these differences may bear on the outcome, 
they are a contaminant-the dirt in the test-tubes which, since it cannot be 
removed, should at least be allowed for to the extent possible. This is accom­
plished by the device of partialling from the outcome data variables carrying 
relevant ingoing child characteristics in regard to which the groups to be 
compared differ. In the language of the analysis of covariance, the criterion 
means will be "adjusted" to allow for differences in these ingoing character­
istics represented as covariates. 

Let us assume that the factors that require control and for which data are 
available are socioeconomic status (defined as family income and mother's 
education), family composition (including head of household and number 
of older siblings), ethnic group membership, and age of entry. These com­
prise set A, made up of 8 ( = w) IVs. Set B carries the information of method 
(or center), made up of 2 ( = k - 1 = u) IVs which identify the group mem­
bership of each child. Data are available on a total of N = 148 in the three 
centers. Because there will be a relatively large number of outcome criteria, 
each serving successively as Y, a = .01 is used throughout in order to hold 
down the investigationwise Type I error rate (Cohen & Cohen, 1983, pp. 
166-169). 

For one of the criteria, it is expected that methods will account for about 
100Jo of the Y variance remaining after the variance associated with the 
covariates has been removed, i.e., R~a·A = .10. From this parameter, the f2 

for Case 1 can be found from formula (9.2. 7): f2 = .10/(1 - .10) = .1111. 
Since u = 2, and w = 8, from formula (9.3.7) for the Case 1 error df, v = 
148 - 2 - 8 - 1 = 137. Formula (9.3.1) or (9.3.9) then gives A = 
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.1111(140) = 15.6. The specification summary for the null hypothesis that, 
after allowing for the Y variance due to the covariates, methods account for 
no Y variance, or, equivalently, that the three covariance-adjusted popula­
tion methods means do not differ is: 

a= .01, u = 2, v = 137, ). = 15.6. 

Table 9.3.1 gives in block u = 2 for row v = 120 at). = 14, 16, power = 
.78, .85, and for v = oo, power= .80, .87. Linear interpolation for>.= 15.6 
gives for v = 120, oo, power = .84, .86; Equation (9.3.2) then gives for v = 
137, power = .84. Thus, if 12 = .10, the probability is .84 (or the odds are 
better than 5:1) that the sample data will yield an F ratio for this test that is 
significant at a = .01. 

9.12 Return to the personnel psychologist of example 9.1, who was 
working with five IVs in the development of a selection procedure for sales 
applicants. Data for three of the IVs (age, education, prior experience) are 
readily obtained from the application blank, but the other two (verbal apti­
tude, extraversion) are psychological test scores whose acquisition is costly. 
He considers the plan of using as a criterion for omitting these two IVs from 
the selection procedure their failure to yield a significant (a = .05) increase 
in the PV accounted for by the other three IVs in the sample of N = 95 cases. 
He would not, however, wish to do so if, in the population, they add as 
much as 4o/o of theY variance beyond what is accounted for by the three ap­
plication blank IVs. 

As a Case 1 MRC application, set A is made up of the 3 ( = w) application 
blank variables, and set B of the 2 ( = u) psychological test variables. It was 
posited in example 9.1 that the PV accounted for by all five IVs was .10 
( = R~·A,8). The null hypothesis here is that R~·A,a - R~.A = R~·<A·B> = 0, 
and the alternate hypothesis posits it as .04. For Case 1, the 12 value from 
formula (9.2.3) is .04/(1 - .10) = .0444, the error df is v = 95 - 2 - 3 - 1 
= 89, and formula (9.3.1) or (9.3.8) gives). = .0444(92) = 4.1. What is the 
probability that, if the two test variables together uniquely account for .04 
of theY variance, the null hypothesis will be rejected at a = .05, and they 
will thus be retained in the selection procedure? 

a= .05, u = 2, v = 89, ). = 4.1. 

Performing the necessary double interpolation in Table 9.3.2 for u = 2, 
v = 89 and ). = 4.1 gives the probability of rejecting that null hypothesis as 
.42. The (Type II error) risk is thus (b = 1 - .42 =).58, much too great to 
use the significance of the sample R~·<B·A> as the basis for excluding the two 
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psychological tests since that is the risk of losing as much as 40Jo of the Y vari­
ance on this basis. Prudence would dictate the rejection of this plan. 

The personnel psychologist may then consider another plan: if either of 
the two psychological test variables fails to have a significant (a = .05) par­
tial regression coefficient in the multiple regression equation based on all 
five IVs, exclude it from the selection procedure. He would however not 
wish to do so if it accounted uniquely for 30Jo of theY variance in the popu­
lation. This is the special Case 1-1, the test of the unique contribution of a 
single IV, X. Thus, he wishes to guard against the alternative hypothesis that 
rv(x·AI = .03, where set A is made up of the remaining 4 ( = w) IVs, and set B 
contains only X. As before, it is assumed that R~·A,a = .10, so 12 from for­
mula (9.2.3) is .03/(1 - .10) = .0333, u = 1, and v from formula (9.3. 7) is 
95 - 1 - 4 - 1 = 89 (again; although sets A and B change in their defini­
tion, for all these hypotheses, the PV E remains constant at 1 - .10 = .90 
and its df, v, remains constant at 89). Formula (9.3.1) gives>..= .0333 ( 1 + 
89 + 1) = 3.0. The specifications are thus: 

a= .05, u = 1, v = 89, >.. = 3.0, 

and Table 9.3.2 gives in block u = 1, by linear interpolation and Eq. (9.3.2) 
for>.. = 3.0, the power value for the test of either of the two psychological 
test IVs as .40. The Type II error risk is .60 of accepting the null hypothesis 
for either the verbal aptitude or extraversion tests when it uniquely contrib­
utes 30Jo of the population criterion variance. This is even a poorer proce­
dure than when the two were considered jointly, using 40Jo as the alternative 
hypothesis. It seems clear that for this sample size (and the other parameters) 
decisions to drop variables from a multiple regression equation on grounds 
of nonsignificance are exceedingly risky. 

This example is intended to sound a strong cautionary note against the 
common practice of regressing a (frequently large) group of IVs simulta­
neously on some dependent variable and then excluding those (usually a ma­
jority of the group) which make no significant contribution. This strategy is 
heavily exploited in automatic "stepwise" regression procedures. For a de­
tailed appraisal of this method and some generally superior strategies, see 
Cohen & Cohen (1983, pp. 120-125, 137-139). 

9.3.3 CASE 2: TEST OF R~·A,B - R~·A• MODEL 2 ERROR. Recall that 
Case 2 differs from Case 1 only in regard to the error term employed in the F 
test. Both test the null hypothesis that set B accounts for no Y variance be­
yond what is accounted for by set A, i.e., H0:R~·(A·Bl = R~·A,a - R~.A = 0, 
but while Case 1 uses as its PVE the term 1 - Rv.A,B• Case 2 uses 1 -
R~·A,a,c (Model2 error). Set Cis a group of IVs, z in number, whose Yvari­
ance is also removed from error. 
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Case 2 MRC applies to a wide variety of research designs ranging from 
standard stereotyped factorial analysis of variance and analysis of 
covariance designs to ad hoc designs whose analysis is determined by the de­
tails of the causal models which are assumed. What they all have in common 
is that the source of Y variance under test is defined as B·A, while, in addi­
tion to sets A and B, other variables that are not involved in the definition of 
the source of interest are used to reduce the PV E; these are designated as set 
C. The data analyst employing this Model2 error is simply taking advantage 
of the opportunity afforded by the availability of the z variables in set C to 
attempt to increase power by reducing error, a centrally important goal of 
research design. This attempt will succeed when the reduction in PV E• 

namely R~·A,a,c - R~·A,B• is large enough to offset the loss of the z addi­
tional df from the error term, whose df is now 

(9.3.10) v=N-u-w-z-1. 

A more concise exposition of general MRC analysis would simply offer 
what we call Case 2 as the general case, and derive Cases 0 and 1 (and others) 
as special cases. When set Cis taken as an empty set, R~·A,a,c = R~·A,a• z = 
0, and Case 1 results. If set A is empty as well, Case 0 results. Another possi­
bility is for only set A to be empty. 

Another direction of specialization is to instances where sets A and B 
share no variance in Y (i.e., are orthogonal): R;..A,B = R;..A + R;.. 8 , thus 
R;..A,a - R;..A = R;.. 8 (already illustrated for Case 1 in example 9.9). Such 
instances include orthogonal factorial and Latin square analysis of variance 
and analysis of covariance designs, repeated measurement, split-plot, and 
other complex orthogonal designs. It is important to note that in the MRC 
approach, the orthogonal case is a special case; nonorthogonality requires 
no special contortions in the analysis (Cohen & Cohen, 1983). 

9.13 An investigation is undertaken of the factors associated with 
length of stay (Y) of patients admitted to a large psychiatric hospital. Three 
groups of IVs are to be related to Y:D, five variables carrying demographic 
and socioeconomic information; H, three variables descriptive of features of 
the patient's psychiatric history; and S,scores on four symptom scales on ad­
mission. The causal model employed treats the group D as causally prior to 
the other two groups and group H as prior to S. The causal hierarchy dictates 
that Y will be related to D, to H·D,and to S·H,D. Since all of these sources 
are expected to account for nontrivial PVs, the error term should include 
them all, although the null hypothesis for D and H·D do not involve all 
three-thus the conditions for Case 2 are met. Assume N = 200 and a = .01 
throughout. 

The alternate-hypothetical values posited for the three sources are as fol-
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lows: of the total Yvariance, D accounts for.10, H·D for .06, and S·D, H for 
.04. These PVs are additive to theY variance accounted for by the three 
groups of variables, R~.o,H,s = .20. They are also the numerators in the ex­
pressions of 12 • 

Consider first the test of H ·D. If we let group H = set B (u = 3), group D 
= set A (w = 5), and group S = set C (z = 4),then the Model 2 PV E• 1 -
R~·A,s,c = 1- .20 = .80,anditsdffromformula(9.3.10)isv = 200-3-
5 - 4 - 1 = 187. The 12 for H·D in Case 2 is given by (9.2.4) as .06/.80 
= .075, so X = .075(191) = 14.3 by (9.3.1). The specifications for the F test 
of the null hypothesis on H • D are 

a= .01, u = 3, v = 187, X= 14.3, 

and Table 9.3.1 (for a = .01) in block u = 3 gives power = .74 by interpola­
tion at A = 14.3. 

Consider next the test of D, for which R~.0 was posited to be .10. If this 
were a Case Otest, PVE from formula (9.2.2) would give .10/90 = .1111. To 
treat it as Case 2, we redefine the meaning in the 12 formula for Case 2 (9.2.4) 
of sets A, B, and C. Now let set A be empty (hence w = 0), let set B contain 
group D (u = 5), and let set C contain both groups H and S (hence z = 3 + 4 
= 7). With set A empty, the numerator of (9.2.4), R~·A,s - R2v.A = R2v. 8 

- 0 = R~. 0 = .10, and the denominator PVE, 1 - R~·A,s,c = 1 - R~.s.c 
= 1 - R2v.o,H,s = .80. The Case 212 is .10/.80 = .125, necessarily larger 
than for Case 0 since Y variance due to H and Shave also been removed from 
thePVE.Formula(9.3.10)givestheCase2errordl,v = 200-5-0-7-
I = 187, as before. >. = .125(193) = 24.1, so for the F test of R~.0 : 

a= .01, u = 5, v = 187, A= 24.1, 

and Table 9.3 .I, block u = 5, gives power = 92 for A = 24.1 by linear inter­
polation and (9.3.2). 

Consider finally the test of S· D, H. This may be used here to illustrate the 
point made above that Case 1 is a special case of Case 2. To treat this as Case 
2, let set A include groups D and H ( so w = 5 + 3 = 8), let set B be group S 
(u =4), and let set C be empty,since no variables in addition to those of sets 
A and Bare used in the error term. The Case 12 formula (9.2.4) for S·D, H 
( = B·A) is .04/(1 - .20) = .05, and v = 200 - 4 - 8 - 1 = 187, both the 
same as for Case 1. X is now .05(192) = 9.6. The summary of the specifica­
tions is 

a= .01, u = 4, v = 187, X= 9.6, 
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and Table 9.3.1 gives the interpolated power value in block u = 4 as .44, a 
rather disappointing value. If the significance criterion is relaxed to a = .05, 
Table 9.3.2 gives in block u= 4, interpolating for>. = 9.6, power = .69-
still rather lower than one would wish. 

9.14 In examples 8.6 and 8. 7, the power analysis of a 2 x 3 x 4 facto­
rial design analysis of variance on persuasibility (Y) in developmental social 
psychology was described. We shall maintain the same conditions, including 
the same N = 120, but now stipulate that the cell sizes are neither constant 
nor proportional, varying from three to seven due to the exigencies of sched­
uling and subject availability. It is now a nonorthogona/ factorial design, 
and its analysis as a Case 2 MRC problem will be demonstrated. 

Sex of experimenter (S, at two levels), age of subject (renamed G here to 
avoid confusion, at three levels) and instruction conditions (K here, at four 
levels) are the three factors, and the two-way interactions (S x G, S x K, G 
x K) and three-way interaction (S x G x K) are the sources of Y variance of 
interest. In MRC analysis, the number of IVs required to represent fully the 
information of a nominal scale (factor) is one fewer than the number of vari­
ables, so the three factors (main effects) are represented respectively by 1, 2, 
and 3 IVs. To represent interaction, each of the IVs of each factor involved 
is multiplied by each IV of each other factor. The resulting group of product 
IVs, after variance due to their constituent factors had been partialled, rep­
resent the interaction (Cohen & Cohen, 1983, Chapter 8). 

For example, the Y variance due to the G x K interaction is determined 
as follows: Construct the product IVs by multiplying each of the two IVs 
that carry the G information by each of the three IVs that carry the K in­
formation, column by column in the data matrix; the resulting 6 IVs (GK) 
contain the G x K information, but they carry information from G and K as 
well. The proportion of Y variance due to G x K is then found by partialling 
that due to G and K, literally as R~.o x K = R~.o.K,oK - R~.o,K· Note that 
this satisfies our paradigm for the numerator of f2 for Case 2: let set B be the 
6 ( = u) GK product IVs, and let set A carry both the two IVs for G and the 
three IVs forK (sow = 5); the result is the PV that is due to B·A. 

The Case 2 PV E is the residual when all the available sources Y variance 
has been removed. These are, in addition toG, K, and G x K, the other com­
ponents of the three-way factorial design model: they are, each followed 
parenthetically by the number of IVs (hence df) representing them: S (1), S 
x G(2), S x K(3), and S x G x K(6), exactly as in the analysis of variance. 
These latter constitute set C for this analysis of G x K, with its df = 1 + 2 + 
3 + 6 = 12 = z. The error df for Case 2 is thus v = 120 - 6 - 5 - 12 - 1 
= 96, as it was in examples 8.6 and 8. 7. Note that u + w + z = (6 + 5 + 12 
=) 23, one fewer than the total number of cells (2 x 3 x 4 = 24). The full 
complement of IVs to represent all the main effects and interactions of a fac-
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torial design is always the number of cells minus one. Each of the IVs carries 
information about a specific aspect of one of the main or interaction effects. 

Now assume that the value posited for R~·A,a,c• based on all23 IVs, is 
.325, so that PVE = 1 - .325 = .675. Assume further that R~·A,a - R~.A 
( = R~.o x K) is posited as .042. Then the Case 2 f2 for G x K from formula 
(9.2.4) is .0625 (approximately). (These values were chosen here so that they 
would agree with f = .25 for the G x K [there called A x C] interaction in 
example 8.7). From formula (9.3.1), A = .0625(103) = 6.4. The specifica­
tions for the power of the test of G x K, with 6 df, are thus 

a= .05, u = 6, v = 96, A= 6.4, 

and Table 9.3.2 gives, in block u = 6 for column A = 6.4, power = .42, in 
close agreement with the value .41 found in example 8. 7 for the same specifi­
cations (recall that they are theoretically identical). 

Consider now the test for a main effect. In nonorthogona1 designs the 
souces of variance are correlated with each other. When, as here, no causal 
hierarchy is presupposed, a factor's "gross" effect (e.g., RtK) is contami­
nated by those of the other factors, and requires "purification," i.e., 
partialling. Thus, the pure K effects is K·S, G. If we now let set B be K (with 
u = 3), and set A be the combined S and G (with w = 1 + 2 = 3), then the 
PV for pure K is given by the numerator of the Case 2 formula for f2 (9.2.4). 
We assign to it the alternate-hypothetical value of .108 (selected in this ex­
ample for consistency with example 8.6). Set C now contains the remaining 
sources of Y variance, the four interaction groups (made up, in all, of 17 
IVs). the PV E• 1 - R~·A,a,c• remains the same for all the tests; it was posited 
above to equal .675, based on v = 96. thus, the f2 for K•S, G is .16, and>. = 
.16(100) = 16.0. The specification summary: 

a= .05, u = 3, v = 96, A= 16.0. 

In block u = 3 of Table 9.3.2 at A = 16, for both v = 120 and v = <», 

power is given as .93 (making the use of [9.3.2] unnecessary). This agrees ex­
actly with the value found for the same specifications for the conditions ef­
fect in example 8.6. 

In complex problems such as this, the specification of the many 
alternate-hypothetical R2s necessary to compute the f2s for the effects can be 
avoided if the researcher is prepared to work directly with f2 , using conven­
tional or other values. Direct specification of f2 makes the determination of 
the power of the test of a given main effect or interaction a procedure that 
can be completed in a minute or two. Following this procedure, the reader 
may, as an exercise, use the present methods to find the power of the other 
effects in this problem, using the f values specified in examples 8.6 and 8. 7, 
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and check the agreement with the results given there. As a somewhat more 
difficult problem, determine the various R2 values implied by the t2 values. 

9.15 Another occasion for the use of Case 2 MRC arises in connection 
with the analysis of the shape of the regression of Y on some quantitative re­
search factor by means of power (or orthogonal) polynomials. In example 
9.2, a study of the relationship between attitude toward socialized medicine 
(ASM = Y) and age in a sample of 90 adult male subjects was described. The 
focus there was on age as a construct, with no attention paid to the details of 
the shape of the relationship. To assure that the amount of variance in ASM 
accounted for by age was not to be constrained by the presumption of linear­
ity, a third order polynomial was used, i.e., the 3 ( = u) IVs age (X), 
age-squared (X2), and age-cubed (X3) defined the construct age, and were 
used as a set (B) in an MRC Case 0 analysis. It was posited that its f2 = .15 
(hence R~.a = .13). The present focus is on the shape of this relationship, 
components of which are carried by each of the three IVs. Specifically, the 
sociologist believes that the regression of ASM on age has a substantial (neg­
ative) linear component such that younger respondents score generally 
higher on ASM than do older ones. Specifically, he posits that of the 13"7o of 
the ASM variance that he assumes is being accounted for by the three IVs, 
8% may be accounted for by a straight line, i.e., by (linear) age (X): r;x = 
.08, and the remainder (.05) jointly by the quadratic and cubic curvilinear 
components of age, X2 and X3' that bend that straight line to improve the fit. 
Although the latter do not figure in defining the source of variance of inter­
est, which is X, the .05 of the Y variance for which they presumably account 
should not be included in the PVE. We thus have the conditions for Case 2. 
(Note that in the standard significance test for rvx• which is a Case 0 test, the 
error term, 1 - rvx, would be inflated by the PV due to X2 and X3, .05.) 

Let the single variable X constitute set B (hence u = 1), and X2 and X3 to­
gether made up set c (hence z = 2). Since nothing is to be partialled from X, 
let set A be empty (hence w = 0). Substituting in the Case 2 formula for t2 

(9.2.4), the f2 for X is .08/(l - .13) = .0920. The error df is, from (9.3.10), v 
= 90 - 1 - 0 - 2 - 1 = 86 (as in example 9.2). Thus, from (9.3.1), A = 
.0920(88) = 8.1. Using the same a = .01 criterion as before, the specifica­
tion summary for the power of the test on the linear component of age, X, is 

a= .01, u = 1, v = 86, A= 8.1. 

Interpolation in block u = 1 in Table 9.3.1 for A= 8.1 gives power = .59. 
This is hardly a satisfactory level of power. It might be prudent to plan in­
stead that this test be performed at a = .05, which, upon entering u = 1 and 
A= 8.1 in Table 9.3.2 for a = .05, gives power = 80. 

Now consider the test of the null hypothesis that there is in fact no 

.. 
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curvilinearity in the regression of ASM on age. The curvilinearity is carried 
by X2 and X3, which we now designate as set B, but they also carry variance in 
X, which must be partialled from them (Cohen & Cohen, 1983, pp. 
224-232). Let X constitute the set to be partialled A. Consistent with the PV 
of .13 for all three variables and .08 for X, we are assigning a PV to X2 and X3 

together of .05. Since no further IVs are operating here (but see the further 
evolution of this problem in examples 9.8 and 9.10), there is no set C, so the 
power analysis may proceed as Case 1, or as we have seen as the special case 
of Case 2 where set Cis empty. In either case, the f 2 for the two IVs of set B 
is .05/(1 - .13) = .0575, u = 2, w = 1, and v = 90 - 2 - 1 - 1 = 86 (as 
before). Thus)., = .0575(89) = 5.1. Continuing to use a = .05, the specifica­
tion summary of this test of the null hypothesis on curvilinearity is: 

a= .05, u = 2, v = 86, )., = 5.1 

In Table 9.3.2, in block u = 2, linear interpolation on = 5.1 gives power = 
.50. Thus, in the presence in the population of substantial curvilinearity, the 
probability of so concluding is a "fifty-fifty" proposition. Not very good. 

The investigator may now consider the possibility that all of the .05 of 
the Y variance accounted for nonlinearly resides in the quadratic term (X2), 

and none of it in the cubic (X3). This is not at all unreasonable, since the 
nonlinear relationship encountered in the "soft" behavioral sciences fre­
quently yield trivially small contributions beyond the quadratic; the cubic 
term has been included here "just in case." Thus, let set B contain only X2 

(hence u = 1). We let set A contain X, which must be partialled from X2 to 
define the unique quadratic contribution (hence, w = 1). Set C carries X3 

(hence z = 1), which we still plan to include in the analysis since it may well 
carry some variance and reduce the error term. This is a Case 2 MRC test: f2 

= .05/(1 - .13) = .0575 (as before), v = 90 - 1 - 1 - 1 - 1 = 86 (as be­
fore), so that)., = .0575(88) = 5.1. But u = 1 now, instead of 2, which, all 
other things equal, will yield greater power: 

a= .05, u = 1, v = 86, }.. = 5.1. 

In Table 9.3.2,in block u = I, interpolation of)., = 5.1 gives power = .60. 
Although better than .50, even assigning every shred of the assumed .05 cur­
vilinear variance to X2 does not result in a strong test. Apparently, a power­
ful test of curvilinearity is not available without increasing N (for this pre­
sumedES). 

Because of its high degree of generality, many further examples of Case 2 
MRC analysis may be contrived. The elements are fairly simple: set B is the 
source of Y variance of interest, set A is made up of the IV s to be partialled (if 
any), and set C contains additional variables (if any) used to further reduce 
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error variance. This structure includes virtually all the significance tests en­
countered in experimental designs of any degree of complexity. Additional 
applications and examples are given in Cohen & Cohen (1983, Chapters 4, 8, 
10, and 11). 

9.4 ), TABLES AND THE DETERMINATION OF SAMPLE SIZE 

The determination of the sample size necessary to attain some desired 
amount of power (given the other parameters) proceeds by inverting the pro­
cess of the preceding section, in which power was determined as a function 
of N. Unlike the sample size tables in the other chapters, the tables in this 
section give values of the noncentrality parameter >..; these are then used to 
find the necessary N. 

A problem arises in that the relationship between >.. and power depends 
on v, which in turn is a function of N, which is what we are trying to deter­
mine. The problem can be solved by iteration: we select as a trial value of v 
one of those provided in the tables, use its>.. value for the desired power, and 
compute N with one of the formulas provided. Then, if the computed N im­
plies v substantially different from our trial value, we repeat the computa­
tion using the new v value. 

The basic formula (9.3.1) is rewritten as 

(9.4.1) >.. 
v=-r-u-1. 

vis the error (or denominator) df, made up of Nand, negatively, the number 
of IV s employed in the determination of the PV E• which varies depending on 
the case. It is then a simple matter to rewrite (9.4.1) to yield the requisite N as 
a function of >../f2 and the number of df "lost" in the determination of PV E· 

In the sections that follow, the N formulas are given for the three cases. 
The two tables that follow yield >.. values necessary to attain a given power 
for the F test of the null hypothesis for set B (made up of v variables) using 
the a significance criterion. The provisions for the parameters a, u, and v are 
the same as for the power tables in Section 9.3, as follows: 

1. Significance criterion, a. Tables 9 .4.1 and 9 .4.2 give>.. values respec­
tively for a = .01 and .05. 

2. Degrees of Freedom of the Numerator of the F Ratio, u. This is si­
multaneously the number of IVs in set B. Each table gives>.. values over the 
range of power for the following 23 values of u: 1(1), 15, 18, 24, 30, 40, 48, 
60, 120. Since all values of u up to 15 are given, it will only rarely be neces­
sary to resort to interpolation (which may be linear). 

3. Degrees of Freedom of the Denominator of the F Ratio, v. For each 
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of the values of u, >. values for the desired power are provided for the same 
four values of vas in Section 9.3: 20, 60, 120, and oo. Note that the>. values 
for the four values of v for any given level of desired power do not vary 
greatly, so that for many applications, a trial value of>. for v = 120 will yield 
an N of sufficient accuracy. Interpolation between>. values for a given vis 
linear in the reciprocals of the v's; this would be necessary for "exact" values 
of>.. For the lower and upper tabled v values between which v falls (vL, vu) 
andtheir respective values >. values (>.L, >-u), the interpolated value of>. for 
the given v is 

(9.4.2) 
>. = >.L _ 1/vL - llv (>. _ >. ) 

llvL - llvu L u . 

4. Desired Power. The tables provide for the power values: .25, .50, 
.60, 2/3, . 70(.05).95, and .99. Section 2.4.1 for a discussion of the basis for 
the choice of desired power values, and of the proposal that power = .80 
serve as a convention in the absence of another basis for a choice. 

9.4.1 CASE 0: TEST OF R2 . For the simple case where the significance 
test is on R~.8 , and only the u variables of set Bare employed in defining the 
error variance, the error df, v = N - u - l. Substituting this in (9.4.1) 
above and solving for N gives 

(9.4.3) N = >. ? 

If the Case 0 f2 is spelled out in PV terms (9.2.2) and substituted, 

(9.4.4) N = >.(1 - R~.a) 
R2 

Y•B 

To determine N, enter the table for the a specified in the row for the 
number of IVs, u, and the column for the desired power, and read out>. for a 
trial value ofv. >.is then entered into (9.4.3) when the effect size is expressed 
as f2 or (9.4.4) when the effect size is expressed as a function of R~.a (9.2.2), 
and N for the trial vis computed. Since v = N - u - 1, the computed value 
of N will imply a value for v different from the trial v. If the disparity is 
great, one may repeat the process to obtain a new value of>. by interpolation 
using (9.4.2). One can reiterate this process with the new value of N, al­
though this degree of accuracy is rarely needed in practice. The procedure is 
illustrated in the examples. 
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Illustrative Examples 

9.16 Recall the personnel psychologist in example 9.1 who was working 
with a selection battery made up of 5 ( = u) variables (set B), which he pos­
ited accounted for .10 ( = R~.8) of the criterion variance in the population. 
Using the significance criterion a = .05 for a sample of 95 ( = N) cases, it 
was found that the power of the F test on the sample R~.a was .66. What 
must N be for the power of the test to be .80? The specifications are thus: 

a= .05, u = 5, R~.a = .10, power= .80. 

Table 9.4.2 (for a = .05) gives in block u = 5, column power = .80, A = 
13.3 for v = 120, which we take as a trial value. Substituting in Equation 
(9.4.4), 

N = 13.3 (1 - .10) = 120 
.10 

which, since v = N - u - 1, implies that v = 120 - 5 - 1 = 114. The dis­
parity between the v = 120 value for which he obtained A = 13.3 and the im­
plied value of 114 is quite small (i.e., less than lOOJo), and for practical pur­
poses the inexact computed N of 120 would generally be adequate. If he 
nevertheless wished the "exact" N, he would reiterate by means of (9.4.2): He 
seeks A for 114. Substituting for vL, vu (60, 120) the values in Table 9.4.2 for 
AL, Au (14.0, 13.3),he obtains 

1160- 11114 
A = 14.0 - 1160 _ 11120 (14.0 - 13.3) = 13.3. 

Thus, when rounded to one decimal place, there is no difference between the 
interpolated A value for v = 114 and the tabled A value for v = 120; the orig­
inally computed N = 120 value stands. 

9.17 The sociologist investigating correlates of attitude toward social­
ized medicine in a sample of 90 cases (example 9.2) found that at a = .01, us­
ing a third-order polynomial representation of age (set 8, u = 3), and as­
suming that f2 = .15, had power of .69 for the F test of the sample R~.8 • 
What N would be necessary for power of .80? The specifications are: 

a= .01, u = 3, f2 = .15, power= .80. 

Table 9.4.1 (for a = .01) in block u = 3 for column power = .80 gives 
for the trial value of v = 120, X = 16.1. Substituting in (9.4.3) gives N = 
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16.11.15 = 107, which implies v = 107 - 3 - 1 = 103. A more accurate 
value for N requires reiteration by interpolating for A between v = 60 and v 
= 120 with Equation (9.4.2): 

1160- 11103 
A= 16.9- 1I60 _ 11120 (16.9- 16.1) = 16.2, 

for which N = 16.2/.15 = 108, barely different from the previous value. 
Obviously no further iteration is necessary. 

9.18 A clinical psychologist is planning a research on the prediction of 
success in psychotherapy from demographic, psychological test and projec­
tive technique data routinely gathered at intake. This collection of predictive 
factors (set B) are expressed as 20 ( = u) IVs. She posits that they will ac­
count for some .16 ( = R~.8) of the variance in consensus ratings of success 
(Y), and wishes to ascertain the sample size necessary for the F test at a = .05 
to have power = .90. Thus, 

a= .05, u = 20, R~. 8 = .16, power= .90. 

Table 9.4.2, in block v = 20 for power = .90 gives for the trial value ofv 
= 120 (again), A = 29.6. Substituting in (9.4.4) gives N = 29.6 (1 - .16)/ .16 
= 155, which implies v = 155 - 20 - 1 = 134. Reiterating, we find with 
Equation (9.4.2) that for v = 134, interpolating between v = 120 and oo, that 

A = 29.6 - 1112~1~2~1134 (29.6 - 26.1) = 29.2, 

whichvia(9.4.4)yieldsN = 29.2(1- .16)/.16 = 153.Sincethishardlydif­
fers from the previous value, no further iteration is necessary. She finds this 
N rather large given the expected rate of case acquisition. 

