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Preface to the Second Edition

In the quarter century that has passed since I first addressed power anal-
ysis (Cohen, 1962), and particularly during the decade that has elapsed since
the revised edition of this book (1977), the escalation of the literature on
power analysis has been difficult to keep up with.

In 1962, I published a survey of the articles in a volume of the Journal of
Abnormal and Social Psychology from the perspective of their power to de-
tect operationally defined small, medium, and large effect sizes [a
meta-analysis before the term was coined (Bangert-Drowns, 1986)]. I found
rather poor power, for example, a mean of .48 at the two-tailed .05 level for
medium effect sizes.

Since the publication of the first edition (1969), there have been two or
three dozen power surveys of either particular journals or topical areas, us-
ing its tables and (more or less) the same method. In addition to the
half-dozen cited in the Preface to the Revised Edition in 1977, which were in
the fields of counseling psychology, applied psychology, education, speech
and hearing, and mass communication, there are numerous power surveys in
many fields, for example: in educational research, in general education
(Jones & Brewer, 1972), science education (Pennick & Brewer, 1972; Wooley
& Dawson, 1983), English education (Daly & Hexamer, 1983), physical edu-
cation (Christensen & Christensen, 1977), counselor education (Haase,
1974), social work education (Orme & Tolman, 1986) medical education
(Wooley, 1983a), and educational measurement (Brewer & Owen, 1973).
Power surveys have been done in social work and social intervention re-
search (Crane, 1976; Judd & Kenny, 1981; Orme & Combs-Orme, 1986), in
occupational therapy (Ottenbacher, 1982), abnormal psychology

xi



xii PREFACE TO THE SECOND EDITION

(Sedlmeier & Gigerenzer, in press), personnel selection (Katzell & Dyer,
1977), and market research (Sawyer & Ball, 1981). A fairly large number
have been accomplished in medicine: in clinical trials (Freiman, Chalmers,
Smith, & Kuebler, 1977; Reed & Slaichert, 1981), public health (Wooley,
1983b), gerontology (Levenson, 1980), psychiatry (Rothpearl, Mohs, &
Davis, 1981), and Australian medicine (Hall, 1982). Even further afield, a
power survey was done in the field of geography (Bones, 1972). In addition
to these published surveys, there have come to my attention about a dozen
unpublished dissertations, research reports, and papers given at profes-
sional meetings surveying power in psychology, sociology, and criminology.

A corollary to the long neglect of power analysis is a relatively low
awareness of the magnitude of phenomena in the behavioral sciences (Cohen,
1965). The emphasis on testing null hypotheses for statistical significance
(R. A. Fisher’s legacy) focused attention on the statistical significance of a
result and away from the size of the effect being pursued (see Oakes, 1986;
Gigerenzer, 1987; Chapter 11). A direct consequence of the recent attention
to power, the last few years have witnessed a series of surveys of effect sizes:
in social psychology (Cooper & Findlay, 1982), counseling psychology
(Haase, Waechter, & Solomon, 1982), consumer behavior (Peterson,
Albaum, & Beltramini, 1985),and market research (Sawyer & Ball, 1981).

The recent emergence of meta-analysis (Glass, McGaw, & Smith, 1981;
Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982; Kraemer, 1983)
has been influenced by power analysis in the adoption of its effect size meas-
ures (Bangert-Drowns, 1986), and in turn, has had a most salutary influence
on research progress and power analysis by revealing the level, variability,
and correlates of the effect sizes operating in the areas to which it is applied.

The literature in power-analytic methodology has burgeoned during this
period; pertinent references are given throughout this edition. Among the
many topics here are applied power analysis for: nonstandard conditions
(e.g., non-normality, heterogeneous variance, range restriction), non-
parametric methods, various multiple comparison procedures, alternative
methods of combining probabilities, and alternative stabilizing data trans-
formations. There have been several articles offering simplified one-table
methods of approximate power analysis including my own (1970) (which
provided the basis for a chapter-length treatment in the Welkowitz, Ewen, &
Cohen, 1982, introductory statistics text), Friedman (1982), and Kraemer
(1985). The latter is particularly noteworthy in that it breaks new ground
methodologically and is oriented toward teaching power analysis.

In marked contrast to the scene a decade or two ago, the current editions
of the popular graduate level statistics textbooks oriented to the social and
biological sciences provide at least some room for power analysis, and in-
clude working methods for the most common tests.

On the post-graduate front, as the word about power analysis has
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spread, many “what is it” and “how to do it” articles have appeared in jour-
nals of widely diversified content, ranging from clinical pathology (Arkin,
1981) through applied psychology (Fagley, 1985) to biological community
ecology (Toft & Shea, 1983).

Microcomputer programs for power analysis are provided by Anderson
(1981), Dallal (1987), and Haase (1986). A program that both performs and
teaches power analysis using Monte Carlo simulation is about to be pub-
lished (Borenstein, M. & Cohen, J., 1988).

It would seem that power analysis has arrived.

Yet recently, two independent investigations have come to my attention
that give me pause. Rossi, Rossi, and Cottril (in press), using the methods of
my power survey of the articles in the 1960 volume of the Journal of Abnor-
mal and Social Psychology (Cohen, 1962), performed power surveys of 142
articles in the 1982 volumes of the direct descendents of that journal, the
Journal of Personality and Social Psychology and the Journal of Abnormal
Psychology. When allowance is made for the slightly different (on the aver-
age) operational definitions of small, medium, and large effect sizes of the
1962 paper, there is hardly any change in power; for example, the mean
power at the two-tailed .05 level for medium effect sizes of the 1982 articles
was slightly above 50%, hardly different from the 48% in 1960.

Generally, the power surveys done since 1960 have found power not
much better than I had. Some fields do show better power, but they are those
in which subjects are easily come by, so the sample sizes used are larger than
those in abnormal, personality, and social psychology: in educational re-
search (Pennick & Brewer, 1972; Brewer & Owen, 1973), mass communica-
tion (Chase & Baran, 1976), applied psychology (Chase & Chase, 1975), and
marketing research (Sawyer & Ball, 1981). However, there is no comparison
of power over time in these areas. ’

Sedlmeier and Gigerenzer (in press) also studied the change in power since
my 1962 results, using 54 articles in the 1984 volume of the Journal of
Abnormal Psychology. They, too, found that the average power had not
changed over the past 24-year period. In fact, when the power of the tests
using experimentwise significance criteria (not encountered in my 1962 sur-
vey) were included, the median power for medium effects at the .05 level was
.37. Even more dismaying is the fact that in seven articles, at least one of the
null hypotheses was the research hypotheses, and the nonsignificance of the
result was taken as confirmatory; the median power of these tests to detect
amedium effect at the two-tailed .05 level was .25! In only two of the articles
surveyed was power mentioned, and in none were there any power calcu-
lations. Sedlmeier and Gigerenzer’s conclusion that my 1962 paper (and the
extensive literature detailed above) “had no effect on actual practice” is
consistent with the available evidence.

Yet, I find some solace from the following considerations: First, this may
be a phenomenon on the abnormal-social-personality area and may not gen-
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eralize to all behavioral-social-biological research areas. Second, to my cer-
tain knowledge, many journal editors and regular referees are quite
knowledgable about power and make editorial decisions in accordance with
this knowledge. Third, I am told that some major funding entities require
power analyses in grant applications. (I’ve even heard an unlikely story to
the effect that in one of them there is a copy of this book in every office!) Fi-
nally, the research surveyed by Rossi et al. (in press) and Sedlmeier and
Gigerenzer (in press), although published in the early 1980’s, was mostly
initiated in the late 1970’s. The first edition of this book was not distributed
until 1970. In the light of the fact that it took over three decades for Student’s
ttest to come into general use by behavioral scientists, it is quite possible that
there simply has not been enough time.

Taking all this into account, however, it is clear that power analysis has
not had the impact on behavioral research that I (and other right-thinking
methodologists) had expected. But we are convinced that it is just a matter of
time.

This edition has the same approach and organization as its predecessors,
but has some major changes from the Revised Edition.

1. A chapter has been added for power analysis in set correlation and
multivariate methods (Chapter 10). Set correlation is a realization of the
multivariate general linear model, and incorporates the standard
multivariate methods (e.g., the multivariate analysis of variance and
covariance) as special cases. While the standard methods are explicitly treat-
ed, the generality of set correlation offers a unifying framework and
some new data-analytic possibilities (Cohen, 1982; Cohen & Cohen, 1983;
Appendix 4).

2. A new chapter (Chapter 11) considers some general topics in power
analysis in more integrated form than is possible in the earlier “working”
chapters: effect size, psychometric reliability, and the efficacy of “qualify-
ing” (differencing and partialling) dependent variables.

3. The two sets of working tables used for power and sample size deter-
mination in multiple regression and correlation analysis (Chapter 9) have
been greatly expanded and provide more accurate values for a denser argu-
ment. These tables, derived from the noncentral F distribution, are also used
for power and sample size determination in set correlation and multivariate
methods (Chapter 10).

References have been updated and greatly expanded in keeping with the
burgeoning increase in the literature of power analysis, and the errors in the
previous edition, mostly caught by vigilant readers (to whom I offer my grat-
itude), corrected. I am surprised that I had to discover for myself the most
egregious error of all: this edition does not presume, as did its predecessors,
that all researchers are male.

As in the previous editions, I acknowledge the never ending learning pro-
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cess afforded me by my students and consultees, and the continuing and
unpayable debt of gratitude to my wife Patricia, who read, debated, and
corrected all the new material despire a heavy workload of her own.

In their classic paper“Beliefin theLawof Small Numbers,” Tversky and
Kahneman (1971) demonstrated how flawed are the statistical intuitions not
only of psychologists in general, but even of mathematical psychologists.
Most psychologists of whatever stripe believe that samples, even small sam-
ples, mirror the characteristics of their parent populations. In effect, they
operate on the unstated premise that the law of large numbers holds for
small numbers as well. They also believe that if a result is significant in one
study, even if only barely so, it will most likely be significant in a replication,
even if it has only half the sample size of the original. Tversky and Kahneman
detail the various biases that flow from this “belief in the law of small num-
bers,” and note that even if these biases cannot be easily unlearned, “the ob-
vious precaution is computation. The believer in the law of small numbers
has incorrect intuitions about significance level, power, and confidence in-
tervals. Significance levels are usually computed and reported, but power
and confidence limits are not. Perhaps they should be” (p. 110).

But as we have seen, too many of our colleagues have not responded to
Tversky and Kahneman’s admonition. It is almost as if they would rather
follow W. H. Auden’s proscription:

Thou shalt not sit
With statisticians nor commit
A social science.

They do so at their peril.

September, 1987 South Wellfleet, Massachusetts
Jacob Cohen



Preface to the Revised Edition

The structure, style, and level of this edition remain as in the original,
but three important changes in content have been made:

1. Since the publication of the original edition, multiple regression/
correlation analysis has been expanded into a very general and hence versa-
tile system for data analysis, an approach which is uniquely suited to the
needs of the behavioral sciences (Cohen and Cohen, 1975). A new chapter is
devoted to an exposition of the major features of this data-analytic system
and a detailed treatment of power analysis and sample size determination
(Chapter 9).

2. The effect size index used for chi-square tests on frequencies and
proportions (Chapter 7) has been changed from e to W(=\/;). This change
was made in order to provide a more useful range of values and to make the
operational definitions of ““small,”” “medium,” and “large’ effect sizes for
tests of contingency tables and goodness of fit consistent with those for other
statistical tests (particularly those of Chapters 5 and 6). The formulas have
been changed accordingly and the 84 look-up tables for power and sample
size have been recomputed.

3. The original treatment of power analysis and sample size determina-
tion for the factorial design analysis of variance (Chapter 8) was approximate
and faulty, yielding unacceptably large overestimation of power for main
effects and underestimation for interactions. The treatment in this edition is
materially changed and includes a redefinition of effect size for interactions.

xvii
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The new method gives quite accurate results. Further insight into the analysis
of variance is afforded when illustrative problems solved by the methods of
this chapter are addressed and solved again by the multiple regression/
correlation methods of the new Chapter 9.

Thus, this edition is substantially changed in the areas for which the
original edition was most frequently consulted. In addition, here and there,
some new material has been added (e.g., Section 1.5.5, ** Proving” the Null
Hypothesis) and some minor changes have been made for updating and
correction.

In the seven years since the original edition was published, it has received
considerable use as a supplementary textbook in intermediate level courses in
applied statistics. It was most gratifying to note that, however slowly, it has
begun to influence research planning and the content of textbooks in applied
statistics. Several authors have used the book to perform power-analytic
surveys of the research literature in different fields of behavioral science,
among them Brewer (1972) in education (but see Cohen, 1973), Katzer and
Sodt (1973) and Chase and Tucker (1975) in communication, Kroll and
Chase (1975) in speech pathology, Chase and Baran (1976) in mass com-
munication, and Chase and Chase (1976) in applied psychology; others are
in preparation. Apart from their inherent value as methodological surveys,
they have served to disseminate the ideas of power analysis to different
audiences with salutary effects on them as both producers and consumers of
research. It is still rare, however, to find power analysis in research planning
presented in the introductory methods section of research reports (Cohen,
1973).

As in the original edition, I must first acknowledge my students and
consultees, from whom I have learned so much, and then my favorite col-
league, Patricia Cohen, a constant source of intellectual excitement and much
more. 1 am grateful to Patra Lindstrom for the exemplary fashion in which
she performed the exacting chore of 1yping the new tables and manuscript.

NEw YORrk Jacos COHEN
JuNE 1976



Preface to the Original Edition

During my first dozen years of teaching and consulting on applied sta-
tistics with behavioral scientists, I became increasingly impressed with the
importance of statistical power analysis, an importance which was increased
an order of magnitude by its neglect in our textbooks and curricula. The case
for its importance is easily made: What behavioral scientist would view with
equanimity the question of the probability that his investigation would lead
to statistically significant results, i.e., its power? And it was clear to me that
most behavioral scientists not only could not answer this and related ques-
tions, but were even unaware that such questions were answerable. Casual
observation suggested this deficit in training, and a review of a volume of the
Journal of Abnormal and Social Psychology (JASP) (Cohen, 1962), supported
by a small grant from the National Institute of Mental Health (M-5174A),
demonstrated the neglect of power issues and suggested its seriousness.

The reason for this neglect in the applied statistics textbooks became
quickly apparent when I began the JASP review. The necessary materials for
power analysis were quite inaccessible, in two senses: they were scattered
over the periodical and hardcover literature, and, more important, their use
assumed a degree of mathematical sophistication well beyond that of most
behavioral scientists.

For the purpose of the review, I prepared some sketchy power look-up
tables, which proved to be very easily used by the students in my courses at
New York University and by my research consultees. This generated the

Xix
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idea for this book. A five-year NIMH grant provided the support for the
program of research, system building, computation, and writing of which
the present volume is the chief product.

The primary audience for which this book is intended is the behavioral
or biosocial scientist who uses statistical inference. The terms *‘ behavioral ”’
and ‘““biosocial” science have no sharply defined reference, but are here
intended in the widest sense and to include the academic sciences of psy-
chology, sociology, branches of biology, political science and anthropology,
economics, and also various ** applied” research fields: clinical psychology
and psychiatry, industrial psychology, education, social and welfare work,
and market, political polling, and advertising research. The illustrative prob-
lems, which make up a large portion of this book, have been drawn from
behavioral or biosocial science, so defined.

Since statistical inference is a logical-mathematical discipline whose ap-
plications are not restricted to behavioral science, this book will also be useful
in other fields of application, e.g., agronomy and industrial engineering.

The amount of statistical background assumed in the reader is quite
modest: one or two semesters of applied statistics. Indeed, all that I really
assume is that the reader knows how to proceed to perform a test of statistical
significance. Thus, the level of treatment is quite elementary, a fact which has
occasioned some criticism from my colleagues. 1 have learned repeatedly,
however, that the typical behavioral scientist approaches applied statistics
with considerable uncertainty if not actual nervousness), and requires a
verbal-intuitive exposition, rich in redundancy and with many concrete
illustrations. This I have sought to supply. Another feature of the present
treatment which should prove welcome to the reader is the minimization of
required computation. The extensiveness of the tables is a direct consequence
of the fact that most uses will require no computation at all, the necessary
answers being obtained directly by looking up the appropriate table.

The sophisticated applied statistician will find the exposition unnecessarily
prolix and the examples repetitious. He will, however, find the tables useful.
He may also find interesting the systematic treatment of population effect size,
and particularly the proposed conventions or operational definitions of
“small,” “ medium,” and ““large ™ effect sizes defined across all the statistical
tests. Whatever originality this work contains falls primarily in this area.

This book is designed primarily as a handbook. When so used, the reader
is advised to read Chapter 1 and then the chapter which treats the specific
statistical test in which he is interested. I also suggest that he read all the
relevant illustrative examples, since they are frequently used to carry along
the general exposition.

The book may also be used as a supplementary textbook in intermediate
level courses in applied statistics in behavioral/biosocial science. I have been
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using it in this way. With relatively little guidance, students at this level
quickly learn both the concepts and the use of the tables. I assign the first
chapter early in the semester and the others in tandem with their regular
textbook’s treatment of the various statistical tests. Thus, each statistical test
or research design is presented in close conjunction with power-analytic con-
siderations. This has proved most salutary, particularly in the attention
which must then be given to anticipated population effect sizes.

Pride of place, in acknowledgment, must go to my students and con-
sultees, from whom I have learned much. I am most grateful to the memory
of the late Gordon Ierardi, without whose encouragement this work would
not have been undertaken. Patricia Waly and Jack Huber read and construc-
tively criticized portions of the manuscript. [ owe an unpayable debt of grati-
tude to Joseph L. Fleiss for a thorough technical critique. Since I did not
follow all his advice, the remaining errors can safely be assumed to be mine.
I cannot sufficiently thank Catherine Henderson, who typed much of the text
and all the tables, and Martha Plimpton, who typed the rest.

As already noted, the program which culminated in this book was sup-
ported by the National Institute of Mental Health of the Public Health Service
under grant number MH-06137, which is duly acknowledged. I am also most
indebted to Abacus Associates, a subsidiary of American Bioculture, Inc.,
for a most generous programming and computing grant which I could draw
upon freely.

NEw YORK JacoB COHEN
JUNE 1969



CHAPTER

The Concepts of Power Analysis

The power of a statistical test is the probability that it will yield statis-
tically significant results. Since statistical significance is so earnestly sought
and devoutly wished for by behavioral scientists, one would think that the
a priori probability of its accomplishment would be routinely determined
and well understood. Quite surprisingly, this is not the case. Instead, if we take
as evidence the research literature, we find evidence that statistical power is
frequenty not understood and, in reports of research where it is clearly rele-
vant, the issue is not addressed.

The purpose of this book is to provide a self-contained comprehensive
treatment of statistical power analysis from an “applied”’ viewpoint. The
purpose of this chapter is to present the basic conceptual framework of
statistical hypothesis testing, giving emphasis to power, followed by the frame-
work within which this book is organized.

1.1 GENERAL INTRODUCTION

When the behavioral scientist has occasion to don the mantle of the
applied statistician, the probability is high that it will be for the purpose of
testing one or more null hypotheses, i.e., “‘the hypothesis that the phenome-
non to be demonstrated is in fact absent [Fisher, 1949, p. 13].”” Not that he
hopes to “prove” this hypothesis. On the contrary, he typically hopes to
“reject” this hypothesis and thus “prove” that the phenomenon in question
is in fact present.

Let us acknowledge at the outset the necessarily probabilistic character
of statistical inference, and dispense with the mocking quotation marks
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about words like reject and prove. This may be done by requiring that an
investigator set certain appropriate probability standards for research
results which provide a basis for rejection of the null hypothesis and hence
for the proof of the existence of the phenomenon under test. Results from a
random sample drawn from a population will only approximate the charac-
teristics of the population. Therefore, even if the null hypothesis is, in fact,
true, a given sample result is not expected to mirror this fact exactly. Before
sample data are gathered, therefore, the investigator selects some prudently
small value a (say .01 or .05), so that he may eventually be able to say about
his sample data, “If the null hypothesis is true, the probability of the ob-
tained sample result is no more than a,” i.e. a statistically significant result.
If he can make this statement, since a is small, he said to have rejected the
null hypothesis “with an a significance criterion” or “at the a significance lev-
el.” If, on the other hand, he finds the probability to be greater than a, he
cannot make the above statement and he has failed to reject the null hypoth-
esis, or, equivalently finds it “tenable,” or “accepts” it, all at the a signifi-
cance level. Note that a is set in advance.

We have thus isolated one element of this form of statistical inference,
the standard of proof that the phenomenon exists, or, equivalently, the
standard of disproof of the null hypothesis that states that the phenomenon
does not exist.

Another component of the significance criterion concerns the exact defini-
tion of the nature of the phenomenon’s existence. This depends on the details
of how the phenomenon is manifested and statistically tested, e.g., the
directionality/nondirectionality (*‘one tailed”/*two tailed’’) of the state-
ment of the alternative to the null hypothesis.! When, for example, the investi-
gator is working in a context of comparing some parameter (e.g., mean,
proportion, correlation coefficient) for two populations A and B, he can
define the existence of the phenomenon in two different ways:

1. The phenomenon is taken to exist if the parameters of A and B differ.
No direction of the difference, such as A larger than B, is specified, so that
departures in either direction from the null hypothesis constitute evidence
against it. Because either tail of the sampling distribution of differences may
contribute to a, this is usually called a two-tailed or two-sided test.

2. The phenomenon is taken to exist only if the parameters of A and B
differ in a direction specified in advance, e.g., A larger than B. In this

1 Some statistical tests, particularly those involving comparisons of more than two
populations, are naturally nondirectional. In what immediately follows, we consider those
tests which contrast two populations, wherein the experimenter ordinarily explicitly
chooses between a directional and nondirectional statement of his alternate hypothesis.
See below, Chapters 7 and 8.
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circumstance, departures from the null hypothesis only in the direction
specified constitute evidence against it. Because only one tail of the sampling
distribution of differences may contribute to a, this is usually called a one-
tailed or one-sided test.

It is convenient to conceive of the significance criterion as embodying both
the probability of falsely rejecting the null hypothesis, a, and the “sidedness”
of the definition of the existence of the phenomenon (when relevant). Thus,
the significance criterion on a two-tailed test of the null hypothesis at the .05
significance level, which will be symbolized as a, = .05, says two things:
(a) that the phenomenon whose existence is at issue is understood to be
manifested by any difference between the two populations’ parameter values,
and (b) that the standard of proof is a sample result that would occur less than
59 of the time if the null hypothesis is true. Similarly, a prior specification
defining the phenomenon under study as that for which the parameter value
for A is larger than that of B (i.e., one-tailed) and the probability of falsely
rejecting the null is set at .10 would be symbolized as a significance criterion of
a, =.10. The combination of the probability and the sidedness of the test
into a single entity, the significance criterion, is convenient because this
combination defines in advance the * critical region,” i.e., the range of values
of the outcome which leads to rejection of the null hypothesis and, perforce,
the range of values which leads to its nonrejection. Thus, when an investi-
gator plans a statistical test at some given significance criterion, say a, = .10,
he has effected a specific division of all the possible results of his study into
those which will lead him to conclude that the phenomenon exists (with
risk a no greater than .10 and a one-sided definition of the phenomenon) and
those which will not make possible that conclusion.? ‘

The above review of the logic of classical statistical inference reduces to a
null hypothesis and a significance criterion which defines the circumstances
which will lead to its rejection or nonrejection. Observe that the significance
criterion embodies the risk of mistakenly rejecting a null hypothesis. The
entire discussion above is conditional on the truth of the null hypothesis.

But what if, indeed, the phenomenon does exist and the null hypothesis is
Jalse? This is the usual expectation of the investigator, who has stated the
null hypothesis for tactical purposes so that he may reject it and conclude
that the phenomenon exists. But, of course, the fact that the phenomenon
exists in the population far from guarantees a statistically significant result,

2 The author has elsewhere expressed serious reservations about the use of directional
tests in psychological research in all but relatively limited circumstances (Cohen, 1965).
The bases for these reservations would extend to other regions of behavioral science.
These tests are however of undoubted statistical validity and in common use, so he has
made full provision for them in this work.
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i.e., one which warrants the conclusion that it exists, for this conclusion
depends upon meeting the agreed-upon standard of proof (i.e., significance
criterion). It is at this point that the concept of statistical power must be
considered.

The power of a statistical test of a null hypothesis is the probability that it
will lead to the rejection of the null hypothesis, i.e., the probability that it will
result in the conclusion that the phenomenon exists. Given the characteristics
of a specific statistical test of the null hypothesis and the state of affairs in
the population, the power of the test can be determined. 1t clearly represents
a vital piece of information about a statistical test applied to research data
(cf. Cohen, 1962). For example, the discovery, during the planning phase of
an investigation, that the power of the eventual statistical test is low should
lead to a revision in the plans. As another example, consider a completed
experiment which led to nonrejection of the null hypothesis. An analysis
which finds that the power was low should lead one to regard the negative
results as ambiguous, since failure to reject the null hypothesis cannot have
much substantive meaning when, even though the phenomenon exists (to
some given degree), the a priori probability of rejecting the null hypothesis was
low. A detailed consideration of the use of power analysis in planning investi-
gations and assessing completed investigations is reserved for later sections.

The power of a statistical test depends upon three parameters: the signi-
ficance criterion, the reliability of the sample results, and the “effect size,”
that is, the degree to which the phenomenon exists.

1.2 SIGNIFICANCE CRITERION

The role of this parameter in testing null hypotheses has already been

given some consideration. As noted above, the significance criterion repre-
sents the standard of proof that the phenomenon exists, or the risk of mis-

takenly rejecting the null hypothesis. As used here, it directly implies the
*“critical region of rejection” of the null hypothesis, since it embodies both
the probability of a class of results given that the null hypothesis is true (a), as
well as the definition of the phenomenon’s existence with regard to direction-
ality. For power to be defined, its value must be set in advance.

The significance level, a, has been variously called the error of the first
kind, the Type I error, and the alpha error. Since it is the rate of rejecting a
true null hypothesis, it is taken as a relatively small value. It follows then that
the smaller the value, the more rigorous the standard of null hypothesis
rejection or, equivalently, of proof of the phenomenon’s existence. Assume
that a phenomenon exists in the population to some given degree. Other
things equal, the more stringent the standard for proof, i.e., the lower the
value of a, the poorer the chances are that the sample will provide results
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which meet this standard, i.e., the lower the power. Concretely, if an investi-
gator is prepared to run only a 19 risk of false rejection of the null hypothe-
sis, the probability of his data meeting this standard is lower than would
be the case were he prepared to use the less stringent standard of a 109 risk
of false rejection.

The practice of taking a very small (‘“‘the smaller the better’’) then
results in power values being relatively small. However, the complement of
the power (1 — power), here symbolized as b, is also error, called Type 11
or beta error, since it represents the ‘““error” rate of failing to reject a false
null hypothesis. Thus it is seen that statistical inference can be viewed as
weighing, in a manner relevant to the substantive issues of an investigation,
these two kinds of errors. An investigator can set the risk of false null hy-
pothesis rejection at a vanishingly small level, say a = .001, but in so doing,
he may reduce the power of his test to .10 (hence beta error probability, b,
is 1 — .10 =.90). Two comments may be made here:

1. The general neglect of issues of statistical power in behavioral
science may well result, in such instances, in the investigator’s failing to
realize that the a = .001 value leads in his situation to power =.10, b = .90
(Cohen, 1962). Presumably, although not necessarily, such a realization
would lead to a revision of experimental plans, including possibly an upward
revision of the a level to increase power.

2. If the investigator proceeds as originally planned, he implies a con-
ception of the relative seriousness of Type I to Type Il error (risk of false null
rejection to risk of false null acceptance) of bja = .90/.001 =900 to 1, i.e.,
he implicitly believes that mistakenly rejecting the null hypothesis under the
assumed conditions is 900 times more serious than mistakenly accepting it.
In another situation, with a = .05, power = .80, and hence b =1 — .80 = .20,
the relative seriousness of Type I to Type Il error is b/a=.20/.05=4to |;
thus mistaken rejection of the null hypothesis is considered four times as
serious as mistaken acceptance.

The directionality of the significance criterion (left unspecified in the
above examples) also bears on the power of a statistical test. When the null
hypothesis can be rejected in either direction so that the critical significance
region is in both tails of the sampling distribution of the test statistic (e.g.,
a t ratio), the resulting test will have less power than a test at the same a
level which is directional, provided that the sample result is in the direction
predicted. Since directional tests cannot, by definition, lead to rejecting the
null hypothesis in the direction opposite to that predicted, these tests have
no power to detect such effects. When the experimental results are in the
predicted direction, all other things equal, a test at level a, will have power
equal for all practical purposes to a test at 2a,.
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Concretely, if an experiment is performed to detect a difference between
the means of populations A and B, say m, and my, in either direction at the
a, = .05 significance criterion, under given conditions, the test will have a
certain power. If, instead, an anticipation of m, greater than my leads to a
test at a, = .05, this test will have power approximately equal to a two-tailed
test with a, = .10, hence greater power than the test at a, = .05, provided that
in fact m, is greater than mg. If mg is greater than m,, the test at a, = .05
has no power, since that conclusion is inadmissible. The temptation to perform
directional tests because of their greater power at the same a level should be
tempered by the realization that they preclude finding results opposite to those
anticipated. There are occasional circumstances where the nature of the
decision is such that the investigator does not need to know about effects in
the opposite direction. For example, he will take a certain course of action if
m, is greater than mg and not otherwise. If otherwise, he does not need to
distinguish between their equality and mg greater than m,. In such infrequent
instances, one-tailed tests are appropriate (Cohen, 1965, pp. 106-111).

In the tables in this book, provision is made for tests at the .01, .05, and
.10 significance levels. Where a statistical test may ordinarily be performed
either nondirectionally or directionally, both a, and a, tables are provided.
Since power for a, = .05 is virtually identical with power for a, =.10, a
single power table suffices. Similarly, tables for a; = .0l provide values for
a, =.02, and tables for a; = .10 values for a, = .20; also, tables for a, = .01
provide values for a, = .005, tables at a, = .05 provide values for a, = .025.

1.3 RELIABILITY OF SAMPLE RESULTS AND SAMPLE SIZE

The reliability (or precision) of a sample value is the closeness with
which it can be expected to approximate the relevant population value. It
is necessarily an estimated value in practice, since the population value is
generally unknown. Depending upon the statistic in question, and the
specific statistical model on which the test is based, reliability may or may not
be directly dependent upon the unit of measurement, the population value, and
the shape of the population distribution. However, it is always dependent
upon the size of the sample.

For example, one conventional means for assessing the reliability of a
statistic is the standard error (SE) of the statistic. If we consider the arithmet-

ic mean of a variable X ()_(), its reliability may be estimated by the standard
error of the mean,

2
SEx = \/‘_,
n

where s? is the usual unbiased estimate (from the random sample) of the
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population variance of X, and n is the number of independent units in (i.e.,
the size of) the sample.

Concretely, if a sample of n =49 cases yields a variance estimate for 1Q
of 196, then the standard error of the mean is given by

s 196
- = — —_— =2.
SEz \/n 49

Thus, sample means based on 49 cases can be expected to have variability
as measured by their own standard deviation of 2 IQ units. Clearly the greater
the degree to which means of different samples vary among themselves, the
less any of them can be relied upon, i.e., the less the reliability of the mean
of the sample in hand. Note that in this instance reliability depends upon the
unit of measurement (1Q) and sample size, but not on the value of the popu-
lation mean or (to any material degree) on the shape of the IQ distribution.

On the other hand, consider the sampling reliability of a product moment
coefficient of correlation, r. Its standard error is

2
l1—r,

SE, = =,
vn-1

where

r, = the population value of r, and

n = the number of paired observations in the sample.

Note that the reliability of the sample r depends upon the magnitude of
the (generally unknown) population r, value and n, but not on the units in
which the correlated variables are measured.

Not all statistical tests involve the explicit definition of a standard error
of a sample value, but all do involve the more general conception of sample
reliability. Moreover, and most important, whatever else sample reliability
may be dependent upon, it a/ways depends upon the size of the sample.

The nature of the dependence of reliability upon n is obvious from the
illustrative formuias, and, indeed, intuitively. The larger the sample size,
other things being equal, the smaller the error and the greater the reliability
or precision of the results. The further relationship with power is also
intuitively evident: the greater the precision of the sample results, other things
being equal, the greater the probability of detecting a nonnull state of affairs,
i.e., the more clearly the phenomenon under test can manifest itself against
the background of (experimentally irrelevant) variability. Thus, we can
directly formulate the relationship between sample size and power. As is
intuitively obvious, increases in sample size increase statistical power, the
probability of detecting the phenomenon under test.

Focusing on sample size as an invariant factor in power should not make
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the researcher lose sight of the fact that other research elements potentially
under his control also affect power. Random measurement error, be it due
to psychometric unreliability, observational carelessness, dirty testtubes, or
any other source, because it increases the variability of the observations
beyond their necessary ‘‘true”’ variability, also reduces the precision of sample
results and thus reduces power. In general, anything which reduces the
variability of observations by the exclusion of sources of variability which
are irrelevant to the assessment of the phenomenon under study will serve to
increase power. Experimental design is an area of inquiry wholly devoted
to the removal of irrelevant sources of variability for the increase of precision
and therefore for the increase of the statistical power of tests of null hypoth-
eses (cf. Cox, 1958).

In this book, provision is made for the accomplishment of power analyses
for the statistical tests associated with the most frequently utilized experimen-
tal designs and their accompanying null hypotheses. Issues such as the effects
of a given level of random measurement error on power are not explicitly
provided for. Sample size, the invariant feature of sample precision, is,
however, a factor in all the power tables. It is used in both of the major kinds
of analysis tables herein provided; in the power tables, sample size is one of
the elements used to determine the power of the test, and in the sample size
tables, it is the dependent variable of the function of the desired level of
power (in both instances under given conditions of significance criterion and
population effect size).

1.4 THE EFFeCT SIZE

To this point, the phenomenon in the population under statistical test
was considered as either absent (null hypothesis true) or present (null hypoth-
esis false). The absence of the phenomenon implies some specific value for
a population parameter. For example, in a study to determine whether there
is a sex difference in incidence of paranoid schizophrenia, the investigator
may draw a sample of patients bearing that diagnosis from the relevant popu-
lation and determine the proportion of males. The null hypothesis being tested
is that the population proportion of males is .50, a specific value.>-* Equiva-
lently, we might say that the size of the *‘effect” of sex on the presence of

3 The assumption is made here that .50 is the proportion of males in the population
of interest.

4 For the sake of simplicity, the null hypothesis is treated in this section for the non-
directional form of the significance criterion. For example, a directional (one-tailed) test
here that the male proportion is greater than .50 implies a null hypothesis that it is equal
to or less than .50. The reader may supply his own necessary qualifications of the null
hypothesis for the directional case in each illustration.
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the diagnosis is zero. In another study concerned with the IQs of children
born in multiple births, the null hypothesis might be that the multiple birth
population in question has a mean 1Q of 100 (i.e., the general population
mean), again a specific value, or that the size of effect of being part of a
multiple birth on 1Q is zero. As yet another example of a one-sample test,
in a study of the construct validity of a neurophysiological measure of intro-
version-extroversion, its product moment r with an accepted questionnaire
measure for a sample of college students is determined. The null hypothesis
here is that the population r is zero, or that the effect size of either on the
other is zero.

In circumstances where two populations are being compared, the null
hypothesis usually takes the form ‘“‘the difference in the value of the rele-
vant parameters is zero,” a specific value. Thus, in a consumer survey
research to determine whether preference for a particular brand A over its
chief competitor B is related to the income level of the consumer, the null
hypothesis might be: The difference in median family income of brand A
and brand B users is zero, or, equivalently, that the size of the effect of
income on brand preference is zero. Or, in a personnel selection study to
determine which of two screening tests, A or B, is a better predictor of
performance ratings (C), the null hypothesis mjght take the form: The
difference between population product moment r’s of A with C and B with
C is zero.

Statistical tests involving more than two samples test null hypotheses
that imply the constancy of a parameter over the populations involved. The
literal statement of the null hypothesis depends upon the specific test involved.
For example, the F test of the analysis of variance for k >2 means has as
its null hypothesis the proposition that the variance of a set of population
means is zero, a condition that can only obtain when they are equal. Simi-
larly, a test of whether a set of k >2 population proportions are equal can
be performed by means of the chi-square statistic. The null hypothesis here
is that the variance of the population proportions equals zero (an exact value),
a condition which can only obtain when they are all equal. In both of these
instances we can think of the null hypothesis as the circumstance in which
differences in the independent variable, the k populations, have no effect
(have an effect size of zero) on the means or proportions of the dependent
variable.

Thus, we see that the absence of the phenomenon under study is expressed
by a null hypothesis which specifies an exact value for a population para-
meter, one which is appropriate to the way the phenomenon under study is
manifested. Without intending any necessary implication of causality, it is
convenient to use the phrase “effect size” to mean ‘“the degree to which
the phenomenon is present in the population,” or *the degree to which the



10 1 THE CONCEPTS OF POWER ANALYSIS

null hypothesis is false.”” Whatever the manner of representation of a phenom-
enon in a particular research in the present treatment, the null hypothesis
always means that the effect size is zero.

By the above route, it can now readily be made clear that when the null
hypothesis is false, it is false to some specific degree, i.e., the effect size (ES)
is some specific nonzero value in the population. The larger this value, the
greater the degree to which the phenomenon under study is manifested.
Thus, in terms of the previous illustrations:

I. If the percentage of males in the population of psychiatric patients
bearing a diagnosis of paranoid schizophrenia is 529/, and the effect is
measured as a departure from the hypothesized 509, the ES is 29, if it is
609, the ES is 109, a larger ES.

2. If children of multiple births have a population mean 1Q of 96, the
ES is 4 IQ units (or — 4, depending on directionality of significance criterion);
if it is 92, the ES is 8 (or — 8) IQ units, i.e., a larger ES.

3. If the population product moment r between neurophysiological and
questionnaire measures of introversion-extroversion is .30, the ES is .30; if
thzr is .60, so is the ES, a larger value and a larger departure from the null
hy pothesis, which here is r = 0.

4. If the population of consumers preferring brand A has a median
annual income $700 higher than that of brand B, the ES is $700. If the
population median difference and hence the ES is $1000, the effect of income
on brand preference would be larger.

Thus, whether measured in one unit or another, whether expressed as a
difference between two population parameters or the departure of a popu-
lation parameter from a constant or in any other suitable way, the ES can
itself be treated as a parameter which takes the value zero when the null
hypothesis is true and some other specific nonzero value when the null hypo-
thesis is false, and in this way the ES serves as an index of degree of departure
from the null hypothesis.

The reasons that the above dicussion has proceeded in such redundant
detail are twofold. On the one hand, ES is in practice a most important
determinant of power or required sample size or both, and on the other hand,
it is the least familiar of the concepts surrounding statistical inference among
practicing behavior scientists. The reason for the latter, in turn, can be found
in the difference in null hypothesis testing between the procedures of Fisher
(1949) and those of Neyman and Pearson (1928, 1933).

The Fisherian formulation posits the null hypothesis as described above,
i.e., the ES is zero, to which the *“‘alternative” hypothesis is that the ES is
not zero, i.e., any nonzero value. Without further specification, although
null hypotheses may be tested and thereupon either rejected or not rejected,
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no basis for statistical power analysis exists. By contrast, the Neyman-
Pearson formulation posits an exact alternative for the ES, i.e., the exact
size of the effect the experiment is designed to detect. With an exact alterna-
tive hypothesis or specific nonzero ES to be detected, given the other elements
in statistical inference, statistical power analysis may proceed.

Thus, in the previous illustrations, the statements about possible popu-
lation ES values (e.g., **if the population product moment r between neuro-
physiological and questionnaire measures of introversion-extroversion is
.30, the ES is .30°") are statements of alternative hypotheses.

The relationship between ES and power should also be intuitively evident.
The larger the ES posited, other things (significance criterion, sample size)
being equal, the greater the power of the test. Similarly, the relationship
between ES and necessary sample size: the larger the ES posited, other
things (significance criterion, desired power) being equal, the smaller the
sample size necessary to detect it.

To this point, the ES has been considered quite abstractly as a parameter
which can take on varying values (including zero in the null case). In any
given statistical test, it must be indexed or measured in some defined unit
appropriate to the data, test, and statistical model employed. In the previous
illustrations, ES was variously expressed as a departure in percent from 50,
a departure in 1Q units from 100, a product moment r, a difference between
two medians in dollars, etc. It is clearly desirable to reduce this diversity of
units as far as possible, consistent with present usage by behavioural scien-
tists. From one point of view, a universal ES index, applicable to all the
various research issues and statistical models used in their appraisal, would be
the ideal. Apart from some formidable mathematical-statistical problems in
the way, even if such an ideal could be achieved, the result would express ES
in terms so unfamiliar to the researcher in behavioral science as to be self-
defeating.

However, some generalization is obviously necessary. One cannot pre-
pare a set of power tables for each new measurement unit with which one
works. That is, the researcher who plans a test for a difference in mean 1Qs
must use the same power tables as another who plans a test for a difference in
mean weights, just as they will use the same tables of t when the research is
performed. t is a *“ pure” (dimensionless) number, one free of raw unit, as
are also, for example, correlation coefficients or proportions of variance.
Thus, as will be seen in Chapter 2, the ES index for differences between popu-
lation means is standardized by division by the common within-population
standard deviation (o), i.e., the ES here is not the difference between mean
*“raw ™ scores, but the difference between mean “ 2" standard scores (Hays,
1981), or the mean difference expressed in within-population o units. In the F
test for k > 2 population means, the ES also uses such standardized means;
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in testing *‘ main effects” in the analysis of variance the ES is their standard
deviation, o,,, the standard deviation of standardized means (Chapter 8).