She then reconsiders the problem. She knows that there is much redun­
dancy among the 20 IVs, and that some of them are only marginally relevant 
to Y. She notices that the A. tables clearly show that for any given level of 
power, as u increases, A increases and thus (since A is a positive linear func­
tion of N) N increases. She decides to reduce her 20 IVs to four by some com­
bination of a priori judgment and factor analysis. She expects that, having 
captured much ofthe criterion relevant variance in the reduced set of IVs,the 
population R~.8 will only be reduced to .12. The revised specifications are: 

a= .05, u = 4, Rt. 8 = .12, power =.90. 
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Table 9.4.2 gives for block u = 4, power = .90, at a trial value v = 120, 
).. = 16.0. Formula (9.4.4) now gives N = 16.0 (1 - .12)/.12 = 117. Reiter­
ating would produce little if any change. This tactic has thus resulted in a re­
duction inN demand from 153 to 117, that is, by 240Jo. 

The increase in ).., and therefore with N as u increases, which is apparent 
in the tables, is a statistical expression of the principle of parsimony in the 
philosophy of science. The fact that computers can easily cope with large 
numbers of IVs in MRC should not mislead the researcher into the belief 
that his investigation can. Not only does power suffer (or theN demand in­
crease) when u is large, but the rate of spurious rejections of null hypotheses 
(experimentwise a) increases as well (Cohen & Cohen, 1983, pp. 166-169). 

9.19 A behavioral scientist, working in a relatively uncharted area, 
plans to relate a set of 5 IVs to a dependent variable using MRC. With no 
clear idea of what the population R~.8 is likely to be, he determines the necl 
essary N for a range of possible R~.8 values. Using power = .80, and a = 
.01 and .05, he consults Tables 9.3.1 and 9.3.2 and using Equations (9.4.2) 
and (9.4.4) generates the following table of N's: 

R~.8 .02 .05 
a = .01 884 347 
a = .05 632 248 

.10 .15 
166 108 
121 78 

.20 .25 .30 .35 
77 60 50 41 
57 44 36 30 

Let us assume that, upon reviewing this table, he narrows down the prob­
lem by deciding to use a = .OS as his criterion. He then may reconsider his 
sense of the likely magnitude of R~.8 and decide, somewhat uncertainly, to 
posit it to be .1 0 (let us say), and use N = 120. 

A Bayesian-inspired alternative procedure is worth consideration. In­
stead of expressing his alternative hypothesis as a point (R~.a = .10), he 
may express it as a distribution of subjective probabilities among the Rta by 
assigning P (probability) values to the alternative R~. 8 possibilities such that 
the P values add up to 1.00. He has enough of an idea of the likely strength 
of the effect to consider some values of R~.8 to be much more likely than 
others, and even to scale these in this manner. For simplicity, let us assume 
that he rules out completely (assigns P = 0 to) R~. 8 values outside the range 
of .05 to .15, and within that range, assigns P.os = .3, P. 10 = .5, and P. 1s = 
.2. He then uses the Pi as weights to yield a value of N, e.g., 

(9.4.4) 

which, for these data and subjective Pis, yields N = .3(248) + .5(120) + 
.2(78) = 150. A similar procedure may be used in subjectively weighting 
power values as a function of a fixed N over a range of ESs into a single esti-
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mate of power. Of course, these Bayesian-like procedures may be used for 
any statistical test, not just those of MRC. 

Finally, however one proceeds in the end, the generation of tables of N 
such as the above is recommended for coping with the problem of making 
decisions about N in experimental planning. 

9.20 In example 9.5, a Case 0 MRC power analysis was performed on a 
teaching methods problem, previously analyzed by the analysis of variance 
methods of Chapter 8 in example 8.1. The original specifications yielded 
power = .51 (.52 in example 8.1) for four groups (hence u = 3) of 20 cases 
each (hence N = 80), at a = .OS with f = .28. When redone as an analysis of 
variance problem in determining the sample size necessary for power = .80 
(example 8.10), it was found that then per group would be 35.9 ( = 36), soN 
= 143.6 ( = 144). Redoing this now as a Case 0 MRC problem in determin­
ing N, the specifications are: 

a= .OS, u = 3, 12 = .0784, power= .80. 

Table 9.4.2 gives for u = 3, power = .80, at trial v = 120,). = II. I. For­
mula (9.4.3) gives N = 11.1/.0784 = 142, which does not change on itera­
tion using (9.4.2), and is in good agreement with the value found in example 
8.10. 

9.4.2 CASE 1: TEST OF R~·A,B - R~·A• MODEL I ERROR. In the test of 
the increase in R2 that occurs when set B (containing u IVs) is added to set A 
(containing w IVs), the PVE is I - RtA.a - R~·A• and its df given by for­
mula (9.3. 7) as v = N - u - w - 1. Substituting this in formula (9.4.1) and 
solving for N gives 

(9.4.6) ). 
N = f2 + w. 

If 12 is expressed as a function of R~.A and R~·A,a as given for Case I in 
(9.2.3), 

(9.4.7) 

Expressing the Case I 12 as a function of the squared multiple partial correla­
tions, R~a-A• as given by formula (9.2.7), gives 

(9.4.8) N = ).(1 - R~a-A) 
R2 + w. 

YB•A 
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As in Case 0, A is found by entering Table 9.4.1 (for a = .01) or Table 
(9.4.2) (for a = .05) in block u (the number of IVs in set B) and the column 
for the specified power. For v we select a trial value, usually v = 120, enter 
the trial A in one of the above three formulas for N, and iterate if necessary 
using Formula (9.4.2), as illustrated in the previous examples. 

For the special Case 1-1, where a single IV, X, makes up set B, N from the 
above formulas gives the necessary sample size for the t (or F) test of any of 
the partial correlation or regression coefficients of X. 

Illustrative Examples 

9.21 The sociological investigation of attitude toward socialized medi­
cine addressed itself in example 9.8 to the power of the F test of education 
from which age has been partialled, using a = .01, N = 90, and positing f2 

= .16. Because of anticipated curvilinear relationships, both education and 
age were represented as power polynomials, education (set B) as a quadratic 
(u = 2), and age (set A) as a cubic (w = 3). For those specifications, the 
power for the test of B·A was found to be . 77. What N would be necessary 
for power to be .80? The specification summary is: 

a= .01, u = 2, f2 = .16, power= .80. 

Table 9.4.1 (for a = .01) gives in block u = 2, power = .80, A = 14.2 at 
trial v = 120. Substituting in Equation (9.4.6) gives N = 14.2/.16 + 3 = 92, 
which implies via (9.3.7) that v = 92 - 2 - 3 - 1 = 86. Reiterating with 
(9.4.2) yields A= 14.5 and thus N = 14.5/.16 + 3 = 94, which is four more 
cases than originally planned for the .03 increase in power. 

Now consider that in the same investigation, in example 9.17 for the Case 
0 test on age, the specifications (a = .01, u = 3, f2 = .15, power = .80) re­
sulted in N = 108 cases. For this N, the power for the test on education 
partialling age may be found by determining from formula (9.3.8) that A = 
.16 (3 + 102 + 1) = 17 .0, which, from power Table 9.3.1 yields for u = 2, v 
= 102, by interpolation, power = .87. 

9.22 In another phase of the same sociological investigation of ASM 
correlates described in example 9.1 0, the effect of ethnic group membership, 
controlling (adjusting) for age and education (represented polynomially) 
was under scrutiny. This is an analysis of covariance since set B is comprised 
of 4 ( = u) artificial variates carrying information about group membership 
(in one of five groups). Set A now contains the 5 ( = w) covariate IVs carry­
ing age and education information. It was posited that the covariates ac­
counted for .25 ( = R~.~ of the ASM variance, to which ethnic group mem­
bership added another .05, thus R~·A,B - R~.A = .05, R~·A,s = .30, and the 
Case 1 f2 of (9.2.3) is .05/(1- .30) = .0714. When to these specifications are 
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added a = .01 and N = 90, it was found that the power of the F test on 
ethnicity partialling age and education (i.e., the overall F test on the adjusted 
ethnic group means of the analysis of covariance) was only .24, far less than 
had been found for age (example 9.2) and for education with age partialled 
(example 9.8). Apparently sample sizes of about 100 are too small to provide 
a good chance of demonstrating unique ("pure") ethnic group differences 
for the ES which is anticipated. Well, how large must N be for this test to 
have power = .80? The specifications are: 

a= .01, u = 4, 12 = .0714, power= .80. 

Table 9.4.1 in block u = 4 for column power = .80 gives A = 17.6 for a 
trial v = 120. Then (9.4.6) gives N = 17.6/.0714 + 5 = 251. This implies 
(9.3. 7) v = 251 - 4 - 5 - 1 = 241. Reiteration with (9.4.2) yields A = 17.1, 
hence (9.4.6) N = 17.1/.0714 + 5 = 244. This is a rather large sample, and 
it helps not a bit to use the alternative formula (9.4.7)-it gives, as it must, 
the same result. This test demands 2& times the N required by the other, and 
if N cannot be so increased, either the investigator must reconcile himself to 
a poor chance of detecting the ethnic group differences in ASM or the speci­
fications must be changed. The only feasible possibility is a shift of a = .01 
to .05. In Table 9.4.2 for u = 4, trial v = 120, power = .80, we find A = 
12.3, which yields N = 12.3/.0714 + 5 = 177, which by (9.4.2) iterates toN 
= 176. This is a substantial reduction from 244, but still twice the number 
for .80 power in the other two tests. 

9.23 In the study described in example 9.11, three different methods of 
infant day care assigned to different centers were to be compared on various 
outcome criteria after controlling for socioeconomic status, family composi­
tion, ethnic group membership, and age at entry (set A, w = 8). Set 8 con­
tains the 2 ( = u) IVs which code group (method, center) membership. For a 
given criterion, the ES for methods was expressed as a squared multiple par­
tial correlation: R~B·A = .10, i.e., lOOJo of the set A-adjusted criterion vari­
ance was expected to be accounted for by method group membership. As de­
scribed there, N was fixed and power then found. Now we assume that the 
planning, including the decision as to N, is done in advance (as it ideally 
should be). Assume that a = .01, and that the power desired is .90. The 
complete specifications are thus: 

a= .01, u = 2, R~B·A = .10, power= .90. 

In Table 9.4.1, for u = 2, power= .90, we find A= 18.0 forthetrialv = 
120. Since ES is expressed as R~. 8 , Equation (9.4.8) is used: N = 18.0 (1 -
.10)/ .10 + 8 = 170, which iterates to 169. 
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In investigations involving many dependent variables, hypotheses, and 
significance tests on a single sample, the power analyses of the tests will re­
sult in varying N demands. These will need to be reconciled by taking into ac­
count the relative importance of the tests, and the available resources in 
terms of subjects, time, and cost. In this process, it may be necessary (as we 
have already seen) to reconsider some of the specifications, particularly a 
and the power desired (see Cohen & Cohen, 1983, p. 162). 

9.24 Return yet once more to the problem in personnel selection of ex­
amples 9.1 and 9.12. In the latter, a strategy was considered for dropping 
two of the five IVs in the regression equation in the interests of reducing se­
lection costs by testing whether they significantly (a = .05) increase the sam­
ple R2 provided by the other three, dropping them if they fail to do so. This is 
a Case 1 MRC test, with set B made up ofthe 2 ( = u) IVs under scrutiny, and 
set A of the other 3 ( = w). It was posited that all five had a population PV of 
.10 (= R~·A,8), and that set B uniquely accounted for .04 (= R~·<B·A)) of 
that amount. It was found that N = 95 resulted in such low power (.42) that 
this planned strategy would be a poor one. 

We now ask what N would be required to make the nonsignificance of 
B·A an effective basis for the decision to omit the two variables. To deter­
mine this, we need to decide how large a risk he would be prepared to run of 
dropping the two variables when they, in fact, added .04 to R2• This is a 
Type II error-b is the rate of failing to reject a false null hypothesis. As­
sume he decides b = .10, so the power desired is .90. Now the specifications 
are complete: 

a= .05, u = 2, R~·<A·B) = .04 power = .90. 
1 - R~•A,B = .90, 

Table 9.4.2 gives A = 12.8 for u = 2, trial v = 120, power = .90. For­
mula (9.4.7) then gives N = 12.8 (.90)/.04 + 3 = 291. Reiterating with v 
= 291 - 2 - 3 - 1 = 285 via (9.4.2) gives A = 12.7 and N = 289. He must 
then do a cost-benefit analysis to decide whether the cost of the research on 
N = 291 cases warrants the saving to be realized by dropping the two vari­
ables with that degree of confidence (. 90) that as much as .04 of the criterion 
variance will not be lost. A lesser degree of confidence, say power = .80, 
leads to A = 9. 7, and N = 220. This is more data for his cost-benefit analy­
sis: is the saving of 321f/o (relative to N = 291) worth rejection odds of only 
four to one (compared to nine to one)? 

Later in example 9.12, an alternate strategy of dropping either (or both) 
of the two IVs on grounds of nonsignificance (a = .05) was considered, pos­
iting that it (X) accounted for .03 ( = r;<X·A)) of the Y variance uniquely 
among the five predictors, while the total PV accounted for was .10 ( = 
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R;..A,8), as before. This is Case 1-1, since set B contains only I ( = u) IV, set 
A now containing the other 4 ( = w). It was found that for N = 95, power 
was only .33 for the two t (or F) tests. Again, we invert the problem and ask 
what N would be required for power to be .90. The specifications: 

a= .05, U = 1, r;.(X•A) = .03 power= .90. 
I - R;..A,B = .90, 

In block u = 1 of Table 9.4.2, for both v = 120 and v = oo, A = 10.5 at 
power = .90. Thus, N = 10.5 (.90)/.04 + 3 = 319 (with no iteration neces­
sary). Even for power = .80, for both v = 120 and v = oo, A = 7 .8, so N = 
7.8 (.90)/.04 + 3 = 238. 

The strategy described here parallels that which may be used to "prove" 
the null hypothesis (see Section 1.5.5). Of course, H0 cannot literally be 
proved. It is usually a statement that the ES is (exactly) zero, and nothing 
short of a sample of infinite size, hence the population, can prove such a 
statement. But in many circumstances, all that is intended by "proving" the 
null hypothesis is that the ES is not necessarily zero but small enough to be 
negligible, i.e., no larger than I (Section 1.5.5). How large I is will vary with 
the substantive context. Assume, for example, that ES is expressed as 12 , and 
that the context is such as to consider 12 no larger than .02 to be negligible; 
thus I = .02. Then, one sets a large value for power, say .95, hence the Type 
II error probability, b = .05. If one then sets a at some conventionally small 
value, say .05, and specifies the appropriate value for u (say 3), the specifica­
tions for the necessary N are complete, i.e.: 

a= .05, u = 3, 12 = .02, power= .95 (b = .05). 

For a trial value of v = oo, Table 9.4.2 gives for v = 3 and power = .95, 
A = 17 .2, hence (for Case 0) N = 860, which iterates toN = 863. If one then 
draws that large a sample, and performs the F test, if it proves to be not sig­
nificant, then one can accept as "proven," not the H0:12 = 0, but rather the 
proposition that 12 is negligibly small, i.e., not as large as .02 ( = 1), since if it 
were that large, the probability of rejecting it was .95. Thus, the risk of fail­
ing to reject it, the Type II error is b = .05. By such means, we can take as 
"proven" the hypothesis that ES is negligibly small, < i, at the b level of con­
fidence (not literally the null hypothesis at the a level of confidence). 

For the somewhat arbitrary specifications used above, the N required 
was at least (depending on wand z) 863. However, for any reasonably small 
value of I and reasonably large power, the necessary N for such a demonstra­
tion will always be large by the usual standards of most areas of behavioral 
science. But that is what it takes to "prove" the null hypothesis. The fre­
quently encountered statements in research reports that something has "no 
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effect on" or is "not related to" something else, on the strength of a nonsig­
nificant result with N = 30 or 50, or 100, are clearly unwarranted, even when 
"no" is qualified, as intended, to mean negligible. They are yet further symp­
toms of the relative neglect of power analysis in research inference in the be­
havioral sciences. 

9.4.3 CASE 2: TEST OF R~·A,B - R~·A• MODEL 2 ERROR. The determi­
nation of N proceeds here exactly as in Case 1, except that PV E is now 1 -
R~·A,a,c; set C is recruited to reduce PV E• while not involved in the defini­
tion of the source of Y variance being tested. Since Model2 error dl is now v 
= N - u - w - z - 1, substituting in the general formula (9 .4.1) and solv­
ing for N gives 

(9.4.9) N = >.. + w + z. f2 

Expressing Case 2 12 as a function of the three R2s involved then gives 

(9.4.10) 

As in Case 0 and 1, >.. is found by entering the table for the specified a in 
block u (the number of IVs in set B) and the column for the specified power. 
For v we select a trial value (usually v = 120, since it is the middle value of 
the span that covers most research). >.. is then entered in either (9.4.9) or 
(9.4.10) to find N, and, if necessary, the process is iterated using (9.4.2). 

Illustrative Examples 

9.25 In the research on factors associated with a length of stay (Y) in a 
psychiatric hospital (example 9 .13), three groups of variables in a causal hi­
erarchy were to be considered: five demographic-socioeconomic IVs (D), 
three psychiatric history variables (H), and four symptom scale scores deter­
mined at time of admission (S). The tests to be performed were forD, H•D, 
and S·D, H, this pattern reflecting the presumed causal priority of the three 
factors. Since the PVE is 1 - R~.o,H,s• the tests of D and H·D are Case 2 
tests. The significance criterion is a = .01 throughout. 

It was posited that D accounted for .10 of theY variance, H·D for .06, 
and S· D,H for .04. The additivity of semi partial R2s in this type of hierarchi­
cal pattern implies that R~.o,H,s = .10 + .06 + .04 = .20, so the Model 2 
PV E = 1 - .20 = .80 throughout. For the test on H • D (letting H = set B, D 
= set A, and S = set C), the 12 from formula (9.2.4) is .06/.80 = .075. When 
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N = 200, it was found that the power ofthe test on H • D was . 74. To find the 
N necessary for power to be .80, the specifications are: 

a= .01, u = 3, power= .80. 

For these specifications, Table 9.4.1 gives A = 16.1 for a trial v = 120. 
Equation (9.4.9) then gives N = 16.11.075 + 5 + 4 = 224, which through 
iteration becomes N = 220. 

The test of 0 is also a Case 2 test, since neither H nor S enter in the nu­
merator of the F ratio, but are both involved in determining the PVe, i.e., 
the 3 + 4 = 7 ( = z) IVs of these two groups comprise set C, while, since no 
partialling is involved in D (set 8), set A is empty. The Case 2 f2 forD is thus 
.10/.80 = .125. For N = 200, it was found that the power of the test of D 
was .92. What N would be required for power to be .95? 

a= .01, u = 5, f2 = .125, power= .95. 

Table 9.3.1 gives (for u = 5, power= .95) A= 27.4 for v = 120, so 
(9.4.9) then gives N = 27.4/.125 + 0 + 7 = 226; iteration yields A = 26.7 
and N = 221. 

When the power of the test on S·D, H was found in example 9.13, given 
its small ES (f2 = .05), with N = 200, it was found to be only .44 at a = .01 
and .69 at a = .05. Raising N from 200 to 221 increases A from 9.6 to 10.4 
and increases power at a = .01 and .05 respectively to .49 and . 72 (interpo­
lating in block u = 4 in Tables 9.3.1 and 9.3.2.) Assume then that the test of 
S·D, His to be performed at a = .05. N = 221 gives power of .72-what N is 
required to raise this to .80? 

a= .05, u = 4, power= .80. 

For these specifications, Table 9.4.2 gives X. = 12.3, which is iterated to 
12.1. This is a Case 1 test: Formula (9.4.6) gives N = 12.1/.05 + 8 = 250. 
(This may also be treated as a special case of Case 2 with set C empty, with 
the same result-see example 9.13.) Thus, if the test on S·D, His important 
to the investigation, and if the circumstances permit this increase in N, it 
would be clearly very desirable to do so. 

9.26 Example 9.14 described the power analysis of a 2 x 3 x 4 (S x G 
x K) factorial design with unequal cell frequencies as a Case 2 MRC prob­
lem. It had previously been power-analyzed as an orthogonal factorial de­
sign analysis of variance in example 8.6 and 8.7 and the determination of N 
for two of the F tests was demonstrated in example 8.14. We now consider 
for these two tests the determination of N when considered as Case 2 of an 
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MRC analysis. Repetition of the details of how interaction IVs are created 
and how the sets are defined is omitted here- the reader is referred to exam­
ple 9.14 for these; only the highlights and specifications are given. 

Fixed factorial designs are traditionally analyzed with all main effects 
and interaction sources of Y variance removed from error, so PV E is the 
complement of the PV accounted for by all u + w + z = 23 ( = 2 x 3 x 4 
- 1) IVs which collectively carry the cell membership information. For the 
test on the G x K interaction, whose f2 was posited as .0625 and u = 6, the 
power at a = .05 was found to be .40 when (total) N = 120 was assumed. To 
attain a conventional power of .80 for this test, what N would be required? 
The relevant specifications are: 

a= .05, u = 6, f2 = .0625, power= .80. 

In Table 9.4.2, for u = 6 and power = .80, at trial v = 120, A = 14.3. 
Substitution in (9.4.9) gives N = 14.3/.0625 + 5 + 12 = 246, which upon 
iteration (9.4.2) becomes N = 241 (in close agreement with N = 240 found 
for this test in example 8.14). This large N is partly a consequence of the 
large df for G x K, u = 6. Were u = 1, the necessary N would be 143. (See 
the discussion of the power of tests of interactions in examples 8. 7 and 8.8). 

The K main effect (literally K·S, Gin a nonorthogonal design), with u = 
3 was posited to have f2 = .16 in example 9.14 (as it was in example 8.7). At 
a = .05, with N = 120, its F test was found to have power = .92. If only this 
test were considered, the experiment could be reduced in size if one were 
content to have power= .80. By how much? 

a= .05, u = 3, f2 = .16, power= .80. 

This works out to a A = 11.1 at the trial v = 120, which iterates to A = 
11.4 and, via (9.4.9), N = 11.4/.16 + 5 + 15 = 91, a reduction of 32o/o inN. 
(Unfortunately, this is not the only test to consider-we saw above that the 
G x K test requires 241 cases.) 

9.27 As the final example, we cope with the problem of setting N to 
provide an adequate test of the curvilinearity of a regression. In example 
9.15, we returned to the sociological investigation of the relationship of atti­
tude toward socialized medicine (ASM = Y) to age to determine the power 
of tests which would appraise the shape of this relationship. Age was repre­
sented polynomially as X, X2 , and X3, and it posited that this group of 3 IVs 
accounted for .13 of the ASM variance (hence PVE = .87). It was also pos­
ited that X alone (linear age) could account for .08 of the ASM variance, the 
balance (.05) requiring the curvilinear aspects X2 and X3 • When N was taken 
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as 90, at a = .01 it was found that the test of the linear component of age had 
power of only .59, but that at a = .05, it reached a satisfactory power of .80. 

The analysis of the curvilinear components proved to be another matter 
entirely. Treating X2 and X3 as set 8 (u = 2), and X as set A, R~.A.a - R~.A = 
.13 - .08 = .05, and f2 = .0575; at a = .05, u = 2, for N = 90, power was 
only .50. Even when all the .05 curvilinear variance was assigned to X2 (actu­
ally X2•X), so that u was reduced from 2 to 1, power for N = 90 at a = .05 
was still only.60. 

What N would be required for the F test of the X2 , X3 pair to give power 
= .80? 

a= .05, u = 2, t2 = .0575, power= .80. 

Table 9.4.2 gives for these specifications A = 9.7 which is unchanged by 
iteration, so (9.4.9) yields N = 9.7/.0575 + 1 + 1 = 171, about twice theN 
originally considered. 

Even if all the curvilinearity is assigned to X2 , u becomes 1, and for power 
= .80, N works out to 139. 

The amount of curvilinearity of ASM on age posited here is not negligi­
ble-it would be readily perceived, for example, in a scatter diagram. Yet it 
would take an N of 150 - 200 for adequate power to demonstrate it statisti­
cally. 



CHAPTER 10 

Set Correlation and Multivariate Methods 

10.1 INTRODUCTION AND USE 

The introduction to the preceding chapter described how multiple regres­
sion and correlation analysis (MRC) has come in recent years to be under­
stood as a flexible data-analytic procedure because of its generality. The ex­
amples in that chapter demonstrated that it subsumed as special cases not 
only simple correlation and regression, but also the analysis of variance 
(ANOV A) and the analysis of covariance (ANCOVA). Moreover, its gener­
ality makes possible novel analytic forms, for example, the Analysis of Par­
tial Variance (see, for example, Cohen & Cohen, 1983, pp. 403-406, and ex­
ample 9.8). 

As a data-analytic system, MRC is general because it is a realization of 
the univariate general linear model, univariate because however many inde­
pendent variables it may employ, it deals with only one dependent variable 
at a time. The multivariate general linear model is a further generalization 
that deals with sets of dependent variables simultaneously. Each standard 
univariate method, e.g., ANOVA, ANCOVA, has its analogous 
multivariate method, multivariate analysis of variance (MANOV A), and 
multivariate analysis of covariance (MANCOV A). In the mathematics, the 
N values of a single variable are replaced by theN sets (vectors) of values of a 
group of variables and the latter are treated simultaneously by 
matrix-algebraic operations. 

Set correlation (SC) is a realization of the multivariate general linear 
model and thus a generalization of multiple correlation (Cohen, 1982). 
Cohen & Cohen (1983) and Pedhazur (1982) serve as general references to 

467 
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MRC as a general (univariate) data-analytic system. SC can employ all the 
coding devices, error models, and analytic strategies of MRC not only for in­
dependent variables, but also for dependent variables. Most important, the 
use of partialling (residualization) of sets by other sets, used for a variety of 
purposes in MRC for independent variables, becomes available for the de­
pendent variables as well in SC. 

The fact that SC is a multivariate generalization of MRC, which is in 
turn a generalization of the standard univariate methods, makes of SC a 
flexible data-analytic tool that subsumes contemporary standard methods as 
special cases and makes possible the generation of novel procedures that are 
uniquely appropriate to the special circumstances cast up in research in be­
havioral science. 

An extensive exposition of SC is obviously beyond the scope of this chap­
ter. The reader will need to refer to the basic reference, Cohen (1982), which 
is reprinted in Cohen & Cohen (1983, Appendix 4). Unbiased (shrunken) es­
timators of measures of set correlation are given by Cohen & Nee (1984). A 
personal computer program for SC, SETCOR, is a SYSTAT supplementary 
module (Cohen, 1989), and a Fortran IV program for SC is described by Cohen 
& Nee (1983). 

Although this chapter is oriented toward SC, which provides its frame­
work, the power-analytic procedures for the standard multivariate methods 
are covered as special cases. 

10.1.1 MULTIVARIATE R2v,x· Many measures of association between 
two sets of variables have been proposed (Cramer & Nicewander, 1979; 
Cohen, 1982). Of these, R2v,x• the multivariate R2 between a set Y made up 
of kv variables and a set X made up of kx variables, a direct generalization of 
multiple R2, provides the basis for the effect size measure used in this chap­
ter. Using determinants of correlation matrices, 

(10.1.1) R2v,x = 1 

where Rvx is the full correlation matrix of the Y and X variables, 
Rv is the matrix of correlations among the variables of set Y, and 
Rx is the matrix of correlations among the variables of set X. 

This equation also holds when covariance or sums of products matrices re­
place the correlation matrices. 

R2 v,x may also be written as a function of the q squared canonical corre­
lations (CR2) where q = min (kv, kx), the number of variables in the smaller 
ofthe two sets: 
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(10.1.2) 

R2 Y,X is a generalization of the simple bivariate r yx• and is properly inter­
preted as the proportion of the generalized variance or multivariance of set Y 
accounted for by set X (or vice versa, because like all product-moment corre­
lation coefficients, it is symmetrical). Multivariance is the generalization of 
the univariate concept of variance to a set of variables and is defined as the 
determinant of the set's variance-covariance matrix. One may interpret pro­
portions of multivariance much as one does proportions of variance of a sin­
gle variable. Indeed, in the multivariate context of this chapter, the 
term "variance" when applied to a set of variables should be understood to 
mean "generalized variance" or "multivariance." R2 v,x may also be inter­
preted geometrically as the degree of overlap of the spaces defined by the 
two sets, and is therefore invariant over nonsingular transformations (rota­
tions) of the two sets, so that, for example, R2 v,x does not change with 
changes in the coding of nominal scales. See Cohen (1982) for the justifica­
tion of these statements and a discussion of these and other properties of 
R2v,x· 

Sets Y and X are to be understood as generic. Set Y may be a set of depen­
dent variables 0, or a set of dependent variables 0 from which another set C 
has been partialled, represented as D•C. Similarly, set X may be a set ofinde­
pendent variables 8, or a set of independent variables 8 from which another 
set A has been partialled, 8•A. Note that because the number of variables in 
set X, kx, is not affected by partialling, kx = k8 for all types of association. 
Similarly, ky always equals k0 . 

There are thus five types of association possible in SC: 

Set Y-Dependent Set X-Independent 
Whole: set 0 with set B 
Partial: set D•A with set B•A 
Y semipartial: set D•C with set B 
X semipartial: set D with set B•A 
Bipartial: set D•C with set B•A 

Following an SC analysis, further analytic detail is provided by output 
for MRC analyses for each generic y variable on the set of generic x variables 
(and the reverse), y and x being single variables in their respective sets. Thus, 
it is for the individual variables, partialled or whole depending on the type of 
association, that the regression and correlation results are provided. 

10.1.2 SIGNIFICANCE TESTING: WILKS L AND THE RAO F TEST. 

There are several approaches to testing the null hypothesis in multivariate 
analysis (Olson, 1976). Stevens (1986) provides an excellent discussion of 
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these (and of multivariate analysis, generally) and concludes that the major 
alternatives are of comparable power and robustness (Olson, 1974). I have 
chosen the approach using Wilks' L (or lambda) and the Rao F test because it 
is a generalization of the conventional F test for proportion of variance in 
MRC (9.1.2), because in several cases Lis the complement of R2v,x• and be­
cause it is reasonably robust (Cohen, 1982). 

A fundamental function for significance testing and effect size measure­
ment in multivariate analysis is Wilks' (1932) lambda or likelihood ratio, 

(10.1.3) L = lEI 
IE+HI 

where E is an error matrix, and 
His an hypothesis matrix. 

Like R2 v,x• L is invariant over changes in the scaling of the matrix elements: 
In conventional MANOV A and MANCOV A, these matrices are expressed 
in terms of sums of squares and products, and in SC, as covariance or corre­
lation matrices. The values for H and E depend on the type of association 
and error model used (Cohen & Cohen, 1983; Cohen, 1982): 

Model 1 error. The residual variance remaining in set Y after the vari­
ance associated with sets Band A (when A exists) is removed. (This is exem­
plified for MRC in Cases 0 and 1 in Section 9 .1.) 

Model 2 error. The residual variance of Model I error is reduced by re­
moving from it the variance associated with a set G of independent variables 
not involved in the hypothesis. Error Model 2 is traditionally used, for ex­
ample, when within cell error is used to test a main effect or interaction in 
ANOVA or MANCO VA (Sections 9.3.3, 10.3.5, 10.3.6). 

Cohen (1982, Table 2) gives the matrix expressions for Hand the error 
matrices of the two models for all five types of association. When Model I 
error is used, for all but the bipartial type of association, it can be shown 
that 

(10.1.4) L = 1 - R2Y,X• 

so that L is simply the complement of the proportion of set Y's generalized 
variance accounted for by set X; L thus measures degree of association back­
wards: small values of Limply strong association, and conversely. 