Each test for which power tables are provided thus has a metric-free ES
index appropriate to it. A higher order of generalization is frequently pos-
sible. Specifically, several ES indices can be translated into the proportion of
variance (PV) accounted for in the dependent variable. Where this is pos-
sible, it is discussed in the introductory material for the test. Also, each ES
index chosen usually relates to yet other commonly used indices and these are
also described in the same place.

The behavior scientist who comes to statistical power analysis may find
himself grappling with the problem of what ES to posit as an alternate to
the null hypothesis, or, more simply, how to answer the questions * How
large an effect do 1 expect exists in the population?”” He may initially find
it difficult to answer the question even in general terms, i.e., “small” or
‘*“large,” let alone in terms of the specific ES index demanded. Being forced
to think in more exact terms than demanded by the Fisherian alternative
(ES is any nonzero value) is likely to prove salutary. He can call upon theory
for some help in answering the question and on his critical assessment of
prior research in the area for further help. When these are supplemented with
the understanding of the ES index provided in the introductory material to
the relevant chapter, he can decide upon the ES value to adopt as an alterna-
tive to the null.

When the above has not provided sufficient guidance, the reader has an
additional recourse. For each statistical test’s ES index, the author proposes,
as a convention, ES values to serve as operational definitions of the qualitative
adjectives ““small,” ““medium,” and *‘large.”” This is an operation fraught with
many dangers: The definitions are arbitrary, such qualitative concepts as
‘“large” are sometimes understood as absolute, sometimes as relative; and
thus they run a risk of being misunderstood.

In justification, several arguments may be offered. It must first be said that
all conventions are arbitrary. One can only demand of them that they not
be unreasonable. Also, all conventions may be misused and their conven-
tional status thus abused. For example, the .05 significance criterion, although
unofficial, has come to serve as a convention for a (minimum) basis for reject-
ing the null hypothesis in most areas of behavioral and biological science.
Unfortunately, its status as only a convention is frequently ignored; there
are many published instances where a researcher, in an effort at rectitude,
fails to report that a much desired null rejection would be possible at the .06
leve!l but instead treats the problem no differently than he would have had it
been at the .50 level! Still, it is convenient that “*significance” without further
specification can be taken to mean “significance at no more than the .05
level.”
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Although arbitrary, the proposed conventions will be found to be reason-
able by reasonable people. An effort was made in selecting these operational
criteria to use levels of ES which accord with a subjective average of effect
sizes such as are encountered in behavioral science. * Small” effect sizes must
not be so small that seeking them amidst the inevitable operation of measure-
ment and experimental bias and lack of fidelity is a bootless task, yet not so
large as to make them fairly perceptible to the naked observational eye.
Many effects sought in personality, social, and clinical-psychological research
are likely to be small effects as here defined, both because of the attenutation
in validity of the measures employed and the subtlety of the issues frequently
involved. In contrast, large effects must not be defined as so large that their
quest by statistical methods is wholly a labor of supererogation, or to use
Tukey’s delightful term * statistical sanctification.” That is, the difference in
size between apples and pineapples is of an order which hardly requires an
approach via statistical analysis. On the other side, it cannot be defined so as
to encroach on a reasonable range of values called medium. Large effects are
frequently at issue in such fields as sociology, economics, and experimental and
physiological psychology, fields characterized by the study of potent variables
or the presence of good experimental control or both.

Since effects are appraised against a background of random variation,
the control of various sources of variation through the use of improved
research designs serves to increase effect sizes as they are defined here. A
simple example of this is a study of sex difference in some defined ability.
Assume that a difference of 4 score points exists between male and female
population means, where each population has a standard deviation of 16.
A research plan which randomly samples the two populations (simple
randomized design or comparison between two independent means) is
operating with an ES of 4/16 = .25. Another research plan might proceed by
comparing means of males and their sisters (comparison of two dependent
means). Now, these populations can also be assumed to have a mean differ-
ence of 4 score points, but because of the removal of the variation between
families afforded by this design (or equivalently when allowance is made for
the brother-sister correlation in the ability), the effective standard deviation
will be reduced to the fraction v/] —¢ of 16, say to 12 (when r between

siblings = .44), and the actual ES operating in the situation is 4/12 = .33,
a larger value than for the simple randomized design. Thus, operative effect
sizes may be increased not only by improvement in measurement and experi-
mental technique, but also by improved experimental designs.

Each of the Chapters 2-10 will present in some detail the ES index
appropriate to the test to which the chapter is devoted. Each will be translated
into alternative forms, the operational definitions of *‘small,”” *“medium,” and
“large” will be presented, and examples drawn from various fields will
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illustrate the test. This should serve to clarify the ES index involved and
make the methods and tables useful in research planning and appraisal. Fi-
nally, in Chapter 11, Section 11.1 is devoted to a general consideration ot ES
in the behavioral sciences.

1.5 TyPEs OF POWER ANALYSIS

Four parameters of statistical inference have been described: power,
significance criterion (a), sample size (n), and effect size (ES). They are so
related that any one of them is a function of the other three, which means
that when any three of them are fixed, the fourth is completely determined.
This relationship makes formally possible four types of power analysis; in
each, one of these parameters is determined as a function of the other three
(Cohen, 1965, pp. 97-101).

1.5.1 PoOWER As A FUNCTION OF a, ES, AND n. The preceding material
‘has been largely oriented toward the type of analysis in which, given the
specification of a, ES, and n, power is determined. For example, an investi-
gator plans a test of the significance of a product moment r at a, = .05 using
n = 30 cases. The ES he wishes to detect is a population r of .40. Given these
specifications, he finds (by the methods of Section 3.3 in Chapter 3) that power
equals .61. He may then decide to change his specifications to increase power.

Such analyses are usefully performed as part of research planning.
They can also be performed on completed studies to determine the power
which a given statistical test had, as in the power survey of the studies in
a volume of the Journal of Abnormal and Social Psychology (Cohen, 1962).
In each of Chapters 2-10, the power tables (numberd B.3.A., where B is the
chapter number and A indexes the significance criterion) are designed for
this type of analysis. The sections designated B.3 discuss and illustrate the
use of these tables.

1.5.2 n as A FuncTioN ofF ES, a, AND Power. When an investigator
anticipates a certain ES, sets a significance criterion a, and then specifies
the amount of power he desires, the n which is necessary to meet these
specifications can be determined. This (second) type of power analysis must
be at the core of any rational basis for deciding on the sample size to be
used in an investigation (Cohen, 1965, pp. 97-99). For example, an investi-
gator wishes to have power equal to .80 to detect a population r of .40 (the
ES) at a, =.05. By the methods described in Section 3.4 in Chapter 3, he
finds that he must have n = 46 cases to meet these specifications. (A discussion
of the basis for specifying desired power and the use of power=.80 as a
convention will be found in Section 2.4 of Chapter 2.)

This major type of power analysis is discussed and illustrated in the
Sections B.4 (where B indexes the chapter numbers 2-8). Each of these
sections contain sample size tables (numbered B.4.A) from which, given a,
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the ES, and desired power, the n is determined. A slightly different approach
to n determination is employed in Chapters 9 and 10.

1.5.3 ES As A FUNCTION OF a, n, AND POWER. A third type of power
analysis is of less general utility than the first two, but may nevertheless be
quite useful in special circumstances (Cohen, 1970). Here, one finds the ES
which one can expect to detect for given a, n, and with specified power. For
example, an investigator may pose the question, ** For a significance test of a
product moment r at a, = .05 with a sample of n = 30, what must the popula-
tion r (the ES) be if power is to be .80, i.e., what is the detectable ES for these
specifications 7" The answer, obtainable by backward interpolation (in Table
3.3.5) is that the population r must be approximately .48. Were his n equal to
46, the detectable ES would be r = .40.

This form of power analysis may be conventionalized for use in compari-
sons of research results as in literature surveys (Cohen, 1965, p. 100). One
can define, as a convention, a comparative detectable effect size (CDES) as
that ES detectable at a, = .05 with power = .50 for the n used in the statistical
test. So defined, the CDES is an inverse measure of the sensitivity of the
test, expressed in the appropriate ES unit.

" This type of power analysis is not discussed in detail in the ensuing
chapters. However, when readers have become familiar with the use of the
tables, they will find that it can be accomplished for all of the statistical tests
discussed by backward interpolation in the power tables, or when it proves
more convenient, in the sample size tables.

1.5.4 a as A FuncTioN oF n, POwWER, AND ES. The last type of power
analysis answers the question, ‘ What significance level must 1 use to detect a
given ES with specified probability (power) for a fixed given n?" Consider
an investigator whose anticipated ES is a population r of .30, who wishes
power to be .75, and who as an n of 50, which she cannot increase. These
specifications determine the significance criterion he must use, which can
be found (by rough interpolation between subtables in Table 3.4.1) to be
about a; =.08, or a, =.15).

This type of analysis is very uncommon, at least partly because of the
strength of the significance criterion convention, which makes investigators
loath to consider ‘“large™ values of a. We have seen that this frequently
means tolerating (usually without knowing it) large values of b, i.e., low
power. When power issues are brought into consideration, some circum-
stances may dictate unconventionally large a criteria (Cohen, 1965, p. 99fT).

This type of power analysis is not, as such, further discussed in Chapters
2-10, although it is indirectly considered in some of the examples.When the
reader has become familiar with the tables, it can be accomplished for all
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the statistical tests discussed in this book by interpolation between subtables
of the sample size tables (B.4.A), or when more convenient, between power
tables (B.3.A), within the range provided for a, i.e., a,: .01-.20, and a,:
.005-.10.

In summary, four types of power analysis have been described. This book
is designed primarily to facilitate two of these, the solutions for power and
for sample size. It is also possible, but with less ease, to accomplish the other
two, solution for ES and for a, by means of backward interpolation in the
tables.

1.5.5 “ProvING” THE NuLL HyPOTHESIS. Research reports in the
literature are frequently flawed by conclusions that state or imply that the
null hypothesis is true. For example, following the finding that the difference
between two sample means is not statistically significant, instead of properly
concluding from this failure to reject the null hypothesis that the data do
not warrant the conclusion that the population means differ, the writer
concludes, at least implicitly, that there is no difference. The latter conclusion
is always strictly invalid, and is functionally invalid as well unless power is
high. The high frequency of occurrence of this invalid interpretation can be
laid squarely at the doorstep of the general neglect of attention to statistical
power in the training of behavioral scientists.

What is really intended by the invalid affirmation of a null hypothesis is not
that the population ES is literally zero, but rather that it is negligible, or
trivial. This proposition may be validly asserted under certain circumstances.
Consider the following: for a given hypothesis test, one defines a numerical
value | (for iota) for the ES, where i is so small that it is appropriate in the
context to consider it negligible (trivial, inconsequential). Power (1 — b) is
then set at a high value, so that b is relatively small. When, additionally, a is
specified, n can be found. Now, if the research is performed with this n and it
results in nonsignificance, it is proper to conclude that the population ES is
no more than i, i.e., that it is negligible; this conclusion can be offered as
significant at the b level specified. In much research, ‘“ no” effect (difference,
correlation) functionally means one that is negligible; *“ proof” by statistical
induction is probabilistic. Thus, in using the same logic as that with which we
reject the null hypothesis with risk equal to a, the null hypothesis can be
accepted in preference to that which holds that ES = i with risk equal to b.
Since i is negligible, the conclusion that the population ES is not as large as i
is equivalent to concluding that there is *“ no” (nontrivial) effect. This comes
fairly close and is functionally equivalent to affirming the null hypothesis
with a controlled error rate (b), which, as noted above, is what is actually
intended when null hypotheses are incorrectly affirmed (Cohen, 1965, pp.
100-101; Cohen, 1970). (See Illustrative Examples 2.9, 3.5, 6.8, and 9.24.)
(Also, see Fowler, 1985.)
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This statistically valid basis for extracting positive conclusions from *‘nega-
tive findings’’ may not be of much practical help to most investigators. If, for
example, one considers a population r = .10 as negligigle (hence, i), and plans
a test of the null hypothesis (at a, = .05) for power = .95 (b = .05) to detect
i, one discovers that the n required is 1294; for power = .90 (b = .10), the
required n = 1047; and for power = .80 (b = .20), n = 783 (Table 3.4.1).
For the much more liberal specification of r = .20 as i, the test (at a, = .05)
for power = .95 (b = .05) requires n = 319; for power = .90 (b = .10) requires
n = 259, and even for power = .80 (b = .20), the required n = 194 (Table
3.4.1). Thus, relatively large sample sizes are necessary to establish the negli-
gibility of an ES. But if nothing else, this procedure at least makes explicit what
it takes to say or imply from a failure to reject the null hypothesis that there is
no (nontrivial) correlation or difference between A and B.

1.6 SIGNIFICANCE TESTING

Although the major thrust of this work is power analysis, a simple rela-
tionship between power and significance made it relatively simple in the
computation of the power tables to provide an aid to significance testing
which users of this handbook may find convenient. Generally, we can define
the effect size in the sample (ESs) using sample statistics in the same way as
we define it for the population, and a statistically significant ESg is one which
exceeds an appropriate criterion value. For most of the power tables, these
criterion values for significance of the sample ES (for the given a significance
criterion and n) are provided in the second column of the power tables under
the symbol for the ES for that test with subscript ¢ (for criterion), e.g.,
d. for the t test on means.

1.7 PLAN OF CHAPTERS 2-10

Each of the succeeding chapters presents a different statistical test. They
are similarly organized, as follows:

Section 1. The test is introduced and its uses described.

Section 2. The ES index is described and discussed in detail.

Section 3. The characteristics of the power tables and the method of
their use are described and illustrated with examples.

Section 4. The characteristics of the sample size tables and the method
of their use are described and illustrated with examples.

Section 5. In Chapters 2-6 and 8, the use of the power tables for signifi-
cance tests is described and illustrated with examples.



CHAPTER 2

The t Test for Means

2.1 INTRODUCTION AND USE

The arithmetic mean is by far the most frequently used measure of
location by behavioral scientists, and hypotheses about means the most
frequently tested. The tables have been designed to render very simple the
procedure for power analysis in the case where two samples, each of n cases,
have been randomly and independently drawn from normal populations,
and the investigator wishes to test the null hypothesis that their respective
population means areequal, H,: m, — my = 0 (Hays, 1973, p. 408f; Edwards,
1972, p. 86), referred to below as Case 0. The test is the t test for independent
means. The tables can also be used to analyze power for (a) the t test on means
of two independent samples when n, # ng (Case 1), (b) an approximate t test
on the means of independent samples when o, # o5 (Case 2), (¢) a one-sample
t test of the null hypothesis that a population mean equals some specified
value, Ho:m = ¢ (Case 3) (Hays, 1981, p. 279), and (d) the t test on the means
of dependent samples, i.e., paired values (Case 4) (Hays, 1981, pp. 296-298;
Edwards, 1972, p. 247f). These latter four applications will be discussed below.
following consideration of the (Case 0) t test for independent means drawn
from equally varying populations and based on equal size samples. Finally,
the tables can also be used for significance testing, as detailed in Section 2.5.

In the formal development of the t distribution for the difference between
two independent means, the assumption is made that the populations sampled
are normally distributed and that they are of homogeneous (i.e., equal)
variance. Moderate departures from these assumptions, however, have
generally negligible effects on the validity of both Type I and Type Il error
calculations. This is particularly true for nondirectional tests and as sample

19
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sizes increase above 20 or 30 cases. The only noteworthy exception to the
above is under the condition of substantially unequal variances together
with substantially unequal sample sizes (whether small or large). Summaries
of the evidence in regard to the *‘robustness” of the t (and F) test is provided
by Scheffé (1959, Chapter 10), and in less technical terms, by Cohen (1965,
pp. 114-116). See also Boneau (1960, 1962).

2.2 THEe EFrecT Size INDEX: d

As noted above (Section 1.4), we need a ““pure’ number, one free of our
original measurement unit, with which to index what can be alternately
called the degree of departure from the null hypothesis of the alternate
hypothesis, or the ES (effect size) we wish to detect. This is accomplished by
standardizing the raw effect size as expressed in the measurement unit of
the dependent variable by dividing it by the (common) standard deviation
of the measures in their respective populations, the latter also in the original
measurement unit. For the two independent samples case, this is simply
@.2.1) d=Ta"Ms

g
for the directional (one-tailed) case, and

(2.2.2) d= [Ma—ms]

g
for the nondirectional (two-tailed) case,

where d = ES index for t tests of means in standard unit,
m,, my = population means expressed in raw (original measurement)
unit, and
o = the standard deviation of either population (since they are
assumed equal).

The use of d is not only a necessity demanded by the practical require-
ments of table making, but proves salutary in those areas of the behavioral
sciences where raw units are used which are quite arbitrary or lack meaning
outside the investigation in which they are used, or both. Consider, for ex-
ample, the question whether religious groups A and B differ in their favor-
ableness toward the United Nations. The latter may well be indexed by an
ad hoc attitude scale which yields a score expressed in points, such that
the more points the more favorable the attitude. The absolute size of a
point is a consequence of arbitrariness in the decisions made by the investi-
gator, and/or in the scale construction method, and/or in the writing or selec-
tion of the items. If the A population has a mean of 280 and the B popula-
tion a mean of 270, the question ‘“How large is the effect?”” can only be
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answered with ‘“ten points,” a generally unsatisfactory answer in the ab-
sence of a basis for answering the necessarily following question, *Well,
how large is a point?”’

d provides an answer to such questions by expressing score distances in
units of variability. If, in the above situation, the common within-popula-
tion standard deviation is ¢ = 100 scale points,
m,—mg 280-270 10

d= = =.
o 100 100 ’

i.e., the means differ by a tenth of a standard deviation. Since both numera-
tor and denominator are expressed in scale units, these “cancel out,” and
d is a pure number (here a ratio), freed of dependence upon any specific
unit of measurement.

On the other hand, consider the circumstance when ¢ =35 rather than
100. Now,

i.e., the means differ by two standard deviations. This is obviously a much
larger difference than isd=.1.

But how large are each of these differences, and how much larger is the
second than the first? There are various ways the values of d may be under-
stood.

2.2.1 d As PERCENT NoNOVERLAP: THE U MEASURES. If we maintain
the assumption that the populations being compared are normal and with
equal variability, and conceive them further as equally numerous, it is possible
to define measures of nonoverlap (U) associated with d which are intuitively
compelling and meaningful. As examples:

1. Whend =0, and therefore either population distribution is perfectly
superimposed on the other, there is 1009, overlap or 09 nonoverlap,
hence U, =0. In such a circumstance, the highest 509, of population B
exceeds the lowest 509, of population A. We designate as U, (509 in this
example), a second percentage measure of nonoverlap, the percentage in
the B population that exceeds the same percentage in the A population.
Finally, as third measure of nonoverlap, U,, we take the percentage of the
A population which the upper half of the cases of the B population exceeds.
Whend=0,U, =50.0%.

2. Whend =.1 as in the above example, the distribution of the popula-
tion with the larger mean, B, is almost superimposed on A, but with some
slight excess, i.e., some nonoverlap. U, here equals 7.7%, that is, 7.7% of
the area covered by both populations combined is not overlapped. For U,,
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the value is 52.09%, i.e., the highest 52.0% of the B population exceeds
the lowest 52.09, of the A population. For U,, the value is 54.0%, i.e., the
upper 509, of population B exceeds 54.0%, of the values in the A popula-
tion.

3. When we posited the smaller o (=S5), we found d =2.0. U, then
equals 81.1%, the amount of combined area not shared by the two popula-
tion distributions. In this case, the highest 84.19, of the B population
exceeds the lowest 84.1% of the A population, thus U, =84.19. Finally,
the upper half of the B population exceeds 97.7%, of the A population, so
thatU, =97.7%.

Table 2.2.1

Equivalents of d

2
d U‘ U2 U’ r r
(] 0.0% 50.0% 50.0% .000 .000
.1 7.7 52,0 sh.0 .050 .002
.2 14,7 sh,0 £7.9 .100 .010
3 21.3 56.0 61.8 148 .022
. 27.4 57.9 65.5 .196 .038
.5 33.0 59.9 69.1 203 .059
.6 38.2 61.8 72.6 .287 .083
o7 .0 63.7 75.8 .330 .109
.8 b7.4 65.5 78.8 I .138
.9 51.6 67.k 81.6 Ao 168
1.0 55.4 69.1 8h. L7 .200
1.1 58.9 70.9 86.4 482 .232
1.2 62,2 72.6 88.5 51k .265
1.3 65,3 74,2 90,3 o545 .297
1.6 68.1 75.8 91.9 573 .329
1.5 70.7 77.3 93.3 .600 .360
1,6 7.1 78.8 9%.5 .625 .390
1.7 75.4 80.2 95.5 648 A9
1.8 77.4 81.6 96,4 .669 k8
1.9 79.4 82.9 97.1 .689 Ry "
2.0 81.1 84,1 97.7 .707 .500
2.2 4.3 86.4 98.6 740 548
2.6 87.0 88.5 99.2 .768 .590
2.6 89,3 90.3 99.5 793 .628
2.8 9.2 9.9 99.7 814 .662
3.0 92,8 9.3 99.9 .832 .692
3.2 9,2 9.5 9.9 .848 719
3.6 95.3 95.5 * .862 743
3.6 96.3 96.4 * .874 + 76k
3.8 97.0 97.1 * .885 .783
k.0 97.7 97.7 * .89l .800

* Greater then 99.95
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The reader is free to use whichever of these U measures he finds most
meaningful to him in the context of his application. They are simply related
to d and each other through the cumulative normal distribution. If d is
taken as a deviate in the unit normal curve and P as the percentage of the
area (population of cases) falling below a given normal deviate, then

(2.2.3) U,="P,,
(2.2.4) U,=P,,
2P, —1 2U,-1
2.2.5 U, =9 __.-72
( ) 1 Pdlz Uz

Table 2.2.1 presents U, U,, and U, for values of d=.1 (.1) 2.0 (.2)
4.0. Its use will be illustrated after we have considered two other bases for
the understanding of d.

222 d IN TErRMS OF CORRELATION AND PROPORTION OF VARIANCE.
Membership in the A or in the B population may be considered to be a
simple dichotomy or a two point scale. Scoring it, for example, 0 for member-
ship in A and 1 for membership in B (the values assigned are immaterial),
one can express the relationship between population membership and any
other variable as a Pearson product-moment correlation coefficient (r).
Each member in the two populations may be characterized by a pair of
variables, the “score” on population membership (X) and the value of the
other variable (Y), and the r between X and Y can then be found by any of
the usual computing formulas for r (Hays, 1973, p. 631f; Cohen & Cohen,
1975, pp. 32-35), or more readily as the point biserial r (Cohen & Cohen,
1975, p. 35ff). Investigators may prefer to think of effect sizes for mean
differences in terms of r’s, rather than d’s, and they are related by

d
(2.2.6) r V@i
Formula (2.2.6) is appropriately used when the A and B populations are
such that they can be conceived as equally numerous. This will usually be
the case when A and B represent some experimental manipulation (e.g., the
presence or absence of a stimulus, or two different sets of instructions),
or some abstract property (e.g., high versus low anxiety level, or native
versus foreign speaker), as well as when the dichotomy represents real and
equally numerous populations, as is the case (at least approximately) with
males and females. The case of equally numerous populations is the usual
one. This is the case assumed for the values of r given in Table 2.2.1.
When, however, the populations are concrete and unequal collections of
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cases, the inequality should figure in the assessment of the degree of relation-
ship (e.g., finally diagnosed schizophrenics versus others on a diagnostic
psychological test). The more general formula for r should then be used:
d
r= ———Ho
Vd? + (1/pq)’
where p = proportion of A’s in combined A and B populations, and
q=1-p (i.e., proportion of B’s).

[The reader will note that when p =q=.5, formula (2.2.7) reduces to
formula (2.2.6).]

Once a difference between population means of A and B can be expressed
asr, it can also and usually most usefully be expressed as r2, the proportion
of the total variance (PV) of Y in the combined A and B populations as-
sociated with or accounted for by population membership (X =0 or .I).

Table 2.2.1 present values of both r and r? equivalent to d for the case
where equally numerous populations are assumed. If the means of two
equally numerous populations on a variable Y differ by d = 1.0, then popu-
lation membership relates to Y with r = .447, and r? = .200 of the combined
population variance in Y is associated with A versus B membership (X).

(2.2.7)

2.2.3 “SMALL,” “MEDIUM,” AND *“LARGE” d VALUES. When working
with a variable Y which has been well studied, the selection of an effect size
expressed in d offers no particular difficulty. On the one hand, estimates of
the within-population o are readily at hand and the number of raw points
difference between A and B population means to be detected (or to serve as
an alternate hypothesis to the null) arise naturally out of the content of
the inquiry. Thus, a psychologist studying the effects of treatment in phenyl-
pyruvic mental deficiency will likely have an estimate of the o of IQ in such a
population (e.g., o = 12.5) and be able to posit an interest in detecting a mean
difference between treated and untreated cases of, say, 10 IQ points. Thus,
he goes directly to d = 10/12.5 = .8. Similarly, an anthropologist studying
social class differences in height in a preliterate culture would have an esti-
mated o of height, for example, 2.5 in., and would posit the mean difference he
was seeking to detect between two social class populations, say 2 in. He, too,
could then find his difference expressed as d = 2/2.5, which (also) equals .8.

But consider now the frequently arising circumstance where the variable
Y is a new measure for which previously collected data or experience are
sparse or even nonexistent. Take, for example, an especially constructed
test of learning ability appropriate for use with phenylpyruvic mental
deficients. The investigator may well be satisfied with the relevance of the
test to his purpose, yet may have no idea of either what the o is or how
many points of difference on Y between means of treated and untreated
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populations he can expect. Thus, he has neither the numerator (m, — mg)
nor the denominator (o) needed to compute d.

It is precisely at this point in the apparent dilemma that the utility of
the d concept comes to the fore. It is not necessary to compute d from a
posited difference between means and an estimated standard deviation; one
can posit d directly. Thus, if the investigator thinks that the effect of his
treatment method on learning ability in phenylpyruvia is small, he might
posit a d value such as .2 or .3. If he anticipates it to be large, he might posit
d as .8 or 1.0. If he expects it to be medium (or simply seeks to straddle
the fence on the issue), he might select some such value asd = .5.

The terms “small,” “medium,” and *‘large™ are relative, not only to
each other, but to the area of behavioral science or even more particularly
to the specific content and research method being employed in any given
investigation (see Sections 1.4 and 11.1). In the face of this relativity, there is
a certain risk inherent in offering conventional operational definitions for
these terms for use in power analysis in as diverse a field of inquiry as be-
havioral science. This risk is nevertheless accepted in the belief that more
is to be gained than lost by supplying a common conventional frame of
reference which is recommended for use only when no better basis for esti-
mating the ES index is available.

SMALL EFFECT SIZE: d=.2. In new areas of research inquiry, effect
sizes are likely to be small (when they are not zero!). This is because the
phenomena under study are typically not under good experimental or
measurement control or both. When phenomena are studied which cannot
be brought into the laboratory, the influence of uncontrollable extraneous
variables (*noise’’) makes the size of the effect small relative to these (makes
the ““signal” difficult to detect).

The implication of d =.2 as the operational definition of a small differ-
ence between means can be seen in Table 2.2.1. When d =.2, normally
distributed populations of equal size and variability have only 14.7% of
their combined area which is not overlapped (U,). If B is the population
with the larger mean and A the other, the highest 54 % of the B population
exceeds the lowest 549 of the A population (U,). Our third measure of
nonoverlap (U,) indicates that 57.97, of the A population is exceeded by
the mean (or equivalently the upper half) of the B population.

From the point of view of correlation and maintaining the idea of equally
numerous populations, d =.2 means that the (point biserial) r between
population membership (A vs. B) and the dependent variable Y is .100,
and r? is accordingly .010. The latter can be interpreted as meaning that
population membership accounts for 19 of the variance of Y in the com-
bined A and B populations.

The above sounds indeed small (but see Section 11.2). Yet it is the order of
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magnitude of the difference in mean IQ between twins and nontwins, the lat-
ter being the larger (Husén, 1959). It is also approximately the size of the dif-
ference in mean height between 15- and 16-year-old girls (i.e., .5 in. where the
o is about 2.1). Other examples of small effect sizes are adult sex differences
on the Information and Picture Completion Subtests of the Wechsler Adult
Intelligence Scale, favoring men, while a difference favoring women on the
Digit Symbol Test which is twice as large (Wechsler, 1958, p. 147).

MEDIUM EFFECT SizE: d=.5. A medium effect size is conceived as
one large enough to be visible to the naked eye. That is, in the course of
normal experience, one would become aware of an average difference in
IQ between clerical and semiskilled workers or between members of pro-
fessional and managerial occupational groups (Super, 1949, p. 98).

In terms of measures of nonoverlap (Table 2.2.1), ad =.5 indicates that
33.0% (=U)) of the combined area covered by two normal equal-sized
equally varying populations is not overlapped; that (where mg>m,) 59.9%
(=U,) of the B population exceeds 59.9% of the A population; finally,
that the upper half of the B population exceeds 69.1%, (=U;) of the A
population.

In terms of correlation, d = .5 means a point biserial r between popula-
tion membership (A vs. B) and a dependent variable Y of .243. Thus, .059
(=r?) of the Y variance is “accounted for’’ by population membership.

Expressed in the above terms, the reader may feel that the effect size desig-
nated medium is too small. That is, an amount not quite equal to 6% of
variance may well not seem large enough to be called medium. Butd=.5
is the magnitude of the difference in height between 14- and 18-year-old
girls (about | in. where o = 2). As noted above, it represents the difference in
mean [Q between clerical and semiskilled workers and between professionals
and managers (about 8 points where o =15). It is also the difference in
means on the World War 1l General Classification Test for enlisted men
who had been teachers versus those who had been general clerks (Harrell
and Harrell, 1945, pp. 231-232). Depending on his frame of reference, the
reader may consider such differences either small or large. We are thus
reminded of the arbitrariness of this assignment of quantitative operational
definitions to qualitative adjectives. See Section 11.2.

LARGE EFFECT SIZE: d =.8. When our two populations are so separ-
ated as to make d = .8, almost half (U,=47.49) of their areas are not
overlapped. U, = 65.5%, i.e., the highest 65.5% of the B population exceeds
the lowest 65.5% of the A population. As a third measure, the mean or
upper half of the B population exceeds the lower 78.8%, (=U;) of the A
population.

The point biserial r here equals .371, and r? thus equals .138.

Behavioral scientists who work with correlation coefficients (such as, for
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example, educational psychologists) do not ordinarily consider an r of .371
as large. Nor, in that frame of reference, does the writer. Note however that
it is the .8 separation between means which is being designated as large,
not the implied point biserial r. Such a separation, for example, is represented
by the mean IQ difference estimated between holders of the Ph.D. degree
and typical college freshmen, or between college graduates and persons with
only a 50-50 chance of passing in an academic high school curriculum
(Cronbach, 1960, p. 174). These seem like grossly perceptible and therefore
large differences, as does the mean difference in height between 13- and 18-
year-old girls, which is of the same size (d = .8).

2.3 PoweRr TABLES

The power tables are used when, in addition to the significance criterion
and ES, the sample size is also specified ; the tables then yield power values.
Their major use will then be post hoc, i.e., to find the power of a test after
the experiment has been performed. They can, of course, also be used in
experimental planning by varying n (or ES or a or all these) to see the conse-
quences to power of such alternatives.

2.3.1 Case0: o, =0y, n, = ng. The power tables are designed to yield
power values for the t test for the difference between the means of two
independent samples of equal size drawn from normal populations having
equal variances (Case 0). They are described for such use below, and in a
later section for other conditions (Cases 1-4). Tables list values for a, d,
and n:

1. Significance Criterion, a. There are tables for the following values of
a:a; =01, a, =.05, a, =.10; a, =.0l, a, =.05, a, =.10, where the sub-
scripts refer to one- and two-tailed tests. Since power at a, is to an adequate
approximation equal to power at a, = 2a, for power greater than (say) .10,
one can also use the tables for power at a, = .02 (from the table fora, = .01),
a,=.20 (from a, =.10), a, =.005 (from a, =.01), and a; =.025 (from
a, =.05).

2. Effect Size, ES. It will be recalled that in formula (2.2.1) the index d
was defined for one-tailed tests as
d= m,
o
where the alternate hypothesis specifies that mg >m,, and ¢ is the common
within-population standard deviation (i.e., ¢, = o = 0).
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Power of t test of m;, = m, ata, =.01

d

n d. 0 .20 30 L0 .50 .60 .70 .80 1,00 1,20 1.40
8 1.3 02 03 o 05 08 12 1 19 30 W3 57
9 1,22 02 03 o 06 09 13 16 22 35 49 63

10 1.6 02 03 o 07 10 W 18 25 ko s§ 70

1n 1,08 02 0 05 07 1" 15 2 28 W5 61 76

12 1.02 02 03 05 08 12 17 23 k)| 4 66 81

13 .98 02 03 05 08 13 19 26 3+ 53 n 85

1h O 02 03 06 09 14 20 28 38 57 715 88

15 .90 02 o4 06 10 15 22 N W 61 79 90

16 .87 02 ol 06 10 16 2% b1 [ 6 82 92

17 8 02 Ok 07 n 18 26 36 41 68 8s 9%

18 .81 02 o+ 07 12 19 27 38 W n 87 95

19 J9 02 o 07 13 20 29 W ® % 89 96

20 J7 02 o4 08 13 21 30 42 sh 76 91 97

21 JJ5 02 05 08 1 22 32 M 56 79 93 98

22 .73 02 05 08 15 2) kU Y 3 59 8 9 98

23 0N 02 05 09 15 2 36 W8 6 83 95 99

2h LJO 02 05 09 16 25 37 50 64 85 95 99

25 .68 02 05 10 17 27 39 53 66 87 96 99

26 .67 02 05 10 17 28 ™ 55 68 8 97 99

27 .65 02 05 10 18 29 W2 57 70 9% 97 *

28 b4 02 05 1 19 30 W 59 72 91 98

29 .63 02 06 n 19 AN 4 60 74 92 98

30 .62 03 06 N 20 32 W8 62 75 93 99

3N .61 03 06 12 21 34 50 6 77 9% 99

32 .60 03 06 12 22 35 51 66 79 9k 99

33 .59 03 06 13 22 36 52 67 80 95 99

34 .58 03 06 13 23 37 53 69 81 95 99

35 <57 03 07 13 24 38 55 70 83 96 *

36 56 03 07 b 25 ko 56 72 8 9%

37 55 03 07 (L} 26 (3] 58 73 85 97

38 .55 03 07 15 26 b2 60 75 8 97

39 N 03 07 15 27 43 61 76 87 98

4o .53 03 07 15 28 173 62 78 88 98

h2 <52 03 08 16 30 W7 [ 80 90 98

by 51 03 08 17 N b 67 82 9 9

b6 RY) 03 o8 18 33 51 69 8 9 99

48 48 03 08 19 34 53 n 8s 9l 99
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Table 2.3.1 (continued)

d

" d Jd0 .20 .30 .o .50 .60 .70 .80 1.00 1.20 1.ko0
50 A7 03 09 20 36 [1] 7 87 95 99 * *
52 RT3 03 03 21 37 57 75 88 95 *
sh s ok 1o 21 39 59 77 90 9
56 M5 05 10 22 4 6 79 9N 97
58 . s 10 23 WM 62 8 92 97
60 43 05 N 26 43 64 82 93 98
64 H2 0 05 N 26 46 68 85 9% 98
68 Lo 08 12 27 W9 n 87 % 9
72 39 05 12 29 52 74 89 97 99
76 .38 05 13 N 55 76 9 97 99
80 .37 05 1% 33 57 78 92 98 *
8k .36 06 15 b1 60 81 9% 99
88 35 06 16 36 62 83 95 99
92 .35 06 16 38 6h 85 96 99
96 .34 06 17 39 66 86 96 99
100 33 06 18 @ 69 88 97 *
120 30 o7 21 49 77 93 9
140 .28 07 25 57 84 96 *
160 26 07 29 63 89 98
180 .25 o8 33 69 93 99
200 .23 03 37 75 95 *
250 .21 n 46 8k 98
300 A9 13 55 9 99
350 A8 16 & 95 *
400 .16 18 69 97
450 16 20 75 98
500 A5 22 80 99
600 .13 27 87 *
700 A2 32 92
800 2 37 95
900 N 42 97
1000 10 U6 98

® Power values below this point are greater than .995.
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Table 2.3.2

Power of t test of m; = m, ata, =.05

d

n dc .10 .20 .30 .m0 .50 .60 .70 .80 1.00 1.20 1.40
8 .88 07 1o 13 19 25 N 38 L6 61 h 85
9 82 07 n 15 20 27 3l W 50 66 79 88
10 .78 08 n 16 22 29 36 45 53 70 8 9
n J 08 12 17 23 N 39 48 57 86 9
12 .70 08 12 18 25 33 W 51 60 77 89 96
13 .67 08 13 18 26 3 Wb sk 63 B0 9N 97
W b 08 13 19 27 36 k6 57 66 83 93 98
15 .62 08 13 20 28 38 48 59 69 85 9% 98
16 40 09 k2t 30 4 5 62 72 8 95 99
7 .58 09 W 22 N L2 53 6k 7 8 9% 99
18 .56 09 15 22 32 43 55 66 76 90 97 99
19 .55 09 15 23 33 ks 57 68 718 92 98 *
20 53 09 15 24 34 46 59 70 80 93 98

21 52 09 16 25 36 48 60 72 82 9b 99
22 .5 09 16 26 37 50 62 MW B8 95 99

23 «50 10 16 26 38 51 6l 76 85 96 99

24 U8 10 17 27 39 53 66 77 86 96 99

25 M7 10 17 28 w0 sS4 67 79 8 97 99
26 6 10 18 28 n 55 69 80 89 97 *

27 M6 10 18 29 42 57 70 82 90 98

28 A5 10 18 30 43 58 72 83 90 98

29 Ak 0 19 30 4 59 713 8k 91 98

30 43 10 19 3N 46 6 74 8 92 99

3 42 10 19 32 1Y 62 76 86 93 99

32 b2 1" 20 33 48 63 n 87 93 99

33 K n 20 33 L9 64 78 88 9k 99

3 L0 0N 20 3 50 66 79 8 95 99

35 L0 21 3 50 67 80 8 95 99

36 39 N 21 35 5 68 8 90 96 99

37 39 N 21 36 52 69 82 9N 9% *

38 38 N 22 36 53 710 83 91 9

39 38 N 2 37 sho0n 8 92 9

Lo .37 1" 22 38 55 72 84 93 97

b2 .36 12 23 39 57 h 86 9 98

by 35 12 26 k0o 59 75 87 95 98

L6 .35 12 2k )] 60 77 89 95 99

L8 34 12 25 43 62 79 90 96 99
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Table 2.3.2 {continued)
d
n d. J0 .20 .30 40 .50 .60 .70 .80 1,00 1,20 1.40
50 .33 12 26 W 63 80 9N 97 99 * *
52 .33 13 26 45 65 8t 92 97 99
sk .32 13 27 46 66 83 93 98 99
56 51 13 28 47 68 84 93 98 99
58 %)) 13 28 Ly 69 85 9 98 *
60 30 13 29 50 70 8 95 98
64 29 b 30 52 73 88 9% 99
68 .28 h n [ 75 90 97 99
72 .28 15 33 6 717 N 97 9
76 27 15 34 s8 79 92 98 *
80 .26 15 35 60 81 93 98
84 .26 16 36 61 82 ol 99
88 .25 16 37 63 84 95 99
92 .2k 17 38 65 8s 96 9
96 .2k 17 bo 66 87 96 99
100 .23 17 L 68 88 97 *
120 21 19 L6 75 93 99
140 .20 21 st 80 95 99
160 .18 23 56 85 97 *
180 A7 24 60 88 98
200 6 26 6 9 99
250 A5 30 72 9% *
300 .13 kL 79 98
350 .12 37 84 99
Loo .12 1] 88 *
450 R B 91
500 A0 47 93
600 .10 53 97
700 .09 59 98
800 .08 6h 9
900 .08 68 *
1000 07 72

* Power values below this point are greater than .995,
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Table 2.3.3

Power of t test of m; = m, ata, =.10

d

n d A0 .20 .30 MO .50 .60 .70 .80 1,00 1,20 1.40
8 .67 13 18 26 30 37 4 8 60 7 8 92
9 +63 14 19 25 32 39 b7 56 64 78 88 9%
10 59 1 19 26 W 42 50 859 67 81 91 9%
n .57 W 20 27 35 L4 53 62 70 8 93 97
12 S 15 28 37 46 56 65 73 87 o9 98
13 .52 15 21 29 38 4B 58 68 76 8 96 99
14 .50 15 22 30 40 50 61 70 79 90 97 99
15 M8 15 23 n 42 52 63 72 81 92 97 99
16 M6 16 23 32 43 Sk 65 75 83 93 98 *
17 Y 16 24 33 W 56 67 76 84 94 98