Once Lis determined for a sample, Rao's F test (1975) may be applied in 
order to test the null hypothesis that there is no linear association between 
sets X andY (Cohen, 1982; Cohen & Nee, 1983; Eber & Cohen, 1987). As 
adapted for SC, the test is quite general, covering all five types of association 
and both error models. As should be the case, when kv (or kx) = 1, where 
multivariate R\x specializes to multiple R2y.x (or R2x.v), the Rao F test spe-



10.1 INTRODUCTION AND USE 471 

cializes to the standard null hypothesis F test for a proportion of variance in 
MRC (9.1.2). For this case, and for the case where the smaller set is made up 
of no more than two variables, the Rao F test is exact; otherwise, it provides 
a good approximation. 

(10.1.5) 

where 

(10.1.6) 

(10.1.7) 

(10.1.8) 

(10.1.9) 

F = (L- ItS -1)! , 
u 

u = numerator df = kv kx, 

v = denominator df = ms + 1 - u/2, where 

m = N -max (kc,kA + k0 ) - (kv + kx + 3)/2, and 

k2vk2x- 4 

k2v + k2x- 5 

except that when k2 v kx 2 = 4, s = 1. For partial R2 v.x• set A = set C, so kA = 
kc is the number of variables in the set that is being partialled, and for whole 
R2 v.x• neither set A nor set C exists. Set G is the set of variables used for 
Model 2 error reduction (see Cohen, 1982, and Section 10.3). Recall that kv 
is k0 and kx is k8 (because partialling has no effect on the number of vari­
ables), and that kc, kA, and k0 are zero when the set does not exist for the 
type of association or error model in question. 

The statistical assumptions generalize from those described in Section 
9.1 for a test of a variance proportion: the variables in set X are taken as 
fixed and those of set Y are assumed to be multivariate normal, but the test is 
fairly robust against assumption failure (Olson, 1974). 1 

Note that all of the foregoing has been concerned with testing the null hy­
pothesis using the sample R2 v.x value and sample values of hypothesis and 
error matrices given in formula (10.1.3). The value reported in standard 
multivariate computer output as Wilks' L (lambda) is the likelihood ratio of 
determinants of observed sample results, subject to significance testing. 

1 Although this test assumes multivariate normality for the Y set, preliminary Monte Carlo 
results suggest that the test is quite robust for samples of 60 or more, even for discrete binary or 
trinary distributions. 
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10.1.3 SAMPLE AND POPULATION VALUES OF R2v,x· Working in SC, 
one quickly discovers that sample values of R2 v,x tend to run high. This is 
partly because, like all squared correlations (multiple R2, simple r'-), it is pos­
itively biased; that is, on the average, it overestimates its population value. 
When the population R2 v.x = 0, the average or expected sample R2 v,x is a 
function solely of the numerator (u) and denominator (v) degrees of freedom 
of the F test and the s: 

(10.1.10) Exp0 (R2 v x) = 1 - ( _v_ ) 2 

. v + u 

(Cohen & Nee, 1984). It can be seen that as the product of the set sizes u in­
creases relative to v (which is dominated by the sample size), Exp0 (R2 v,x) in­
creases. For example, consider the case of whole association between sets of 
kv = 4 and kx = 5 variables for a sample of N = 60 cases. From Equation 
(10.1.9) (or Table 10.2.1 below), s = 3.32, u = 4 (5) = 20, and from 
(10.1.7) and (10.1.8), v = 170. Now, from (10.1.10), Exp0(R2v,x) = 1 
-(170/(170 + 20))3·32 = .31. This means that even when the population 
R2 v,x = 0, the average R2 v,xvalue of 60-case samples drawn from the popu­
lation will be .31, an apparently impressive value. If N = 100, u and s re­
main as before, but vis now 303, and Exp0 (R (R2v,x) = .19, still an appar­
ently large value. 

When the population R2 v,x > 0, too, sample R2 v,x's exaggerate the pro­
portion of variance accounted for, on the average. Cohen & Nee (1984, p. 
911) provide a "shrinkage" formula for sample R2 v.x• that is, an almost unbi­
ased estimate of the population value, 

(10.1.11) 2 2 y + u ( ). 
Rv,x = 1 - (1 - R v,x) -Y- • 

Solving this equation for R2 v,x• we obtain an approximation of the expected 
(average) value of the sample R2 v.x for a given value of the population R2 v,x: 

(10.1.12) 2 2 v ( ). 
Exp1 (R v,x) = 1 - (1 - R v,x) v + u • 

Thus, for example, for the previous specifications (ky = 4, kx = 5, N = 60, 
which led to u = 20, v = 170, s = 3.32), when the population R2 v x = .20, 
the average sample R2v,x = 1 -(1 -.20) (170 /(170 + 20))3 ·32 = .45. 
Changing N to 100 (which makes v = 303) results in an average sample R2 v,x 
= .35. If we posit a population R2 v,x = .10, then for N = 60, Exp1 (R2 v,x) = 
.38, and for N = 100, it equals .27. Small wonder that sample R2 v,x's run 
high. The moral is that analysts should not be seduced by the relatively large 
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sample R2 v,x's they are likely to encounter to expect that population R2v,x's 
are similarly large. The sample R2 v,x is a biased estimate of its population 
value, potentially strongly so, and much more so than is the multiple R2 • In­
cidentally, Equations (10.1.10), (10.1.11), and (10.1.12) specialize to the 
correct values for multiple R2, and simple r. For example, for multiple R2 , 

kv = 1, kx = u, so s = 1 and v = N -kx -1), so (10.1.11) becomes the 
standard Wherry shrinkage formula for R2 (Cohen & Cohen, 1983, pp. 
105-106). 

However, the tendency for R2 v,x's to be high is not entirely a consequence 
of the positive bias of sample values. Multivariate R2 v,x is cumulative in the 
same sense as multiple R2 is cumulative: just as a multiple R2 must be at least 
as large as the largest r between the (single) dependent variable and the kx 
independent variables, so must R2 v x be at least as large as the largest of the 
kv multiple R2 between the kv vari~bles and the set of kx variables or the kx 
multiple R2 between the kx variables and the set of kv variables. The addition 
of a variable can never result in the reduction of either multiple R2 or 
multivariate R2 v.x• and will almost always result in an increase. Such, how­
ever, is not the case for f2 in SC, as the next section shows. 

10.2 THE EFFECT SIZE INDEX: J2 

Since SC is a generalization of univariate methods, we can generalize the 
f of ANOV A and f2 of MRC for use as the effect size (ES) measure in SC. 
The last section was concerned with sample results. Now, as has been the 
case throughout this book, we define the ES in the population. 

First, we restate Wilks' likelihood ratio: 

(10.2.1) _ lEI 
L-IE+ HI' 

but specify that E and H now refer to population error and hypothesis matri­
ces. 

Then, we generalize the f2 signal to noise ratio as our ES measure: 

(10.2.2) f2 = L- liS - 1 

-·~IE+ HI -·~lEf 
- ·~lEf 

the latter form makes it apparent that it is a signal to noise ratio. Note the 
parallel to MRC: f2 defined on the population is the ES portion of the F test 
of equation (I 0.1.5). That equation (10.2.2) is in fact a generalization of the 
f2 of MRC can be seen when we specialize it for the MRC case where set Y 
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contains a single variable: when kv = 1, whatever the value of kx, we see 
from (10.1.9) that s = 1. If s = 1 and equation (10.1.4) are then substituted 
in (10.2.2), the Model 1 error equations for f2 in MRC, (9.2.2) and (9.2.3), 
result. 

10.2.1 f2 , s, L, AND R2 v,x· The relationship between f2 and R2 v,x is 
complex. First, f2 is a function of the sth root of L, where sis the function of 
kv and kx given in Equation (10.1.9) (and is not in general an integer). Sec­
ond, Lis a function of the determinants of the population hypothesis and er­
ror matrices (10.2.1), and these vary with type of association and error 
model (formulas given in Cohen, 1982, Table 5). Since R2 v,x is a relatively 
accessible proportion of variance measure, and because in simple cases, L is 
the complement of R2 v,x (10.1.4), it is conceptually useful to seek an under­
standing of f2 by means of these "R2-complementary" cases. 

First considers. Table 10.2.1 provides solutions of equation (10.1.9) for 
some values of kv and kx; it gives s as a function of the sizes of the two sets. 
Since (10.1.5) is symmetrical in kv and kx, the two are interchangeable. Re­
call that q = min(kv, kx). When q equals 1 (as in MRC) or 2, s = q. For q > 
2, s < q. With q held constant, as the larger set increases, s approaches q. 
Note particularly that the size of the smaller set strongly influences the value 
ofs. 

In turn, s strongly influences the effect size, f2 , as can be seen in formula 
(10.2.1). Table 10.2.2 shows how f2 varies as a function of sand L. The table 
also gives the R2 v,x values for the R2-complementary cases. (Remember that 
these are population R2 v,x values, smaller than the sample values one en­
counters in practice-see Section 10.1.) Note how for values of R2v,x < .10, 
f2 becomes very small when s increases to 4 or 5; i.e., when the smaller set 
contains 5 variables (see Table 10.2.1). Even fairly robust R2 v,x values of .25 
to .50 dwindle to quite modest f2 values when s is as large as 5 and to rather 
small values when sis as large as 10. 

Thus, Tables 10.2.1 and 10.2.2 teach us the first lesson about power in 
multivariate analysis: there is a price to be paid in ES magnitude in the em­
ployment of multiple dependent variables with multiple independent vari­
ables. When set X accounts for what appears to be a substantial proportion 
of the (generalized) variance of set Y, say = .30, if set Y contains 5 variables 
and set X no fewer, s = 4, and f2 = .09 or less. Note that for the same pro­
portion of variance, when there is only one dependent variable, i.e., in the 
(univariate) multiple correlation case, no matter how many variables in set 
X, s = 1, and f2 = .43, a value larger than the R2v,x of .30. Note further that 
when kv ( = q) goes from 1 to 2, for the same .30 proportion of variance, f2 

drops to .20. 
Large set sizes have a negative effect on power not only through their ef­

fect on f2, but also through their effect on u, the numerator df. As noted 



- ~ N
 

--1
 

:z::
 

tr
l 

T
ab

le
 1

0.
2.

1 
tr

l 

s 
as

 a
 F

un
ct

io
n 

o
f 

ky
 a

nd
 k

x 
~ n 

ky
 

--1
 

C
ll 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10

 
12

 
14

 
16

 
20

 
30

 
50

 
N

 
kx

 
tr

l 

1 
1 

z 
2 

1 
2 

t:
) tr
l 

3 
1 

2 
2.

43
 

~
 

4 
1 

2 
2.

65
 

3.
06

 
- " 

5 
1 

2 
2.

76
 

3.
32

 
3.

71
 

6 
1 

2 
2.

83
 

3.
49

 
4.

00
 

4.
39

 
7 

1 
2 

2.
87

 
3.

62
 

4.
21

 
4.

69
 

5.
08

 
8 

1 
2 

2.
90

 
3.

69
 

4.
36

 
4.

92
 

5.
39

 
5.

77
 

9 
1 

2 
2.

92
 

3.
75

 
4.

47
 

5.
10

 
5.

63
 

6.
08

 
6.

46
 

10
 

1 
2 

2.
94

 
3.

79
 

4.
56

 
5.

24
 

5.
83

 
6.

34
 

6.
78

 
7.

16
 

12
 

1 
2 

2.
95

 
3.

85
 

4.
68

 
5.

44
 

6.
12

 
6.

74
 

7.
28

 
7.

76
 

8.
56

 
14

 
1 

2 
2.

97
 

3.
89

 
4.

76
 

5.
57

 
6.

32
 

7.
01

 
7.

64
 

8.
21

 
9.

18
 

9.
96

 

16
 

1 
2 

2.
97

 
3.

91
 

4.
81

 
5.

67
 

6.
47

 
7.

21
 

7.
90

 
8.

54
 

9.
66

 
10

.5
9 

11
.3

7 
20

 
1 

2 
2.

98
 

3.
94

 
4.

88
 

5.
79

 
6.

64
 

7.
47

 
8.

43
 

8.
99

 
10

.3
4 

11
.5

2 
12

.5
4 

14
.1

8 
30

 
1 

2 
2.

99
 

3.
98

 
4.

94
 

5.
90

 
6.

83
 

7.
75

 
8.

64
 

9.
51

 
11

.1
7 

12
.7

2 
14

.1
5 

16
.6

7 
21

.2
4 

50
 

1 
2 

3.
00

 
3.

99
 

4.
98

 
5.

96
 

6.
94

 
7.

91
 

8.
87

 
9.

82
 

11
.6

8 
13

.4
9 

15
.2

5 
18

.5
8 

25
.7

4 
35

.3
7 

5t 



476 10 SET CORRELATION AND MULTIVARIATE METHODS 

Table 10.2.2 
12 as a function of s and L or R2v,x 

R2v,x 
.04 .06 .08 .10 .12 .15 .20 .25 

L 
s .96 .94 .92 .90 .88 .85 .80 .75 

1 04 06 09 11 14 18 25 33 
2 02 03 04 05 07 08 12 15 
2.5 02 03 03 04 05 07 09 12 
3 01 02 03 04 04 06 08 10 
3.5 01 02 02 03 04 05 07 09 
4 01 02 02 03 03 04 06 07 
4.5 01 01 02 02 03 04 05 07 
5 01 01 02 02 03 03 05 06 
5.5 01 01 02 02 02 03 04 05 
6 01 01 01 02 02 03 04 05 
6.5 01 01 01 02 02 03 03 05 
7 01 01 01 02 02 02 03 04 
8 01 01 01 01 02 02 03 04 
9 00 01 01 01 01 02 03 03 

10 00 01 01 01 01 02 02 03 
12 00 01 01 01 01 01 02 02 
15 00 00 01 01 01 01 01 02 
20 00 00 00 01 01 01 01 01 
30 00 00 00 00 00 01 01 01 

R2v,x 
.30 .40 .50 .60 .70 .80 .90 

L 
s .70 .60 .50 .40 .30 .20 .10 

1 43 67 100 150 233 400 900 
2 20 29 41 58 83 124 216 
2.5 15 23 32 44 62 90 151 
3 13 19 26 36 49 71 115 
3.5 11 16 22 30 41 58 93 
4 09 14 19 26 35 50 78 
4.5 08 12 17 23 31 43 67 
5 07 11 15 20 27 38 58 
5.5 07 10 13 18 24 34 52 
6 06 09 12 16 22 31 47 
6.5 06 08 11 15 20 28 43 
7 05 08 10 14 19 26 39 
8 05 07 09 12 16 22 33 
9 04 06 08 11 14 20 29 

10 04 05 07 10 13 17 26 
12 03 04 06 08 11 14 21 
15 02 03 05 06 08 11 17 
20 02 03 04 05 06 08 12 
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with regard to the power tables in Chapter 9, power decreases as u increases. 
Now in SC, as Equation (10.1.6) shows, u is equal to the product of the two 
set sizes. Thus, the effect of having many variables in either set takes its toll 
in power not only through the increase in s with its attendant decrease in 12, 

but also through the increase in u. Multivariate or otherwise, the same old 
principle applies-the fewer variables the better-less is more (Cohen & 
Cohen, 1983, pp. 169-171). 

1 0.2.2 "SMALL," "MEDIUM," AND "LARGE" 12 VALUES. The simplicity 
and familiarity of univariate ES measures has made the setting, explanation, 
and exemplification of operational or conventional definitions of small, me­
dium, and large ES in the earlier chapters a comparatively easy task. With its 
dependence on set sizes and Wilks' L or R2 v,x• 12 is neither simple nor famil­
iar, nor is there much literature available from which to draw examples. 

In the interest of consistency and continuity, we shall employ the same 
values as were used in the operational definitions for MRC. The implica­
tions of this are most readily perceived in the R2-complementary cases. We 
have seen in Table 2.2.2 how a given R2 v,x results in diminishing values of 12 

ass increases. Now, the relationship will be reversed and we shall see, for ex­
ample, how 12 for MRC (in the present context, where s = 1) implies a 
smaller (possibly much smaller) proportion of variance (R2 v,x) than the same 
12 in SC, where, with at least two variables in each set, s ~ 2 (see Table 
10.2.1). 

The value of L or R2 v,x implied by any given 12 can be found by rewriting 
(10.2.2) as 

(10.2.3) 

which, when L = 1 - R2 v,x becomes 

(10.2.4) 

Table 10.2.3 gives the solution of these equations: the R2v,x (or 1 - L) 
values implied by 12 ass increases. As the size of the smaller set, and there­
fore s, increases, any given level of the effect size, 12, implies increasing 
R2 v,x· Table 10.2.3 will facilitate our understanding of the operational defi­
nitions of small, medium, and large f2 values in terms of the implied R2v,x 
(and 1 - L) values. 

Small Effect Size: f2 = .02. In MRC, this implies R2 = (.0196 =) .02 (see 
Section 9.2.2), as can be seen for s = 1 in Table 10.2.3. In SC, for 2 depen­
dent variables (s = 2), 12 = .02 implies R2 v,x = .04, still small, but twice as 
large as for MRC. For large sets, let us say, for example, when kv = 6 and kx 
= 8, s "" 5 and 12 = .02 implies R2 v,x = .10. 
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Medium Effect Size: f2 = .15. While in MRC (where s = 1), this implies 
R2 = .13, even for a modest s = 2, f2 = .15 implies R2v,x = .25 (Table 
1 0.2.3). We are not accustomed to thinking of .25 of the variance amounting 
to only a medium ES- for a simple bivariate ..Z, that was defined as a large 
effect (see Section 3.2.1). For large set sizes, say, when s = 5, f2 = .15 im­
plies R2 v,x = .50. Again we see how severely a proportion of variance is dis­
counted under the stress of large set sizes. 

Large Effect Size: f2 = .35. In MRC, this implies R2 = .26. In SC, for s 
= 2, f2 = .35 implies R2v,x = .45. Consider a somewhat larger value of s: 
for example when s = 4, which occurs when kv = 5, kx = 6 (Table 10.2.1), 
f2 = .35impliesR2v,x = .70. Whens ""7(say,forkv = 8,kx = 14,orforkv 
= 7, kx = 50 or more, see Table 10.2.1), a large effect implies R2 v,x = .88. 

I am even more diffident in offering the above operational definitions 
for f2 in SC than for the other ESs in this book. Because of the novelty of 
SC and the neglect of the issue of the size of multivariate effects in standard 
methods, the definitions offered stem from no more reliable a source than 
my intuition. With the accumulation of experience, they may well require re­
vision (I suspect downward). 

Although Tables 10.2.1, 10.2.2, and 10.2.3 may be of some incidental 
use in facilitating calculation, they are offered primarily to help the reader 
get a feel for how set sizes influences and how s, in turn, mediates the rela­
tionship between the effect size measure, f2, and R2 v.x (in the 
R2-comp1ementary cases) and L. They should be of some use in making deci­
sions in research planning. 

10.2.3 SETTING f2 • There are several alternative routes by which one 
can arrive at the f2 value needed for power and sample size analysis: 

1. Using the Correlation Matrix and the SC program. The idea is to 
fool the SC program (Cohen & Nee, 1983; Eber & Cohen, 1987) into finding 
f2 (as well as the degrees of freedom) for the power analysis. First, posit the 
alternate-hypothetical population matrix of correlation coefficients for all 
the variables in the analysis and enter them into the program as if they were 
sample results. Then, for problems where power is to be determined (Section 
10.3), enter the specified value for N. When the program is run for the rele­
vant type of association, it will produce a (phony) F ratio and the (correct) 
degrees of freedom (u and v). Since the L- 115 - 1 term of (10.1.5) equals the 
f2 given as (10.2.2), simple algebraic manipulation yields 

(10.2.5) 

Since power is fully determined by f2, u, and v (and a), this procedure will 
generally be preferred. 
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Table 10.2.3 
R2v.x or 1 - L as a function of f 2 and s 

f2 
s .02 .05 .10 .15 .20 .25 .30 

1 02 05 09 13 17 20 23 
2 04 09 17 24 31 36 41 
2.5 05 11 21 29 37 43 48 
3 06 14 25 34 42 49 54 
3.5 07 16 28 39 47 54 60 
4 08 18 32 43 52 59 65 
4.5 09 20 35 47 56 63 69 
5 09 22 38 50 60 67 73 
5.5 10 24 41 54 63 71 76 
6 11 25 44 57 67 74 79 
6.5 12 27 46 60 69 77 82 
7 13 29 49 62 72 79 84 
8 15 32 53 67 77 83 88 
9 16 36 58 72 81 87 91 

10 18 39 61 75 84 89 93 
12 21 44 68 81 89 93 96 
15 26 52 76 88 94 96 98 
20 33 62 85 94 97 99 99 
30 45 77 94 98 100 100 100 

f2 

s .35 .40 .50 .60 .70 .80 .90 

1 26 29 33 38 41 44 47 
2 45 49 56 61 65 69 72 
2.5 53 57 64 69 73 77 80 
3 59 64 70 76 80 83 85 
3.5 65 69 76 81 84 87 89 
4 70 74 80 85 88 90 92 
4.5 74 78 84 88 91 93 94 
5 78 81 87 90 93 95 96 
5.5 81 84 89 92 95 96 97 
6 83 87 91 94 96 97 98 
6.5 86 89 93 95 97 98 98 
7 88 91 94 96 98 98 99 
8 91 93 96 98 99 99 99 
9 93 95 97 99 99 99 100 

10 95 97 98 99 100 100 100 
12 97 98 99 100 100 100 100 
15 99 99 100 100 100 100 100 
20 100 100 100 100 100 100 100 
30 100 100 100 100 100 100 100 

Decimal points omitted. Read as X.XX. 
R2v,x holds only for R2-complementary cases. See text. 

When the problem is determining N (Section 10.4), simply supply the SC 
program with the correlation matrix as above together with an arbitrary 
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value for N, say, N = 1000. Substituting the F, u, and v produced by the pro­
gram in (10.2.5) will yield the proper f2 . 

2. Using R2v,x· For Model 1 error, use the following L formulas for 
whole, partial, Y semipartial, and X semipartial association, respectively: 

(10.2.6) 

(10.2.7) 

(10.2.8) Lvs = 1 - R2 o.c,a 

(10.2.9) 

Thus, Lis simply the complement of the appropriate R~.x in these cases, and 
f2 is found from (10.2.2); i.e., as L- 115 - 1. Note that the bipartial f2 cannot 
be found by this R2-complement route, and that to determine the X 
semi partial f2 by this procedure, it is the R2 v,x for the partial R2 that is re­
quired, as is the case in MRC. 

With Model2 error, set G reduces the error variance from lEd to IE21. 
Let g express this reduction as a proportion, i.e., 

(10.2.10) 

The f2 for Model 2 error is adequately approximated by dividing the 
Model 1 f2 by g, thus 

(10.2.11) 

For example, assume that the type of association involved is Y 
semipartial, and f21 for Modell error is found from (10.2.8) and (10.2.2) to 
equal .12. The investigator estimates that the Model2 error variance is .80 
(=g) as large as the Model 1 error variance. The Model 2 f2 2 is therefore 
.12/.80 = .15. 

This procedure avoids the necessity for positing each entry of what may 
well be a large correlation matrix in favor of positing a single R2 v,x· But this 
road to f2 may well be a rocky one, particularly when Model 2 error is to be 
employed. 

3. Using the operational ES definitions. In Section 10.2.2, values of 
f2 of .02, .15, and .35 were proposed to operationally (or conventionally) de­
fine small, medium, and large ES, respectively, in SC. They were offered 
with at least as much diffidence as throughout this handbook. One would 
prefer, when possible, to use f2 values specific to the problem at hand. The 
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operational definitions are most useful when there has been little 
multivariate analysis in the area under study to provide rough guidance in 
the sizes of effects than can be expected. They also serve usefully as conven­
tions. 

Analysts are of course not restricted to the values .02, .15, and .35. They 
can, for example, set f2 = .1 0 as a "small to medium" ES, or .25 as a "me­
dium to large" ES, or .SO as a "very large" ES. 

It is generally helpful to check the implications of any given f2 that the 
analyst plans to specify. For example, if one is considering setting f2 at the 
medium .15 value, one should check the R2 v.x (or L) that it implies, given the 
s value that obtains, using Table 10.2.3. Conversely, if one has provisionally 
set R2 v.x• one should consider the magnitude of the f2 that is implied relative 
to the operational definitions. 

Despite the extent of commitment that it seems to entail, the first meth­
od, that of writing the full correlation matrix, is generally preferred. What 
commends it is the fact that it requires familiar product-moment correla­
tions rather than either proportions of generalized variance (R2 v.x's) or 
multivariate signal to noise ratios. 

10.3 DETERMINING POWER 

In Chapter 9, we saw that power in MRC is a function of the ES (f2), the 
numerator (u) and denominator (v) degrees of freedom of the F ratio, and 
the criterion for statistical significance (a). Under the pressure of this many 
parameters, unlike the earlier chapters, the power tables were written not for 
entry of the ES measure (f2), but rather for A, the noncentrality parameter of 
the noncentral F distribution (see Equation 9.3.1): 

(10.3.1) A = f2 (u + v + 1). 

Note that A combines multiplicatively f2 , the size of the effect in the first 
term, with the amount of information about the effect in the second term, 
which depends heavily on N. A, with its accompanying degrees of freedom 
and a, give the power value. 

Because the Rao F ratio is a generalization of the ordinary F ratio, we can 
use the power tables of Chapter 9, Tables 9.3.1 and 9.3.2, for determining 
power in SC. Recall from Section 10.1.1 that 

(10.1.6) u = numerator df = kv kx, 

and 

(10.1.7) v = demonimator df = ms + 1 - u/2, 
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where 

(10.1.8) m = N -max (kc,kA + k0 ) - (kv + kx + 3)/2. 

Given 12, u and v,}.. is computed using (10.3.1). Then Table 9.3.1 (for a 
= .01) or Table 9.3.2 (for a = .05) is entered and power is read out, interpo­
lating as necessary (see Section 9.3 for details). 

10.3.1 WHOLE ASSOCIATION: QUANTITATIVE WITH QUANTITATIVE. 

Illustrative Examples 

10.1 A psychologist is interested in studying the relationship between 
the cognitive and personality domains. The plan is to obtain 4 cognitive and 
5 personality trait measures from a sample of 60 introductory psychology 
students. Although there exists some fuzzy theory that suggests some spe­
cific between-domain pairwise relationships, the researcher decides to accept 
the discipline that a "significant" individual pairwise correlation is only to be 
accepted as such if there is a significant (a = .01) relationship between the 
two sets. 

I strongly endorse this practice. Consider that there will be a total of (4 
(5) =) 20 between-set r's. To merely "harvest" and interpret those followed 
by asterisks on the computer output as "significant" (as is encouraged by 
some statistical computer packages) may well be an exercise in capitalization 
on chance. SC (and multivariate techniques in general) provides a formal 
significance test on the overall association. It is a prudent practice to provide 
some "protection" for the validity of positive conclusions about individual 
pairs (much as is done by Fisher's protected t test) by setting as a condition 
for interpreting any of the pairwise r's as significant that the multivariate 
R2 v,x between sets be significant. 

Our psychologist employs the first method for setting 12: The matrix of 
population r's that is posited is given as Table 10.3.1. This matrix is entered 
(as if it were a sample matrix) in the SC computer program for the whole 
type of association (sets D with B) and N = 60. The program duly reports 
that R2 v,x = .3810 (which is not required for our immediate purpose) and 
the (phony) F = 1.323 for u = 20 and v = 170 degrees of freedom. 2 Substi­
tuting in (10.2.5), 12 = 1.323 (20/170) = .1556, completing the ingredients 
for (10.3.1) to find}.. as .1556 (20 + 170 + 1) = 29.7. The specifications for 
the determination of power are thus: 

2Error df (v) for the Rao F test are always greater than N when the smaller set contains at 
least 2 variables, and ass increases, much greater. Also, note that vis not, in general, an inte­
ger, but is rounded to the nearest whole number. 
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a= .01 u = 20 v = 170 A= 29.7. 

Recall that the power tables and the interpolation formula (9.3.2) in Chapter 
9 are used in this chapter. (See Chapter 9 for the details of their use.) Enter­
ing Table 9.3.1 (for a = .01) in block u = 20, and interpolation between A= 
28 and 30 and between v = 120 and oo gives power = .77. Given the invest­
ment in this research, this may well be considered a little short of ideal. 
Therefore, the psychologist determines what the power would be for N = 
70. Although this can be done as before with the SC program, because nei­
ther 12 nor u changes, all that is needed is the new v. For this, s is 
needed, which, reading from Table 10.2.1, for kv = k0 = 4 and kx = k8 = 
5, is found to be 3.32. Then, from (10.1.8), m = 70 - (4 + 5 + 3)/2 = 63, 
andfrom(I0.1.7),v = 63(3.32) +I -20/2 = 203. Thenew}. = .1556(20 
+ 203 + l) = 34.9 and the specifications are now: 

a= .01 u = 20 v = 203 A= 34.9, 

and interpolation in Table 9.3.1 gives power = .87. The researcher might 
well decide to scrape up another 10 subjects. 

An interesting aspect of the relationship between univariate and 
multivariate power may be pursued here. Assume that the population r's are 
exactly as were posited in Table 10.3.1. Note that the highest of the 20 
pairwise r's between a cognitive and a personality measure is .3, which ob­
tained for three pairs. If we go back to Chapter 3 and check the power to de­
tect a population r of .3 for N = 70 at the a2 = .051evel, we find it to be only 
.72 (Table 3.3.5). Thus, the probability of detecting any given one of the 
three as significant is not very high, and the probability of finding all three 
significant is approximately (. 723) = . 37. In the light of this, perhaps our psy-

Table 10.3.1 
Population Correlation Matrix for 4 Cognitive and 5 Personality Measures 

Cognitive Personality 

d1 d2 d3 b1 
d1 1.0 
d2 .3 1.0 
d3 .4 .5 1.0 
d4 .5 .5 .4 1.0 

b1 .1 .0 .2 .2 1.0 
b2 .0 .0 .0 .3 .2 1.0 
b3 .0 .2 .1 .2 .3 .3 1.0 
b4 .3 .2 .2 .3 .4. .4 .4 1.0 
b5 .2 .0 .0 .2 .4 .3 .3 .5 1.0 
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chologist should consider using an even larger sample size to improve the 
power to detect individual r's as significant. 

This problem also illustrates the cumulative property of R2 v.x• one of the 
reasons that it tends to run high. In Table 10.3.1, the 20 individual popula­
tion correlations between sets are quite modest: three .3s, eight .2s, and the 
rest .Os and .Is. Yet R2v,x = .3810, an apparently impressive value. 

We should note, however, that R2 v,x depends not only on the between-set 
but also on the within-set correlations, and does so in a very complex way. 
For example, for the same between-set correlations in Table 10.3.1, if we 
were to posit instead a uniform r = 0 for all the 16 within-set correlations, 
then R2 v,x = .55; for within-set r = .3, R2 v,x = .34; for r = .5, R2 v,x = .44; 
for r = .7,R2v,x = .80! What we see here is the operation of multivariate 
suppression, a rather complicated form of the phenomenon encountered in 
MRC. What is clear, however, is that in positing population correlations, 
the within-set correlations are important in determining R2 Y,X• upon which e 
and therefore }.. depend. 

This problem is also instructive with regard to the relationship between 
R2v,x and f2 and our operational definitions of effect sizes. We found f2 = 
.1556, almost identically the operational definition of a medium ES in SC. 
While R2 v,x = .3810 may have suggested a stronger relationship, the set sizes 
and resulting s = 3.32 produced an f2 less than half as large as R2 v,x· 

Finally, the reader is reminded that the R2 v,x of .3810 is a (hypothesized) 
population value. A sample R2v,x of .3810 in a sample of 60 for the present 
parameters would be quite unimpressive, because by Equation (lO.l.ll) we 
would estimate its population value as (i.e., "shrink" it to) .10. Another way 
to be unimpressed by the sample R2v,x of .3810 is to compute the expected 
value of the sample R2 v,x when the population R2v,x = 0; for the present pa­
rameters, Equation (10.1.10) gives Exp0 (R2v,x) = .31, as noted in Section 
10.1.3. 

10.2 A psychiatric epidemiologist has plans to generate a data base of 
(N =) 100 delinquent adolescents in community mental health treatment 
centers which will contain measures reflecting frequency of (kv =) 8 types of 
offense (e.g., mugging, assault, vandalism, etc.) and ratings on (kx =) 6 psy­
chopathology dimensions (e.g., anxiety, depression, oppositional disorder, 
etc.). Since in the course of this investigation multiple significance tests will 
be performed, in order to hold down the experimentwise a level, a = .01 
is to be used for this and subsequent tests. She uses the second method of ar­
riving at f2 , and posits that the population R2 v,x = .25 between the two sets. 

The type of association is whole, so from (10.2.6), Lw = l -.25 = .75. 
From Table 10.2.1 she finds that for sets of 6 and 8 variables, s = 4.92 (re­
member that because of symmetry, kv and kx are interchangeable). Then, 
from (10.2.2) f2 = . 75 - 114•92 - 1 = .0602. From (10.1.6) u = 8 (6) = 48, 



10.3 DETERMINING POWER 485 

from(10.1.8)m = 100 -(8 + 6 + 3)/2 = 91.5,sofrom(l0.1.7)v = 91.5 
(4.92) + 1 -48/2 = 427. We can now find from (10.3.1) the noncentrality 
parameter A = .0602 (48 + 427 + 1) = 28.7. The specification summary is: 

a= .01 u = 48 v = 427 A= 28.7. 

Using the interpolation formula (9.3.2) in Table 9.3.1 (for a = .01) in block 
u = 48 between A = 28 and 30 and between 120 and oo gives power = .51. 
Even using a questionable a = .05 criterion, the same procedure with the 
values of Table 9.3.2 gives power of only .74. (See example 10.17.) 

If you are surprised by the poor power for a good-sized sample and what 
seems like a chunky R2v,x = .25, note that under the press of the large set 
sizes and resulting s = 4.92, the effect size f2 of .06 is quite modest. The pos­
itive effect on A of the large v is offset by the lower power that accompanies 
large u in the power tables. 

10.3 Our epidemiologist of the preceding example teconsiders her 
plans. If the large set sizes are the problem, she can deal with them by reduc­
ing them either in advance by an a priori combination and exclusion on the­
oretical grounds, or after the data are collected, by factor or cluster analysis. 
Assume that this process results in kv = 3 and kx = 2. She estimates that 
with the reduction of information that would result, for these new measures 
R2v,x = .20 (down from .25). Now, from Table 10.2.1, s = 2 (down from 
(4.92), and (10.2.2) gives f2 = .so- .s -1 = .1180 (up from .0602). For the 
df, u = 2 (3) = 6 (down from 48), m = 100 - 100 - (2 + 3 + 3)/2 = 96, so 
v = 96 (2) + 1 -6/2 = 190 (down from 427). From (10.3.1) we can now 
find>.. = .1180 (6 + 190 + 1) = 23.2. The new specifications are: 

a= .01 U=6 v = 190 A= 23.2. 

Note that although A, too, is down (from 28. 7), it makes an enormous differ­
ence that we now enter Table 9.3.1 for u = 6 rather than 48: interpolating 
with (9.3.2), we find power for the revised specifications of .88, compared to 
.51 before. This is obviously a far more viable result. Even if the posited 
R2 v,x = .20 was overestimated (which has been known to happen), and the 
population R2v,x is actually only .175, f2 works out to .1010, and because the 
df remain the same, A becomes 19.9 and power .80, a quite tolerable level. 
(See example 10.18.) 

10.4 A clinical psychologist plans a research to investigate the relation­
ship between 3 ( = kx) physiologically based measures of anxiety and 2 (kv) 
behaviorally based anxiety scales in an available clinic sample of 38 ( = N) 
cases, and intends to use the a = .05 significance criterion. He posits the 
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(alternative-hypothetical) population matrix shown in Table 10.3.2 in order 
to determine the f2 and df for the analysis. 

He enters this matrix in a computer program for SC together with the N 
= 38 (as if they were sample data) and the output gives R2 v,x = .2653 (which 
is not needed for the power calculation), and F = 1.833, u = 6, and v = 66. 
From the latter, he finds from (10.2.5) that f2 = 1.833 (6/66) = .1666, and 
then from (10.31.1) that A = .1666 (6 + 66 + 1) = 12.2. Following are the 
specifications: 

a= .05 U=6 v = 66 A= 12.2. 

Interpolating in Table 9.3.2 (for a = .05) gives power = .69. 
He finds this value disappointing. Moreover, it occurs to him that slight 

changes in the actual population matrix from those of Table 10.3 .2 might re­
duce the R2 v,x and therefore the f2 and A, with the result that the actual 
power might well be less than .69. 

He then considers that as he conceives the population matrix (Table 
10.3.2), the relationships of the physiologically based measures to the sec­
ond anxiety scale are not as strong as with the first, and that dropping d2 

might actually increase power. Note that with a single dependent variable, 
he now has that special case of SC that is MRC, and so could analyze the 
problem using the methods of the preceding chapter. However, let's have 
him proceed with the SC method. He drops d2 and runs the SC program on 
the remaining variables with kv = 1 and kx = 3. 

He now finds R2 v,x = .2008, F = 2.847, u = 3, and v = 34. Using 
(10.2.5), he finds f2 = 2.847 (3)/34 = .2512, or equivalently, using equation 
(9.2.2) in Chapter 9, f2 = .2008/(1 - .2008) = .2513. From (10.3.1), A = 
.2512 (3 + 34 + 1) = 9.5. His new specifications are: 

a= .05 u=3 v = 34 A= 9.5, 

Table 10.3.2 
Population Correlation Matrix for 2 Behavioral and 3 Physiological Measures of 

Anxiety 

Behavioral 

d, 

d, 1.0 
d2 .3 

b, .4 
b2 .3 
b3 .2 

d2 

1.0 

.1 

.0 

.2 

b, 

1.0 
.3 
.4 

Physiolog leal 

1.0 
.6 1.0 



10.3 DETERMINING POWER 487 

and, interpolating in Table 9.3.2, he finds power to be .68, slightly less than 
it was for the original problem. 

Why did his effort to attain greater power fail? In dropping d2 , despite 
the fact that it was the more weakly related variable, R2 v x dropped from 
.2653 to .2512, and although f2 increased from .1666 to .2S12, the decrease 
in v in (10.3.1) for A reduced it too sharply to be offset by the decrease in u. 
The reader might find it useful to track these changes in detail. 

The bottom line here is that our psychologist can either follow his origi­
nal plan with 38 cases and .69 power, or seek an increase inN. With N =50, 
power works out to .85, which the reader may seek to confirm as an exercise. 
(Also, see example 10.19.) 

10.3.2 WHOLE ASSOCIATION: CATEGORICAL WITH QUANTITATIVE; 
K-GROUP MANOV A. I wish to emphasize that in this and later sections 
where standard multivariate methods are illustrated using SC, the standard 
methods are simply special cases of SC. It is conventional in MANOV A, as 
in ANOV A, to use sums of squares/products matrices rather than 
variance/covariance matrices. These differ, however, only by a multiplica­
tive constant, and because it is ratios of matrix determinants that define 
R2 v x and f2, the constant factors out, so we can use either. The SC results 
are thus not approximations but rather exactly those of the standard meth­
ods. (For an alternative method of power analysis in MANOV A, see 
Stevens, 1986, pp. 139-143, 187-190.) 

From the perspective of SC, the standard one-way K-group multivariate 
analysis of variance (MANOV A) is simply a whole association in which one 
set (usually D) is made up of quantitative variables and the other (usually B), 
represents membership in one of K groups. The latter, a categorical or nom­
inal scale, is coded using whichever coding method is appropriate to the 
problem (Cohen & Cohen, 1983, Chapter 5). Thus, kv = k0 and kx = K -1, 
where K is the number of groups. 

It should also be pointed out that K-group discriminant analysis, em­
ployed to generate linear functions of a set of variables that maximally dis­
criminate among the groups, shares the same null hypothesis, assumptions, 
and significance test with K-group MANOV A, and hence the same power 
analysis. 

Investigators may use any ofthe methods of Section 10.2.3 for setting f2 . 

For example, they may posit a population R2 v.x• determines from Equation 
(10.1.9) or Table 10.2.1, and then f2 from Table 10.2.2. Alternatively, they 
may posit a value of f2, either ad hoc or using a conventional definition (Sec­
tion 10.2.2), checking Table 10.2.3 for the R2 v x it implies. The set sizes and N 
determine u and v using Equations (10.1.6-8), and A is found, as always, from 
Equation (10.3.1). Then A is entered with u and v in Table 9.3.1 (a = .01) or 
Table 9.3.2 (a = .05), and power is read out, interpolating as necessary. 
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Illustrative Examples 

10.5 An experimental psychologist plans a learning study using a con­
trol and three experimental groups of 20, 10, 10, and 10 cases, respectively 
(total N = 50), with a time score and an error score constituting the depen­
dent variable set. He may use any method for coding the set X group mem­
bership variables and obtain the same setwise results, but follow-up tests of 
each experimental group vs. the control group will be facilitated if dummy 
variable coding is used (see Cohen & Cohen, 1983, Chapter 5 and example 
10.9). He estimates that in the population, he can account for R2v,x = .15 of 
the (multi)variance of the two scores in a MAN OVA at the .05 level. For kv 
= 2, kx = K -1 = 3, Table 10.2.1 gives s = 2, and Equation (10.2.2) gives 
12 = .0847. From Equation (10.1.6), u = 2 (3) = 6, from (10.1.8), m = SO 
- (2 + 3 + 3)/2 = 46, so from (10.1.7) v = 46 (2) + 1 -6/2 = 90. Finally, 
Equation (10.3.1) gives A = .0847 (6 + 90 + 1) = 8.2. The specification 
summary is: 

a= .OS u=6 v = 90 A= 8.2. 

Entering Table 9.3.2 (for a = .05) in block u = 6, and interpolating for v = 
90 and A = 8.2 via (9.3.2) gives power = .51, a fifty-fifty proposition. Note 
that although 150Jo of the variance is a sizable chunk by univariate stand­
ards, when it is expressed as f2 for s = 2, it comes to only .0847, a value that 
falls almost exactly between the operational definitions of small and medi­
um. It is instructive to note how it compares with the 12 that would result if 
there were only one dependent varible, i.e., if this were a multiple correla­
tion (or a univariate analysis of variance). For s = 1, the R2v,x of .15 yields 
12 = .1765; for these specifications, A = 8.8, not much different from be­
fore, but it is evaluated at u = 3, v = 46, and Table 9.3.2 gives power = .66, 
distinctly higher than for two dependent variables. This makes sense intu­
itively: if an additional variable in either set leads to no increase in R2 v.x• it 
simply "dilutes" the power. 

Power would, of course, improve if the psychologist could posit an R2 v,x 
= .25. Then Equation (10.2.2) gives 12 = .1547 and (10.3.1) gives A = 15.0. 
The specifications would now be: 

a= .OS u+6 v = 90 A= 15.0, 

and interpolating in Table 9.3.2 gives power= .81. On the other hand, if the 
population R2v,x should be .10, then 12 = .0541, A = 5.2, and power works 
out to .35. 

See example 10.9 below for the power analysis of individual contrasts, 
and example 10.20 for finding Nasa function of power. 
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10.6 MANOV A is frequently used for a set of kv variables as a prelimi­
nary test to prevent escalation of the experimentwise a error. If significant, 
the investigator then performs an ANOV A on each of the kv variables, much 
in the spirit of Fisher's protected t test (Cliff, 1987, p. 411). 

An advertising researcher plans a study of the differences among users of 
four brands of detergents in ratings of 12 product characteristics, for which 
a total sample of 120 cases is available. She plans first to do a MAN OVA at a 
= .05 on the kv = 12 variables in the interest of experimentwise Type I error 
control. She posits that, in the population, R2 v,x = .15 of the multi variance 
of the set of characteristics will be accounted for by the K - 1 = kx = 3 vari­
ables needed to code brand membership for the four groups. For kv = 12, kx 
= 3, we find from Table 10.2.1 that s = 2.95 (remember that sis symmetric 
in kv and kx), and Equation (10.2.2) gives f2 = .0566. From Equations 
(10.1.6-8), u = 36, m = 111, so v = 310. We find from Equation (10.3.1) 
that>. = .0566 (36 + 310 + 1) = 19.6. The specification summary is: 

a= .05 u = 36 v=310 A= 19.6. 

Entering Table 9.3.2 (for a = .05), we must interpolate using Equation 
(9.3.2) not only for A between 18 and 20 and v between 120 and oo, but then, 
between those results, inversely for u between 30 and 40. The result is power 
=.58. 

This is not very good. If she proceeds on this basis, unless R2v,x is actu­
ally greater than .15 or she is lucky, she may well not get the significant 
MANOV A result she needs to prudently test for brand group differences in 
the individual characteristics. She realizes, however, that there is likely to be 
a considerable amount of redundancy in the ratings of the 12 characteristics. 
Redundancy among dependent variables in multivariate analysis is as delete­
rious to power as is redundancy among independent variables in MRC. 
(Remember the special-case nature of the latter and the symmetry of SC.) 
Accordingly, she expects that a factor-analytic reduction to three or four 
common factors might well exhaust the reliable information in the 12 scales. 
She assumes that she can generate three factor scores from the data and per­
form the analysis on the basis of these summary scores rather than the 12 
scales. What would the power of the MANOV A on the three summary 
scores be? 

She posits R2v,x = .15, N = 120, and kx = 3 as before, but now kv = 3 
(instead of 12). Table 10.2.1 gives s = 2.43 (instead of 2.95), and Equation 
(10.2.2) gives f2 = .0692, some 220/o larger than the .0566 found before, u = 
9 (instead of 36), and v = 280. A = .0692 (9 + 280 + I) = 20.1. The new 
specifications are: 

a= .05 u=9 v = 280 A = 20.1. 
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Table 9.3.2 is now entered for u = 9 (instead of 36), and power is now found 
to be .89, a far and happy cry from the .58 of the previous specifications. 
Let's hold the other specifications (R2v,x = .15, N = 120, and kx = 3) con­
stant, and see how power varies as a function of kv: 

ky 1 2 3 4 5 
Power .98 .94 .89 .84 .81 

6 
.77 

8 10 12 
.70 .64 .58 

16 
.50 

Although the rate at which power declines as kv (or kx) increases will vary as 
a function of the values chosen for the other parameters, the rate we see here 
is fairly representative of what occurs in practice. 

Now assuming that her MANOV A will prove significant, what is the 
power for the tests of brand group differences on the three individual sum­
mary scores? First, note that these tests are now univariate anovas, or, 
equivalently, MRC analyses. Given the generality of SC, however, we can 
continue the power analysis of this special case exactly as we performed the 
other. She can not, of course, assume that she can expect to account for .15 
of the variance of individual scores. Let's say she now posits R2 v,x = multi­
ple R2 = .05. Since kv = 1, s = 1, f2 = .05/(1 - .05) = .0526, u = 3, and v 
= (120 -3 - 1 = ) 116. Therefore,>. = .0526 (3 + 116 + 1) = 6.3. Sum­
marizing, 

a= .05 u=3 v = 116 ). = 6.3. 

From Table 9.3.2, power works out to .52. This phase of the study is obvi­
ously underpowered. She will need either to increase her N or hope that the 
population R2 v,x for the individual summary scores is substantially larger 
than .05. (See the denouement in example 10.21.) 

10.3.2.1 2-GROUP MANOVA. Hotelling (1931) offered the T2 test as a 
multivariate generalization of the Student t test, i.e., a test of the hypothesis 
that two groups have equal means on all the kv variables in theY set. When T2 

is determined from a sample, multiplication by (v - 2)/v, where v = N -2, 
produces F for I and v degrees of freedom. This obviously parallels the 
univariate t2 = F relationship. Thus, we do not need tables for the T2 distri­
bution because we can treat it as a special case of the F distribution, just as 
we strictly do not need tables for the t distribution. 

It is nevertheless instructive to pursue the 2-group case. Mahalanobis' 
(1936) generalized distance, 02 , is a generalization of d2 , where dis the stan­
dardized difference between population means that was employed as the ef­
fect size measure in Chapter 2 (2.2.1) (Flury & Riedwyl, 1986). If we square 
both sides of the Chapter 2 Equation (2.2. 7) that relates the product moment 
r to d, we obtain 
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(10.3.2) 

where pis the proportion of the combined populations in either of the popu­
lations (see Section 2.2.2). 

In the 2-group case of MANOV A, the special case of R2 v,x where kx = K 
- l = 1, R2 v,x becomes the multiple R2x-v between the single group member­
ship variable x, which we can score 0, 1, and theY set of kv variables. (It may 
seem strange to have set Y as "independent" variables and a single x variable 
the "dependent" variable, but recall the symmetry of the X andY sets in SC.) 
It can be demonstrated that (10.3.2) generalizes to 

(10.3.3) R2 - 02 
x-Y - 0 2 + [1/p (1 _ p)] · 

Thus, if the investigator can posit the effect size as a Mahalanobis 02, he can 
readily translate it into proportion of variance terms. Alternatively, if he is 
prepared to posit the ES in proportion of variance terms, he can assess the 02 

which is implied. Also, because one-way MANOV As are 
R2-complementary, he can transform freely among R2, 02, and A. Note also 
that for this case, f2 = R2 /(1 - R2). 

Finally, the significance test for a 2-group discriminant analysis is the 
same as for a 2-group MANOV A, therefore the power analysis is the same. 
The discriminant analysis is performed to determine the weights for the lin­
ear combination of the variables in the Y set that maximally discriminates 
between the two groups. The computer programs for SC (Cohen & Nee, 
1983; Eber & Cohen, 1987) provide these weights: they are the standardized 
regression coefficients of the multiple R2 x-v· 

Illustrative Example 

10.7 A neuropsychologist plans a study of the difference between pa­
tients with Alzheimer disease and normal controls of similar age on six vari­
ables derived from CAT scan measurements. He has available records for 50 
patients and 40 controls, and will use the a = .05 significance criterion. For 
his ES estimate, in addition to the methods for setting f2 described in Section 
10.2.3, he may posit Mahalanobis' 02 and (for p = 50/90) find R2 v,x ( = 
R2x-Y) from Equation (10.3.3); because the R2 v,x here is a multiple R2, s = 
1, and f2 = R2 v,x/(1 - R2 v,x). 

As already noted, it generally would be salutary to use more than one of 
the above approaches, checking one against another, to zero in on an f2 that 
he finds compelling. 
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Assume he ends up positing R2v.x = .125, so 12 = .125/(1 - .125) = 
.1429. u = 6, v = (90 -6 -1 =) 83, and therefore X = .1429 ( 6 + 83 + 1) 
= 12.9. The summary: 

a= .05 u=6 v = 83 }. = 12.9. 

Interpolating with (9.3.1) in Table 9.3.2 in block u = 6 for v = 83 and}. = 
12.9 gives power = .73. Not too bad. 

The follow-up tests on the individual CAT scan measures may be accom­
plished by ordinary 2-sample t tests, and their power analysis may be accom­
plished by the methods of Chapter 2. Continuing, however, in our general 
SC framework, he posits an R2 v x (in this special case actually an r2 pb) of .05, 

2 • 
thus an f = .05/(1 - .05) = .0526. u = 1, v = 90 -2 = 88, and}. = .0526 
(1 + 88 + 1) = 4. 7. The specifications for an individual summary score's 
test are: 

a= .05 u = 1 v = 88 }. = 4.7, 

and Table 9.3.2 gives an interpolated value for power = .57. That's not very 
good. 

However, he selected the R2 v,x = .05 value out of the blue. Let's treat 
this as an ordinary t test and use the methods of Chapter 2 to fix on an ES. In 
terms of d, if we posit a medium ES of d = .5 and apply (10.3.2), with p = 
.556, then 

r-2= 
.52 + (1/(.556) (.444)) 

= .0581, 

so the R2 v.x = .05 value we chose was somewhat smaller than what Chapter 
2 defines as a medium difference between means. If we recalculate power for 
R2v,x = .0581, f2 = .05811(1 - .0581) = .0617,}. = .0617(1 + 88 + 1) = 
5.6, and power is found from Table 9.4.1 to be .64. If you go back to Chap­
ter 2 and use the unequal sample procedure of Section 2.3.2 (Case 1), ford 
= .5 and n' = 44.4, you also get power = .64-the results agree as they 
should, barring rounding error. (See example 10.22 for finding N's necessary 
for power = .80.) 

If the neuropsychologist plans a discriminant analysis, no separate 
power analysis is necessary because he has already determined the power of 
the overall test of the groups' mean differences on the six variables for the 
relevant specifications(. 73). With the sample data in hand, assuming that a 
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significant R2v,x has been achieved in an SC (or MRC) analysis, the regres­
sion coefficients of the six variables on the Alzheimer-control (0, 1) variable 
may be used as (standardized) weights that will maximize the difference be­
tween groups. 

10.3.3 THE ANALYSIS OF PARTIAL VARIANCE AND THE ANALYSIS OF 
COVARIANCE. In SC, partial association is defined as the R2 v,x between 
D·A and B·A, that is, between sets D and B, from both of which a set A has 
been partialled. It is thus a generalization to sets of variables of the familiar 
bivariate partial r, and of the multiple partial R2 of MRC. In its general 
form, it is the multivariate generalization of "the analysis of partial vari­
ance"-APV (Cohen & Cohen, 1983, Chapter 10 and pp. 512-515). 

There are two consequences of partialling set A. The first is the removal 
from set D of what would otherwise be error variance, thus generally increas­
ing the power of the test. It is used for this purpose in experiments in which 
there is random assignment and thus no expected correlation between sets A 
and B. The second is that partialling set A from sets D and B assures that all 
the variables in the partialled sets D and B correlate zero with all the vari­
ables in the set A. This being the case, none of the variance shared by D·A 
and B·A can be a consequence of variability in the variables in set A. In a 
causal framework, to the extent to which A causes D and B, the degree of as­
sociation observed between D·A and B·A can not be due to the causal effect 
of the variables in set A. This is the sense in which one "statistically controls" 
set A in the association between sets D and B. For example, a strong correla­
tion found between weight and interest in the opposite sex in elementary 
school boys does not warrant the conclusion, "fat boys are lovers." If one 
were to partial age and height from the two variables, their partial (residual, 
net) correlation would likely approximate zero. 

In SC's APV, there is no constraint on the nature of sets B, 0, and A­
they may be nominal scales, linear or nonlinear (e.g., polynomial) functions 
of quantitative variables or combinations thereof, in short, they may con­
tain information in any form so one can partial anything from anything. 
From the perspective of the generality of SC, the multivariate analysis of 
covariance (MANCO VA) is that special case of partial association in which 
sets D and A are quantitative and set B is a nominal scale describing group 
membership. (See Sections 10.3.3.1 and 10.3.6.) 

There is, however, in APV as in the analysis of covariance, the presump­
tion that the relationship between sets A and D be the same for all sets of val­
ues for B, that is, that the relationship between sets A and D not be condi­
tional on the values of set B. More formally, it is that the regressions of the 
variables in Don the set A variables be the same for all combinations of set B 
values. This is a generalization of the "homogeneity of regression" or "paral-
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lelism of slopes" assumption of the analysis of covariance that is tested by 
assessing the interaction of groups by covariates (Cohen & Cohen, 1983). In 
SC, this is generalized by assessing the set B by set A interaction. 

Illustrative Example 

10.8 A psychologist plans an investigation of the relationship between 
ability and memory, for which he has kv = 3 memory measures, kx = 2 abil­
ity measures, and a sample of N = 100 cases; his a is to be .01. Since both 
age and education are likely to account for variance in these measures, he 
plans to partial them out of both sets. Further, because both age and educa­
tion may well be nonlinearly related, he plans to make provision for this pos­
sibility by also including their squares (or, preferably the squares of their de­
viations from their respective means-see Centering, Cohen & Cohen, 1983, 
pp. 237-238). Thus, the set A that is to be partialled will contain (kA =) 4 
variables. He posits that the population R2 v,x between sets D·A and B·A is 
.25. 

For kv = 3, kx = 2, from Table 10.2.1, s = 2. Then, from (10.2. 7), LP = 
1-.25 = .75,andfrom(10.2.2),f2 = .75- 112 -1 = .1547.From(l0.1.6), 
u = 2 (3) = 6, from (10.1.8) m = 100 - 4 - (2 + 3 + 3)/2 = 92, so from 
(1 0.1. 7) v = 92 (2) + I - 6/3 = 182. With the necessary ingredients at hand, 
he can find from (10.3.1) A = .1547 (6 + 182 + I) = 29.2, so the specifica­
tions for the determination of power are: 

a= .01 u=6 v = 182 A= 29.2. 

Interpolating with (9.3.2) in Table 9.3.1 (for a = .01) gives power = .93, a 
most reassuring value. 

However, if the relationship between the memory measures and the abil­
ity measures are different for different sets of values of age and education, 
that is, if there is evidence for an age/ ed x ability interaction, then the homo­
geneity of regression assumption fails, and the results of the analysis are am­
biguous. He therefore needs to assess the power of the test of this interaction. 

It is now necessary that he redefine the meaning of sets B and A. When 
the time comes to analyze his data he will construct a product set made up of 
the 8 variables that result when each of the 4 age/ed variables is multiplied 
by each of the 2 ability measures, so k8 = kx = 8. The interaction is this 
product set from which the age/ed and ability sets are partialled, so the total 
number of variables to be partialled, kA = 4 + 2 = 6. He wishes to be able 
to detect a partial R2 v,x for this interaction if it is as large as .10, and to im­
prove his power to detect such a hypothesized interaction, will use the a = 
.05 criterion. 
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Forkv = 3andkx = 8,s = 2.90andu = 3(8) = 24.3 WithN = 100and 
kA = 6,m = 100-6 -(3 + 8 + 3)12 = 87,sov = 87(2.90) + 1 + 24/2 = 
241. Then, f2 = (1 - .10)2·90 - 1 = .0370, and A = .0370 (24 + 24 + 1) = 
9.8, so the specifications are: 

a= .05 u = 24 v = 241 A= 9.8. 

The interpolated power value from Table 9.3.2 (for a = .05) is a poor .34. 
We see here the debilitating effect of large u on power. Scanning the power 
values for the block u = 24 reveals that it takes large A values to reach ade­
quate power levels. 

There are follow-up tests that will be of interest, for example, the rela­
tionship of unique aspects of the ability measures to the set of memory meas­
ures. The "unique" aspect of a variable in a set is that variable from which all 
the other variables in the set have been partialled. This partialling effects an 
orthogonalization of the variables, that is, whatever variance each shares 
with the others is removed, hence the term "unique." Here, where there are 
two ability measures, these would be ability 1•ability 2 and ability 2•ability 
1. For ability l•ability 2, for example, note that, in addition to the age/ed 
set, one other variable (ability 2) is being partialled from both sides, so set A 
contains kA = 4 + 1 = 5 variables. Set 8 is the single variable, ability 1, so 
kx = k8 = 1, and kv = k0 remains 3. TheY set is the three memory measures 
from which are partialled the age/ed variables and ability 2 and the X set is 
ability 1 partialling the same variables. Assume that he posits a partial R2 v,x 
= .15 for each of these unique ability variables. What is the power of these 
tests? 

u = 3 (1) = 3, m = 100 -5 - (3 + 1 + 3)/2 = 91.5, so v = 91.5 (1) + 1 
- 3/2 = 91. Since one of the sets (X) has only one variable, s = 1, so f2 = 
.15/(1 - .15) = .1765, and A= .1765 (3 + 91 + 1) = 16.8. Summarizing, 

a= .01 u=3 v = 91 A= 16.8. 

The interpolated power value from Table 9.3.1 is .81. 
Two other types of follow-up tests would likely be pursued. One is the 

test of each of the three unique memory variables (e.g., memory 2 partialling 
memory 1 and memory 3) against the ability measures set, partialling in ad­
dition the age/ed variables as before. If the partial R2 v,x = .12 is posited, 
power at a = .01 works out to .73, and at a = .05 power is .89. The other 
test is between the unique aspect of a memory measure and the unique aspect 
of an ability score (e.g., memory 2 partialling memory 1 and memory 3 with 

31 abandon the repetitive references to the standard equations for the ingredients of the 
power analysis, but continue to show the substitutions of the parameters. 
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ability 1 partialling ability 2), again also partialling the age/ed variables. 
(Note that this is a simple bivariate partial r with a total of 7 variables being 
partialled.) If the partial R2v,x is posited to be .10, power at .01 is .72 and at 
.05, .89. Readers may wish to see if they can arrive at these power values as 
an exercise. 

Except for the poor power for testing the homogeneity of covariance as­
sumption (i.e., the interaction), a chronic problem in both univariate and 
multivariate analysis of covariance, the planned tests show good to excellent 
power even at the a = .Ollevel. The psychologist will need to decide whether 
to increase his sample size to improve the power of the interaction test (see 
example 10.23), or to risk the assumption that the interaction effect is non­
existent or small and proceed with the research, as planned. 

10.3.3.1 K-GROUP MANCOV A. The multivariate analysis of covariance 
(MANCOVA), as has already been noted, is that special case of the 
multivariate APV wherein set B represents group membership in one or 
more nominal scales·. From another perspective, it is a MANOV A to which 
there is added a set of covariates that is partialled from both the D and B sets. 
It has already been noted that covariates serve two important functions in 
data analysis: they reduce error variance (and thus increase power), and they 
"control" ("adjust for," "hold constant statistically") sources of variance 
that the analyst means to exclude from the analysis (Cohen & Cohen, 1982, 
Chapter 10). 

From the perspective of SC, MANOV A calls upon the partial type of as­
sociation, that is R2 D·A,B·A• where A is the covariate set. For simple K-group 
(one-way) MANCOVA, Model 1 error is used (as it has been throughout to 
this point). 