18 Sl 16 24 34 46 58 69 78 86 95 99

19 A2 16 25 35 47 59 70 8 8 9% 9

20 M1 16 25 36 48 61 72 82 89 97 99

21 40 17 26 37 50 62 74 83 90 97 99

22 39 17 26 38 51 6l 75 8+ 91 98 *

23 .38 17 27 39 52 65 77 8 92 98

2% .38 17 27 & 83 67 18 8 9 98

25 37 17 28 W [1] 8 79 88 9 99

26 36 18 28 56 69 80 89 o4 99

27 .35 18 29 42 57 70 8 90 95 99

28 .35 18 29 43 58 72 83 9 95 9

29 .34 18 30 & 59 1N 8 9 9% 99

30 .33 18 30 45 60 74 85 92 96 99

N .33 19 3 s & 7% 8 93 97 *

32 .32 19 N 4 62 76 86 93 97

33 32 19 32 47 63 77 87 94 97

I K1) 19 32 48 64+ 78 88 9 98

35 .31 19 33 W8 65 79 89 95 98

36 30 19 33 49 66 80 89 95 98

37 .30 20 3 50 66 80 90 96 98

38 30 20 W 5 67 81 91 9% 99

39 .29 20 W [4] 68 82 9 9% 99

40 .29 20 35 52 69 83 92 97 99

42 .28 20 35 53 70 84 93 97 99

Lh 28 21 36 55 72 8 94 98 99

46 .27 21 37 56 73 86 9% 98 99

48 .26 21 38 57 5 88 95 98 *
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Table 2.3.3 (continued)
d

n d L0 .20 .30 L0 .50 .60 .70 .80 1.00 1,20 1.40
50 .26 22 39 58 76 89 96 99 * * * *
52 25 22 39 59 77 90 9% 99
s .25 22 o 6 78 90 97 99
56 .24 22 N} 62 80 Nn 97 99
58 24 23 42 63 8 92 97 99
60 2h 23 42 6l 82 93 98 99
6k 23 24 M4 66 83 ok 98 *
68 .22 24 Ls 68 85 95 99
72 2 26 47 70 87 9 99
76 21 25 48 n 88 96 99
80 .20 26 L9 73 89 97 99
8k .20 26 5 74 90 97 *
88 9 27 52 76 9 98
92 A9 27 53 77 92 98
96 .19 28 sh 79 93 99
100 A8 29 55 80 9 99
120 A7 0N 60 85 96 *
140 .15 33 65 89 98
160 b 35 69 92 99
180 R 37 73 9% 99
200 A3 39 76 96 *
250 RE M 83 98
300 0 48 88 99
350 A0 52 9 *
400 09 55 9
450 09 59 96
500 .08 62 97
600 .07 67 99
700 07 7299
800 .06 76 *
900 .06 80
1000 .06 83

* Power values below this point are greater than .995.
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Table 2.3.4

Power of t test of m; =m, ata, =.01

d

n d J0 .20 .30 .40 .50 .60 .70 .80 1.00 1.20 1,40
8 1.49 01 02 02 03 05 07 09 12 21 33 U8
9 1.3 o 02 02 ol 05 08 n 15 25 39 54

10 1.28 O 02 03 o4 05 09 12 17 29 4§ (3]

n 1.21 o1 02 03 O 07 10 14 20 33 50 67

12 1.15 o 02 03 05 07 N 16 22 38 55 72

13 1,10 o 02 03 05 08 12 18 25 &2 61 77

w 1,06 o 02 03 06 09 Wb 20 27 46 65 81

15 1.0 o1 02 o0+ 06 10 15 22 30 50 70 85

16 .97 O 02 o+ 07 " 16 28 1N 54 73 88

17 o9 01 02 ol 07 12 18 26 35 57 77 90

18 91 o 02 ot 08 12 19 28 38 61 80 92

19 .88 o1 02 05 08 13 21 30 W) (1 83 9%

20 .86 O 02 05 09 1 22 32 W 67 8 95

21 .83 (]] 03 05 09 15 24 34 L6 70 87 96

22 .81 (1] 03 05 10 156 25 36 W 73 89 97

23 J9 01 03 06 10 17 27 38 51 75 9 98

24 .J8 O 03 05 1N 18 28 40 54 78 92 98

25 .76 01 03 06 " 19 30 42 56 80 93 99

26 Jb 0 03 06 12 20 31 4 58 8 95 99

27 .73 (1] 03 o7 12 21 33 L6 60 8 95 99

28 7 02 03 07 13 22 W L8 63 8 9% 99

29 .70 02 03 07 W 23 3 50 65 87 97 *

30 .69 02 03 07 W 24 37 52 66 88 97

n .68 02 o 08 15 25 39 54 68 89 98

32 66 02 o 08 15 26 40 56 70 9N 98

33 b5 02 ob 08 16 27 k2 8§57 72 92 98

3 o4 02 ob 08 17 28 W3 59 74 92 99

35 «63 02 ok 09 17 30 hs 61 75 93 99

36 262 02 ok 09 18 n 46 62 77 9% 99

37 .62 02 ok 09 18 32 48 [ 78 95 99

38 61 02 ok 10 19 33 49 66 80 95 9

39 .60 02 o 10 20 3 50 67 & 96 *

4o 59 02 ol 10 20 3 52 68 82 96

b2 .58 02 05 " 22 37 55 n 8 97

W .56 02 05 12 23 39 57 74 86 98

46 55 02 05 12 26 W 60 76 88 o8

48 54 02 o5 13 26 43 62 78 90 99
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Table 2.3.4 (continued)
d
n d, .10 .20 .30 Jho .50 .60 .70 .80 1,00 1.20 1.40
50 .53 02 06 b 27 b5 6k 8 91 99 * *
52 .51 02 06 b 28 47 67 82 92 99
5h .50 02 06 15 30 49 69 84 93 99
56 50 02 06 16 N 51 Al 86 9b *
58 b9 02 06 16 32 53 73 87 95
60 A48 02 07 17 3w 55 75 88 96
64 RS 02 07 18 36 58 78 9 97
68 45 02 08 20 39 62 81 93 98
72 by 02 08 2 42 65 8l 9% 98
76 42 03 09 23 L4 68 8 95 99
80 R 03 09 2h 47 N 88 96 99
8L Lo 03 10 26 50 7 90 97 99
88 .39 03 10 27 52 76 9 98 *
92 .38 03 n 29 sk 78 93 98
96 38 03 n 30 57 80 9% 99
100 .37 03 12 32 59 82 95 99
120 34 o 15 39 69 90 98 *
140 .3 o4 18 47 77 % 99
160 29 05 2 sh 84 97 *
180 27 05 25 60 88 98
200 26 06 29 66 92 99
250 .23 07 36 78 97 *
300 .21 09 45 8 99
350 .20 10 53 92 *
Loo .18 12 60 95
450 A7 b 66 97
500 A6 16 72 98
€00 .15 20 81 *
700 b 24 88
800 43 28 92
900 A2 33 95
1000 A2 37 97

* Power values below this point are greater than .995.
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Power of t testof m; =m, ata, =.05

d

n d. 0,20 .30 0 .50 .60 .70 .80 1,00 1,20 1.40
8 1.07 05 07 09 n is 20 25 3 46 60 73
9 1,00 05 07 09 12 16 22 28 3% 51 65 79
10 9 06 07 10 13 18 24 N 39 8% n 8L
n .89 06 07 10 | 20 26 3 W3 61 76 87
12 .85 06 08 " 15 21 28 37 Lé 65 80 90
13 .81 06 08 1" 16 23 N Lo 50 69 83 93
Tl .78 06 o8 12 17 25 33 L3 53 72 86 9l
15 .75 06 08 12 18 26 35 us 55 75 88 96
16 .72 06 08 13 19 28 37 48 59 718 90 97
17 J0 06 09 i3 20 29 39 51 62 80 92 98
18 .68 06 09 14 21 31 W [$] & 83 9l 98
19 .66 06 09 15 22 32 43 85 67 85 95 99
20 R 06 09 15 23 33 bLs 58 69 87 96 99

21 .62 06 10 16 24 35 LY 60 n 88 97 99

22 .61 06 10 16 25 36 L9 62 3 90 97 99
23 .59 06 10 17 26 38 1] (- 75 91 98 *
24 .58 06 10 17 27 39 83 66 77 92 93

25 .57 06 " 18 28 W 55 68 79 93 99

26 .56 06 n 19 29 L2 55 69 80 9l 99

27 .55 06 1 19 30 43 58 n 82 95 99

28 «5h 07 1" 20 n Ls 59 73 83 96 99

29 .53 07 12 20 32 45 61 74 8s 96 99

30 .52 07 12 21 33 47 63 76 86 97 *

3N .51 07 12 21 3 L9 64 77 87 97

32 .50 07 12 22 35 50 65 78 88 98

33 L9 07 13 22 36 11 67 80 89 98

34 A48 07 13 23 37 53 68 81 90 98

35 L8 07 13 23 38 sk 70 82 9 98

36 A7 07 13 2h 39 55 n 83 92 99

37 RT3 07 1h 25 39 56 72 8k 92 99

38 L6 07 117 25 Lo 57 73 8s 93 99

39 s 07 [ 26 W 58 M 86 9 99

Lo b5 07 b 26 42 60 75 87 9% 99

42 RS ] 07 15 27 Lb 62 n 89 95 99

[ R'Y 07 15 28 ) 6h 79 90 96 *

46 RN 03 16 30 48 66 81 91 97

48 R 08 16 n Ly 68 83 92 97
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Table 2.3.5 (continued)
d
n 4 J0 .20 .30 M0 .50 .60 .70 .80 1.00 1,20 1.40
50 4o 08 17 32 50 70 8l 93 98 * * *
52 .39 03 17 3% 5 Nn 86 o4 98
sk .38 08 18 3 83 73 87 95 98
56 .37 08 18 35 55 b 88 96 99
58 .37 08 19 36 57 16 8 96 99
60 .36 08 19 37 s8 77 90 97 99
[ 35 09 20 39 61 80 92 98 99
68 g 09 21 i s 82 93 98 *
72 33 09 22 43 66 8 94 99
76 32 09 23 45 69 8 95 99
80 %] 10 26 41 n 88 96 99
84 .30 10 25 49 73 90 97 99
88 .30 10 25 51 75 9 98 *
92 .29 10 27 52 77 92 98
96, 29 N 28 s4 79 93 99
100 .28 n 29 56 80 9% 99
120 .26 12 3 es 81 97 *
140 W24 13 38 n 92 99
160 .22 w3 76 95 99
180 .21 16 47 & 97 *
200 20 17 81 85 98
250 18 20 61 92 99
300 A8 23 69 96 *
350 A5 26 75 98
4oo A4 29 81 99
450 .13 32 8s 99
500 .12 35 88 *
600 R L3 93
700 Ao W8 96
800 0 52 98
900 .09 56 99
1000 09 81 99

* Power values below this point are greater than .995.
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Power of t testof m; =m, ata, =.10

d

n d. .10 .20 .30 0o .50 .60 .70 .80 1,00 1,20 1,40
8 .88 1 12 15 20 25 31 8 4 6 M 8%
9 .82 1" 13 16 2 27 3 42 50 66 79 B9
10 .78 N 13 17 22 29 37 s 53 70 83 92
n e n 13 18 26 N 39 48 57 74 86 9%
12 .70 1 14 19 25 33 42 51 60 7 89 96
13 A7 1 W 19 26 3 44 s4 63 80 9 97
14 64 n 14 20 27 36 46 57 66 83 93 98
15 .62 n 15 2 29 38 49 59 69 85 9% 98
16 60 M 15 21 30 45 62 72 8 9% 9
17 .58 N 15 22 3N 42 53 64 M B89 9 99
18 56 N 16 23 32 3 56 66 76 90 97 99
19 .55 11 16 24 33 bs 57 68 78 92 98 *
20 .53 12 16 24 35 47 59 70 80 93 98

2 .52 12 17 25 36 48 61 72 82 94 99

22 .51 12 17 26 37 50 62 7h 83 95 99

23 50 12 17 26 38 5 64 76 8 96 99

2k A8 12 18 27 39 53 66 77 8 9% 99

25 M7 12 18 28 Lo sh 67 79 88 97 99

26 46 12 18 29 4 55 69 80 89 97 *

27 M6 12 19 29 42 57 70 82 90 98

28 A5 12 19 30 4 s8 72 83 90 98

29 Abho12 19 N 45 59 73 B4 9 98

30 43 12 220 N 4 6 % 8 92 9

3 A2 0 13 20 32 47 62 76 8 93 99

32 A2 13 20 33 48 63 77 81 93 99

33 L1 13 2 33 49 6+ 78 88 94 99

34 A0 13 21 3 50 66 79 8 95 99

35 40 13 21 35 5 67 80 89 95 99

36 39 13 22 35 52 68 81 90 96 9

37 .39 13 22 36 52 69 82 91 96 *

38 38 13 22 37 83 70 8 9 96

39 .38 13 23 37 Sh n 84 92 97

40 37 13 23 38 s5 72 B4 93 97

42 .36 13 24 39 57 74 86 9% 98

Ll .35 14 24 4o 58 75 87 95 98

46 .35 1h 25 L] 60 77 89 95 99

L8 o34 14 25 43 62 79 90 96 99
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Table 2.3.6 (continued)
d
n d. J0 .20 .30 .40 .50 .60 .70 .80 1,00 1,20 1,k0
50 .33 W 26 W 63 80 91 97 99 * * *
52 .33 W 27 45 65 8l 92 97 99
sh .32 W 27 4 66 83 93 98 99
56 5] 15 28 47 68 8 93 98 99
58 53 15 29 b9 69 85 9% 98 *
60 .30 15 29 50 70 8 95 98
64 .29 15 30 52 73 8 96 99
68 .28 16 32 sk 75 90 97 99
72 .28 16 33 56 77 91 97 99
76 .27 16 34 58 79 92 98 *
80 .26 17 35 60 81 93 98
84 .26 17 36 61 82 9% 98
88 .25 17 37 63 8 95 99
92 L2 18 39 65 8 96 93
95 2k 18 40 66 87 96 99
100 .23 18 W 68 88 97 99
120 .21 20 L6 75 93 99 *
140 20 22 81 80 95 99
160 .18 23 56 85 97 *
180 A7 256 60 88 98
200 16 25 &4 9N 99
250 .15 30 72 96 *
300 .13 34 79 98
350 .12 37 84 99
4oo .12 4 88 *
Lso .1 oy 9t
500 0 47 93
600 .10 53 97
700 09 59 98
800 .03 64 99
900 .03 68 *
1000 .07 72

* Power values below this point are greater than ,995,
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For two-tailed tests [formula (2.2.2)],

d=|mA—m,|’

4

where the alternate hypothesis specifies only thatm, # mjy.
Provision is made ford =.10 (.10) .80 (.20) 1.40. Conventional definitions
of ES have been offered above, as follows:

small: d= .20,
medium: d= .50,
large: d=.80.

3. Sample Size, n. This is the size of each of the two samples being
compared. Provision is made for n =8 (1) 40 (2) 60 (4) 100 (20) 200 (50)
500 (100) 1000.

The values in the body of the table are the power of the test times 100,
i.e., the percentage of tests carried out under the given conditions which will
result in the rejection of the null hypothesis. The values are rounded to the
nearest unit, and they are generally accurate to within + 1 as tabled (i.e.,
to within .01).

Illustrative Examples

2.1 An experimental psychologist designs a study to appraise the effect
of opportunity to explore a maze without reward on subsequent maze
learning in rats. Random samples of 30 cases each are drawn from the
available supply and assigned to an experimental (E) group which is given
an exploratory period and a control (C) group, which is not. Following
this, the 60 rats are tested and the number of trials needed to reach a cri-
terion of two successive errorless runs is determined. The (nondirectional)
null hypothesis is |[mz — mc| = 0. She anticipates that the ES would be
such that the highest 60% of one population would exceed the lowest 60% of
the other, i.e., U, = 60% (Section 2.2). Referring to Table 2.2.1, she finds
that U, = 59.99 is equivalent to our conventional definition of a medium
effect: d =.50. That is, the alternative hypothesis is that the population
means differ by half a within-population standard deviation. The significance
criterion is a, = .05. What is the power of the test? Summarizing the speci-
fications,

32 = .05, d = .50, ﬂE =nc =N= 30.
In Table 2.3.5 (for a, =.05), for column d = .50 and row n = 30, power
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equals .47. Thus, for the given sample sizes and using the a, = .05 signifi-
cance criterion, the investigator does not quite have a fifty-fifty chance of
detecting d = .50.

The choice of d need not have proceeded by asserting the expectation
that the ES was ‘““medium” and using the conventional d = .5 value. Experi-
ence with the subjects and the maze in question or reference to the literature
may have provided the experimenter with an estimate of the within-
population standard deviation of trials scores, o (say 2.8), and theory or
intuition may have suggested a specific value for the experimental effect,
Imc — mg| (=2 trials, let us say). She would then use the explicit formula
(2.2.2),

_my=my| 2
d= =35 1.

¢4

In this case, in Table 2.3.5 with n=30 as before but now with
d =.70, power is found to be .76 (or by linear interpolation for d =.71,
power = .77).

It can also be argued that, given a theory, the psychologist would probably
predict the direction of the difference, say m. > m; (i.e., the animals profit
from their exploratory experience) and that therefore a directional test
should be used. In this case, Table 2.3.2 for a;, = .05 would be used, with
the results

for “medium” d = .50: n =30, power = .61,
for explicitd (from (2.2.1)) =.71: n =30, power = .86.

As described above (Chapter 1, Section 1.2), power is greater for direc-
tional tests than nondirectional tests, other things equal, provided that the
experimental results are in the anticipated direction. Experimenters are in an
embarassing position when they obtain large experimental effects in the un-
anticipated direction (Cohen, 1965, pp. 106-111).

This example was chosen, in part, to point out that the frequently selec-
ted sample size of 30 does not provide adequate power at the conventional
a, = .05 against a medium ES, which is frequently as large as can reasonably
be expected. Only when a large (d = .80) ES can be anticipated, for n = 30
at a, = .05, is.power as high as most investigators would wish, in this in-
stance .86 (from Table 2.3.5). When a small (d =.20) ES is anticipated, for
n =30, a, = .05, power is only .12 (Table 2.3.5)—probably not worth the
effort involved in performing the experiment.

2.2 A psychiatric investigator, in pursuing certain endocrinological
factors implicated in schizophrenia, performs an experiment in which urine
samples of 500 schizophrenics and 500 comparable normals are analyzed
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for a certain relevant metabolic product which is approximately normally
distributed with homogeneous variability. Since the implicated endocrino-
logical factor is only indirectly related to the metabolic product in the urine
and perhaps for other reasons, he anticipates only a small ES, specifically
that d = .20. He selects the conservative significance criterion of a, = .0l.
What is the power of his t test? Summarizing the specifications:

32=.0|, d=.20, ns=nN=5m.

In Table 2.3.4 (for a, =.0l), for column d =.20, row n =500, power
=.72.

Were he to be satisfied with the less stringent a, =.05 significance
criterion, he would find (from Table 2.3.5) power equal to .88. Note that
rather large samples are required to detect small effects (at least as we have
conventionally defined them). Ordinarily, the investigator seeking to detect
a small effect will hardly be able to afford the luxury of a stringent signifi-
cance criterion such as a = .01. He may well want to consider increasing his
Type I (a) error risk to perhaps .10 in order to keep the magnitude of his
Type II (b) error risk from becoming so large as to make the experiment
uninformative in the likely event of a nonsignificant difference. Naturally,
the increase in a is made before, not after, the data are collected.

2.3.2 CasE |: n, #ng, o, =0z The power tables will yield useful
approximate values when, from the two normal equally varying populations,
samples of different sizes are drawn. In such cases, compute the harmonic
mean of n, and ng,

2n, ng
T n,+ng

@.3.0) n

and in the n column of the table, find n'.

Power values found under these conditions will be underestimates.! How-
ever, within the values for n available in the table when n,/ng is between .5
and 2.0, the true value will generally be within .01 of the tabled value.
Further, once n’ is large (say greater than 25), even far greater discrepancies
between n, and n, will result in trivially small underestimates.?

The fact thatn, is not equal tong will not effect the validity of the interpre-
tation of d in terms of the U and r measures of Section 2.2, provided we
continue to conceive of the populations as equally numerous, although the
samples are of unequal n.

1 This is because the table is treating the t test for n as based on df =2n" — 2, when
there are actually df =n, + ngy —2, a larger value.