Illustrative Example 

10.9 Let us return to the experimental psychologist in example 10.5 
who plans a learning experiment involving three experimental and one con­
trol group (with a total N = 50) and a D set made up of a time and an error 
score, with R2 0 ,8 = .15. These specifications led to unsatisfactory power= 
.51 (at a = .05). Assume now that there is available a set of 2 verbal ability 
measures that relate to learning ability for this task. To the extent to which 
they do so there will be variance in the D set that is irrelevant to the issue of 
differences among the groups. If he treats these measures as a covariate set A 
and partials them from both D and B, his experiment is no longer about time 
and error scores, but rather about time and error scores from which ability 
variance has been removed. He can similarly conceptualize the groups as 
having had that ability variance removed; that is, the groups are "equated" 
for verbal ability: B·A. Whereas originally he estimated R2 0 ,8 = .15, he has 
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every reason to believe that with the variance in verbal ability removed, sub­
stantially more than .15 of the remaining variance in time and error scores 
can be accounted for. He may directly estimate a value for R2M0 .A,B·A• or he 
may find it by positing population values for R2o,A and R2o,A+a·4 As given 
in Cohen (1982, p. 308, Equation 7), 

(10.3.4) 
R2 - R2 R2 - D.A+B D.A 

D·A,B·A - 1 R2 
- D,A 

Thus,ifhepositsthatR2o,A+B = .50andR2o,A = .35,thenR20 .A,B·A = .23. 
From (10.2.7), LP = 1 -.23 = .77. Since kv = 2 and kx = 3, s = 2 and u = 
2(3) = 6 (all as before), but f2 now equals .1396. Since the covariate set has 2 
variables, kA = 2, so m = 50 - 2 - (2 + 3 + 3)/2 = 44 and v = 44 (2) + 1 
-6/2 = 86. Finally, A = .1396 (6 + 86 + 1) = 13.0. The new specifications 
are: 

a= .05 u=6 v = 86 A= 13.0 

Interpolating in Table 9.3.2, we find power = .74, far better than the .51 
that was obtained in the absence of the covariate set. Note, however, that in 
increasing the proportion of variance some 500Jo (from .15 to .23), he is as­
suming a strong covariate set, that is, R2 o,A = . 3 5. 

Given that the dummy coding employed for treatments has the effect 
that each of the three variables in set B, when partialled by the other two, 
carries an experimental-control contrast, he can readily assess the power of 
these tests. Each of these is also of the partial type of association, but the 
covariate set now includes, in addition to the two ability measures, the other 
two dummy variables (Cohen & Cohen, 1983, Chapter 5). For example, 
x1•x2 + x3 represents the experimental Group 1 vs. Control Group contrast. 
Combining these with the verbal ability covariates (v 1, v2) results in the com­
plete covariate set A for this contrast being v1 +v2+x2+x3 (so kA = 4), and 
set B is made up of the single variable x1 (so kx = k8 = 1). kv = k0 = 2, as 
before. Since the smaller set has only one variable, s = 1. Assume that he 
positsR20 .A,B·A = .15.Sinces = l,f2 = .15/(1 -.15) = .1765. Thenumer­
ator df, u = kv kx = 2, and given that m =50 -4 -(2 + 1 + 3)/2 = 43, 
thedenominatordf, v= 43 (1) + 1 -2(1)/2 = 43. Then, A= 1.765 (2 + 43 
+ 1) = 8.1, and he has the specification summary: 

a= .05 u=2 v = 43 A= 8.1. 

"The"+" sign between variables or sets signifies their combination. Thus, x1•x2 +x3 is x1 

from which x2 and x3 are partialled. 
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Interpolating in Table 9.3.2 with (9.3.2), he finds power for the three indi­
vidual tests of experimental-control contrasts to be .69. He may well con­
sider increasing his sample size. (See example 10.24.) 

10.3.3.2 BIPARTIAL ANALYSIS. The logic of some investigations that re­
late two or more partialled sets requires that the partialling sets not be the 
same, thus R2v,x is R20 .c,B·A• where sets C and A are not (exactly) the same. 
This occurs for the obvious reason that what needs to be controlled in one set 
is not the same as what needs to be controlled in the other. For example, 
when working with a battery of cognitive ability scores B that are not 
age-standardized, the use of the partialled set B·A, where A is an age set, 
would be desirable, but whether the set to which it is to be related should also 
be partialled by A depends on the nature of the investigation and the hypoth­
esis to be tested. 

The reader may recall that 12 for the bipartial is not R2-complimentary 
(Section 10.2.3). It is best set by positing the population matrix and using the 
SC computer program to obtain the output from which 12 is computed using 
Equation (10.2.5). Otherwise, the analyst has the option of using the con­
ventional definitions of Section 10.2.2 or of directly positing 12, .guided by 
experience. 

Illustrative Example 

10.10 A medical research team mounts an experiment on the effect of 
nutritional supplementation during pregnancy on newborn somatic and be­
havioral characteristics with a plan to use a sample of 300 patients of a clinic 
in an urban ghetto. The women are to be randomly assigned to two treat­
ment groups and a control groups (TRT, to be dummy coded; kTRT = 2), 
and the babies assessed at birth for weight, length, and head circumference 
(SOM; ksoM = 3) and also, within 48-96 hours after birth, for scores on 
four factors derived from a behavioral examination (BEH; ksEH = 4). In or­
der to adjust for (and reduce irrelevant variance in) differences among 
mothers in regard to such variables as prepregnant weight, parity, number 
of past low birth weight infants, etc., a set of maternal attribute variables will 
be employed as covariates (COV; kcov = 5). In addition, the infant's sex is 
to be partialled from SOM and BEH to control for possible sex differences 
in those variables, and the infant's age in hours at the time of the behavioral 
examination is to be partialled from the BEH scores in order to control for 
the rapid changes in behavior that occur during that period. 

In summary, the research factors to be studied are TRT·COV, 
SOM•COV +Sex, and BEH•COV +Sex+Age at Exam. The primary aim 
of the research is to test for treatment effects on the somatic and behavioral 
variables, but the team is also interested in the effect of the somatic set on 
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the behavioral variables. Since none of the sets to be partialled are the same, 
the form of association here is of the bipartial type, that is, D·C with B·A. 
All tests are to be performed using the a = .01 significance criterion. 

For the treatment effects on the somatic variables, D = SOM, C = 
COV +Sex, B = TRT, and A= COV. Thus, kv = k0 = 3, kx = k8 = 2, 
and for the partialling sets, kc = 6 and kA = 5. Therefore, s = 2, u = 3 (2) 
= 6, and given that m = 300 - 6 - (3 + 2 + 3)/2 = 290, v = 290 (2) + 1 
-6/2 = 578. Either by positing the population correlation matrix or di­
rectly they set 12 = .04. Therefore, A = .04 (6 + 578 + 1) = 23.4. The spec­
ifications are thus: 

a= .01 u=6 v = 578 A= 23.4, 

and interpolating in Table 9.3.1, power is found to be .89. 
On the assumption that this test will prove to be significant, they wish to 

determine the power of a follow-up test. If the two dummy variables ofTRT 
are designated t 1 and t2 , then t 1 • t2 and t2 • t 1 carry, respectively, the Treat­
ment 1 vs. Control and Treatment 2 vs. Control contrasts. The sets for the 
bipartial for the Treatment 1 contrast remain as before for D and C, but B is 
now t 1 and A is now t2 + COV. (For the Treatment 2 contrast, t 1 and t2 are 
simply reversed.) Therefore, kv remains 3, but kx = 1; kc remains 6, but kA 
is now also 6. With only one variable in B, s = 1. For the df, u = 3 (1) = 3, 
and given that m = 300 -6 - (3 + 1 + 3)/2 = 290.5, v = 290.5 + 1 -3/2 
= 290. The team posits f2 = .04 for these two tests, so their A = .04 (3 + 290 
+ 1) = 11.8. Their power specifications are: 

a= .01 u = 3 v = 290 }\=11.8, 

and Table 9.3.1 gives power = .63 for a = .01. At a = .OS, Table 9.3.2 gives 
power= .83. 

Further follow-up tests may be employed to assess the two treatment vs. 
control contrasts on the individual SOM variables or on unique aspects of 
the SOM variables (designated p1, p2, p3), e.g., p1 •p2 +p3 • An example of 
one of the latter six tests is the treatment 1 vs. control contrast (adjusted by 
COV) of unique p1 (adjusted by COV and Sex): the bipartial between 
t2 •t2 +C0Vand p1•p2 +p3 +COV +Sex. Sets Band A remain as before, but 
set Dis now p1, and set Cis now p2 + p3 + COV +Sex. Thus, kv = k0 = 1, kx 
= k8 = 1, kc = 8, and kA = 6. Note that this is a bivariate relationship, so s 
= u = 1. m = 300 - 8 - (1 + 1 + 3)/2 = 289.5, so v = 289.5 (1) + 1 -1/2 
= 290. They posit f2 = .03, so A = .03 (1 + 290 + 1) = 8.8. The specifica­
tion summary is: 

a= .01 u =I v = 290 A= 8.8, 
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and Table 9.3.1 gives power = .64. Checking Table 9.3.2 for a = .05 gives 
power= .84. 

For the treatment effects on the set of behavioral variables, set B = TRT 
and set A = COV as before (so kx = k8 = 2 and kA = 5), and set D = BEH 
and set C = COV + Sex + Age, so kv = k0 = 4 and kc = 7. s is again 2, u 
= 4 (2) = 8, m = 300 -7 -(4 + 2 + 3)/2= 288.5, so v = 2 (288.5) + 1 
-812 = 574. f2 is posited as .03, so A = .03 (8 + 574 + 1) = 17.5. Summa­
rizing, 

a= .01 U=8 v = 574 A= 17.5, 

and Table 9.3.1 gives power = .70. At a = .05, power = .86. 
I omit detailing the power analysis of the treatment contrasts for the 

BEH set and the unique aspects of its variables because it is identical in form 
to that for the SOM set described above. 

The research team will also assess the association between the two sets of 
outcome variables. SOM•COV +Sex with BEH•COV +Sex+Age. Now kx 
= 3, kv = 4, kA = 6, and kc = 7. From Table 10.2.1, s = 2.65. Forthedf, u 
= 4(3) = 12,andm = 300-7 -(4 + 3 + 3)/2 = 288,sov = 288(2.65) + 
1 - 12/2 = 758. They posit an f2 = .05, so A = .05 (12 + 758 + 1) = 38.6. 
Summarizing, 

a= .01 u = 12 v = 758 >.. = 38.6, 

and Table 9.3.1 gives power = .98. 
The pursuit of the setwise relationship between SOM and BEH down to 

unique aspects of each, e.g., of p2 •p2 +p3 with b1•b2 +b3 +b4 , is left to the 
reader as an exercise. If f2 = .03, power at a = .01 works out to .64. 

It is worth noting that when this study was actually done, the sample size 
was 650 (Cohen, 1982, pp. 326-329; Rush, Stein, & Susser, 1980). (See ex­
ample 10.25.) 

10.3.4 HIERARCHICAL ANALYSIS. Research designs frequently em­
ploy more than one research factor operating on the dependent variable set. 
Each research factor is represented as a set of one or more variables, and the 
research factor becomes the unit of analysis. A familiar example of such de­
signs is the balanced (orthogonal) factorial design of the analysis of variance 
(univariate or multivariate), but this is a rather special case (see Sections 
10.3.2, 10.3.5, and 10.3.6). More generally, the research factors may be cor­
related with each other, with or without a compelling theory as to how this 
correlation comes about, and they may be quantitative or qualitative, or 
some of each. Depending on the nature of a given research factor U, the in-
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vestigator may be interested in its relationship to Y ignoring the other re­
search factors or with one or more of them partialled out. 

In hierarchical analysis, the research factors are ordered in a hierarchy at 
each stage of which the previously entered factors are partialled from the 
analysis. Thus, if the factors are ordered U, V, W, they are analyzed as these­
ries of X sets: U, V•U, and W•U + V. It should be apparent that a hierar­
chical analysis is a series of APVs, in which each research factor is assessed 
in order and is then partialled from its successors in the hierarchy. 

An important use of the hierarchical procedure occurs when an investi­
gator posits an order of causal priority among research factors. The above 
ordering assumes that U's effect on the dependent variables may be assessed 
ignoring V and W, because neither V nor W can cause (i.e., produce variation 
in) U. Generally, it is assumed that no later set can be a cause of an earlier 
set, although an earlier set need not be a cause of any later set. The effect of 
the partialling is to assure that variance in the dependent variables shared by 
research factors is systematically attributed to the set assumed to have causal 
priority. 

Another application of hierarchical analysis occurs in exploratory stud­
ies where the investigator can assign, a priori, substantially different magni­
tudes of effects to the multiple research factors available for study, which 
are usually related to each other. Thus, the above ordering may reflect a 
study that is mostly about set U's effects on set Y, with set V distinctly more 
weakly related and set W more weakly related still. This strategy tends to 
maximize power for the research factor of primary interest while highlight­
ing unique effects of other research factors when they are present. 

Illustrative Examples 

10.11 A psychiatric research team plans a records study of length of 
stay and level of functioning (kv = 2) using 400 ( = N) randomly selected 
psychiatric admissions to eight hospitals in a state system. The three research 
factors to be studied are: 

I. Set U, the patients' demographic characteristics (e.g., age, sex, socio­
economic status, ethnicity); ku = 9. 

2. Set V, scores on the nine scales of the Minnesota Multiphasic Person­
ality Inventory (MMPI) given shortly after admission plus a missing data di­
chotomy; kv = 10. 

3. Set W, an effects-coded nominal (qualitative) scale that identifies 
from which of the eight hospitals the patient was admitted; kw = 7. 

The research factors are ordered in presumed causal priority. Thus, it is a 
safe bet that neither MMPI nor hospital can produce variation in demo­
graphic characteristics and that hospital cannot cause admission MMPI. 
Power analysis is to be applied first to U, then to V • U, and finally to W • U + V. 
The .01 significance criterion is to be used throughout. 
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The team posits that the research factor U accounts for .10 of the vari­
ance of the (kv =) 2 dependent variables, so the whole association R2 o,a = 
.10. kx = 9 and s = 2. Since Lw = 1 - R20 ,8 = .90, t2 = .90- 112 -1 = 
.0541. u = 2 (9) = 18, m = 400 - (2 + 9 + 3)/2 = 393, so v = 393 (2) + 1 
- 18/2 = 778. The noncentrality parameter, A= .0541 (18 + 778 + 1) = 
43.1. The complete specifications are: 

a= .01 u = 18 v = 778 A= 43.1 

Reference to Table 9.3.1 reveals that the A value is beyond the table's limit 
and for u = 18, power exceeds .96. 

Next in the hierarchy is the MMPI set, V. With set U partialled from both 
the dependent variable set and V, they posit that the proportion of variance 
accounted for is .05; this is the partial type of association, R2 D·A.B·A• where 
D is the dependent variable set, B is the research factor V, and A is the re­
search factor U that is to be partialled. kx = 10, kv remains 2, and kA = 9. s 
= 2, and from (10.2.7), Lp = 1 - R20 .A,B·A = .95, so f2 = .95- 112 - 1 = 
.0260. u = 2 (10) = 20, m = 400 -9 -(2 + 10 + 3)/2 = 383.5, so v = 
383.5 (2) + 1 + 20/2 = 758. Finally, A= .0260(20 + 758 + 1) = 20.3. The 
specification summary is: 

a= .01 u = 20 v = 758 A= 20.3, 

and interpolation in Table 9.3.1 yields power = .55. 
The last research factor in the hierarchy is hospital membership, W. The 

research team posits that it accounts for .075 ofthe variance in the set oftwo 
dependent variables, after both U and V have been partialled. Thus again the 
form of association is partial, but now set A is made up of research factors U 
and V. Since s remains 2, f2 = (1 - .075)- 112 - 1 = .0398. kv remains 2, kx 
= 7, and kA = 9 + 10 = 19. For the df, u = 2 (7) = 14, and given that m = 
400 -19 - (2 + 7 + 3)/2 = 375, v = 375 (2) + 1 - 14/2 = 744. A = .0398 
(14 + 744 + 1) = 30.2, so the specification summary is: 

a= .01 u = 14 v = 744 A= 30.2, 

and Table 9.3.1 yields the interpolated power value of .89. 
See example 10.26 for another perspective on this problem. 
It is worth noting that the last analysis is in fact a "K-group MANCOV A" 

(see Section 10.3.3.1) on hospitals, with the covariate set comprised of re­
search factors U and V. That is, it may be viewed as an assessment of hospital 
differences in the length of stay/level of functioning set, statistically control­
ling for the demographic characteristics and admission MMPI of the pa­
tients. If, instead of representing group membership, theW research factor 
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were a set of seven quantitative variables, say symptom rating scale scores on 
admission, the last analysis would more generally have been an APV, but 
would have been carried out identically, and with identical results. 

10.12 A developmental psychologist is studying the persistence of per­
sonality traits using a data base for 120 ( = N) subjects that contains ratings 
on three personality variables obtained at age 10. These three variables were 
rated by the subjects themselves (U), jointly by their parents (V), and by 
their teachers (W). The subjects rated themselves again for these variables 
when they were in their middle twenties, the latter constituting the depen­
dent variable set. She anticipates that the three sets of ratings at age 10 are 
correlated with each other, but believes that the self ratings are much more 
strongly correlated with the young adult ratings than the other sets and par­
ticularly that the latter have less unique predictive ability. Her ordering for 
presumed potency is U, V, W, and she will use the a = .05 significance crite­
rion. 

She hypothesizes that the age 10 self-ratings (U) will account for .15 of 
the adult ratings variance. Since kv = kx = 3, s = 2.43 (from Table 10.2.1). 
This is a whole association R2-complimentary case, so f2 = (I - .15)- 112·43 

- I = .0692. She determines u = 3 (3) = 9 and m = 120 - (3 + 3 + 3)/2 = 
115.5,sov = 115.5(2.43) + 1 -9/2 = 277. Thus,>..= .0692(9 + 277 + 1) 
= 19.9. Her specifications are: 

a= .05 u=9 v = 277 >.. = 19.9. 

Interpolating with (9.3.2) in Table 9.3.2, she finds that the power for this 
test is .89. 

Her next test will be of the parents' ratings, partialling the self-ratings. 
She posits .075 as the partial R2 D·A,B·A• where Dis the dependent variable set 
of adult self-ratings, ~is the parent's ratings (V), and the set to be partialled, 
A, is the set of child's self-ratings (U); kA = 3. This .075 represents the vari­
ance overlap of the parents' ratings and adult self-ratings when the child's 
self-ratings have been partialled from both, and is thus variance that is 
uniquely due to parents' ratings. 

kv = kx = 3, s = 2.43, and u = 9 (all as before). Since partial associa­
tion is R2-complimentary (10.2. 7), f2 = (1 - .075)- 112.43 - 1 = .0326. m = 
120 -3 - (3 + 3 + 3)/2 = 112.5, so v = 112.5 (2.43) + 1 -912 = 270, and 
}.. = .0326 (9 + 270 + 1) = 9.1, resulting in the specifications: 

a= .05 U=9 v = 270 >.. = 9.1. 

The interpolated power value from Table 9.3.2 is .50. (See example 10.27 for 
determination of theN necessary for power= .75.) 
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Finally, the partial association for the teacher ratings, R2 D·A,B·A• where D 
is (as throughout) the young adult self-ratings, B is the teacher ratings set 
(W), and A is the combined child self-ratings and parent ratings sets (U + V), 
is hypothesized to be .05. This represents unique (relative to child 
self-ratings and parent ratings) variance in adult self-ratings accounted for 
by teacher ratings 

kv = kx = 3, s = 2.43, and u = 9 (as throughout), but kA is now 3 + 3 
= 6. f2 for the partial is (I - .05)- 112·43 - I = .02I3. m now equals I20 -
6 - (3 + 3 + 3)/2 = I09.5, so v = I09.5 (2.43) + I - 912 = 263. A = 
.0213 (9 + 263 + I) = 5.8, and the specification summary is: 

a= .05 u=9 v = 263 A= 5.8, 

and power is found from Table 9.3.2 to equal .32. 
Thus, good power (.89) characterizes the analysis of the main research 

factor, but power for the tests of the unique relationships of the others is 
poor. For her to find the latter significant when the tests are performed 
would require either that the strength of association be greater than she sup­
poses or that she be lucky (or both). It is important to note that if matters are 
pretty much as she suspects, then an ordering of the three sets in which the 
main factor was not first would produce less power for its test, exactly as 
would be the case if the research factor sets were instead single variables. 

10.13 A political polling organization is planning a large-scale inquiry 
into political attitudes and preferences of the electorate using a probability 
sample of about 900 cases. Their data include the respondents' demographic 
characteristics and their ratings of three prospective presidential candidates 
of the same party. They plan a hierarchical analysis of the following four de­
mographic characteristics, each to be treated as a research factor, in the or­
der given: Age (I variable), Sex (I variable), Race (3 levels, hence 2 vari­
ables), and Education (2 variables, years of education and centered years of 
education squared). 

It is decided that Model 2 error will be used, that is, at each level of the 
hierarchy, the error matrix will be the residual from prediction by all four re­
search factors. The first series will use as the dependent variable set the 3 ( = 
kv) candidate ratings, and, where the research factor is found to be signifi­
cant, a second series of analyses will be performed on the unique candidate 
ratings, that is, each candidate's ratings from which the other two candi­
dates' ratings have been partialled. This should have the effect of removing 
"halo" and result in a measure of candidate preference. The .01 significance 
criterion is to be used. Table 10.3.3 gives the relevant parameters for the 
analyses of the planned tests and provides the resulting power values as ob­
tained from interpolating in Tables 9.3.1. 
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Table10.3.3 
Power Analysis Parameters and Results of Political Polling Study 

(Example 10.13) 

First Series: kv = k0 = 3 
Power at 

X kx kc kA ko s u v f2 ). a= .01 
Age 1 0 0 5 1 3 891 .02 17.9 .86 
Sex·Age 1 0 1 4 1 3 891 .03 26.9 .97 
Race•Age + Sex 2 0 2 2 2 6 1782 .01 17.9 .76 
Ed·Age + Sex + Race 2 0 4 0 2 6 1782 .02 35.8 .99 

Second Series: kv = k0 = 1 

Age 1 2 0 5 1 1 893 .015 13.4 .86 
Sex·Age 1 2 1 4 1 1 893 .015 13.4 .86 
Race•Age + Sex 2 2 2 2 1 2 893 .01 9.0 .55 
Ed·Age + Sex + Race 2 2 4 0 1 2 893 .015 13.4 .77 

Note that this design results in the use of four types of association: whole 
(for Age in the first series), X-semipartial (for the remainder of the first se­
ries), Y-semipartial (for Age in the second series), and bipartial (for there­
mainder of the second series). The type of association and error model is im­
plied by where the zeros occur for kc, kA, and k0 in Table 10.3.3. 

As can be seen in the table, it is expected that the ES values for these re­
search factors will be small, the directly posited f2 values ranging from .01 to 
.03. These are for Model2 error (except for Education, the last factor in the 
hierarchy, where k0 = 0 and 1~1 = lEI) and involve four different types of 
association. 

Note that despite the small effect sizes posited and the .01 significance 
criterion, the power values are generally high (but see example 10.28). This is 
due to the large N in combination with the small set sizes that result in small 
u and s. The second series is, in fact, made up of hierarchical univariate 
MRC analyses, that is, they involve a single (albeit partialled) dependent 
variable. 

10.3.S FACTORIAL DESIGN MANOVA. SC handles factorial design 
MANOV A by the use of Model2 error. Consider a two-factor design for the 
factors (main effects) U and V, and the U x Vinteraction. 

If U and V are orthogonal (balanced) experimentally manipulated condi­
tions, then we will be interested in each unpartialled by (because they are in­
dependent of) the other. If nonorthogonal, to obtain "pure" main effects, 
we will need to assess the effects of U • V and V • U. 

If either U or V (or both) are nonexperimental (e.g., diagnosis, college 
major) they must be entered hierarchically, ordered by assumed causal pri­
ority (see Section 10.3.4). 
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Thus, we may be interested in assessing the variance accounted for by 
any ofthe following sources: U, U•V, V, V•U, and the U x Vinteraction: 

1. The proportion of variance U accounts for in the dependent variable 
set D, thus R2 v,x is R2 o,u• the whole type of association that we treated in the 
K-group MANOV A above. 

2. The proportion of variance that U·Vaccounts for in set D, thus R2v,x 

is R2 o,u.v• an X semi partial type of association. 
3. The same two types for Vand V•U. 
4. The proportion of variance accounted for by the U x V interaction, in 

which case R2v,x is R2o,uv.u+V• where UV is the usual product set (Cohen & 
Cohen, 1983, Chapter 8), and U +Vis the combination of the two sets. 

In the one-way MANOV A whole-association cases illustrated in the pre­
ceding examples we used Modell error. In those cases, the lEI of Equation 
(10.2.1) for Lis simply the complement of the IHI matrix. Thus, scaled as 
correlation, to test for any source of variance (the hypothesis) X, IHI is R2 v,x 
and the lEI for error Model I is 

(10.3.5) 

In factorial designs, we wish to exclude from error, not only the variance 
due to the hypothesis X, but all the other research factors and interactions 
that together comprise the set G. Thus, 

(10.3.6) IE21 = I - R2 Y,X + 0 

or, equivalently, 

(10.3. 7) 

IE2 1 is thus the within-cell or "pure" error variance that is standard in facto­
rial designs. 

For power analysis of any hypothesis in factorial designs (main effects or 
interactions), we specialize the error reduction ratio g of Equation (10.2.10) 
to 

(10.3.8) 

We then determine the Modell Las before, and from it the t21• As noted in 
Section 2, to find the Model 2 t2 we employ 

(10.2.11) 
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For example, in the two factor design, take U as the source of variance X 
whose 122 is to be found. We posit R20 ,u, take its complement as Lw (10.2.6), 
and determine 121 as L - 115 -1 (10.2.2). We then estimate R2o,cens as the 
proportion of between-cells variance, and its complement as l£2 1. Since l£11 
is 1 - R2 o,u• we can find g from (10.3.8) and 122 from (10.2.11). 

When X is U•V, the operation proceeds similarly. Since this is an X 
semi partial type of association, find Lxs from the posited 1 - R2 0 .v,u.v 
(10.2.9), then 121 from (10.2.2). The within cell error l£2 1 remains as before, 
but l£11 is now 1 - R2 o,u.v• so the g ratio differs from before. Dividing 121 by 
g produces 12 2• 

For the UV product set to be the U x Vinteraction, it must have partialled 
from it the U and V sets. Thus, the variance it accounts for is the X 
semipartial R2o,uv.u+v· In a two-factor design, the interaction is analyzed 
using Model 1 error, because there are no further sources of variance that 
can be used to reduce error. 

The above generalizes to multifactor MANOV As. The source of vari­
ance (X) of interest may be an unpartialled main effect or a main effect 
partialled by one or more other main effects. This will determine the type of 
association to employ for R2 v,x and L, and l£11 and l£21 are defined by 
Equations (10.3.5) and (10.3. 7), respectively, and g from Equation (10.3.8). 
The highest order interaction effect (if it is to be power-analyzed) includes all 
the main effects and all the other interactions in its definition, and it alone is 
therefore analyzed with Model 1 error. 

Illustrative Example 

10.14 A psychiatric research team plans a cooperative research study in 
which patients in four mental hospitals are to be assigned randomly to two 
innovative treatment groups and one control group, and assessed following 
treatment. Hospitals (H) comprise a set of (kH = ) 3 effects-coded variables 
and treatments (T) a set of (kT) = 2 dummy coded variables, the control 
group being the reference group. (See Cohen & Cohen, 1983, pp. 335-345 
for the coding details and an MRC analysis of this design.) The dependent 
variable set D is made up of a· mental status rating by an independent psychi­
atric rater and the patient's self rating of symptom status, thus k0 = 2. Al­
lowing for attrition, the research team plans a total N = 120, and they as­
sume that, given the vagaries of clinical research, the cell sample sizes in this 
3 x 4 design will not be equal or proportional, hence the design will be 
nonorthogonal. They intend that the a = .05 significance criterion will be 
used. 

The research team is not much interested in hospital effects as such; they 
are included to serve as a statistical control variable in the assessment of 
treatments, and to assess the possibility that the treatment effects vary over 
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(are conditional on) hospitals; that is, that there is an H x T interaction. 
Thus, for this research, a power analysis of the H main effect need not be un­
dertaken. However, in the interest of completeness, we will have them go 
through a power analysis of H. 

They posit a value of R2 v,x = R2 D,H = .02. For this test, kv = k0 = 2, kx 
= kH = 3 (the number of hospitals less 1), so s = 2 (Table 10.2.1). Since the 
type of association is whole, from (10.2.6) we find that Lw = 1 - .02 = .98, 
and from (10.2.2), f2 = .0102. This is Model 1 t2, and presumes l£11 = 1 
- R2 D,H = .98. They anticipate that R2 v, Cells (based on 11 df for the 12 cells of 
the design) = .22, so from (10.3.7), l£11 = .78, and from (10.3.8), g = 
.78/.98 = .1959. Then from (10.2.11), the desired f22 = .0102/.7959 = 
.0128. (Presumably, in a study in which H was of serious interest, we would 
have a more robust ES for this main effect.) u = 2 (3) = 6, m = 120 - 11 
- (2 + 3 + 3)/2 = 105, so v = 107.5 (2) + 1 - (2) (2)/2 = 214. Finally we 
find). = .0813 (4 + 214 + 1) = 2.8. The specification summary is: 

a= .OS u=6 v = 208 ). = 2.8. 

A glance at Table 9.3.2 at block u = 6 in the vicinity of>.= 2 shows that it is 
hardly worth the trouble to crank up the interpolation Equation (9.3.2) to 
determine power. Nevertheless, dutifully doing so, we find power = .19. 
(The research team reminds me that this test and its power is irrelevant to 
their research purpose. I, in turn, apologize for my pedagogic zeal.) 

Their central interest is in the effect of treatments controlled for what­
ever hospital effects exist, that is, in T • H. The team's collective judgment is 
that the population R2 o,T·H (an X semipartial) is somewhere in the vicinity of 
.12. For this test, k, = 2, kx = kT = 2, so s = 2. To find t2, they need the Lxs 
of (10.2.9), which calls for the partial R20 .H,T·H• which they posit to be .13. 
Note that this is assumed to be only slightly larger than the semipartial, be­
cause they do not expect a large H effect on D. From (10.2.2), they find f2 = 
.0721. This is the Modell f2, and presumes lEI = 1 - R2o,T·H = .88. Be­
cause, as noted above, they anticipate that R2 v,cens = .22, from (10.3. 7) l£21 
= .78, and from (10.3.1), g = .78/.88 = .8864. Then, from (10.2.11), the 
desired f22 = .0721/.8864 = .0813. 

u = 2 (2) = 4, m = 120 - (3 + 6) - (2 + 2 + 3)/2 = 107 .5, so v = 
107.5 (2) + 1 - (2) (2)/2 = .0813 (4 + 214 + 1) = 17.8. The specification 
summary is: 

a= .05 U=3 y = 214 ). = 17.8. 

Entering Table 9.3.2 (for a = .05) and interpolating via (9.3.2) gives power 
= .93. That's splendid! They wonder what power would be at a = .01. From 
Table 9.3.1, for the same parameters, power is .82. Not bad at all. 
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The existence of an H x T interaction would indicate that the treatment 
effects vary across hospitals, a matter of considerable interest and concern, 
because it would mean that conclusions about treatment efficacy would re­
quire qualification. They posit that the proportion of the variance accounted 
for by the interaction, the X semipartial R2 o,HT·H+T = .08, an amount they 
judge large enough to be important. As planned, what is the power of the in­
teraction test? 