2 This is because of the speed with which the t distribution with df > 50 approaches
that with df = o, i.e., the normal distribution.
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Illustrative Example

2.3 In a psychological service center, cases are assigned by an essen-
tially random process to different psychotherapeutic techniques, a *“standard ™
technique (A) and one featuring some innovation (B). After a period of
time, 90 cases have been treated by Method A and 60 cases by Method B.
The investigators wish to determine whether the new method (B) is better
than the old (A), using final staff conference consensus ratings of improve-
ment as the criterion. They posits an ES such that, with the B population
higher, about 409, (=VU,) of the area covered by both population distri-
butions would not overlap (see Chapter 2, Section 2.2). From Table 2.2.1,
he finds thatU, = 38.2 % is equivalent tod = .6. The statement of the problem
implies a directional test, since presumably they are indifferent to the possi-
bility that B is worse than A. (Recall that the null hypothesis here is m, <
mg, thus that B worse than A is indistinguishable from B = A.) Accord-
ingly, they use a one-tailed test, with, say the a, = .05 significance criterion.
Thus, the specifications are

a,=.05 d=.6MU,;=382%), n,=90+#60=ng
With unequal n, he finds [from (2.3.1)]

_2n\ng _ 2(90) (60) _ 10800 .
T na+ng 90460 150 7

’

(Note that n’, the harmonic mean, is smaller than the arithmetic mean,
which is (90 + 60)/2 = 75.)

In Table 2.3.2 (for a; = .05), column d = .6, row n = 72, he finds power
equal to .97 (a trivially small underestimate).

Note that had they performed a nondirectional test which would have
permitted the conclusion that B was worse than A, power (Table 2.3.5 for a,
= ,05) would have been .94. Power is less, but at this level not much less;
they might consider the possibility of reaching the conclusion that B is worse
than A worth the small loss of power.

2.3.3. CaSE 2: o, #0g, n, = ng. For normal populations of unequal
variance, the formula for t does not follow the tabled values for t, that is,
this condition constitutes a ‘‘failure of the assumptions™ (or more properly
conditions) under which t is generated. However, there is ample evidence
for the robustness of the t test despite moderate failure of this assumption
provided that sample sizes are about equal (Scheffé, 1959; Cohen, 1965).
Approximations to the true power values which are adequate for most
purposes are available by using the tables in the ordinary way.

It should be kept in mind that when o, 7 o, the definition of d will be
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slightly modified. Since there is no longer a common within-population o,
d is defined as above (formulas (2.2.1) and (2.2.2)), but instead of o in the
denominator, the formula requires the root mean square of o, and op,
that is, the square root of the mean of the two variances:

o
(2.3.2) o' = \/‘2__;2"1 X

The unequal variability need not affect the conception of d developed
in Section 2.2. Given that there is a difference between o, and oy, we merely
are using a kind of average within-population standard deviation to standar-
dize the difference between means. It is not the arithmetic mean of o,
and og, but, as noted, the root mean square. (However, unless o, and op
differ markedly, ¢’ will not differ greatly from the arithmetic mean of o,
and o3.)

‘In interpreting d for this case, the U (percent nonoverlap) measures can
no longer be generally defined and the Table 2.2.1 U columns will not obtain.
However, interpreting d in terms of r and r? proceeds completely unaffected
by o, # oy, and the conventional definitions of small, medium, and large d
can also continue to be used.

Note that if 0, o and it is also the case that n, #ng, the nominal values
for t and power at a given significance criterion, a, may differ greatly from
the true values (Scheffé, 1959; Cohen, 1965, p. 115). Under these conditions
(o # og and n, #ng, simultaneously), the values in Tables 2.3 may be greatly
in error.

THustrative Example

2.4 A labor economist plans a sample survey of men and women
workers in a given occupation to determine whether their mean weekly
wages differ. He proceeds to do a t test,® using random samples of 100 cases
in each group and a nondirectional significance criterion of a, =.01. He
deems it quite possible that the wage variability differs between the two
populations, i.e., o, #0g. He may arrive at the ES =d he is interested in de-
tecting in any of the following ways:

1. Explicit d. He may plan for allowing that the difference between
means, |m, —mg], is $2.00 a week, and that the “average” variability of
the two populations is $4.00. Note that this value is not the standard devia-
tion of either the population of men workers or that of women workers,

3 Departure from normality of the population distributions should not materially
affect the validity of the t test and power estimate for samples of this size.
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but the root mean square of their respective population standard deviations,
o’ (formula (2.3.2)). He then finds d by formula (2.2.2), at $2.00/$4.00 = .5.

2. Direct Use of d. From the experience with the d concept, he may
directly posit d =.5, or arrive at that value as a convention. Although the
unit he is using is o’ and not o, this need not substantially alter his concep-
tion of d.

3. Correlation and Proportion of Variance. If he finds it conceptually
convenient to work in correlational terms, he may conceive of the ES he
seeks to detect as a degree of (point biserial) correlation between sex and
weekly wage as r .25, or as the amount of wage variance associated with
sex asr? > .06. In Table 2.2.1, he finds that r = .243 and r? = .059 are equiva-
lent to d =.5. The fact that o, # o does not at all affect the validity of the
correlational interpretation of a mean difference. Note, however, that under
these conditions the U measures no longer apply.

Thus, by any of the above routes, we have the specifications:
a, =.0l, d=.5, n, = ng=100.

In Table 2.3.4, for column d = .5, row n = 100, he finds power equal to
.82. If he is prepared to work with the less stringent a, = .05, he would find
from Table 2.3.5 power equal to .94. On the other hand, if he is prepared to
restrict his test to detecting a wage difference favoring men workers and
not the opposite, he would use the a, = .0l level and from Table 2.3.1 find
power = .88.

2.3.4 Case 3: ONE SAMPLE OF n OBSERVATIONS. Up to this point we
have considered the most frequent application of the ¢ test, i.e., to cases
involving the difference between two sample means where we test the hypoth-
esis that two population means are equal or, equivalently, that their differ-
ence is zero. The t test can also be used with a single sample of observations
to test the hypothesis that the population mean equals some specified value,
H,: m =c. The value specified is relevant to some theory under considera-
tion. As an example, consider an anthropological field study of a preliterate
group in which a random sample of n children is tested by means of a
“culture-fair” intelligence test which yields an 1Q whose mean, as standar-
dized in Western culture, is 100. The null hypothesis then is that the popula-
tion mean for the preliterate children is 100. As another example, consider
an attitude scale so constructed that a neutral position is represented by a
value of 6 (as in Thurstone equal-appearing interval scaling). For a single
sample of n subjects, one can test the null hypothesis that the population
from whence they are drawn is, on the average, neutral, i.e., Hy: m=6.
Rejection with a sample mean greater than 6 yields the conclusion that the
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population is on the average ‘““‘favorable’ toward the social object, and
with less than 6 that the population is on the average ‘‘unfavorable.”
For the one-sample case (Case 3), we define

m-—c¢

(2.3.3) d,’ =

g

as the ES index. Conceptually there has been no change: dy’ is the differ-
ence between the (alternate) population mean (m) and the mean specified by
the null hypothesis (c), standardized by the population standard deviation
(o). Since c is conceived as the mean of a normal population whose standard
deviation is also o, i.e., the population specified by the null hypothesis, the
interpretation of dy’ proceeds exactly as described in Section 2.2 with regard
to Table 2.2.1 and the operational definition of small, medium, and large
effects.

However, the tables cannot be used as for the Case 0 two-sample test
for two reasons:

1. In the statistical test for Case 0, there are two sample means, each
of n cases, each contributing sampling error to the observed sample difference
between means, while in the one-sample test, there is only one sample mean
based on n cases, the value ¢ being a hypothetical population parameter
and thus without sampling error.

2. The power tables were computed on the basis that n is the size of
each of two samples and that therefore the t test would be based on 2(n — 1)
degrees of freedom. In the one-sample case, t is perforce based on only n — 1
degrees of freedom.

Thus, if one simply used the power tables directly for d3* and n for the
one-sample case, one would be presuming (a) twice as much sampling error
with consequently less power and (b) twice the number of degrees of freedom
with consequently more power than the values on which the tables’ prepara-
tion was predicated. These are not, however, equal influences; unless the
sample size is small (say less than 25 or 30), the effect of the underestimation
of the degrees of freedom is negligible. On the other hand, the doubling of
the sampling error would have a substantial effect for all values of n. How-
ever, the latter is readily compensated for. For the one-sample case, use
the power tables with n and

(2.3.4) d=d, V2.

Multiplying d;’ by \/ 2 (approximately 1.4) compensates for the tables’
assumption of double the error variance. The other problem resulting from
the use of n is that the tabled value for power presumes that the degrees of
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freedom are 2(n — 1), when actually there are only n — 1 degrees of freedom.
However, since t approximates the limiting normal distribution fairly well
even when its degrees of freedom are as few as 25 or 30, power values based
on double the actual degrees of freedom will not be materially overestimated
except in very small samples.

Seeking values for d =d,’V/2 raises the troublesome problem of numbers
intermediate between the ones tabled. However, linear interpolation between
power values will, except in rare instances, provide approximate power
values which will differ from the true ones by no more than one or two units.

The value of d;’ (nor d) may be arrived at (or interpreted) through the
equivalences with the U and r statistics (Section 2.2 and Table 2.2.1). It
requires the further conceptualization that c [the *“null” value of the popu-
lation mean, formula (2.3.3)] is the mean of a normal population whose
o and size are equal to that of the population being sampled.

In summary, for Case 3, one definesd;” as above and interprets it exactly
as described in Section 2.2, but values for power are sought in the power tables
by means of d =d,’V'2. The resulting value is, except for very small samples,
a very slight overestimate.

Illustrative Example

2.5 It can be taken as known because of extensive record keeping over
a long period, that under standard conditions a given strain of laboratory
rats has a mean weight gain of 70 grams from birth to 90 days. To test the
implications of a developmental theory, an experiment is performed in which
a sample of 60 animals is reared from birth in total darkness. The investigator
is interested in whether, under these experimental conditions, the mean
weight gain of a population of animals departs from the standard population
mean of 70 in either direction, even slightly. Thus, the null hypothesis he
tests is Hy: m = c = 70. The investigator accepts d;" = .20 [formula (2.3.3)]
as a conventional operational definition of a slight departure. He uses the
relatively lenient significance criterion of a, = .10.

In order to allow for the fact that we have only one sample mean contri-
buting to error, rather than the two which the construction of the tables
presumes, the tables must be considered not ford,’, but using formula (2.3.4),

for d =d,'\/§= .20 (1.4)=.28. Thus, the specifications for estimating
power are
a, =.10, =.28, n=60.

In Table 2.3.6. (for a, = .10), for row b = 60, he finds power in columns
=.20 and d =.30 to be .29 and .50, respectively. Linear interpolation
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between these values yields approximate power at d = .28 of .8(.50 — .29)
+ .29 = 46.

2.3.5 CAaSE 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSER-
VATIONS. Although the general one-sample case as described in Case 3
above does not occur with much frequency in behavioral science applications,
a special form of it appears quite often. Data are frequently gathered in
X, Y pairs which are matched in some relevant way so that there are n pairs
of X, Y observations. The t test of the my — my difference proceeds with the
paired differences, X —Y =Z. Since my — my = mx_y, = mz, the null
hypothesis that my — my =0, or equivalently that my = my, is identical
to the null hypothesis that mz = 0. This in turn means that the one-sample
formula ford;’ (2.3.3) has ¢ =0 and becomes
2.3.5) dy =%

oz

The Z subscript is used to emphasize the fact that our raw score unit
is no longer X or Y, but Z. If the investigator is content to work with oy
as the standardizing unit, he can proceed to do so as described for Case 3,
usingdz’, and looking in the power tables ford =dz’V/2 [formula (2.3.4) for
Z.

Note, however, that the t test predicated here is the one described in
textbooks as being for matched, dependent, or correlated means. If one were
to compute the product moment r between the X and Y values for each pair
in the population, the result would in general be a nonzero value. Indeed,
since matching is an experimental design technique used to remove irrelevant
sources of variance (see above, section 1.3), in practice such an r will be posi-
tive and material, say at least greater than + .30. In contrast, with indepen-
dent samples such as have been described in previous sections of this chapter,
the random pairing of X and Y values implied would perforce yield a popu-
lation r of zero.

Now, the o, of the denominator in formula (2.3.4), and hence the unit in
which the ES index d¢’ for the difference in matched pairs is expressed, is
given by

(2.3.6) Oz=0 yx_y= \/o—,—(z +oy? —2royxoy.

Note that as r (the population between X and Y as paired) increases,
oz decreases. In the case of matched pairs here being considered, on the
assumption of equal variance, i.e., ox® = oy =02,

(2.3.7) 0z =0x_y = V20 —2re* =oV2(1—r).

Thus, the relative size of the standardizing unit for the d;’' of Case 4
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(dependent) to the d of Case O (independent) is cV'2(1 —r)/o = V2(1 —r).
In other words, a given difference between population means for matched
(dependent) samples is standardized by a value which is V'2(1 —r) as large
as would be the case were they independent. Alternatively (and equivalently),
the d;’ value used as an ES index for means from matched samples, when
expressed in the same terms as for independent samples, namely o, the
common within-population standard deviation, is 1/V/2(1 —r) larger than
the d value for the same raw score difference in independent samples.

Although one can treat the matched pairs in Case 3 form, the standard-
izing unit, oz, will vary in size inversely with the size of r, as shown in formula
(2.3.7.). When no estimate of r can be made, one has no choice but simply
to apply the Case 3 procedure to the one sample of paired differences Z,
keeping in mind that the d;’ unit is oz. With an estimate of r available, a
preferable procedure is to use as the ES index
(2.3.8) d/ = x" My

g

Note that this is identically the same index as the d of formulas (2.2.1)
and (2.2.2), the difference between means standardized by the within-
population o. As was the case for dy’, all the interpretive material (e.g.,
U, r, r?) of Section 2.2 holds. However, for correct power values, the value
located in the power tables is not d,’, but rather

d,’
3.9 d=
@39) Vi-r

As in Case 3, this procedure leads to an overestimate of power which
is trivial for all but small samples, since the tables assume 2(n — 1) degrees
of freedom where only n — | are actually available.

The advantages of matching can now be made readily apparent. Con-
sider an investigation which is to concern itself with the question of a sex
difference in some aptitude variable. Assume that elementary school boys
and girls each have population ¢ = 16, and one wishes to detect a difference
in raw population means of 8 points, using samples of n =40 subjects.
Assume the test is to be performed at the two-tailed .05 level (a, =.05).
The relevant power table is 2.3.5.

Case 0. Since the plan is to work with independent samples of 40 boys
and 40 girls, we use n =40 and

|m,\—m,,|= 8

d: —_— =
o 16

to find power = .60.
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Case 4. Instead of independent samples of boys and girls, the investi-
gator plans to draw 40 brother-sister pairs to detect the 8 point difference.
There is the same ES, namely,

m,-m,| 8
ay=memm| _8 _
4 o 16

However, he estimates the r between brothers and sisters on this apti-

tude variable as .6 and in Table 2.3.5 for n = 40 and

_d 5 s
Vi-r VIi-60 6325

he finds power 2~ .93. Thus, given the same 8 point or .5 standardized
difference between means to detect, the use of the matched pairs design with
an estimated matching r of .60 has resulted in power of .93 instead of only
.60

Note that if r were .40 instead of .60, he would look for the value

d

79,

S .5

d = = =
V11— .40 .7746

.65,

and find power 2~ .81 (by linear interpolation), a lesser increase because the
matching ris smaller. See Section 11.4 for a general treatment of the relative
power of difference and regressed difference scores.

Illustrative Examples

2.6 An educational researcher has developed two different programed
tests for teaching elementary algebra. From a high school grade, he selects
50 pairs of pupils so that the two members of each pair have 1Qs within 3
points of each other. He randomly assigns the members of each pair to the
A and B programs, and following instruction, tests all subjects on a common
algebra achievement test. He wishes to detect a difference [formula (2.3.8)}

m,—my

d, = 4,

g
a small to medium value, using the a, = .05 significance criterion. It would
not be correct to look for the value in the power table d,’ = .40, because
this value does not take into account the advantageous effect of matching.
The appropriate ES for this situation is [formula (2.3.9)]:

de d, - 4
Vi—-r Vi-r
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r is the population correlation between 1Q-matched pairs in algebra
achievement. It is also the population r between 1Q and algebra achieve-
ment.* From past educational research, or from the sample data (if this
power analysis is being performed post hoc), he can estimate the population
r as .55. Thus,

g 4 4
T W1—.55 .6708 °

60.

If he were lacking a basis for estimating r, the investigator would have
reached the same result if he had postulated that the ES he was seeking to
detect in terms of paired differences in the achievement test, A—B=2Z
units, was [from formula (2.3.5)] d;' = .42, so that, in Case 3 fashion, he

would use the power tables for d = .42V2 =~ .60 [formula (2.3.4)}.
Thus, in either instance, summarizing his specifications:

a,=.05 d=.60, n=50.

From Table 2.3.5, column d = .60, row n = 50, he finds power = .84,

Note that had the same problem been undertaken with independent
random samples of 50 cases with the same ES, namely d = .40, power would
be only .50 (Table 2.3.5). The effect of matching with an r of .55 makes the
effective d equal to .60 with a resultant large increase in power (from .50 to
.84).

2.7 Many behavioral science researchers use the * own-control” prin-
ciple, i.e., each subject is observed under two conditions, X and Y, and
the experimental issue is the existence of a difference between my and my,.
Thus, X, Y constitute the paired observations and the significance test is a
straightforward instance of Case 4. Sometimes Y and X represent * before”’
and ‘““after” some intervening experimental manipulation whose effect on
a dependent variable is to be scrutinized. (In their failure to control for other
concomitants of time, such studies may be misleading.)

Consider a study to appraise the efficacy of prescribing a program of diet
and exercises to a group of overweight male students. The researcher gets
from each subject his ‘ before’ weight X, prescribes the program, and checks
the ““after” weight Y 60 days later. The study employs a sample of 80 sub-
jects. The researcher wishes to know the power of a test at a, = .01 to detect
a mean loss (Z= X —Y) of 4 Ib where the estimate of the population
o=12 1b. Thus [from formula (2.3.8)], d," =4/12 =.33. He may estimate

4 Strictly speaking, this is true only if matching on IQ had been perfect. The postulated
matching (within 3 points) approaches closely enough to make the equation of the two
r’s substantially accurate.
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that under these circumstances the population r of before with after weight
would be in the vicinity of .80. Thus, his effective d [from formula (2.3.9)]
is

33 33

d= m————— = =. .
Vs

Alternatively, he might have avoided the need to estimate r and reasoned
that, considering the distribution of weight loss Z, he wanted to detect a
mean loss of about .5 of the standard deviation of weight Josses, i.e. [formula
(2.3.5)]

dy'= 2Z_ 5.
oz

To find the effective d, 5V2= .71, or, in this instance, about the same
value (.74) found from the approach via formula (2.3.9).

Summarizing the specifications:

a,=.0l, d=.74, n=60.

In Table 2.3.1 (for a; =.0l), in the row n =60, columns d =.70 and
.80, we find respectively power of .93 and .98 between which linear interpola-
tion gives power of approximately .95. Thus, the researcher is almost certain
of detecting a mean loss of 4 1b at the a, = .01 level, with n = 60.

Note how a relatively small d," of .33 becomes a d for table entry of
.74 which yields a high power value because of the effectiveness of ‘‘own-
control” matching. Such large matching r’s are not infrequent in own-
control designs in behavioral science.

2.4 SaMPLE SizE TABLES

The tables in this section use values for the significance criterion, the
ES to be detected, and the desired power to determine the sample size. They
would therefore be of primary utility in the planning of experiments to provide
a basis for the decision as to how many sampling units (n) are to be used.
Although decisions about sample size in behavioral science are frequently
made by appeal to tradition or precedent, ready availability of data, or
intuition (Cohen, 1965, p. 97ff), unless Type 1l error rate considerations
contribute to the decision, they can hardly be rational.

2.4.1 Case 0: o, =05, n, =ng. As was done in Section 2.3 for the
power tables, the use of the sample size tables is first described for the
conditions for which they were optimally designed, Case 0, where they yield
the sample size, n, for each of two independent samples drawn from normal
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populations having equal variances. Their use in other cases is described
later. Tables are used for a, d, and the desired power;

1. Significance Criterion, a. The same values of a are provided as for
the power tables. For each of the following a levels, a table is provided:
a, =.0l (a,=.02), a, =.05 (a,=.10), a;, =.10 (a,=.20), a,=.01 (a; =
.005), and a, = .05 (a, =.025).

2. Effect Size, d. This value is defined and interpreted as above [formu-
las (2.2.1, 2.2.2)] and used as in the power tables. The same provision is
made: .10 (.10) .80 (.20) 1.40.

To find n for a value of d not provided, an adequate approximation is
given by substituting in the following:

N o

= 100d?

where n |, is the necessary sample size for the given a and desired power at
d = .10, and d is the nontabulated ES. Round the result to the nearest integer.®

+1

(2.4.1) n

3. Desired Power. The sample size tables list desired values of .25, .50,
.60, 2/3, .70 (.05), .95, .99.

Some comment about the selection of the above values is in order. The
.25 value is given only to help provide a frame of reference in sample size
determination; it seems very unlikely that a behavioral scientist would nor-
mally desire only one chance in four of rejecting a null hypothesis. The values
are about equally spaced between .50 and .99. An exception to this equality
of power interval is the provision of power of 2/3. This was made so as to
give the sample size at which the odds are two to one that a given d would
be detected.

Entries for desired power values of .99, .95, and .90 are offered. This
makes possible the setting of Type Il error risk equal to the conventional
Type I, or a, risks of .01, .05, and .10. There are conceivable research cir-
cumstances where, given an alternate-hypothetical value of d, the investigator
may wish to equalize his Type I (a) and Type II (b =1 — power) risks.
The tables will accommodate this demand and provide the n values to
accomplish this aim at conventional a levels.

3 The +1 in the formula is optimal for tests at a, =.05 (a, =.025). Slightly greater
accuracy is obtained if constants other than 1 are added at other a levels, as follows:
+1.5 at a, =.01 (a, =.005) and a, = .01 (a, =.02),
+ .7 ata; =.05 (a, =.10), and
+ .4 ata; =.10 (a, =.20).
These constants are empirical and were determined by averaging discrepancies over the
range power >.70, .20 <d < 1.00.
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n to detect d by t test
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a; = .0 (‘2 = ,02)

d
Power .10 .20 .30 A0 .50 .60 .70 .80 1.00 1,20 1.4k0
.25 547 138 62 36 24 17 13 10 7 5 4
.50 1083 272 122 69 4s 3 26 18 12 9 7
. 1332 L k9 85 55 38 29 22 15 1 8
2/3 1552 382 170 97 62 (1Y 5] 25 17 12 9
.70 1627 408 182 103 66 47 s 27 18 13 10
.75 1803 452 202 114 Th 52 B 30 20 W n
.80 2009 503 224 127 82 57 42 33 22 15 12
.85 2263 567 25) 14) 92 6 4 37 2 17 13
.90 2605 652 290 164 105 7h 5§ k2 27 20 15
95 158 790 352 198 128 89 66 81 3 23 18
.99 4330 1084 482 272 175 122 90 69 45 N 2
8, = .05 (.23 .10)

d
Power .10 .20 .30 Mo .50 .60 .70 .80 1,00 1,20 1.0
.25 189 48 21 12 8 6 5 4 3 2 2
.50 542 136 61 35 22 16 12 9 6 5 by
.60 721 181 81 46 30 21 15 12 8 6 5
2/3 862 216 96 55 35 25 18 1h 9 7 [
.70 92 236 105 60 38 27 20 15 10 7 6
.75 1076 270 120 68 W N 23 18 " 8 6
.80 1237 30 138 78 50 35 26 20 13 9 7
.85 1438 360 160 91 58 I 30 23 15 n 8
.90 173 429 191 108 69 48 36 27 18 13 10
.95 2165 sh2  2b1 136 87 61 bs 35 22 16 12
.99 3155 789 351 198 127 88 65 50 32 23 17

8; = .10 (s, = .20)

d
Power .10 .20 30 Lo .50 .60 .70 .80 1.00 1.20 1,40
«25 7h 19 9 5 3 3 2 2 2 2 2
«50 329 82 37 21 1 10 7 5 [ 3 2
.60 kn 18 53 30 19 1% 10 8 5 L 3
2/3 586 'Y 65 37 2k 17 12 10 6 [ 3
.70 653 163 n ] 27 19 1% n 7 5 b
75 766 192 8¢ L8 n 22 16 13 8 6 N
.80 902 226 100 57 36 26 19 b 10 7 s
.85 1075 269 120 67 %) 30 22 17 N 8 6
<90 1314 329 146 82 53 37 27 21 14 10 7
.95 1713 428 191 107 69 48 35 27 18 12 9
99 2604 651 290 163 104 n 53 n 26 18 14
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Table 2.4.1 {continued)

s, = .01 (a, = .005)
d
Power .10 «20 30 M0 .50 .60 .70 .80 1,00 1,20 1.,ko
.25 725 183 82 47 Nn 22 17 13 9 7 6
«50 1329 333 149 8s 55 39 29 22 15 1" 9
+60 1603 4oz 180 102 66 46 3% 27 18 13 10
2/3 1810 4sk 203 1§ 7h 52 39 30 20 1 n
.70 1924 482 215 122 79 55 4 32 21 15 12
.75 2108 526 236 13 86 - 60 ks 35 23 17 13
.80 2338 586 259 148 95 67 49 38 25 18 1h
.85 2611 65k 292 165 106 74 55 W3 28 20 1§
.90 2978 746 332 188 120 84 62 48 N 2 17
.95 3564 892 398 224 1ul 101 7h 57 37 26 20
.99 4808 1203 536 302 194 136 100 77 S0 35 26
.- .05 (uI = ,025)
d
Power .10 .20 30 L0 .50 .60 .70 .80 1,00 1,20 1.40
.25 332 & 38 22 14 10 8 6 5 4 3
.50 769 193 86 49 32 22 17 13 9 7 H
.60 981 286 110 62 4o 28 21 16 N 8 6
2/3 1164 287 128 7 W 33 24 19 12 9 7
.70 1235 310 138 78 50 35 26 20 13 10 7
.75 1389 W8 155 88 57 40 29 23 15 1 8
.80 151 393 175 99 64 bs 33 26 17 12 9
.85 1797 450 201 13 n sl 38 29 19 14 10
<90 2102 526 234 132 85 59 W 3 22 16 12
.95 2600 651 290 163 10§ 73 sh W2 27 19 1k
99 3675 920 ko9 20 w8 103 7% 58 38 27 20

However, in the judgment of the author, for most behavioral science
research (although admitting of many exceptions), power values as large as
.90-.99 would demand sample sizes so large as to exceed an investigator's
resources. Even when, with much effort or at much cost, these large n’s can
be attained, they are probably inefficient, given the nature of statistical
inference and the sociology of science.

Why not seek power approaching 1.00, or equivalently, b risks close to
zero? Why not use the simple principle, ‘‘the smaller the Type 1l error, the
better ”? For reasons that parallel the rejection of this principle as an opera-
tional principle for setting a levels. Other things equal, if a is made vanishingly
small, power becomes quite small. Similarly, if b is made very small (desired
power very large), other things being equal, required sample sizes become
very large. The behavioral scientist must set desired power values as well
as desired a significance criteria on the basis of the consideration of the
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seriousness of the consequences of the two kinds of errors and the cost of
obtaining data. He cannot literally place a dollar value on the “cost” of
each kind of error, as can the industrial quality control engineer who uses
exactly the same formal statistical inferential procedures. He can, however,
approximate this approach by subjectively weighing the gravity of these
two possibilities and the cost of generating data (but see Overall & Dalal,
1965).

The view offered here is that more often than not, the behavioral scientist
will decide that Type I errors, which result in false positive claims, are more
serious and therefore to be more stringently guarded against than Type II
errors, which result in false negative claims. The notion that failure to find is
less serious than finding something that is not there accords with the conven-
tional scientific view.

It is proposed here as a convention that, when the investigator has no
other basis for setting the desired power value, the value .80 be used. This
means that b is set at .20. This arbitrary but reasonable value is offered for
several reasons (Cohen, 1965, pp. 98-99). The chief among them takes into
consideration the implicit convention for a of .05. The b of .20 is chosen
with the idea that the general relative seriousness of these two kinds of
errors is of the order of .20/.05, i.e., that Type I errors are of the order of
four times as serious as Type 1l errors. This .80 desired power convention
is offered with the hope that it will be ignored whenever an investigator
can find a basis in his substantive concerns in his specific research investi-
gation to choose a value ad hoc.

Returning to the Case 0 use of the n tables and summarizing, the investi-
gator finds (a) the table for the significance criterion (a) he is using, and
looks for (b) the standardized difference between the population means
(d) along the horizontal stub and (c) the desired power along the vertical
stub. These determine n, the necessary size of eac/h sample to detect d at the
a significance criterion with the desired power.

Illustrative Examples

2.8 Reconsider example 2.1 for the Case 0 use of the power tables in
which an experimental psychologist is studying the effect of opportunity
to explore a maze on subsequent maze-learning in rats. As described there,
initially she wished to detect an ES of d = .50 at a, = .05. Her plan to use n
= 30 animals in each of her E and C groups resulted in a power estimate of
.47. She will likely consider this value too low. Now let us assume that
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she wishes power to be .80 and wants to know the sample size necessary to
accomplish this. The specifications thus are

a, = .05, d=.50, power = .80.

In Table 2.4.1 for a, = .05, column d = .50, row power = .80, n (=n. =
ng equals 64. She will need two samples of 64 animals each to have an .80
probability of detecting d = .50 at a, = .05. Thus, under these conditions,
she will have to slightly more than double the planned n of 30 per group to
go from power of .47 to power of .80.

If, on the other hand, she had reason to anticipate a higher d, say of .80
(our conventional definition of a large ES), which she wished to detect with
the same power at the same a level, then

a, =.05, d = .80, power = .80.

In the same Table 2.4.1 for a, = .05, column d = .80, row power = .80,
she finds n = 26 animals per group.

Alternatively, if she had reason to expect d = .20 (our conventional
definition of a small ES), for the same significance criterion and desired
power, the specifications are:

a, =.05, d=.20, power = .80.

Again in Table 2.4.1 for a, =.05, column d =.20, the same row power
= .80, n is 393 for each group.

This example illustrates dramatically the importance of putting oneself
in the position to estimate ES in experimental planning. Depending on
whether one posits d = .20 or .80, for representative conditions (i.e., a, = .05,
power = .80), one needs two samples of 26 or 393 animals for the Case 0
design. It seems fairly apparent that experimental planning can hardly pro-
ceed in the absence of a prior rendering of judgment about the size of the
effect one wishes to detect.

The researcher can, of course, reduce the n demanded by making his
specifications less stringent with regard to either the significance level or
the desired power (or both), if these are tolerable alternatives.

Thus, to take an extreme case with regard to the significance criterion, he
can both increase his a risk to .10 and further define ““the existence of the
phenomenon” in directional terms, i.e., predict that mg < m. Keeping the
other specifications for the original problem, he has:

a, =.10, d =.50, power = .80.

In Table 2.4.1 for a, =.10, for column d =.50, row power =.80, he
finds n (=n¢c=ng) =36, compared with n =64 for a, =.05 (same d and
power).
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Or, he can increase his b risk and settle for a 2:1 chance of detecting
his assumed d = .50, i.e.,

a, =.05, d = .50, power = 2/3.

In Table 2.4.1 for a, =.05, for column d =.40, row power =2/3, he
finds n (= nc= ng) =47, again compared with n =64 for power =.80
(same a and d).

If he relaxes both a and desired power as above simultaneously, the
specifications are now

a, =.10, d = .50, power = 2/3.

In Table 2.4.1 for a; =.10, for column d =.50 and row power = 2/3,
he finds n ( = n¢ = ng) = 24 compared with 64 for more stringent a and power
(for the same d).

Experimental planning will frequently involve the study of the n demanded
by various combinations of levels of a, desired power, and possiblyd, with a
final choice being determined by the specific circumstances of a given research
(for illustration, see example 3.4 in the next chapter). If no acceptable com-
bination yields an n within the resources of the investigator, the feasibility
of more powerful designs (e.g., Case 4 for matched pairs) should be con-
sidered.

2.9 Consider again the circumstances of the investigation of an endo-
crinological factor in schizophrenia, presented above in example 2.2, The
design calls for a test of the significance of the difference between independent
means of hospitalized schizophrenics and normal controls, and the investi-
gator has large resources of patients and laboratory facilities. He anticipates
a relatively small ES, namely d = .20, and wants to decide the necessary n
for the research. He is prepared to use as a significance criterion a, = .05,
but in this instance wishes that his b (Type I1) risk be of the same magnitude.
That is, he wishes to incur no greater risk that he will fail to detect a hypo-
thetical d = .20 than the risk that he will mistakenly conclude that a differ-
ence exists when d = 0. His specifications thus are

a,=.05, d=.20, power=1-b=1—.05=.095.

In Table 2.4.1 for a, =.05, column d = .20, row power =.95, he finds
n(=n, =ng) =651

This example lends itself to illustrating the procedure of * proving” the
null hypothesis (Section 1.5.5). Assume that this experiment is now carried
out with n = 651 and that the investigator is prepared to consider d less than
.20 to be negligible, hence i = d = .20. If the t test on the sample data yields
a nonsignificant result, he can conclude that the population difference is
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negligible with a Type II risk of b no larger than .05 since were d .20 or larg-
er, the probability of detecting it would have been at least .95.

24.2 CaseEl: n, # ng,o0, =og. Casel is not common when the sample
size tables are used in experimental planning, since normally the planning
will presume the selection of samples of equal size. Equal-sized samples
are desirable, since it is demonstrable that with a given number of cases
available for division into two samples for experimentation, equal division
yields greater power than does unequal division.

There are, however, situations in which the size of one of the two samples
is fixed in advance by circumstances. Perhaps the resources to apply to a
given experimental treatment are limited to some fixed number, or perhaps
no more than a given number can be withheld for use as control subjects.
In such instances, the fixed sample size (ng) will in general be different
from the other sample, whose size is at the experimenter’s discretion (ny).
The tables entries, as in Case 0, are a, d, and desired power, and n is sought.
To find ny, substitute the fixed n (ng) and the n read from the table in
nen

(2.42) ny

“2ne—n’

where n; = the fixed sample size,
n = the value read from the table, and
ny = the necessary sample size for the other sample.
When nz < {n, a zero or negative denominator results, and the problem
is insoluble for the given specifications. One must either increase ng (usually
not possible) or change desired power, a, or d so as to decrease n.

Illustrative Example

2.10 An educational psychologist plans research which will compare
the effectiveness of a computer-based program for teaching reading to
illiterates with a standard lecture method. He wishes to detect a d =.30
(i.e., between *‘slight” and ‘““moderate”’) and is only interested in testing
whether the computer-based method (C) yields higher criterion scores than
the standard method (S), i.e., a directional (one-tailed) test. He sets his
significance criterion at .05 (=a,) and wishes power to be .75. That is,
if the C method is superior to the S method by d = .30, he is prepared to
run a risk of .25 (=b) of failing to get significant results, compared to the .05
risk he runs of concluding C’s superiority when the means are equal. Now,
if there were no restrictions of time or equipment availability, this would
be a Case 0 problem with the specifications
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a, =.05, d = .30, power =.75.

In Table 2.4.1 for a, = .05, column d = .30, row power =.75, he would
find n = (n. =ng) = 120, i.e., samples of 120 cases are needed in each group.

But now consider the real possibility that limitations in time and avail-
ability of equipment make it impossible for him to have more than 80 subjects
in the computer group, while he is relatively unrestricted in regard to the
sample size for the standard group. Given the fixed ng of 80, how many
cases does he need in the standard group (ny) to meet the same specifications?

In formula (2.4.2), withng = 80 and n = 120 (from Table 2.4.1 at a, = .05),
he finds

(80)(120)
"= e —120 - 20

Thus, the specifications for a, d, and power would be met with a fixed
sample size of 80 in the C group, if he has 240 subjects in the standard
group.

24.3 CAasSE 2: gy #0p, N, =ng. The n tables are used in Case 2 in
exactly the same way as in Case 0. The inequality of population o values
results only in a standardization of the difference in population means by
the root mean square of the population variances [formula (2.3.2)] instead
of the common population standard deviation. This has no effect on the
use of the n tables. Only d is affected, and only in its interpretation via U
measures; its interpretation in terms of r and r? remain unaffected. See the
discussion of the use of the power tables for Case 2, Section 2.3.3.

IHustrative Example

2.11 A clinical psychologist plans a study of the orienting reflex in
which she will compare means of process paranoid schizophrenics (S) and
employee controls (C). On the basis of past findings, she expects that the S
group will show greater variability than the C group, but it is a mean differ-
ence she wishes to detect the a, = .05 level with power of .90.

In considering setting her ES, she may proceed in either of the following
ways (among others):

1. She may hypothesize that the ES of S vs. C population membership
is such that it accounts for about 10% of the variance of the combined pop-
ulations. She notes from Table 2.2.1 that when ar? = .109, d = .7. Note that
the fact that the within-population variances of S and C are assumed to dif-
fer does not affect the validity of the r* interpretation. Her specifications
then are
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a, =.0§, d=.7, power = .90.

In Table2.4.] for a, = .05, columnd = .7, row power = .90, she findsn
(=ng = no) = 44 cases.

2. She may she the value of d = .70 (or any other), not on the basis of
its ? equivalent, but directly. That is, she may hypothesize that the standard-
ized difference between the population means is .70. Since she is assuming
that ag? # o?, the standardizing unit cannot be the common within-popula-
tion standard deviation, but is instead the square root of the mean of the

two variances, i.e., V(as? + oc2)/2 [formula (2.3.2)).

2.4.4 Case 3: ONE SAMPLE OF n OBSERVATIONS. In using the n tables
for the one-sample t test, the only departure from Case O is that which was
discussed in connection with the power tables for Case 3, i.e., the appro-
priate value of d for table entry. The reader is referred to Section 2.3.4. for
the relevant discussion of the details. Briefly, if one is testing, with a single
sample, the null hypothesis that the population mean has some specified
value, Hy:m = ¢, and scales the ES in the usual way as a standardized
difference, namely [formula (2.3.3)]

m—c

ds’ = .
ag

one uses the n tables for the value of d = d,’\/ 2. The size of n will be
underestimated, but only to a trivial degree, unless it is quite small (e.g.,
less than 10 or 15), when prudence might dictate using n+ 1, instead of n
cases.

Ilfustrative Example

2.12 A political scientist plans to appraise the status of the attitude
toward the United Nations of the urban population of a new African repub-
lic. He will use an orally administered Thurstone Attitude Scale which has
the property that a neutral response is scaled 6 (on an 11-point scale). His
null hypothesis, then, is Hy: m = 6. Since he wishes to be able to conclude
that the average is either “pro™ or *“anti,” he plans a nondirectional test
and wishes to use a stringent significance criterion, namely a, =.01. He
also seeks the assurance of relatively high power, .90. Furthermore, he wants
to be in a position to conclude that the population in question is, on the
average, only trivially different from neutral if, when the data are in, he
does not find t to be significant. He defines such a trivial difference (i) as one
no greater than a departure of .10 of the population mean from 6 (=c),
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expressed in population standard deviation units. But this .10 value is d,’
[formula (2.3.3)}, the Case 3 ES measure, notd. To find d, d," must be multi-

plied by V2 [formula (2.3.4)]. The result is d = .10V2 = .1414. The specifi-
cations are
a,=.0l, d=.1414, power = .90.

In Table 2.4.1 for a, =.01, his d value is not tabled. Following the
procedure of Section 2.4.1, formula (2.4.1), he finds row power =.90 and
column d = .10, in order to find n_,;, = 2978. He then substitutes this value
and d = .1414 in formula (2.4.1) to find

2978
T RTITE + 1 =1490.

Thus, he will need to draw a random sample of 1490 urban dwellers to
assure with .90 probability the detection at the a, = .01 level of a .10 stan-
dard deviation departure of the population m from neutrality (a value of 6).
If he should find, when the sample data are analyzed, that t is not significant,
he may conclude with Type II error risk b = 1—.90 = .10 that the departure
from neutrality in the population is negligible (Section 1.5.5).

2.4.5 Case 4: ONE SAMPLE OF n DIFFERENCES BETWEEN PAIRED OBSERVA-
TIONS. Here, again, the considzration involved in using the n tables are
exactly the same as for the power tables and involve the determination of
d. The issues are discussed in detail in Section 2.3.5, to which the reader
is referred. See also Section 11.2 for a more general treatment.

Summarizing for convenience, if the investigator has no basis for esti-
mating the population matching r between theX, Y pairs, he has no recourse
but to work with their difference, Z (=X —Y) in the fashion of Case 3.
That is, he indexes the effect size as [formula (2.3.5)]

d,’ = 2%
oz

with the standard deviation of the difference scores as the unit in which the
the mean difference is expressed, and enters the n tables with d =d,'V'2,
using formula (2.4.1) for “interpolation” when necessary.

If the investigator has a basis for estimating the matching r, he can
define [formula (2.3.8)]

4, = Px=my
g

which is exactly the same index as the d of independent samples (2.2.1) and
(2.2.2), and use the n tables with [formula (2.3.9)] for
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d,’

d=
Vi-r

The n read from the tables [or the tables plus formula (2.4.1)] is the
necessary number of pairs to detect d;’ or d,’ (for which we enter with d)
at the a significance criterion with the desired power. The Case 4 n (as was
true for the Case 3 n) is, in principle, an underestimate, but unless n is
quite small, the degree of underestimation is so small that it can be ignored.