To find.f2 requires the partial R2o.H+T,HT·H+T> which they posit to be .09, 
and for s = 2 gives .0483 for the 12 , which employs Model I error, I 
- R2 o,HT·H+T· (Since H, T, and their interaction exhaust the between cells 
variance, set G is empty, so it is Model I error we employ in testing the inter­
action in a two-factor design.) For the df, u = kv kx = k0 kHT = 2 (6) = 12, m 
= 120 - 5 - (2 + 6 + 3)/2 = 109.5, so v = 109.5 (2) + I - (2) (6)/2 = 214. 
Then, A = .0483 (12 + 214 + I) = 11.0, so the summary of the specifica­
tions for the interaction test is: 

a= .05 u = 12 v = 214 A= 11.0. 

Entering Table 9.3.2 and interpolating via (9.3.2) gives power = .53. That's 
rather poor. 

Thus, although there is power to spare for the test of treatments, if the 
interaction accounts for as much as .09 of the variance, it is a fifty-fifty 
proposition that it will be detected. 

If it is important to detect an interaction of that magnitude using this de­
sign, there is no avoiding increasing N. Let's check out the effect of increas­
ing N by 500Jo (to 180). Increasing N by 60 increases v by 2 (60) to 334. A is 
now.0483(12 + 334 + 1) = 16.9,whichyieldspower = .77,whichmaybe 
found satisfactory by the research team. We return to this question after we 
have considered the rest of the power analysis. (Also, see example 10.29.) 

A useful feature of SC (although not of MANOV A) is its ability to focus 
on unique aspects of a variable by partialling from it the other variables in its 
set, as we have already seen. The two dependent variables here, psychiatrist­
and self-rating, d1 and d2 , are likely to be correlated to some degree, yet the 
team is interested in that which is unique to each relative to the other. This is 
defined as each partialled by the other, d1 •d2 and d2 •d1 . They are interested 
in a power analysis of the a proportion of variance accounted for by T • H in 
each of these unique dependent variables, which they posit to be .05. While 
this is a bipartial type of association, note that kv = I, hence this can be 
treated (approximately) as a semipartial multiple R2 with a partialled depen­
dent variable, and from (9.2.2), 12 1 = .05/.95 = .0526, which presumes 1£.1 
= .95. Since l£21 = I - R2v,cens = .78, we find from (10.2.10) g = .78/.95 
= .8211, and from (10.2.11) 122 = .0526/.8211 = .0641. 
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Since kv = 1 and kx = kT = 2, for the df, u = 1 (2) = 2, m = 120 - (3 + 
6) - (1 + 2 + 3)/2 = 108, so v = 108 (1) + 1 -2/2 = 108. From (10.3.1), 
A = .0641 (2 + 108 + 1) = 7 .1. The specifications for these two tests of the 
unique components are: 

a= .05 U=2 v = 108 A= 7.1 

From the power Table 9.3.2, interpolating in u = 2 for A = 7.1 and v = 108 
with Equation (9.3.2), we find power = .65. One wishes it were higher. 

Finally, because of the coding employed for T, the unique aspects of 
those two variables, t1 •t2 + H represent the contrast of each of the treatment 
groups with the control group, controlled for hospital differences. Each may 
be related to both the whole set D and the two unique dependent variables 
just considered. 

Taking first the whole D, they posit f2 2 directly as .08. Since kv = 2 and 
kx = 1,s = l.u = 2(1) = 2,m = 120 -(4 + 6) -(2 + 1 + 3)/2 = 107,so 
v = 107 (1) + 1 -2 (1)/2 = 107. Now A = .08 (2 + 107 + 1) = 8.8. The 
summary for these tests: 

a= .05 u=2 v = 107 A= 8.8. 

Table 9.3.2 gives the interpolated power value of .76. At least some of the 
team members are likely to consider this not high enough, because the hy­
potheses of the effect of each treatment compared to the control are central 
to the investigation. There may also be some nervousness about the ES being 
overestimated (often, sadly, the case). 

They then consider finally the effect of each treatment on the unique as­
pects of each outcome rating. They are interested in being able to detect an 
ES as large as f2 2 = .05 for any of these four hypotheses. Note that we are 
now considering bipartials between two single variables, for example 
t1 •t2 +H with d2 •d1 , so kv = kx = 1, u = 1, and s = 1. m = 120 -(4 + 6) 
- (1 + 1 + 3)/2 = 107.5, so v = 107.5 (1) + 1 -112 = 108. Thus, A= .05 
(1 + 108 + 1) = 5.5. The summary specifications for each of these four 
tests is: 

a= .05 u = 1 v = 108 A= 5.5. 

Interpolating in Table 9.3.2, we find power = .64. Although these hypothe­
ses are presumably not central to the investigation, the research team is dis­
appointed to find power here so low. 

On the whole, for the specifications used, it seems that with theN = 120 
that is planned, only the overall test of treatments would have good power 
(.93). The power of the test on each of the two treatment contrasts on the set 
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of two dependent variables might seem barely adequate (.76), but that of 
treatments on unique aspects of the two ratings is rather poor (.65), and that 
of the treatment contrasts on unique ratings no better (.64). What is likely to 
be a more serious deficiency than the latter, however, is that the power to 
test the H x T interaction is so low (.53) that a serious inconsistency of ef­
fects across hospitals might well go undetected. 

In the framework of this design and these parameters, it seems desirable 
to expend the necessary additional effort to increase the sample size. (See ex­
ample 10.29 in Section 10.4 for determining theN necessary for power = 
.80.) However, an alternative design may result in greater power for these 
parameters. See example 10.15 for the factorial MANCOV A in the next sec­
tion. 

10.3.6 FACTORIAL DESIGN MANCOVA. When, to a factorial design 
MANOV A we add a covariate set, we have a factorial design MANCOV A. 
Since a covariate set is involved, the basic type of association is partial, and 
because we will normally use within cells error to test main effects and inter­
actions, we will employ Model2 error. 

Illustrative Example 

10.15 We return to our psychiatric research team of example 10.14. 
They were planning a cooperative research effort involving (T) two treat­
ments and a control {ky = 2), crossed with four (H) hospitals (kH = 3), and 
utilizing psychiatrist rating and patient self-rating (k0 = 2) as the dependent 
variable set. The total N was planned to be 120, and the tests were to be per­
formed using an a = .05 significance criterion. Planned as a MANOV A, 
while the power for the test on treatments (T • H) was high, power for other 
important tests in the design was poor, and a substantial increase in sample 
size seemed indicated. 

Enter MANCOV A. The psychologist on the team suggested that their 
problem was that they had been planning for only post-treatment ratings. If 
they could organize the research so as to obtain pre-treatment ratings, they 
could study change rather than post-treatment status. Specifically, if the two 
pre-treatment ratings were used as a covariate set, they would in effect be 
studying regressed change, with a likely substantial increase in power. This 
tactic ("blocking," "having each subject serve as his or her own control") is a 
well established method for "improving precision," "increasing efficiency," 
or "reducing error" in experimental design. (See Section 11.4.) 

Again, despite its irrelevance to the research but in the interest of com­
pleteness (and with apology), consider the power of the test on the hospital 
main effect, whose R2 v,x = R2 o,H = .02. With the pre-treatment covariates 
partialled, they now posit R2v,x = R2 0 .A,H·A = .04. From (10.2.7), L = 1 
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- .04 = .96. For s = 2, from (10.2.2), the Model 1 f2 = .0206. This pre­
sumes l£11 = 1 - R2 o,H +A> which, because of the strong relationship they 
expect between D and A (post and pre), they posit to be .45. But the Model2 
error that the analysis will employ will also remove from error the variance 
due to T and the H x T interaction, l£2 1 = 1 - R2o,H+T+HT+A• or 1 
- R2 o,cens+A• which they posit to be .25. (Note that in all, there are 13 inde­
pendent variables in this R2.) Thus, from (10.2.10), g = .25/.45 = .5556, 
and from (10.2.11), 122 = .0206/.5556 = .0371. Note that although this ES 
remains quite small, it is nevertheless three times as large as in the original 
design (.0128). u = 2 (3) = 6 (as before), m = 120 - (2 + 8) - (2 + 3 + 
3)/2 = 106, so v = 106 (2) + 1 -2 (3)/2 = 210. Finally, from (10.3.1), we 
have>. = .0371 (6 + 210 + 1) = 8.1. The specifications are: 

a= .05 u=6 v = 210 )., = 8.1, 

and interpolating in Table 9.3.2, we find power = .52. It is just as well that 
this test is not relevant to this research; nevertheless, it is noteworthy that the 
use of these covariates almost tripled the ES and strongly increased power. 
But note, too, that the covariate set was strongly related to the 
post-treatment measures, D; however, this is often the case when they are 
pre-treatment measures. 

Turning to the test of major interest, that ofT • H, they hardly need to im­
prove its power of .93 as found in the original design for which they posited 
R2o,T·H = .12. Now it is the partial association they want, and in addition to 
the pair of pre-measures, H will be partialled from both sides: Set A in the ex­
pression R2 D·A,T·A contains five variables, the two pre-measures and the 
three variables that code H. They posit that T, adjusted for H and pre-test 
measures will account for .25 of the variance in post-test measures, also ad­
justed for H and pre-test measures. A less formal statement might be that Tis 
believed to account for .25 of the variance in (regressed) change, controlling 
for hospital effects. 

kv = 2, and kx = ky = 2, so s = 2. From (10.2.7), they find L = 1 -.25 
= .75, and from (10.2.2), the Modell 12 = .1547. They expect that when 
l£21 = 1 - R2 o,cens is used, it will be about (g =) .90 as large, so from 
(10.2.11), 122 = .1547/.90 = .1719. For the df, u = 2 (2) = 4, m = 120 - (5 
+ 6) - (2 + 2 + 3)/2 = 105.5, so v = 105.5 (2) + 1 - 2 (2)/2 = 210. Then,>. 
= .1719 (4 + 210 + 1) = 37.0. The specification summary is: 

a= .05 u=4 v = 210 )., = 37.0. 

No interpolation is necessary in Table 9.3.2-power is greater than .995. If a 
= .01 (Table 9.3.1) were specified, power would still be greater than .99! 

It is for the test of the H x T interaction that the original design was 
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underpowered-.53. They posited that the interaction accounted for 
(R2o,HT·H+T =) .09 of the variance in D. With the pretest measures to be em­
ployed as covariates, they need to posit the proportion of the variance in re­
gressed change (i.e., in covariate-adjusted post-treatment ratings) for which 
the interaction accounts; they hypothesize that to be .16. The partial R2 that 
they need in order to find Lp from Equation (10.2.7) includes in its set of 
covariates, not only the two pre-experimental ratings, but also the combined 
H and T sets, the partialling of which from the HT product set defines the H 
x T interaction. Thus, the full covariate set A in R2 D·A,HT·A contains (kA =) 7 
variables. They posit R2 D·A,HT·A = .18. SoL = 1 - .18 = .82, and, for s = 2, 
from (10.2.2) the Modell f2 = .1043. (Recall that it is Modell error that is 
appropriate for this interaction test.) 

As in the original design, u = kv kx = k0 kHT = 2 (6) = 12. m is now 120 
-7 -(2 + 6 + 3)/2 = 107.5,sov = 107.5(2) +I -2(6)/2 = 210. Thus,>.. 
= .1043 (12 + 210 + 1) = 23.3. The specifications for this MANCOVA 
are: 

a= .05 u = 12 v=210 ).. = 23.3. 

Table 9.3.2 gives the interpolated power value of .90. 
Compare this with the original design's .53 power with N = 120, or even 

the .77 power found for N = 180. It is true that these results depend on a 
strong covariate set, but such increases in power are not atypical when the 
measures used for pre and post have good psychometric properties. 

Consider now the tests involving the two unique dependent variables, 
d1 •d2 and d2 •d1 • With the two baseline ratings as covariates, they posit the 
effect ofT•H on each ofthese as f22 = .14. Thus, kv = 1, kx = kT = 2, and s 
= 1. For the df, u = 1 (2) = 2, m = 120- (5 + 6) -1 + 2 + 3)/2 = 106, so 
v = 106 (1) + 1 -1 (2)/2 = 106. >.. = .14 (2 + 106 + 1) = 15.3, so the spec­
ification summary is: 

a= .05 u=2 v = 106 ).. = 15.3. 

Interpolation in Table 9.3.2 gives power = .94. Compare this with the previ­
ous value in the MANOV A version of .65. 

They now consider the tests of the contrasts of each of the treatment 
groups with the control group, controlled for hospital differences (as be­
fore), but now also controlled for the two pre-experimental rating 
covariates. For these two tests they posit f2 2 = .16. As in the MAN OVA ver­
sion for these contrasts, kv = 2, and kx = 1, so s = 1 and u = 2. m = 120 
-(6 + 6) -2 (2 + I + 3)/2 = 105, so v = 105 (1) + 1 -2 (1)/2 = 105. 
From (10.3.1), >.. = .16 (2 + 105 + 1) = 17.3, so 
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a= .05 u=2 v = 105 h = 17.3. 

Eyeball interpolation in Table 9.3.2 gives power = .96 for these two tests. 
Without the covariates, i.e., when the X set was post-ratings rather than re­
gressed change in ratings, power was . 76. 

Finally, they assess the power of the four tests: each treatment contrast 
for each unique rating component, but now also employing the covariates. 
Because of the potent covariates, they now posit 12 2 = .09. The associations 
here are bipartials between two single variables, for example, t1 •t2 + H +A 
with d2 •d1 +H. Thus, kv = kx = s = u = 1 (as before); m = 120 - (6 + 6) 
-(1 + 1 + 3)/2 = 105.5, so v = 105.5 (1) + 1 (1)/2 = 106. h = .09 (1 + 
106 + 1) = 9. 7. The summary specification: 

a= .05 u = 1 v = 106 h = 9.7. 

Interpolating in Table 9.3.2 using (9.3.2) gives power = .87. Without the 
covariates, power for these four tests was .64. 

The increase in power provided by the inclusion of the pre-experimental 
ratings as covariates on the tests involving unique components of D and T • H 
is sufficient to make the increase inN from 120 to 180 that was contemplated 
by the research team unnecessary. In fact, the use of a covariate set that 
greatly reduced error variance (without a material reduction of hypothesis 
variance) increased power more than the sample size increase with the 
MANOV A design. 

With all that power, the research team contemplates the possibility of a 
budget reduction with its attendant reduction inN. What N would they need 
for power to be at least .80? See example 10.30. 

10.4 DETERMINING SAMPLE SIZE 

The determination of the N necessary to attain a desired level of power 
(given the other parameters) proceeds by inverting the procedures of the pre­
ceding section, where power was found as a function of N. As was the case 
there, we will employ the noncentrality parameter A, a function of 12 (the ef­
fect size), and the numerator and denominator degrees of freedom, u and v, 
respectively, as shown in Equation (10.3.1). 

Tables 9.4.1 and 9.4.2 of Chapter 9 give the A necessary for power values 
of .25, .50, .60, 2/3, .70(.05).95, and .99, for u = 1(1)15, 18, 24, 30, 40, 48, 
60, and 120, and v = 20, 60, 120, and oo. Interpolation for u and vis linear 
in their reciprocals (see below). 

The procedure for determining N is as follows: 
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1. Enter Table 9.4.1 (for a = .01) or Table 9.4.2 (for a = .05) with the 
desired power, u, and a trial value ofv, usually v = 120, and determine the 
value of>-.. 

2. Inverting Equation (10.3.1), a value ofv is implied by this>-., f2, and u: 

(10.4.1) }.. 
v=pu-1. 

f2 is set by means of the methods of Section 10.2.2. 
3. To find the }.. for the implied v, one must interpolate in Tables 

9.4.1-2. Interpolation between}.. values for a given vis linear in the recipro­
cals of the v's. For the lower and upper tabled v values between which the im­
plied v falls (vL, Yu) and their respective }.. values (AL, Au), the interpolated 
value of}.. for vis given by Equation (9.4.2), restated here for convenience: 

(10.4.2) 1/vL - 1/v {\ - }.. ) 
1/vL - llvu '"L u . 

Note that when the trial v = 120 and the implied v > 120, which is fre­
quently the case, vL = 120, 1/vL = .00833, and Yu = oo, so llvu = 0. 

4. Substitute this}.. in Equation (10.4.1) to obtain the iterated value ofv. 
Then, to find N, substitute in 

(10.4.3) 1 ( u 1) kv + kx + 3 ( k ) N = s v + 2 - + 2 + max kc, A + k0 , 

whose terms are as defined in Equations (10.1.6-9). 
The procedure is illustrated in the examples, which are organized by 

types of design, as in Section 10.3. The reader will find it useful to refer to 
Section 10.3 for a more detailed exposition of the particulars of the designs, 
and of the particulars and the rationale for setting the parameters for the ex­
amples, as needed. 

10.4.1 WHOLE ASSOCIATION: QUANTITATIVE WITH QUANTITATIVE. 

In these problems, in R2 v,x• Y is a set D and X a set B, both made up of quan­
titative variables. For these problems, where neither partialled sets (A or C) 
nor Model 2 error and hence a set G (Section 10.1.2) are involved, the last 
term in Equation (10.4.3) equals zero. 

Illustrative Examples 

10.16 A market research company is planning an investigation of the 
relationship between personality traits and consumer attitudes, represented 
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respectively by 6 and 4 measures. They estimate that the population R2 v,x be­
tween these sets is .20. Using a = .01, for power = .90, what N is required? 

For kv = 6, kx = 4, Table 10.2.1 gives s = 3.49. Since for whole associ­
ation, Lis R2-complementary, from (10.2.2), f2 = (1 - .80)- 113·49 -1 = 
.0660. u = 6 (4) = 24. Summarizing the ingredients for the determination of 
N, 

a= .01 
f2 = .0660 

u = 24 
s = 3.49 

power= .90 
kv = 6 kx = 4. 

First, Table 9.4.1 (for a = .01) gives for u = 24 at power = .90 for trial 
v = 120,A = 42.7,andforv = oo,A = 36.1. Tofindtheimpliedv,(10.4.1) 
gives 42.7 I .0660 -24 - 1 = 622. Then, Equation (10.4.2) gives the interpo­
lated A= 

42.7- ·~~~3; ~~22 (42.7- 36.1) = 37.4, 

which, when substituted back in Equation (10.4.1), gives the iterated value: 
v = 37.4/.0660 - 24 - 1 = 542. Substituting this value together with the 
other parameters in Equation (10.4.3), gives 

N = - 1- (542 + 24 - 1) + 4 + 6 + 3 + o = 165 3.49 2 2 . 

Thus, a sample of 165 cases will have a probability of rejecting the null 
hypothesis (at a = .01) in the relationship between the sets of personality 
and consumer attitude measures if the population R2 v,x = .20. 

They will of course also be interested in various follow-up tests. One set 
of these is made up of the relationship between the set of personality meas­
ures and each of the unique consumer attitudes, the latter defined as an atti­
tude score from which the other three attitude scores have been partialled. 
The form of association of R2 v xis Y -semi partial, R2 0 .c 8 , where B is the per-. ' 
sonality set, D is one of the attitude scores (say, a2), and C is a set made up of 
the other attitude scores (a 1 + a3 + a4). They posit f2 = .075 (conventional­
ly, between a "small" and "medium" ES), and wish to determine the N for 
power= .90, at a = .01, as before. Now kv = k0 = 1, kx = k8 = 3, and kc 
= 3. With one dependent variable, what they have now is a multiple correla­
tion with a partialled dependent variable, so s = 1, and u = 3. The specifi­
cations for these four tests are: 
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a= .01 u = 3 power = . 90 
f2 = .075 s = 1 kv = 1 kx = 3 kc = 3. 

Table 9.4.1 gives for power = .90, u = 3, for trial v = 120, A = 20.1, and at 
v = oo,A = 19.2.From(10.4.1},theimpliedvis20.1/.075 -3-1 = 264. 
Interpolating with (10.4.2) yields A = 19.6, and substituting that value back 
into (10.4.1) gives an iterated v = 257. When this value and the other param­
eters are substituted in (10.4.3), N = 264. 

Since this value is much larger than the 165 required for the test of the 
whole association, they check out the N for these tests when the desired 
power is dropped to .80. When the above procedure is repeated for the A val­
ues at power = .80 (16.1, 15.5), N works out to 214. 

When the other hypotheses of interest to them are assessed for necessary 
N they will need to reconcile these demands as a function of their importance 
and the marginal cost of acquiring data (Cohen & Cohen, 1983, pp. 162, 
164-165). 

10.17 In example 10.2, a psychiatric epidemiologist was planning to 
study, in a sample of 100 delinquent adolescents, the relationship between 
(kv =) 8 measures of offense frequency and (kx =) 6 ratings on dimensions 
of psychopathology. Her posited R2 v,x of .25, given that s = 4.92, resulted 
in f2 = .0602. She found that power for the test at the intended a = .01 was 
.51. Let's determine what sample size would be necessary for power to be .80 
for these specifications: 

a= .01 u = 48 power= .80 
f2 = .0602 s = 4.92 ky = 8 kx = 6. 

Table 9.4.1 gives, for u = 48 and power= .80, for trial v = 120, A= 51.2, 
and for v = oo, A= 39.3. From (10.4.1}, the implied v = 801, from (10.4.2), 
the interpolated A= 41.1; substituting this in (10.4.1) gives the iterated v = 
633. Finally, (10.4.3) gives N = 142. 

We then checked power at the more lenient a = .05 criterion, and found 
it to be . 74. What N would be necessary for power = .80 using a = .05? Ex­
cept for the latter, the specifications are as above. Entering Table 9.4.2 (for 
a = .05}, we find for u = 48 and power = .80, for trial v = 120, A = 37.5, 
and for v = oo, A = 29.7. Again, (10.4.1) gives the implied v = 574, which, 
when substituted in (10.4.2), gives the interpolated A = 31.3. When this is 
substituted in (10.4.1), the iterated v = 471, which finally from (10.4.3) 
gives N = 109. 

Thus, the epidemiologist would need to increase her sample by about 
400Jo to attain .90 power, and by about IOOJo for .80 power, given the original 
parameters. 
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10.18 In example 10.3, our epidemiologist changed her plans. Retain­
ing the planned N of 100, she planned to reduce kv to 3 and kx to 2, in order 
to reduce s and thereby increase 12 from .0660 to .1180, and also to reduce u 
from 48 to 6. Thus revised, she found power to be .88. She wondered what 
sample size would be needed to increase power to .90 for the revised specifi­
cations: 

a= .01 
12 = .1180 

u=6 
s=2 

power= .90 
kv = 3 kx = 2. 

From Table 9.4.1, for u = 6 at power = .90, for trial v = 120, A = 24.8, and 
for V = oo, A = 23.2. From (10.4.1), the implied v = 203. Interpolating with 
(10.4.2), A = 24.1 which, when entered into (10.4.1) yields the iterated v = 
198, which, entered into (10.4.3) with the other parameters, yields N = 104. 
a slight increase over the 100 she was provisionally planning. 

However, the idea had occurred to her that the posited R2v.x = .20 may 
be overestimated, and she checked the power on the possibility that R2 v,x = 
.175, leading to 12 = .1010, which she found to be .80. Assuming this re­
duced ES, what N would she need to detect it? Except for this 12 = .1010, the 
specifications remain as before, and going through the series of equations, 
the v implied by 12 and u is 239, the interpolated A = 24.0, the iterated v = 
231, and N = 120. Thus, the addition of 20 cases beyond her original plan 
will provide some insurance, in the event that the population R2v,x = .175, 
that power will be .90. 

10.19 Let's review, from example 10.4, the clinical psychologist's plan­
ning of a study of the relationship between (kx =) 3 physiological anxiety 
measures and (kv =) 2 behavioral anxiety ratings in a sample of 38 cases, 
where an alternative-hypothetical population matrix yielded an R2 v,x = 
.2653, which led, given that s = 2, to an 12 = .1666. The test was to be per­
formed at a = .OS. These specifications resulted in power = .69. What N 
would be required for the conventional .80 power? The complete specifica­
tions are: 

a= .05 
12 = .1666 

u=6 
s=2 

power= .80 
kv = 2 kx = 3. 

In Table 9.4.2, we find that at u = 6 for power = .80, at trial v = 120, A = 
14.3. Equation (10.4.1) gives the implied vas 79. With A = 15.0 at v = 60, 
(10.4.2) gives the interpolated A as 14.7, the iterated v from (10.4.1) is 81, and 
(10.4.3) gives the necessary N = 45. (Note that despite the fact that the trial v 
of 120 is much larger than the iterated v of 80, it is the case that either 
beginning with a trial v of 60, or reiterating the iterated value, or both, results 
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in the same necessary N = 45. It is usually the case that following the pro­
posed procedure with trial v = 120 will provide sufficient accuracy.) Thus, an 
increase of sample size from 38 to 45 will, for these specifications, increase 
power from .69 to .80. 

In example 10.4, the clinical psychologist tried to improve power without 
increasing sample size by dropping one of the behavioral anxiety scales, 
which was relatively weakly related to the physiological set (see Table 
10.3.2). This resulted in R2 v,x = .2008 (actually a multiple R2, because now 
kv = 1), and, with s = 1, t2 = .2512. He was disappointed to discover that 
for these revised specifications, power was .68, less than the .69 of his origi­
nal plans. Clearly, there is no power advantage in dropping the anxiety scale. 
Nevertheless, out of curiosity perhaps, what sample size would be required 
for the revised plans to have power = .80? The specifications summary is: 

a= .05 u = 3 
t2 = .2512 s = 1 

power= .80 
kv = 1 kx = 3. 

For u = 3 and power = .80, Table 9.4.1 gives for trial v = 120, A = 11.1 
and Equation (10.4.1)gives thevimplied to be40. Forv = 20, A= 13.2, and 
for v = 60, A = 11.5, and (10.4.2) gives the interpolated A = 11.9. Substitut­
ing this in (10.4.1) gives the iterated v = 43, and (10.4.3) gives the necessary 
N for the revised specifications as 47. 

10.4.2 WHOLE ASSOCIATION: CATEGORICAL WITH QUANTITATIVE; K 
GROUP MANOV A. The conditions here are as in the preceding section, ex­
cept that set X ( = set B) is a categorical variable (nominal scale); that is, one 
made up of K mutually exclusive and exhaustive groups, and kx = K - 1. 
These conditions are those of a simple (one-way) MANOVA or discriminant 
analysis. TheN that is solved for is the total N. The distribution of N over the 
K groups partly determines R2 v,x (as in MRC, see Cohen & Cohen, 1983, pp. 
190-193) and therefore f2 , so it must be taken into consideration when set­
ting the latter. 

Illustrative Examples 

10.20 The experimental psychologist of example 10.5 was planning a 
learning study involving samples of 20 control and 10 each of three experi­
mental groups, total N = 50. The dependent variable set was made up of a 
time and an error score, kv = 2, and the independent variable set was made 
up of kx = K - 1 = 3 dummy variables coding group membership. He esti­
mated that (R2 v.x =) .15 of the variance was accounted for in the population, 
and planned a test at a = .05. Since s = 2, t2 = .0847. These specifications 
led to the determination that power would be .51. How larger need N be for 
power to be .80? The specifications are: 
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a= .05 
f2 = .0847 

u=6 
s=2 

power= .80 
kv = 2 kx = 3. 

In Table 9.4.2, at u = 6 and power = .80, for trial v = 120, A = 14.3, and 
for v = oo, A = 13.6. Applying (10.4.1), the implied v = 162, and from 
(10.4.2) the interpolated A = 14.1. Re-applying (10.4.1) to this value, the it­
erated v = 160, and finally (10.4.3) gives the necessary N = 85. Since R2v,x 
(like all squared correlation coefficients) depends in part on the relative fre­
quencies in the categorical variable, the total N here should be divided 
34,17,17,17. (It is fortuitous, of course, that it can be exactly divided in the 
same proportions.) 

Thus, the sample size would need to be increased by 700Jo to achieve the 
conventional power of .80. 

In example 10.5, we investigated the consequence to power of dropping 
one of the two dependent variables while maintaining the R2 v,x (now a mul­
tiple R2) at .15. Since sis now 1, f2 more than doubles to .1765, and power 
worked out to .66, a clear improvement over the .51 when kv = 2. We deter­
mine the N that would be required by the new specifications, which are: 

a= .05 u = 3 power= .80 
f2 = .1765 s = 1 kv = 1 kx = 3. 

Table 9.4.2 gives for u = 3 and power = .80 the necessary A values to substi­
tute in Equations (10.4.1-3), and the necessary N is found to be 65 (which 
would be divided 26,13,13,13, again a fortuitously proportionately exact di­
vision). 

10.21 The advertising researcher in example 10.6 planned a MANOV A 
in a multivariable study primarily as a device to control experimentwise 
Type I error. Her plan to study the ratings of users of four brands of deter­
gents (kx = K -1 = 3) on 12 ( = kv) product characteristics, posited an 
overall R2 v,x = .15, which results in f2 = .0566, and she determined that at a 
= .05, power was .58. What N would be necessary for power to be .80 for 
these specifications, which are summarized as follows: 

a= .05 u = 36 power= .80 
f2 = .0566 s = 2.95 kv = 12 kx = 3? 

There is no block of values in Table 9.4.2 for u = 36, so to obtain the neces­
sary A values, linear interpolation in the reciprocals of uL = 30 and Uu = 40 
is necessary. W.e can employ Equation (10.4.2) for this purpose, replacing v 
byu: 
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(10.4.4) 

In Table 9.4.2, for power = .80 and trial v = 120: for u = 30, AL = 29.0 and 
for u = 40, Au = 33.8. Substituting in (10.4.2) gives for u = 36 and v = 120, 
A = 32.2. Similarly, applying (10.4.4) at v = oo, where AL = 24.5 and Au = 
27.6, gives for u = 36 and v = oo, A= 26.6. We can now find from (10.4.1) 
using the trial value of 120 for v, the implied v = 32.2/.0566 - 36 - 1 = 
532, from (10.4.2) the interpolated A= 27.9, from (10.4.1) the iterated v = 
455, and finally, from (10.4.3), N = 169. 

Then our advertising psychologist considered an alternative plan in 
which she would reduce her 12 ratings to kv = 3 summary scores and posit 
the same R2v x = .15. With the news =2.43, f2 = .0692, and for the original 
N = 120, at a = .05, power = .89. If she follows this plan and is prepared to 
have power = .80, she can do the study with fewer than 120 cases. How 
many fewer? The specifications are: 

a= .05 
e = .o692 

u=9 
s = 2.43 

power= .80 
kv = 3 kx = 3. 

The values needed from Table 9.4.2 are, for u = 9 and power = .80, at trial 
v = 120, A = 16.7, and at v = oo, A = 15.6. Going through the cycle of 
Equations (10.4.1-3), we find that N = 98 cases will provide .80 power, are­
duction of 22 (180Jo). 

But she also found that the ANOV A test of each of the three individual 
summary scores, positing R2 v,x = .05 (now a multiple R2 or 712- see Cohen & 
Cohen, 1983, pp. 196-198),had power = .52 for N = 120. Clearly,it would 
not do to reduce the sample size because of the power of the MANOV A. But 
now she asks, "What N do I need for .80 power for these individual tests?" 
The specifications are now: 

a= .05 
f2 = .0526 

u = 3 power = . 80 
s = 1 kv = 1 kx = 3. 

For u = 3 and power = .80 in Table 9.4.2, at trial v = 120, A = 11.1, and v 
= oo, A = 10.9. Equations (10.4.1-3) yield N = 209. Thus, rather than drop 
her N of 120 because of the power of the MANOVA, she would need to in­
crease it substantially in order to have adequate power for the ANOV A tests 
of the summary scores, which are, after all, the purpose of the investigation. 

This fable offers some morals. Obviously, and most generally, theN re­
quired for an investigation is the N required by its most important hypothe­
ses. It may be increased to accommodate less central hypotheses, but is de­
creased at the peril of the investigation. Less obviously, it will frequently be 
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the case that the follow-up hypotheses, focusing on specific issues and there­
fore involving few (often one) hypothesis dl ( = u), will have lower power 
and therefore require greater N than do the overall setwise relationships. 

10.4.2.1 2-GROUP MANOV A AND HOTELLING'S T2• In Section 10.3.2.1, 
it was pointed out that Hotelling's T2 is the special case for K = 2 of the one­
way K-group MANOV A. Except for its provision of the Mahalanobis 0 2 as 
an ES measure, it offers nothing new for power analysis. See Section 
10.3.2.1 for the relationship between 02 and R2v,x· 

It was also pointed that the significance test and therefore the power 
analysis for a 2-group discriminant analysis is the same as for the 2-group 
MANOVA. 

Illustrative Example 

10.22 The neuropsychologist in example 10.7 was planning a 2-group 
MANOV A comparing 50 Alzheimer patients and 40 normal controls on (kx 
=) 6 CAT scan measurements using the .05 significance level. His posited 
R2v,x = .125,whichfors = 1,1edtof2 = .1429,andforthesespecifications, 
power was found to be .73. We compute theN necessary to bring power up 
to the conventional .80 level. The complete specifications are: 

a= .05 
12 = .1429 

u=6 
s = 1 

power= .80 
kv = 1 kx = 6. 

Table 9.4.2 for u = 6 at power = .80 gives for trial v = 120, A = 14.3, so 
Equation (10.4.1) gives the implied v = 14.3/.1429 -6 -1 = 93. Table 
9.4.2 gives, for v = 60, A = 15.0, and (10.4.2) then gives the interpolated A 
= 14.5, which, when substituted in (10.4.2) gives the iterated v = 94. Final­
ly, (10.4.3) gives the necessary (total) N = 101. 

The power analysis of the tests of individual CAT scan measures could 
be analyzed as ordinary t tests, but he elected to test them in the SC frame­
work. He posited R2 v,x = (r-2 pb =) .05, so 12 = .0526, and found that power 
for the planned N of 90 cases was .57. The specifications for the N necessary 
for power = .80 are: 

a= .05 u = 1 power= .80 
e = .o526 s = 1 kv = 1 kx = 1. 

In Table 9.4.2 for u = 1 and power = .80, at both v = 120 and v = oo, A= 
7 .8, and the implied v from (10.4.1) is 146. No interpolation for A nor there­
fore iteration ofv is necessary, so, substituting in (10.4.3) results inN = 148. 
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On further consideration, for reasons given in example I 0. 7, he also checked 
the necessary N for f2 = .0581. With none of the other parameters changed, 
the procedure gives N = 126. 

10.4.3 THE ANALYSIS OF PARTIAL VARIANCE AND THE ANALYSIS OF 

CovARIANCE. In SC analysis of partial variance (APV), the form of asso­
ciation is partial-set Y is D·A and set X is B·A. For partial association, 
Wilks' Lis R2-complementary, which facilitates setting f2 (see Section 10.2). 
In APV, the sets may contain variables of any kind. In the special case of the 
multivariate analysis of covariance (MANCOV A), set B is categorical and 
sets D and A are quantitative. (See Section 10.4.2 and Cohen & Cohen, 1983, 
Chapter 10, for details). 

Illustrative Example 

10.23 A study of the relationship between ability and memory de­
scribed in example 10.8 was planned for N = 100. Although for a = .01 and 
the other parameters, power for the test of the overall relationship between 
three memory (D) and two ability (B) measures with age and education (A) 
partialled was .93, and was also satisfactory for the various follow-up tests 
contemplated (at least when a = .05), a problem was posed by the test of the 
ability by age/ed interaction, the existence of which would render invalid the 
assumption of regression homogeneity and therewith make the meaning of 
the ability-memory relationship ambiguous (see example 10.8 for the details 
of how this test is formulated). 

It was found that, as planned, power ofthis test at a = .01 was .15. Mat­
ters were not much better if a was set at .05: power = .34. What N would be 
required for power = .80 for the interaction test? The specifications sum­
mary is: 

a = .01 u = 24 power = .80 
f2 = .0370 S = 2.90 kv = 3 kx = 8 kA = 6. 

Table 9.4.1, for u = 24 and power = .80, gives at trial v = 120,). = 35.6, 
and at v = oo, ). = 30.1. Equation (10.4.1) gives implied v = 937, (10.4.2) 
gives the interpolated ). = 30.8, which, when substituted in (10.4.1), gives 
the iterated v = 808, and (10.4.3) gives N = 295. At a = .05, Table 9.4.2 
gives). = 25.9 at v = 120 and). = 22.5 at v = oo, and the result is N = 224. 

These sample size far exceed his resources. It occurs to him that it may 
turn out that the relationships with age and education over his age range may 
turn out to be linear, in which case he can drop the squared terms from the 
age/ed set, leaving only two variables. This should help, because now the 
product set will have only (kx =) 4 (instead of 8) variables, and the inter-
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action test will have u = 12 (instead of 24). Keeping the other parameters as 
before, the reader is invited to work out the sample size demand. The answer 
is that at a = .01, N = 251 (compared to 295), and at a = .05, N = 190. 
Thus, it helped, but not very much. 

10.4.3.1 K-GROUP MANCO VA. This is the special case of the APV in which 
set B is a categorical variable (nominal scale) made up of K groups. As not­
ed, Equation (10.4.3) gives the total N, and its distribution over the K groups 
relates to R2 v,x and 12 • When not otherwise specified, equality is presumed. 

Illustrative Example 

10.24 Our experimental psychologist of examples 10.5, 10.9, and 10.20 
was planning a learning study involving 3 experimental groups of 10 cases 
each and one control group of 20 cases (total N = 50, kx = K - 1 = 3) using 
time and error scores as dependent variables (kv = 2). In example 10.5, he 
found that for R20,8 = .15 (12 = .0847), power at a= .05 was .51. In exam­
ple 10.20, he learned that for power = .80, his total N had to be 85. In exam­
ple 10.9, he considered the effect of using a set of (kA =) 2 verbal ability 
measures as covariates with the originally planned N = 50. The partial 
R20 .A,B·A that was posited was .23, and 12 = .1396. At a = .05, he found 
power = .74. What N would be needed to get power up to .80? 

a= .05 u = 6 power= .80 
12 = .1396 s = 2 kv = 2 kx = 3 

The necessary values are found in Table 9.4.2 for u = 6 and power = .80: at 
trial v = 120, A = 14.3, so Equation (10.4.1) gives the implied v = 95. The 
table gives for the lower v = 60, A = 15.0, so (10.4.2) gives the interpolated A 
as 14.5. Iterating v and substituting in (10.4.3) gives N = 55, slightly more 
than originally planned, as expected. 

But it was noted in example 10.9 that the follow-up tests of the contrasts 
of each experimental group with the control group resulted in power = .69, 
rather less than he would like. To increase this to .80, the specifications for N 
are (see example 10.9 for the rationale): 

a= .05 u = 2 power = .80 
12 = .1765 s = 1 kv = 2 kx = 1 

The values needed from Table 9.4.2 are, for u = 2 and power = .80, at trial 
v = 120, A = 9.7, at v = 20, A = 11.1, and at v = 60, A = 10.0. Cycling 
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through Equations 10.4.1-3, we find N = 61. (Using 60 as the trial v gives 
the same result.) 

It would seem that anN of about 60, with 24 in the control group and 12 
in each experimental group, would provide reasonably adequate power for 
these tests, and therefore power greater than .80 for the overall test. This 
presumes, of course, that neither the strength of the experimental effect nor 
that of the verbal ability covariates has been overestimated. 

10.4.3.2 BIPARTIAL ANALYSIS. In this form of analysis, the generic R2 v,x 
is realized as R2 0 .c,B·A• the partialling sets differing for the dependent and 
independent variables. See Section 10.3.3.2 for the circumstances that re­
quire this design and the setting of f2 for bipartial association. 

Illustrative Example 

10.25 The bipartial analysis described in example 10.10, based on a 
sample of 300 pregnant women in an urban clinic, studied the effect of two 
nutritional supplementation treatments and a control on three somatic and 
four behavioral characteristics of their newborn infants. The treatments, 
and the somatic and behavioral characteristics were each controlled by 
partialling relevant sets of variables; see example I 0.10 for the details. 

With the planned N = 300, it was found that the major setwise bipartial 
associations had power greater than .80 at a = .01. However, follow-up in­
dividual treatment contrasts on the set of somatic variables and on the 
unique components of these individual behavior factors were found to have 
power respectively of .63 and .64. What N's would be required for power = 
.80 at a = .01 for these tests? 

Referring back to the details given in example 10.10, the two tests of 
treatment contrasts on the three somatic variables have the following specifi­
cations: 

a= .01 u = 3 power= .80 
s =I kv = 3 kx = I kc = 6 

From Table 9 .4.1, we have at u = 3 and power = .80, A = 16.1 for trial v = 
120 and A = 15.5 for v = oo. Applying the procedure described in Section 
3.4 using Equations (10.4.1-3), we find that the necessary N = 398. 

The six tests comprised by the two treatment contrasts of the three 
unique somatic variables, described in detail in example 10.10, for N = 300 
at a = .01 had power = .64. The specifications for the necessary N for 
power = .80 for these tests are: 



526 10 SET CORRELATION AND MULTIVARIATE METHODS 

a = .01 u = 1 power = .80 
s = 1 kv = 1 kx = 1 kc = 8 

Finding the relevant A values for u = 1 and power = .80 and applying Equa­
tions (10.4.1-3), we get N = 400. 

10.4.4 HIERARCHICAL ANALYSIS. When two or more research fac­
tors operate as independent variables, they may be ordered, with each factor 
partialled from those that succeed it in accounting for variance in the depen­
dent variable set. The order may be one of presumed causal priority, defin­
ing a simple causal model. Another use of hierarchical analysis is in an effort 
to protect from power loss the major issues in an investigation while explor­
ing secondary or tertiary issues. Section 10.3.4 provides details about the 
employment of these strategies. 

Illustrative Examples 

10.26 The psychiatric research team in example 10.11 was planning a 
records study of N = 400 state hospital psychiatric admissions. Using length 
of stay and level of functioning as a dependent variable set (kv = 2), they set 
up a hierarchy of the causal factors in the following order: U, demographic 
variables (ku = 9), V, MMPI variables (kv = 10), and W, a categorical vari­
able coding which of eight hospitals the patient was in (kw = 7). While 
power was quite high for the demographic variables and hospitals for the f2's 
posited and a = .01, for the MMPI set, power was only .55. What N would 
be needed for this test to have power of .80? The specifications (see example 
10.11 for the rationale) are: 

a= .01 u = 20 
f2 = .0260 s = 2 ky = 2 

power= .80 
kx = 10 

Table 9.4.1 (for a = .01) gives from u = 20 for power = .80, at trial v = 
120,). = 32.6, and at v = oo,). = 28.2. Equation (10.4.1) gives the implied v 
= 1233, (10.4.2) gives the interpolated). for this vas 28.6, which, when sub­
stituted in (10.4.1), gives an iterated v = 1080. When this is entered with the 
other parameters in (10.4.3), the necessary N is found to be 561. 

The planned N of 400 falls far short of this N demands. The investigators 
may not have the option of increasing the sample size. Since they have pos­
ited that the MMPI has a small ES, they may decide to forego trying to in­
crease the power to detect it. If, when the investigation is undertaken (with N 
= 400), the MMPI effect is not significant, they should acknowledge the 
ambiguity of this result. 

Alternatively, it is quite possible that a much smaller set of MMPI vari-
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abies, selected either a priori or by factor- or cluster-analytic reduction, may 
be expected to account for all or nearly all of this multivariate relationship, 
and so may have greater power. 

10.27 The longitudinal study by the developmental psychologist in ex­
ample 10.12 had, for a sample of N = 120 subjects, four sets of ratings on 
three personality variables: one set each by the subjects themselves, by their 
parents, and by their teachers, all at age 10, and a fourth set by the subjects 
made in their middle twenties. With the latter as the dependent variable set, 
the design was a hierarchical analysis with the three age 10 sets in the above 
order. 

When power-analyzed in example 10.12, for the posited f2's at a = .05, 
the test of the (whole) association of the age 10 self-ratings was found to 
have power = .89, but the tests of the partial associations of the parent and 
teacher ratings were respectively .50 and .32. Assuming that the data gather­
ing has been completed, she does not have the option of increasing the sam­
ple size. However, she might wonder how large an N she would have needed 
for these two tests to have power equal to (for the sake of variety) . 75. 

For the partial association of parents' ratings with the adult self-ratings, 
partialling the child self-ratings, she had posited R2 v,x = .075, which, for kv 
= kx = 3 and hence s = 2.43, results in f2 = .0692. The full specifications 
for determining this N are: 

a= .05 u = 9 power = . 75 
f2 = .0692 s = 2.43 kv = 3 kx = 3 

Table 9.4.2 gives for u = 9 and power= .75, at trial v = 120,}.. = 15.1 and 
at v = oo, }.. = 14.2. Applying (10.4.1), the implied v = 453 and (10.4.2) 
gives the interpolated}..= 14.2. Applying (10.4.1) to this >-.yields the iterated 
v = 433, and (10.4.3) finally gives the necessary N = 187, some 500Jo more 
than she has available. 

For the third set in the hierarchy, the teachers' ratings, the posited R2v,x 
with the adult self-ratings, partialling both the child self-ratings and the par­
ents' ratings, was .05. With the same kv = kx = 3, s = 2.43, but now kA = 
6, the specification summary is: 

a= .05 u = 9 power = . 75 
s = 2.43 kv = 3 kx = 3 = 3 

As before, the relevant }..'s are 15.1 for trial v = 120 and 14.2 for v = oo. The 
cycle of Equations (9.4.1-3) gives the necessary N = 285, more than twice 
the number available. 
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10.28 The study of attitudes toward presidential candidates planned by 
the political polling organization in example 10.13 had good power for most 
of the tests checked there. However, using Model2 error with N = 900 and a 
= .01, the power of the test of the effect of Race partialling Age and Sex on 
unique candidate ratings was only .55 (see example 10.13 and Table 10.3.3 
for the relevant parameters). What N would be needed for power = .80? 
The specification summary is: 

a= .01 u = 2 power= .80 
s = 1 kv = 1 kx = 2 kA = 2 k0 = 2. 

Table 9.4.1 gives for u = 2 at power = .80, at trial v = 120, A= 14.3 and at 
v = oo,A = 13.9.Equations(10.4.1-3)giveN = 1397,some500!omorethan 
planned. 

Assuming their budget cannot support so large a sample, they may have 
to settle for less power, but surely, not .55! "What N do we need," there­
search director asks, "for two to one odds?", i.e., power = 2/3. The relevant 
A values from Table 9.4.1 are 11.2 and 10.9, and N works out to 1097. While 
pondering whether the costs of a 20% increase can be tolerated, the staff 
statistician points out that if the test meets the .05 significance criterion, the 
analyst will inevitably interpret it as real. Practically, then, the effective sig­
nificance criterion is a = .05, not .01. What then is theN necessary for .80 
power at a = .05? 

The specifications are otherwise exactly as they were originally, but the 
relevant A values are obtained from Table 9.4.2. They are, for v = 120 and 
oo, respectively 9.7 and 9.6. Putting them through the cycle of Equations 
(10.4.1-3), N = 965 is found. The research director okays N = 1000 for the 
study. 

Note their forbearance in not tampering with the posited f2 = .01, the 
main source of their low power. In doing power analysis, the temptation is 
great to overstate the ES, a sure way to increase the computed power or re­
duce the computed necessary N. Obviously, however, doing so is 
self-deluding: an overstated ES simply results in overestimated power or un­
derestimated N. 

10.4.5 FACTORIAL DESIGN MANOVA. In factorial design it is con­
ventional to use the within cells variance for the error term for the main ef­
fects and interactions. This implies that, in general, Model 2 error will be 
employed in Wilks' L (10.2.1) and thus f2 (10.2.2). See Sections 10.2.3 and 
10.3.5 for the details. 

Illustrative Example 

10.29 Example 10.14 described a psychiatric research team planning a 
cooperative study involving two innovative treatments and a control treat-
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ment (T, kT = 2) replicated in four hospitals (H, kH = 3). The dependent 
variable set was made up of the patient's self-rating and a psychiatrist's rat­
ing on overall improvement. A total N = 120 was planned, with a = .05 as 
the significance criterion. 

The research focus was, of course, on the treatment effects. The role of 
the H factor was primarily to allow for possible systematic hospital effects. 
The H x T interaction was also of interest, because, to the extent to which it 
operated, it would mean that the treatment effects were not the same in the 
four hospitals. 

It was found in example 10.14 that while power for the test of T•H was 
quite high, power for the H x T interaction for the ES posited was only .53. 
Furthermore, the follow-up tests' power was not high, and one of them, the 
group of tests on the bipartials of the individual treatment effects on unique 
(mutually partialled) patient and psychiatrist improvement ratings was very 
poor, .54. 

The effect of increasing N to 180 on the power of the H x T interaction 
was determined in example 10.14 to be .77. What N would be necessary for 
power = .80? The full specifications are: 

a = .05 u = 12 power= .80 
t2 = .0483 S = 2 kv = 2 kx = 6 

In Table 9.4.2, at u = 12 and power = .80, at trial v = 120, A = 18.8 and at 
v = oo, A= 17.8. Equation (9.4.1) gives implied v = 376, Equation (9.4.2) 
gives the interpolated A = 18.1, which, substituted in Equation (9.4.1), gives 
the iterated v = 362. Finally, Equation (9.4.3) gives N = 194, slightly more 
than the power = .77 for N = 180, as would be expected. 

As for the N necessary for power = .80 for the follow-up tests of the in­
dividual treatment effects on the unique outcome ratings, the specifications 
are: 

a = .05 u = 1 power= .80 
s = 1 kv = 1 kx = 1 kA = 4 k0 = 6. 

Table 9.4.2 at u = 1 and power = .80 gives A = 7.8 at both v = 120 and v = 
oo, so no iteration of v is necessary. When the v implied in Equation (9 .4.1) is 
substituted in Equation (9.4.3), the necessary N is found to be 166. 

10.4.6 FACTORIAL DESIGN MANCOVA. The addition of a covariate 
set to a factorial design MANOV A results in a factorial design 
MANCOV A. The basic form of association is partial, and as in factorial de­
sign generally, within cell error, hence Model2 error, is used. 
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Illustrative Example 

10.30 In the cooperative psychiatric study described in examples 10.14, 
10.15, and 10.29, it was found that for the original MANOVA design, with 
the originally planned N = 120 and the ES's posited, power at a = .05 for 
several of the tests that would be performed was quite poor (example 10.14). 
In example 10.29 just above, it was found that for that design, a sample of 
194 would be necessary for the interaction test to have power = .80. There­
search problem was reconsidered in example 10.15 as a MANCOVA, using 
two pre-test ratings paralleling the post-test ratings originally planned, re­
sulting in what was in fact regressed change as the effective dependent vari­
able set. The use of what was posited to be a powerful covariate set, that is, 
one that substantially reduced error variance, was to greatly increase the f2's 
and therefore the power of all the tests: the interaction test had power = .90, 
and the individual treatment contrasts on the unique ratings had power = 
.87. 

So the research team has no problem about low power for even their 
weakest ES's with the planned N = 120. But it occurs to them that when the 
funding decision is made, it may be necessary for them to reduce their 
planned sample size. They then ask with regard to the interaction test, what 
N would be necessary for power to be at the conventional .80 level? The 
specifications for this test are: 

a= .05 u = 12 
12 = .1043 s = 2 ky = 2 

power= .80 
kx = 6 

The relevant A values from Table 9.4.2 (u = 12, power = .80) are 18.8 for v 
= 120 and 17.8 for v = oo ). Applying the standard procedure and Equa­
tions (10.4.1-3) gives N = 95. 

The lowest power value in example 10.15 was .87, for the individual 
treatment contrasts on the unique outcome ratings. What N is required for 
power = .80 for these tests? The specification are: 

a= .05 u = 1 power= .80 
12 = .05 s = 1 kv = 1 kx = 1 kA = 4 k0 = 6. 

Table 9.4.2 gives A = 7.8 for both v = 120 and v = oo for the relevant u = 1, 
power = .80. N works out to 97. 

Without the pressure of a cut in funding they would be ill-advised to re­
duce the planned N of 120. In power analysis it should always be kept in 
mind that power or necessary N is conditional on the posited ES, and that 
the latter may well be overstated. 



CHAPTER I I 

Some Issues in Power Analysis 

11.1 INTRODUCTION 

Because this book was written primarily as a handbook, some issues in 
power analysis were briefly touched upon here and there that deserve some­
what more detailed and integrated consideration. In this chapter I discuss 
what I believe to be the most important of these: effect size, the role of psy­
chometric reliability and the efficacy of "qualifying" (differencing and 
partialling) variables. 

11.2 EFFECT SIZE 

Any reader who has penetrated this book to this point hardly needs con­
vincing of the centrality of the concept of effect size (ES) to the determina­
tion of power or necessary sample size in research design. 

Formally, ES is a crucial parameter in power analysis. While in routine 
data analysis the significance criterion is constrained by convention to be 
some low value (.05, sometimes .01), and desired power some high value 
(say, .80 or so), deciding the ES is a rather different matter. Rather less for-

531 
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mally, to answer the question "What are my chances of finding it?", there­
searcher needs to have some idea of how big "it" is. 

Not only is ES of central importance in power analysis, a moment's 
thought suggests that it is, after all, what science is all about. For sure, it's 
not about significance testing. A corollary of the long neglect of power anal­
ysis in behavioral science is a lack of a high degree of awareness of the mag­
nitude of phenomena. I have elsewhere ( 1965) discussed the slippery slope of 
"If it's statistically significant, it's important, consequential, worth talking 
about, large, that is, significant!" 

Contributing to the low consciousness of ES in large areas of behavioral 
science is the use of arbitrary measurement units. We rarely find ourselves 
dealing with dollars, years, centimeters, or bushels of manure (at least, not 
knowingly). Another source of our difficulty is that, until recently, the 
standard output of many of our procedures has been a tau statistic (Cohen, 
1965), an F, t, or chi-square, together with the P values with (or without) 
their rewarding asterisks. 

A partial solution to this problem is the use of "pure" (dimensionless, 
unit-free) measures of ES, what I called "rho" values in 1965. Prominent 
among these is the product moment correlation coefficient, r, of whatever 
variety (simple, partial, semipartial, bipartial in its bivariate, multiple, or 
multivariate form), and its square, interpreted as a proportion of variance 
(PV). This approaches being a common metric for ES. (But see Cooper, 
1981, for the limitations of a common metric.) The various ES measures for 
the different tests given in the preceding chapters are (or can be) expressed as 
r's or rl's, even relationships between nominal scales (see Cohen & Cohen, 
1983, Appendix 4, on set correlation with contingency tables). 

Add to this the proposed conventions for operational definitions of 
"small," "medium," and "large" ES, and a basis for coping with some of the 
troublesome problems of ES becomes available. 

Note the careful qualification of the last statement. To begin with, these 
proposed conventions were set forth throughout with much diffidence, qual­
ifications, and invitations not to employ them if possible. The values chosen 
had no more reliable a basis than my own intuition. They were offered as 
conventions because they were needed in a research climate characterized by 
a neglect of attention to issues of magnitude. The ES measures and conven­
tions have been successful, widely adopted not only for power analysis, but 
more widely, for example, in ES surveys and in meta-analysis. But there are 
difficulties and much room for misunderstanding. 

Consider rand r2. The conventional .10, .30, .50, for "small," "medium," 
and "large" values for r look small. Smaller still are the .01, .09, .25 values 
for r2. But squared or unsquared, these values may represent stronger de­
grees of association than they seem. 

Item: Ozer (1985) makes a good case for the importance of the causal 
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model in deciding whether r or r is the appropriate proportion of variance 
measure. He shows that in a causal model in which X causes y, ryx = .25 is a 
proper coefficient of determination and means that x is accounting for a 
quarter of the variance in y. However, in a causal model in which some la­
tent (unobserved) variable Z causes both x andy, the percentage of shared 
variance between X andy is not r, but r, not .25, but .50.Thus, sometimes at 
least, we should be thinking of the larger r as a proportion of variance and 
not the usually much smaller r. 

Item: Oakes (1982) tells us that our perception of the strength of associa­
tion indicated by correlation coefficients is systematically and substantially 
overestimated. A sample of 30 academic psychologists, told to construct a 
correlation of .SO by supplying the paired values for a set of 12 ranks, gave 
results whose median r was . 76. Conversely, and quite consistently, a differ­
ent sample of 30 psychologists, asked to estimate the correlation for a set of 
12 paired rankings whose r was actually .50, gave estimates whose median 
was .26. The discrepancies are of course more dramatic if expressed as r. 
Unless behavioral scientists in general are superior judges of these matters 
than British academic psychologists, our intuitions lead us to underestimate 
the r that obtains for a given chunk of bivariate experience and overestimate 
the degree of association represented by a given value of r. I would expect 
that with the rapidly increasing ease of obtaining scatter plots, our intuitions 
should improve. 

Item: Rosenthal and Rubin (1982) have made a valuable contribution to 
the understanding of ES with their binomial effect size display (BESD). 
They argue that "proportion of variance accounted for" invites a misleading 
impression that minimizes the ES relative to other ways of apprehending the 
size of an association, in particular, that of the BESD. 

The layout in Table 11.1 illustrates their point. The r (a fourfold point or 
q, coefficient) is .30, so r = .09. I present this as a population BESD, in per­
cent, with equal population sizes presumed (as is appropriate for the ab­
stract treatment-control contrast). It is difficult to reconcile an increase in 
percent alive from 35 to 65 with "only 90Jo of the variance accounted for." 

Rosenthal and Rubin show that the fact that the difference in propor-

TABLE 11.1 
The Binomial Effect Size Display: 

"Only" 9% of the Variance 
is Accounted for 

Condition 

Treatment 
Control 

Outcome% 

Alive 

65 
35 

Dead 

35 
65 

Total 

100 
100 
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tions (.65 - .35) equals the r is not a coincidence, but a necessity when the 
table is symmetrical (i.e., when the two values are equidistant from .50). 
This means, for example, that a difference in percent alive between .45 and 
.55, which most people would consider important (alive, mind you!), yields r 
= .1 0, and "only 1 OJo of the variance accounted for," an amount that opera­
tionally defines a "small" effect in my scheme. 

The difference in rates will approximate the r with departure from sym­
metry: for example, for proportions of .20 and .50, r = .314. Furthermore, 
Rosenthal and Rubin make a case for the use of the BESD as a "realistic rep­
resentation of the size of treatment effect" when the outcome variable is con­
tinuous, provided that the groups are of equal size and variance. See their 
paper for the details. 

I think there are two lessons to be learned from Rosenthal and Rubin. 
The first is the one they emphasize, namely, that in many circumstances 
(in particular, when at least one variable is binary), the amount of associa­
tion, as intuited, is greater than r' the proportion of variance accounted 
for. 

The second is subtly introduced by them in their choice of the content for 
their example. "Death" tends to concentrate the mind. But this in turn rein­
forces the principle that the size of an effect can only be appraised in the con­
text of the substantive issues involved. An r of .01 is indeed small in abso­
lute terms, but when it represents a ten percentage point increase in survival, 
it may well be considered large. On the other hand, an entrance examination 
that accounts for 20% of the variance in freshman grade point average is no 
great shakes. 

Final item: A dispute with a colleague about the role of chance in sport 
led Abelson (1985) to pose the question: "What percentage of the variance in 
athletic outcomes can be attributed to the skill of the players, as indexed by 
past performance?" He concretized the question in terms of batting skill of 
major league baseball players. In the course of the article, he describes the 
results of asking 61 knowledgeable (about both baseball and variance ac­
counting) graduate students and faculty in the Department of Psychology at 
Yale to imagine a time at bat by an arbitrarily chosen major league baseball 
player, and to estimate the percentage of variance in getting/not getting a hit 
that is attributable to skill differential between hitters. Their median esti­
mate was 25%. 

Now, the issue is not trivial, at least not to the millions of fans of the 
game. "Everyone knows" that batting skill as represented by batting aver­
ages has substantial explanatory power. That's one reason why star players 
make such good money. 

Applying a variance partitioning model to readily available batting sta­
tistics, Abelson found that the proportion of variance in the outcome of a 
given at bat accounted for by individual differences in skill (batting aver-
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ages) was .00317! This is not a misprint-it is not .317, or even .0317. It is 
.00317, not quite one third of 1 OJo. 

Abelson's reaction to his finding (and mine, and no doubt yours) was one 
of incredulity. But neither he nor the editor and referees of Psychological 
Bulletin (nor I) could find any fault with his procedure. Abelson explains his 
counterintuitive discovery in terms of the cumulative effect within individual 
players and for the team as a whole. He gives as examples of potentially cu­
mulative processes "educational interventions, the persuasive effects of ad­
vertising, and repeated decisions by ideologically similar policy makers." He 
writes 

. . . one should not necessarily be scornful of miniscule values for percentage 
variance explanation, provided there is statistical assurance that these values 
are significantly above zero, and that the degree of potential cumulation is 
substantial. On the other hand, in cases where the variables are by nature 
nonepisodic and therefore noncumulative (e.g., summary measures of per­
sonality traits), no improvement in variance explanation can be expected 
(1985, p. 133). 

The next time you read that "only X% of the variance is accounted for," 
remember Abelson's Paradox. 

To summarize: Effect size is indispensable in power analysis, as it is gen­
erally in science, and conventional operational definitions of ES have their 
use, but only as characterizations of absolute magnitude. However, the 
meaning of any given ES is, in the final analysis, a function of the context in 
which it is embedded. Thus, "only 50% of the variance" may be as valid a 
formulation in one context as "only I OJo of the variance" is in another, and, 
conversely, "as much as 1 OJo of the variance" is, in principle, no less valid a 
formulation than "as much as 50% of the variance." 

11.3 RELIABILITY 

It was pointed out in Section 3.2 that what might be a correlation of .25 
between two variables assuming that each was measured without error, 
would turn out to be .10 if the variables were fallible, correlating only .63 
with their respective true scores (i.e., if each variable's reliability coefficient 
was .40 = .632). The point I sought to make was that if we conceive our ES 
in terms of pure constructs rather than as fallible measures thereof, we will 
inevitably overestimate them. 

Throughout the book, it has been assumed that it is the fallible "ob­
served, scores, not the "true, scores of classical psychometric theory that 
provide the basis of population ES measurement. The well-known relation-
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ship between the two is a function of the measure's reliability, ryy, defined as 
the ratio of true score variance to observed score variance, where the ob­
served score variance is simply the sum of true score variance and error vari­
ance. Now, the effect of measurement error is to "attenuate" (reduce the ab­
solute value of) population ES's from what they would be if there was no 
measurement error, i.e., if all the observed variance was true variance. 
Given the assumptions of the classical model (see any text in psychometric 
theory), the relationship between an ES on observes scores (ES), and the 
same ES on true scores (ES*) is a simple function of reliability. For example, 
given x and y as observed scores, and x* and y* as their true score counter­
parts, 

(11.3.1) 

Thus, the model has it that the r between the observed variables, that is, the 
observed r is the result of the attenuation of the correlation between true x 
and y by factors that are the square roots of their reliabilities. It follows 
from this simple equation that if either variable has perfect reliability, .JT = 
1 and it drops out of the equation. 

Now, it is the latter situation that obtains for most of the ES measures in 
the preceding chapters. That is, they involve single quantitative dependent 
variables where the independent variable(s) are treated as "fixed" and 
error-free. Thus, if we let x in (11.3.1) represent one or more fixed inde­
pendent variables (e.g., group membership, MRC regressors), we can write 

(11.3.2) ES = ES* .Jf;;, 

which holds literally in many cases and figuratively (that is, conceptually) in 
the others. Specifically, we can write 

(11.3.3) d = d* ..;r;,. 
(11.3.4) f = ··~. 
and therefore, 

(11.3.5) 

This simple relationship was noted by (among others) Cleary & Linn 
(1969), who went on to show how increasing reliability by increasing 
test length and increasing N jointly affect power. (Using a simple model for 
the cost of testing, they provided some useful equatiops that give the N that 
maximizes power subject to the cost constraints.) 

Given the simple relationship expressed in Equations (11.3.1-5), one can 
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readily use the true-score version of an ES rather than the observed version, 
provided, of course, that one is prepared to posit the population ryy. Levin 
and Subkoviak (1977) prefer to do so, claiming that "textbook" power anal­
ysis "assumes" that variables are measured without error, and that in conse­
quence, overestimates power and underestimates necessary sample size. 
They offer ES* as a corrective. 

From the fact that the treatment of power found in textbooks (including 
this one) does not explicitly incorporate measurement error, it does not fol­
low that it assumes error-free measures, any more so than does, for example, 
at test or any other standard data-analytic procedure. To be sure, part of the 
variance of the measures we work with is measurement error variance, and 
increasing reliability is salutary for power in the manner indicated by the 
equations above. But there is no particular virtue in beginning with ES meas­
ures scaled in true score units, as Forsyth (1978) and Maxwell (1980) have 
pointed out. (Indeed, Maxwell points out that one can also scale ES in error 
score units, but to what purpose?) Our experience is with phenomena as they 
are observed, i.e., with observed scores. When we think of a difference be­
tween two means, for example, it is normally the observed means we have in 
minds. It is, indeed, the case that we could instead think in terms of the dif­
ference in true score means, a larger value by a factor of 1 I ..rr;;, but why do 
so? It is not a natural unit, and also requires positing the population ryy, a 
quantity we never know and may not even be able to decently estimate. 

Yet another problem with working withES* occurs in situations where 
reliability is low, for example, difference scores of highly correlated vari­
ables (Cohen & Cohen, 1983, p. 69f). In such situations, positing what 
would appear to be a good-sized ES* would nevertheless result in a tiny ES. 
Yet this would be misleading, since although within-group reliability is low, 
there may nevertheless be a large difference between groups, and therefore, 
in fact, a large ES relative to the observed u. A detailed consideration of 
these issues can be found in articles by Maxwell (1980) and Zimmerman & 
Williams (1986). (The latter also dispell the "paradoxes" and controversy 
that have arisen in this area.) 

The consensus preference to work with observed ES measures in power 
analysis should, of course, not be taken to imply that reliability is not an im­
portant consideration in power analysis. On the contrary, the literature in 
this area has demonstrated how important it is and how it works. The bot­
tom line is that unreliability shrinks observed ES's and therefore reduces 
power, and increases in reliability enhance observed ES's and therefore in­
crease power. 

11.4 "QUALIFYING" DEPENDENT VARIABLES 

By "qualification" I mean to subsume all cases where a subject's "score" 
on dependent variable y is somehow modified by the subject's "score" on a 
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variable x. Thus, x qualifies y and y is qualified by or adjusted for x. When 
we subtract a "baseline'' x from a post-experimental y, when in the analysis 
of covariance we "adjust" an occupational information score y by a reading 
comprehension score x, and when we divide the number of correct discrimi­
nations y by the time in seconds consumed by the task x, we are by these 
varying means qualifying y by x. 

We perform such operations frequently in quantifying phenomena be­
cause we have good reason to believe that y as qualified by x comes closer to 
what we are interested in than the unqualified y. But the act of qualifying 
and the method used have effects on power. 

The issue is central in quantitative research; indeed, fully expanded, it is 
coterminous with experimental design. Thus, matching, blocking, latin 
squares, and the other exotica of advanced experimental design are forms of 
qualification. 

The modest purpose of this section, however, is to show how some sim­
ple forms of qualification affect the sample size required to meet any given 
set of power specifications in the simplest experimental form, the compari­
son of the means of populations A and B using independent samples. 

For concreteness, imagine an experiment in which samples of equal size 
are randomly assigned to each of two treatment conditions, A and B, and 
following treatment, a criterion value y is determined. Consider first the un­
qualified y. The population ES for y as given Chapter 2 is the index 

(11.4.1) 

where u is the common within population standard deviation. 
Now, imagine that a pretest measure xis available for the subjects. Ran­

dom assignment assures that the population means and a's of x are equal for 
A and B. If we qualify y by subtracting that case's x, we have a difference 
score, g = y - x. 

(11.4.2) m11A - m118 = (myA - mxA) - mya - mxa) = 
myA - mxA - myB + mxBt 

bUt Since mxA = mxB• 

(11.4.3) 

the same as the numerator for the unqualified dy in (11.4.1). So whether the 
difference is zero (null) or any other value, the size of the effect, prior to 
standardization, is the same for the qualified g ( = y - x) score as for the un­
qualified y score. 
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For the g score, however, the standardizing denominator is not uy as in 
(11.4.1), but rather (assuming uy = ux) 

(11.4.4) 

where r is the population correlation between x andy. Thus, the d index for 
qualifying by differencing is 

(11.4.5) d - myA- mya 
g - --''-:;;::;:;:::=::::::::;: 

uy -../2 (1 - r) 

Consider now the form of qualification used in the analysis of 
covariance (ANCOVA), or, more generally, partialling or residualization. 
We can qualify y by regressing it on x and using the residual. With equal u's, 
r's, and mx's in populations A and B, the regression-adjusted y is 

(11.4.6) y' = y - r (x - mx), 

and it works out that the difference between the population mean 
regression-adjusted scores, 

(11.4.7) 

the same d numerator as for unqualified y and for the g = y - x difference 
score. Here, too, it should be noted that whether the difference is zero (and 
thus the null hypothesis holds), or any other value, the size of the effect be­
fore standardization is the same for regression-adjusted y as it is for the 
difference-adjusted y and for the unqualified y. Again, however, the stan­
dardizing denominator differs-the standard deviation of regression­
adjusted scores is 

(11.4.8) 

so the d index for this form of qualification is 

(11.4.9) d - myA- mya 
y-

uy-J~ 

Note that the three versions of d in Equations (11.4.1), (11.4.5), and 
(11.4.9) differ from each other only by factors that are a function of r, a fact 
soon to be exploited, but first: 

For large samples (say, n greater than 20 or 30), then per sample neces­
sary to have some specified desired power to detect a given d at a given sig­
nificance criterion a is well approximated by 
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(11.4.10) 

where z1 = the unit normal curve deviate for a (e.g., for a2 = .05, z1 = 
1.96, for a 1 = .01, z1 = 2.33), and 

z2 = the unit normal curve deviate for power (e.g., for power = .80, 
z2 = .84, and for power= .95, z2 = 1.65 

(Cohen, 1970). 1 

The d is either the unqualified dy, or d11, or dy'. Since Equations ( 11.4.1 ), 
(11.4.5), and (11.4.9) differ only in the functions of r in their denominators, 
their relative n demands can be expressed as ratios of these denominators: 

For n11 relative ton for unqualified y, 

(11.4.11) 

for ny' relative ton for qualified y, 

(11.4.12) 

and for ny' relative to n11, 

(11.4.13) nyln11 = (1 + r)/2. 

Here are some examples illustrating some implications of these relative n 
demands: 

1. Assume that for some specified a, desired power, and d for just plain 
y, it turns out that the necessary per sample n = 100 (either by Equation 
11.4.10 or from Table 2.4.1). If the qualifying x correlates .60 ( = r) withy, 
then the n necessary to meet these specifications using the y - x difference 
score (n11) is, from (11.4.11), 2 (l - .60) = .80 as large, i.e., 80 cases. If in­
stead, x is used as a covariate, the necessary n(ny) is, from (11.4.12), 1 -
.6Q2 = .64 as large, 64 cases. For r = .60, then, g is more efficient than un­
qualified y, but y' more efficient still. However, as r approaches unity, the 
relative superiority of y' over g decreases-for example, for r = .80, n11 = 
40, while ny. = 36. 

2. Assume again that for a given set of specifications with unqualified 
y, n = 100, but now r = .40. Equation (11.4.11) works out to 2 ( 1 - .40) = 

1This simple formula is worth memorizing- in case someone should swipe your copy of 
this book. For example, for the "standard" conditions: a2 = .OS, desired power = .80, d = .SO, 
n = 2 (1.96 + .84)2 I .SOZ = 63. The exact value given in Table 2.4.1 is 64. (It works at other val­
ues, too.) 
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1.2, that is, the g score would require 200Jo larger n than using y alone; 120 
cases. The regression-adjusted n,. relative tony requires only (11.4.12) 1 -
.402 = .84 as many, i.e., 84 cases. 

3. See what happens if one is so benighted as to have a qualifying x 
whose r with y is zero, with a set of specifications that require 100 cases for 
just plain y: The y - x difference would require 2 (1 - 0) or twice as many 
cases to meet these specifications, while the regression-adjusted (actually un­
adjusted) ny. requires (1 - 02 = 1), i.e., the same number of cases as for un­
qualified y. (Actually, the exact n demand would be trivially larger because 
of the loss of 1 df from the ANCOV A error term.) 

As is evident from Equation (11.4.11 ), qualifying by differencing confers 
no advantage over ignoring x unless r is at least + .50. Thus, an investigator 
would do well to assure that there is at least a substantial (and positive2) sam­
ple r within groups before qualifying by differencing. Because the n demand 
would be larger, it follows that for the original n, power would be smaller us­
ing difference scores. 

On the other hand, provided that the demands of the model are met, the 
use of the regression adjustment of ANCOV A is always superior to 
differencing. The ratio (1 + r)/2 of Equation (11.4.13), for - 1 < r < + 1 
(when r = ± 1, there is, in fact, nothing to analyze), is always less than 1, 
and therefore necessarily more efficient than differencing (which we have 
seen is poorer than leaving y alone unless r is at least + .50). 

What if the qualifying variable x is not a literal pre-score that is measured 
in the same units as y? For differencing, and assuming the other model de­
mands (including mxA = mxa) are satisfied, the scores may be standardized, 
and one may proceed as before. The scaling of x constitutes no problem for 
regression adjustment, which requires only equality of the within group 
covariances. 

In fact, for the regression adjustment of ANCOV A, one is not con­
strained to use a single variable (see Sections 9.3.2 and 9.4.3). A set of 
covariates X may be used simultaneously to qualify y, and the bivariate r yx 
in Equations (11.4.8) and (11.4.9) becomes the multiple R~.x. so that the rel­
ative n demand for a regression-adjusted y is linear in 1 - R~.x· Thus, if one 
can employ a set of covariates that account for 50% of the y variance, one 
needs only half the n than without it. And regression adjustment, or, more 
generally, partialling, is of course not limited to the single dependent vari­
able case. It generalizes to multivariate analysis of covariance, or even fur­
ther to set correlation (see Sections 10.3.3, and 10.3.6). 

Moreover, although the demonstration of comparative power above was 
made for the two-group case in the interest of simplicity, the relative n for-

2Negativeris hardly worth discussing, but if it should occur, Equation (11.4.11) still works. 
For example, for r = -.SO, it would take 2 (1 - [-.50)) = 3 times as many cases as for y alone. 
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mulas (11.4.11-13) hold for the K-group case of the analysis of 
variance/covariance, and beyond that for the multiple R2 with nominal 
scales in all its generality (Chapter 9). (In principle, it even generalizes to the 
multivariate R2v,x of Chapter 10, but that statement requires some compli­
cated qualifications.) 

This demonstration is not intended to offer partialling as a panacea for 
all the occasions in data analysis where qualification is indicated. It makes 
model demands that frequently cannot be met; for example, no (or at least 
not much) measurement error in the independent variable(s) (fixed model), 
and homogeneity of regression (Cohen & Cohen, 1983, Chapter 10). Also, 
sometimes the desired qualification of y involves x in nonlinear operations, 
as in y/x, a problem which may or may not be successfully handled by loga­
rithmic (or other nonlinear) transformations (Cohen & Cohen, 1983, Chap,. 
ter 6). 

But when it is appropriate, it is a powerful maneuver in data analysis. 



CHAPTER 12 

Computational Procedures 

12.1 INTRODUCTION 

Since this is a handbook intended for behavioral scientists, the computa­
tional procedures used to determine the power and sample size values of the 
tables were not given in the previous chapters so as not to interrupt the flow 
of the exposition of concepts and methods of application. Instead, this 
material is presented here for the interested reader. It may be used for com­
puting power values or sample sizes in circumstances which are not covered 
by the tables provided. 

All computed values were rounded to the nearest unit and are accurate 
within one or at most two units of the tabled value. Various computational 
checks were used, depending upon the function in question. For all tables, 
two additional checks were used: a monotonicity check throughout, and a 
check on consistency between power values and necessary sample size values 
where the latter fell within the range of the former and were independently 
determined. This check assures accuracy where it is most critical-when n 
is small. 

Unless otherwise noted, where interpolation was necessary in tables which 
provided necessary computing values, linear interpolation was used because 
of the density of the argument relative to the needed accuracy. 

543 
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12.2 t TEST FOR MEANS 

12.2.1 POWER VALUES AND d0 • The approximation given by Dixon and 
Massey (1957, p. 253) was used for computing the power values in Tables 
2.3.1-2.3.6. Expressing it in terms of d, solving forz1_b, setting n1 = n2 = n 
and df = 2 ( n - 1), gives (using the present notation): 

(12.2.1) 
d(n -I)$ 

zl-b = 2(n - I) + 1.2l(z1 _ 8 - 1.06) - z•-• 

where z 1 -b =the percentile of the unit normal curve which gives power, 
z 1 _a = the percentile of the unit normal curve for the significance 

criterion-for one-tailed tests, a = a 1, and for two-tailed 
tests, a = a2/2, 

d =the standardized mean difference [formula (2.2.1)], and 
n = the size of each sample. 

This approximation was found to be quite accurate over the range of 
values of the tables when checked against available exact values. After all 
power values were computed, they were compared· for the points made 
available by the computation of the n tables (2.4.1 ), and the few inconsis­
tencies reconciled with the latter, which is an exact procedure (see Section 
12.2.2). 

The de values of the table, i.e., the sampled value necessary for significance, 
were found from the following relationship: 

(12.2.2) 8 = d Ji = t,_. + tl-b• 

where t 1 _ 8 and t 1 _b are percentile points for significance and power on the 
t distribution for df = 2(n- I), and 8 (delta) is the noncentrality parameter 
for noncentral t. As throughout, a in the subscript is a 1 or a 2/2. Since the 
de value occurs when power = .50, i.e., when t 1 _b = 0, then 

(12.2.3) de= tl-aJ~. 
The necessary t 1 -a values were obtained from Owen (1962, Table 2.1 ). 

12.2.2 SAMPLE SIZE VALUES. Owen (1965) provides tables for the non­
centrality parameter of the t test, 8, as a function of degrees of freedom, a, 
and b. With equal sample sizes, each of n cases, 

(12.2.4) 8=dJi. 
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so that 

(12.2.5) 

The df for trial in Owen's tables was estimated from the power tables, 
and o was found and substituted in formula (12.2.5) together with the d value 
for the column being computed in order to find n. When 2(n- l) did not 
agree with the trial entry df, the table was reentered with new df = 2(n - 1), 
until agreement was found. 

Owen's (1965) tables serve for all the a values in the subtables of Table 
2.4.1 except a1 = .1 0, and for all the desired power values except .25, f, . 75, 
and .85. Then entries for these cases were found by the following procedure; 
Formula (12.2.1) was rewritten as 

(12.2.6) 
z:,_. + z:,_b (n - l)j2n 

=~--~~~~------~ 
d 2(n - 1) + 1.21(z:1 _.- 1.06) · 

The left-hand side was found for a given table entry, and the integral 
value of n determined which made the right-hand side as nearly equal to it 
as possible. 

12.3 THE SIGNIFICANCE OF A PRODUCT MOMENT r 

12.3.1 POWER VALUES AND rc. The t test for the significance of r is 
given by 

rjdf 
t = --;:=== Jt- r 2 

(12.3.1) 

where r = the sample r and df = n - 2. 

Solving formula (12.3.1) for r gives 

(12.3.2) r=J-::::. 
Criterion values for t at the requisite values for a and df = n - 2 were 

found from Owen (1962, Table 2.1) and applied in (12.3.2), yielding the rc 
necessary for significance at a for the given df. 

To find the power values, two procedures were used. For n = 8 (I) 25, 
50, I 00, 200, the tables provided by David ( 1938) were used. These tables 
give the frequency distribution of sample r's for population r = .10 (.10) 
.90 for the above n. The rc value for each row of the Tables 3.3.1-3.3.6 was 
located in the appropriate column in David's tables and the probability 
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integral (b, the Type II error rate) found by linear interpolation.1 The comple­
ment of this value is the value entered in the power tables of Chapter 3. 

For n other than the above, power values were found by means of the 
arctanh r function, after several other approximations were checked and 
found inferior in their agreement with David. Graybill writes that the arctanh 
transformation "has the remarkable property of approximating the normal 
distribution even for fairly small n" (1961, p. 209). An even better approxi­
mation, recommended by Pearson and Hartley (1954, p. 29) was used, as well 
as their values for the transformation (Table 14): 

(12.3.3) 
r 

z' = arctanh r + 2(n _ 1) 

This transformation was applied to both the ES = r P (yielding zp') and 
r c (yielding zc'). Then, for each necessary table value, the percentile value for 
the unit normal curve which gives power, z1 _b, was found from 

(12.3.4) Z 1-b = (zp' - Zc')j n - 3. 

The resulting power values were found to agree with ± 1 unit as tabled 
with those found from David (1938), as described above. 

12.3.2 SAMPLE SIZE VALUES. Two procedures were used here. For n 
up to 40 (and where possible up to 60), the already computed power tables 
were used to find n for the given power value (i.e., inversely). Since most of 
these values were obtained via the David (1938) exact distribution tables, 
they were both more easily and more accurately determined than by transpo­
sition of (12.3.4) The other values were found by substituting z,_.l.../n - 3 
for Zc' in formula (12.3.4), and solving for n: 

- (zt-b + Zt-•)2 3 n- + ' z, 
p 

(12.3.5) 

where z1 _b and z 1 _ 8 are, as before, the percentile values of the unit normal 
distribution for desired power and the a significance criterion (i.e., a in the 
subscript is a1 or a 2/2). 

12.4 DIFFERENCES BETWEEN CORRELATION COEFFICIENTS 

12.4.1 POWER VALUES AND qc. The significance test of the difference 
between r's is accomplished via the Fisher z transformation, i.e., z = arctanh 
r, and the ES is q = z 1 - z2 . Since the sample q is approximately normally 

1 Except for n = 100, rp = .40, where an error in printing seems to have occurred in 
which all values are displaced upward by one interval. For these values the arctanh 
transformation procedure was used (see below). 
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distributed, power is given by 

(12.4.1) Jn-3 
x'l-b = q -2-- x,_., 

where x,_b and x,_. are, respectively, the normal curve percentiles for power 
and significance criterion (a in the subscript is a 1 or a2/2). (xis used in place 
of z to denote the normal curve deviate in order to avoid confusion of the 
latter with the Fisher r to z transformation.) Owen (1962) was the source of 
both the z transformation (Table 19.2) and normal curve values (Table 1.1). 

For the qc values necessary for significance, which are those for which 
power is .50, and therefore x.so = 0, we substitute x,_b = 0 in formula 
(12.4.1) andsolve for qc. 

(12.4.2) qc=x,_.Jn:3. 

12.4.2 SAMPLE SIZE VALUES. The n values for Table 4.4.1 were found 
by solving formula (12.4.1) for n: 

(12.4.3) n=2(x,_.;xl-br +3, 

where n = the size of each sample yielding an r. 

12.5 THE TEST THAT A PROPORTION IS .50 AND THE SIGN TEST 

12.5.1 POWER VALUES AND v. Except for a few values (see below), all 
the power values of Tables 5.3 were found from the Harvard tables of the 
cumulative binomial probability distribution (1955). For each value of n 
of our standard set, the appropriate Harvard table for P = .50 was entered, 
and the value of v (where v > n- v) was found which came nearest to the 
given a value. Both v, the frequency needed for significance, and the" nearest" 
(exact) value of a are given in Tables 5.3.1-5.3.6. Then, the distributions for 
each of our standard values of P (=.50 ± g) were entered with v to deter­
mine the power for each g, i.e., the proportion of samples which equal or 
exceed v. 

The Harvard tables are unusually comprehensive, giving distributions for 
62 values of P and 135 values of· n, but it happens that none are given 
for n = 250, 350, and 450. For these values, power was found by means of 
the normal approximation: 

(12.5.1) 
nP- v + .5 

z,_b= JnP(l-P)' 
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where the v necessary for significance at a ( = a1 or a 2/2) is 

n+z1 _.Jn+1 v = --~:'--'----
2 ' 

(12.5.2) 

rounding both v and power to the nearest value. 
Formulas (12.5.1) and (12.5.2) can be used for nontabled values of n, 

a, and g. For n > SO, they agree closely with the exact value given by the 
Harvard tables. 

12.5.2 SAMPLE SIZE VALUES. As noted in Section 5.4, n values less 
than or equal to 50 given in Table 5.4.1 are for a no greater than and power no 
less than the value stated for the subtable (rather than nearest values). These 
n values are those obtained from the Harvard tables, which given= 1 (I) 50. 
For n > SO, formula (12.5.2) was substituted in formula (12.5.1) and the lat­
ter solved for n, giving 

(12.5.3) = [2z1 _.JP(l- P) + z1 _ 11] 2 

n 2P- 1 ' 

rounding to the nearest value. Formula (12.5.3) may be used to determine 
values of n for values of power, a, or g not given in Table 5.4.1. 

12.6 DIFFERENCES BETWEEN PROPORTIONS 

12.6.1 POWER VALUES AND he. The significance test of the difference 
between proportions is accomplished through the use of the arcsin transfor-

mation, i.e., 4> = 2 arcsin JP, and the ES is h = t/>1 - t/>2 • Since the sample 
h is approximately normally distributed, power is given by 

(12.6.1) 

the z value being the normal curve percentiles for power and a level (a is 
a1 or a 2/2). 

Owen (1962, Table 9.9) was the source of the </>values for Table 6.2.1, 
and, as throughout, the normal curve values (his Table 1.1). 

For he, the minimum sample difference in tf>'s necessary for significance, 
as before, set z1_b equal to zero in (12.6.1), and solve for he: 

(12.6.2) 
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12.6.2 SAMPLE SIZE VALUES. Then values for Table 6.4.1 were found 
by solving formula (12.6.1) for n: 

(12.6.3) n = 2 el -a : z,_b) 2 
where n = the sample size for each sample. 

12.7 CHI-SQUARE TESTS FOR GOODNESS OF FIT AND CONTINGENCY TABLES 

The preparation of the tables for this chapter was greatly facilitated by 
Haynam, Govindarajulu, and Leone's "Tables of the cumulative noncentral 
chi-square distribution" (1962). This definitive set of tables gives power as a 
function of the noncentrality parameter of noncentral chi square A (lambda), 
a, and u (Haynam eta/., 1962, Table 1). and A as a function of a, power, and 
u (Haynam eta/., 1962, Table II). Many values of the arguments are presented, 
and it can readily be used to find power (Table I) and sample size (Table II) 
outside the limits of the tables provided in Chapter 7. 

12.7.1 POWER VALUES. The relationship between A, the noncen­
trality parameter, and w, the ES index, is simply 

(12.7.1) A= w 2 N, 

where N = the total sample size. 
Table I of Haynam et a/. (1962) was used for a, u, and A as found from 

(12.7.1), and power values were determined. Where interpolation for A was 
necessary, it was linear. It is recommended that when power value differences 
between adjacent w values of our Tables 7.3 are large (e.g., greater than .30), 
and intermediate values for w are needed, linear interpolation may give rise 
to errors in power ranging approximately up to between .05 and .10. When 
this degree of inaccuracy is excessive for the analyst's purpose, Table I of 
Haynam eta/. (1962) may be readily used, with formula (12.7.1) providing 
the A value with which to find the exact power value. Milligan (1979) gives a 
short FORTRAN computer program for determining approximate power 
for any combination of the parameters. 

12.7 .2 SAMPLE SIZE VALUES. Table II of Haynam eta/. (1962) was used 
for theN tables {Tables 7.4.1-7.4.15). The requisite a, u, and desired power 
were found and A was determined. Since transposing formula (12. 7.1 ), 

A 
(12.7.2) N = 2• 

w 

the tabulated A was divided by the requisite w2, and the resulting N found to 
the nearest integer. Due to the reciprocal relationship between N and w2 , 

formula (7.4.1) quite accurately gives N for nontabulated w, making un­
necessary either interpolation for w in Tables 7.4, or reference to Haynam 
eta/. (1962) for the a, u, and power entries provided by Tables 7.4. 
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12.8 THE ANALYSIS OF VARIANCE AND COVARIANCE 

12.8.1 POWER AND Fe VALUES. The criterion values needed for signifi­
cance, Fe, were based on the (central) F table provided by Owen (1962) in 
his Table 4.1. It contains as argument all the numerator df ( = u) needed for 
our Tables 8.3. For v (denominator df), which for these tables is (u + 1) 
(n- 1), Owen gives as argument I (I), 30, 40, 48, 60, 80, 120, oo. Interpolation 
between these values was linear in the reciprocal of the required values. 

The basic procedure used for computing the tabled power values was 
Laubscher's square root normal approximation of noncentral F (1960, 
Formula 6). In the present notation, this is 

(12.8.1) 
J 2(u + ,\)- _u_+_2_,\- J(2v- I) _uF_c 

u+,\ v 
z1-b = -----J;=,==~..---­

ufc + u + 2,\ 
v U+A 

where the noncentrality parameter is 

(12.8.2) ,\ = f 2 n(u + 1), 

and the denominator df is 

(12.8.3) v = (u + 1)(n- 1). 

The unit normal percentile value for power, z 1 _b, gave excellent agree­
ment with exact value determinations given in the literature (e.g., Laubscher, 
1960; Lehmer, 1944; Tang, 1938) and computed from tables supplied by the 
National Bureau of Standards (NBS tables, see Section 12.8.2) except when 
n and f are small. Therefore, Laubscher's cube root normal approximation 
of noncentral F (1960, Formula 7) was also determined for all power values: 

1- 2(u + 2,\)- (t- ~)( uFc )1/3 
9(u + ,\)2 9v u + ,\ 

(12.8.4) 
zt-b = [(2.) (~)2/3 + 2(u + 2,\)J 112 · 

9v u+,\ 9(u+,\)2 

The cube root formula was used as a check and provided most of the 
power values for n, f small except for smoothing and reconciliation at avail­
able points with the n values computed from the NBS tables which are exact 
(see below). 

12.8.2 SAMPLE SIZE VALUES. The sources used for computing the en­
tries of then tables (8.4.1-8.4.9) give tf> as a function of a, power, u, and v. 

(12.8.5) ~= ~ jU+l 
where ,\ = the noncentrality parameter of the noncentral F distribution. 
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The relationship between f and 4> is simply 

(12.8.6) 

so that 

(12.8.7) 

The sources for the 4> values were: 

I. An unpublished tabular computer print-out furnished by the National 
Bureau of Standards," Tables of Power Points of Analysis of Variance Tests" 
(NBS tables).2 These tables provide cJ> for varying u and vat a = .01, .05, 
.10, .20, and power= .10, .50, .90, .95, .99. 

2. Lehmer (1944) provides cJ> values for varying u and vat a = .01, .05, 
and power = . 70, .80. 

In both sources, the necessary u values are tabled, and interpolation for v 
was linear in the reciprocal. 

12.9 MULTIPLE REGRESSION AND CORRELATION ANALYSIS3 

12.9.1 POWERASAFuNCTIONOFA, U, V,ANDa. Thenoncentralitypara­
meter, >..,absorbs the information of the ES, f2 , and the numerator (u) and 
denominator (v) degrees offreedom in Equation (9.3.1): >.. = t2 (u + v + 1). 
Power is an increasing monotonic function of the distribution parameters >.., 
v, and a, and a decreasing monotonic function of u. Because power does not 
vary greatly with v (beyond its absorption into >..), only four levels are pro­
vided, v = 20, 60, 120, and oo, with interpolation in the reciprocals as shown 
in Equation (9.3.2). 

The relevant reference distribution is that of noncentral chi-square, 
whose parameters are>.., u, v, and a. The power values in Tables 9.3.1 and 
9.3.2 were derived from Tiku (1967), Laubscher (1960), and Haynam eta/ .. 
(1962). 

2 In a cover letter accompanying the NBS tables it is stated that partial checking of 
the computed values revealed no errors exceeding two units in the last (third) decimal 
place of the cf> values. The maximum error in n when formula (10.8.7) is applied is 
.OOlln, i.e., slightly more than one-tenth of one percent and therefore quite negligible. 

3In the Revised Edition (Cohen, 1977), the tables for power as a function ofll and u (Tables 
9.3.1-3) and those for}. as a function of power and u (Tables 9.4.1-3) were approximate in that 
they were derived from the Haynam et at. (1962) tables for noncentral chi-square, and thus were 
based on infinite v (denominator df). The present tables are also approximate but since they in­
clude the u parameter and have a denser argument for }., they provide many more values and 
therefore are more accurate. 
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Tiku (1967) tables b ( = 1 - power) as a function of the q, of Equation 
(12.8.5), which was readily converted to 

(12.9.1) A = q, ..j(u + 1). 

Lagrangian 3-point interpolation was used for </>. Tiku provides tables for u 
= 1(1)10, 12. Good agreement was found between the Tiku-derived power 
values and those of Chapter 8 (see Section 12.8.1). 

For the remaining values of u except u = oo, Laubscher's normalizing 
square root approximation to noncentral F (1960, Formula 6), given above 
as Equation (12.8.1), was used. An extensive Monte Carlo investigation of 
Laubscher's square root and cube root approximations showed them both to 
be quite accurate and led to the choice of the former (Cohen & Nee, 1987). 

Finally, because the distribution of F when v = oo is the same as that of 
noncentral chi-square, the Haynam et al. (1962) tables were used for v = oo. 

12.9.2 A AS A FUNCTION OF POWER, U, V, AND a. The relationship of A 
to the other parameters of the noncentral F distribution is that it is an in­
creasing monotonic function of power, v and a, and a decreasing monotonic 
function of u. 

The A values for Tables 9.4.1 and 9.4.2 were found as follows: For each 
combination of u, v, and a, a low value of A was chosen, entered in the 
Laubscher square root formula (12.8.1), and the power determined. The 
value of A was incremented by .1 repeatedly to yield power over the range 
from .25 to .99, and the A values were determined that yielded power nearest 
to the tables' power argument (.25, .50, .60, ... , .99). 
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