INustrative Examples

2.13 In a child development study of maternal attitude toward children
with cerebral palsy, data are to be gathered in the following way. Each mother
to be selected has a child with cerebral palsy (P) and at least one other child
within 3 years of age who is free of the disease (C). The mothers are to
complete a series of attitude scales for each of their two children separately.
For each scale, a comparison is planned between m, and m.. Each mother’s
attitude toward her P child is “controlled” by her attitude toward her C
child. The plan is to use a, = .05 as the significance criterion and power of
.80. A conventional definition of a medium effect size, d,’ = .50, is posited
for each scale. Note that d,’ is simply the m, — m difference, standardized
by the common within-population standard deviation [or, if op # o, their
root mean square, ¢’, formula (2.3.2)]. What sample size of mothers is neces-
sary for these specifications?

For table entry, we require d from formula (2.3.9) and hence an estimate
of r, the population correlation between attitude scale scores toward P and
those toward C of such mothers, i.e., the within mother between child pairs
r. The investigator, drawing on relevant evidence from the research literature
and on the judgment that all sources of individual differences in attitude
between mothers (e.g., differences in education, personality factors, response
style) are contributing to this correlation, estimates r (probably conserva-
tively) as .40. Thusd =.50/V/(1 — .40) = .50/.7746 = .645. The specifications
are

a, = .05, =.645, power = .80.

As will generally be the case in Case 4 applications, the necessary d
value is not tabulated and formula (2.4.1) is used. In Table 2.4.1 fora, = .05,
one finds for row power =.80 in column d =.10, the n,, value of 1571,
and substitutes it together with d in formula (2.4.1):

1571

n=m+l=38.8.
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Thus, a sample of 39 mothers is required. Note that if the research design
had involved comparisons of the means of independent samples of P mothers
with comparable C mothers (or equivalently if r were zero), 64 mothers of
each type would have been needed (for the specifications a, = .05, power =
.80, d = .50).

2.14 A neuropsychologist plans an investigation of the effect of leg
amputation on various aspects of sensory threshold and discrimination
above the amputation (A). He plans to control each A observation by
measurement of the amputee subject on the same area on the contralateral
side (C). He specifies a two-tailed test with Type I error risk of .02 (=a,)
and Type II error risk of .10 (=b, hence, power = .90). In specifying the
ES, he may reason along either of the following lines:

1. He considers the distribution of the differences between the paired
measures, A — C = Z. He anticipates that the mean Z value for the popula-
tion is of the order of .35 of a standard deviation of such differences (mid-
way between operationally defined small and medium ES), i.e., d7' = mg/
oz =.35 [formula (2.3.5)]. For table entry, he requires [formula (2.3.4)]

d= dz'\/i =.35(1.414) = .495. His specifications thus are
a, =.02, d = .495, power = .90.

In Table 2.4.1 for a, =.01 (a, =.02) at row power = .90, if he is con-
tent to use d = .50, he finds® n = 105. This is the number of amputee subjects
(i.e., pairs of observations) he needs.

2. Alternately, he may prefer to work with the standard deviation of
the separate measures, o ( = o, = a¢) as unit,” and conceive his ES as [formula
(2.3.8)]d," = m, — m¢fo = .35 (say). He must also posit a value of the popula-
tion correlation coefficient between measures on the two limbs, r. In consider-
ing how to estimate this r, he may have information from normal (N)
subjects that estimates this value for them as ry =.70. It seems reasonable
to him that the effect of amputation may well be to reduce this correlation
to a value in the range .40-.60, for his sample. To find the values of d, he
substitutes in formula (2.3.9):

forr=.40, d=.35/V(l — 40)= 452,

forr=.60, d=.35V(l —.60)=.553.

¢ Otherwise, he uses formula (2.4.1), for which he reads out of the table n ;, = 2605
and, substituting it and d =.495, finds n = 107 (or 108, see footnote 5).

7 If there is reason to believe that o, # o¢ (for example, o, > o¢ is not unlikely), we
revert to a Case 2 definition, and use [formula (2.3.2)] o’ = V(0% + 02)/2 in place of o in
the definition of d,’, with no effect on what follqws.
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Summarizing these specifications:

452
= .553°

These d values will require the use of formula (2.4.1). In Table 2.4.1 for
a, =.01 (a,=.02), for row power=.90, and column d =.10, he finds
n_,, = 2605, and substituting

for d = .452 (i.e.,r =.40), n =129,
ford = .553 (i.e., r =.60), n = 86.

Note how critical is the effect on n of the value of r posited. Since n
varies inversely with d?, and d? varies inversely with 1 —r, the increase in
the required n from a smaller correlation rg to a larger one ry will require an
increase by a factor of (1 —rg)/(1 —r), in the case above, (1 — .40)/(1 — .60)
=1.50, i.e., a 509, increase inn,

This may suggest that the route to d by means of d,” (which is equivalent
to the Case O definition of d), because of its critical dependence on r, is
less desirable than the previous alternative, which only requires the setting
of ES in terms of dz, and avoids the necessity of positing a value for r. This
would, however, be a mistaken conclusion, since the decision about ES in
terms of dy’ carries with it an implicit value of r, as can be seen from the
relationship [formula (2.3.7)] oz = oV'2(l1 —r) [where o is either the com-
mon population standard deviation or o’ from formula (2.3.2)). Thus, if
one proceeds to d from dz’ in order to avoid the estimation of r, which is
necessary to proceed to d from d,’, one has implicitly posited (by simple
algebra)

(2.3.10) ‘ | ;(d‘ '>2'
3. r=1-4{-%-
dz'

Thus, if the investigator would want to setd,’ at (let us say, for concrete-
ness) .4, but because he has no idea of r, instead elects to setdz’ at .6, he has
in effect unwittingly assumed r to be

- ;(:%)2 =78,

i.e., a definite value. The point being emphasized is that r is inevitably a
part of the d value, and one can estimate it either explicitly or implicitly.
There are circumstances where the paired differences, Z, represent a
“natural” basis of study with which the investigator has some familiarity.
In such cases he more readily expresses the ES as dz’, and the fact that an
r is implicit in his value of d is only of academic interest. But, as we have
seen, the use of Z to evade the estimation of r does not succeed; a definite

a,=.02, d power = .90.
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value for r is merely being posited implicitly, rather than explicitly. It appears
obviously preferable that the researcher at least know, by means of formula
(2.3.10), what r is being implicitly posited when he uses dz’, or employ the
usually more natural approach viad,’ and come to terms with the problem of
explicitly estimating r for formula (2.3.9).

2.15 An experimenter in a psychology laboratory is organizing a study
to compare the effects of two reinforcement schedules on trials to response
acquisition, using white rats. The design she will employ will utilize pairs
of animals both of which come from the same litter and are free of obvious
defects; she will randomly assign one to the A group and the other to the B
group. She will consider the phenomenon she is interested in to be the super-
jority of the B over the A schedule, that is, more trials for A than B, and
moreover wants to keep her Type I risk quite small. She then chooses
a; =.01. The ES anticipated is moderate, as indexed by d,/ = .50. On the ba-
sis of past work, she estimates the between litter-mates learning abil-
ity correlation as r = .65. Her effective d, therefore, is [formula (2.3.9)]
.50J/1/(1 — .65) = .845. Finally, she wishes to have a probability of .95 of
detecting this (assumed) large effect. Thus, summarzing,

a, =.0l1, d = .845, power = .95.
Recourse must be taken to formula (2.4.1). In Table 2.4.1 for a, = .01,
row power = .95, n ;o = 3155 and in formula (2.4.1)
ne 3155
100(.845)?
Thus, 45 litter pairs will be needed.

+ 1 =45.

2.5 THE USe oF THE TABLES FOR SIGNIFICANCE TESTING

2.5.1 GENERAL INTRODUCTION. As noted above in Section 1.5, provi-
sion has been made in the power tables to facilitate significance testing.
Here, our focus shifts from research planning to the appraisal of research
results, and from the consideration of the alternate-hypothetical state of
affairs in the population to the palpable characteristics of the sample and
their bearing on the null hypothesis.

Accordingly, we redefine our ES index, d, so that its elements are sample
results, rather than population parameters, and call it d,. For all tests of
the difference between means of independent samples,

@s.1)® 6= 222

8 It has been shown by Hedges (1981) and Kraemer (1983), in the context of the use of d, in
meta-analysis that the absolute value of d, is positively biased by a factor of approximately (4dt
— 1)/(4dt — 4), which is of little consequence except for small samples. However, because the
relationships with t given below are purely algebraic, this in no way affects its use in significance
testing.
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where iA and ;(-,, = the two sample means, and
s = the usual pooled within sample estimate of the popu-
lation standard deviation,

that is,

252 . \/ Z(Xa = X0)? + 3(Xp = Xp)?
e n, +ng—2

Note that we have defined s quite generally so that it will hold for all
cases involving two independent samples, whether or not sample sizes are
equal.

Formula (2.5.1) should be interpreted literally for a directional (one-
tailed) test and as an absolute difference [i.e., without sign, as in formula
(2.2.2)] for the nondirectional (two-tailed) test.

Thus, d, is the standardized mean difference for the sample. It is simply
related to the t statistic by

(2.5.3) d=t \/ﬂﬂﬁ’
N Ny

(2.5.4) t=d, [ JAle
n, +ng

The value of d, necessary for significance is called d., i.e., the criterion
value of d;. The second column of each of the power tables 2.3, headedd,
carries these values as a function of n. Using these values, the investigator
need not compute t; the standardized difference between his sample means,
d,, is compared with the tabled d. values for his sample size. If the obtained
d, value equals or exceeds d., his results are significant at the a value for
that table; otherwise, they are not significant.

The advantages of using this approach are twofold:

1. The value s is approximately the mean of the separate sample stan-
dard deviations. The latter are almost always computed, and often known
approximately even prior to computation, so that the sample d, can be
approximated at a glance once the sample means are determined. If such an
approximate value of d is materially different from the tabulated d_ value,
the significance decision can be made without any computation. Thus, the
d. values can be used for a quick check on the significance of results.

2. A second advantage lies in the convenience of having the d_ values
for many values of n. Most t tables provide criterion values of t for relatively
few values for degrees of freedom; each power table provides d. values for
68 entries of n between 8 and 1000.

In general, these advantages are probably not great. They are judged,
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however, to be useful with sufficient frequency to warrant the inclusion of
the d_ values in the power tables.

The d, concept has virtues which should be noted quite apart from its use
in significance testing. In general, the equivalents of d in terms of non-
overlap (U), correlation (r), and proportion of variance accounted for (r?),
described for the population in Section 2.2, also hold for the sample, subject
to the restrictions described there and in section 2.3. One simply uses Table
2.2.1 withd_ as d. The U measures will hold only to the extent to which the
samples approach the conditions of normal distribution, equal variability,
and equal sample size, on which these measures are predicated. The (point
biserial) r and r? equivalents, on the other hand, have no such restrictions.
Further, their systematic use as an accompaniment to significance testing
will frequently prove illuminating and has been advocated as a routine pro-
cedure (Cohen, 1965, pp. 101-104). Finally, formula (2.5.4) makes quite
explicit the fact that a significance decision (from t) is a function both of the
sample effect size (how much) and n, the amount of evidence brought to
bear on the null hypothesis. Behavioral scientists too often use evidence in
regard to significance (e.g., t values) as arbiters with which to judge the size
of the effect or degree of relationship (e.g., as estimates of d values and their
equivalents). The formula starkly exposes this error.

2.5.2 SIGNIFICANCE TESTING IN CASE 0. In Case 0, the use of the d,
values in the power tables 2.3 is quite straightforward. The investigator
computes (or estimates) his sample d. value and enters the appropriate
power table for his a, in the row for his n (=n, =ng), and checks to see
whether his d, equals or exceeds the tabled d. value. Whether significant or
not, he may then wish to express his d_ in terms of one or more of the U
indices, r, or r?, using Table 2.2.1, or for greater accuracy, formulas (2.2.3)-
(2.2.6).

Illustrative Example

2.16 Consider the conditions stated initially for example 2.1. Whatever
the details of his expected ES (given there asd = .50), the experiment has been
run at a, =.05 with two independent experimental and control samples of
30 cases each. He computes his sample result as a standardized difference
between means [d,, formula (2.5.1)] and finds that it equals .46. His specifica-
tions are simply

a, = .05, n =30, d, = .46.
In Table 2.3.5 for a, =.05 and n =30, d, =.52. Since his d, value is
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smaller than d_, his observed difference is not significant at a, =.05.
(He learns incidentally that with samples of 30 cases, it takes a difference
between means of about half a standard deviation to reach significance at
a, =.05.)

He may go on to refer to Table 2.2.1 {or, for greater accuracy, formula
(2.2.6)] from which he learns that the point biserial r between E versus C
group membership and number of trials to learning is about .22 which,
in turn, means that about .05 (=r?) of the total among rat variance in
trials is associated with group membership, in his sample.

If, for the purpose of reporting in the literature, he wants the t value,
it is very readily found for Case 0, where formula (2.5.4) simplifies (since
ng=Nc=n) to

n
(2.5.5) t=d, \/5

which is here
t=.46+/15=1.78.

This example can be used as an illustration of approximate ‘“at-a-glance”
significance decisions. Assume, instead, that he finds the following sample
means and standard deviations (n = 30, a, = .05 criterion):

X =108, Xc=121,
sE= 3.81, $C= 4.24.

One notes at a glance that s is approximately 4 and the difference between
means, 1.3. The latter is only about a third of s, hence d, =~ .33, clearly less
than the d_ = .52 for the specified conditions.

2.5.3 SIGNIFICANCE TESTING IN CASE 1, n, # ng. The inequality of the
sample sizes in a t test for independent means provides no new problems
in the use of d_. Formula (2.5.2) for s, the standardizing unit for the sample
mean difference, is written for the (more general) case which provides for
differing values of n, and ng. In entering the tables, the value of n to be used
is the harmonic mean of n, and ng, which we have already described above
when Case 1 was first discussed in Section 2.3.2 {formula (2.3.1)]:

2n,n,
n,+ng

’

The tabulated d_ value for Case 1 is an overestimate, but a very slight
one unless n’ is both absolutely small (say less than 20) and much smaller
than (n, + ng)/2 (see Section 2.3.2).
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Hlustrative Example

2.17 Reconsider the conditions of example 2.3. Assume that the experi-
ment has been performed, and the psychologists are appraising the results of
their directional hypothesis at a; = .05 that the new psychotherapeutic tech-
nique B (ng = 60) yields a higher mean criterion rating than the standard
technique A (n, = 90). Using the sample means (which differ in the pre-
dicted direction) and s, they find d, = .32 [formula (2.5.1)].They also com-
pute [formula (2.3.1)]

L 200)60) _
90+ 60
Their specifications thus are

a, =.05, n' =72, d = .32.

In Table 2.3.2 for a;, = .05 atn’ = 72, d, = .28. The d, value of .32 ex-
ceeds the criterion value, so they conclude that the mean for the new method
is significantly higher than that of the old (at a, = .05) on the rating criteri-
on.

If they had instead computed t, they would have found it to equal 1.92. If
they then wanted to have a d, value (for example, to express their results in
terms of a U value,or r, or r), they can find it from formula (2.5.3):

90 + 60
ds = 1.92\/(9—0m =.

Or, alternatively, if they first compute d; and requires the t value, they

can find it from formula (2.5.4).

72.

2.54 SIGNIFICANCE TESTING IN CASE 2: 0, # 0, B, = ng. Case 2 speci-
fies that the standard deviations of the two populations are not equal. It
is included here to stress two facts. One is that the sample standard devia-
tions are virtually never equal but that this does not matter in the relation-
ships discussed above in Section 2.5.1. The other is that even if the population
standard deviations are judged to be unequal (for example, on the basis of
a variance ratio test), the relationship between d, and t nevertheless holds,
since it is purely algebraic, and further, that the interpretation of d, in terms
of r and r? continues to hold (but not in terms of the U indices).

An issue not to be confused with that of the t—-d,—r relationships is the
question of the validity of the t test under conditions of population variance
heterogeneity. As discussed above in Section 2.3.3, provided that the sample
sizes are approximately equal, the validity of the t test is hardly affected by
any but relatively extreme population variance discrepancies. Thus, the
d. values will remain approximately valid under nonextreme Case 2 con-
ditions.
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Ilustrative Example

2.18 Consider again the wage survey by the labor economist of example
2.4. When the survey of men and women workers’ (n = 100) weekly wages
is completed, he proceeds to compare their means at the prespecified a, = .01
level. His expected population difference o, # oy is reflected in the sample,
where one variance is about twice the other (a highly significant difference
with n’s of 100). He nevertheless proceeds to determine the d, value as (say)
.40. His specifications are:

a,=.01, n=100, d,=.40.

In Table 2.3.4. (for a, =.01) with n=100, he finds d, =.37. He con-
cludes, at a, = .01, that there is a sex difference in mean wages in the popu-
lation sampled, since d, exceeds d.. Since the effect of o, # o on the validity
of the test is trivial for large and equal samples (Scheffé, 1959, p. 340)
his conclusion is valid.

Note, incidentally, that the d, turned out to be smaller than the d value
he had posited in planning the experiment (see example 2.4). His smaller d,
is nevertheless significant because of the large power he had had against
the ES of d = .50, namely .82. A good reason to seek high power is, of course,
the real possibility that the d,, when found, will prove materially smaller than
the d expected in the planning. This leaves a margin for error, either judg-
mental or sampling, in the setting of d.

2.5.5 SIGNIFICANCE TESTING IN CASE 3: ONE SAMPLE OF n OBSERVATIONS.
For those circumstances in which the null hypothesis takes the form: A
single sample of n observations comes from a normal population whose mean
is ¢, one must take into account the construction of the Tables 2.3, including
thed, values. The reader is reminded that the latter proceeded on the assump-
tion of two-sample tests, with, therefore, the sampling error variance of two
means. Thus, it is necessary in one-sample tests to adjust the tabulated d
value. This proceeds very simply: To find the proper criterion value for
one-sample tests, d_’, one finds:

(2.5.6) d/=d.v/j or .707d,.

This value is an underestimate, but a very slight one unless n is less than
30 (see Section 2.3.4).

As for the observed d, value for Case 3, we follow the principle expressed
in Section 2.5.1 and merely define d; as we defined d,’ with sample values
substituted for the population values of formula (2.3.3):
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(2.5.7) d,/ =

The prime is used to indicate that a one-sample test is involved. The
relationship between d.’ and t as given in formulas (2.5.3) and (2.5.4) must
be revised for one-sample tests, as follows:

(2.5.8) d't= \/.‘.,

n
(2.5.9) t=d'v/n.

The first of these formulae may be useful when a t has been computed and
a standardized sample ES index is desired; the second is of use when the t
value is needed (e.g., for reporting results in an article).

Formula (2.5.9) [as well as formulas (2.5.4) and (2.5.5)] makes patent the
dependence of the significance decision on both effect size in the sample
(d,’) and the amount of evidence provided by the sample (n).

Illustrative Example

2.19 In example 2.5, an experimenter was planning a test on the effect
of rearing rats in total darkness on their weight gain from birth to 90 days.
The test is of the departure, in either direction, from an established standard
value of 70 (= c). The sample used was of 60 cases, and the test was planned
and performed at a, =.10. He finds the sample mean gain to be X = 68.8
and the standard deviation to be s =8.1. From formula (2.5.7), he finds
d,’ = (-).15. His specifications are:

a,=.10, n=60, d, =.15.

In Table 2.3.6 fora, =.10, n = 60, he finds d = .30. Since this is a one-

sample test, he goes on to find d,' = .30\/} =.21. Comparing his observed
d,’ with the criterion d.’, he concludes that the sample mean departure from
70 is not significant at a, =.10.

2.5.6 SIGNIFICANCE TESTING IN CASE 4: ONE SAMPLE OF n DIFFERENCES
BETWEEN PAIRED OBSERVATIONS. The significance test of the difference
between means of paired observations is a special case of the one-sample
test (Case 3) where ¢ = 0 (see discussion in Section 2.3.5). That is, the compu-
tations proceed by taking the X, Y pairs, of which there are n, and finding the
differences, X — Y =Z. The result is a single sample of n Z observations.
From this point one proceeds as in Case 3, the null hypothesis being
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that the population mean of these Z values is 0. Once the sample data
are being analyzed, the issue of the population (or sample) r between X
and Y, discussed in the power and sample size sections on Case 4 (Sections
2.3.5. and 2.4.5), plays no role in the computations of significance.

For case 4, we define d,” as in formula (2.5.6), calling the variable Z
instead of X and treatingc as 0, i.e.,

(2.5.10) d' =

» | NI

where s is the sample standard deviation of the Z values.

Note that this is the exact sample analog of formula (2.3.5).

Also as in Case 3, we must make the adjustment of the tables d. value,
to allow for sampling error variance of only one mean, (here, a mean differ-
ence) instead of the two on which the tables are based. This requires multi-
plying d.’ by v’} {formula (2.5.6)] to find the Case 4 criterion, d’.

As in Case 3, the relationship between d,” and t as given in formulas
(2.5.8) and (2.5.9) hold for Case 4. Thus, one can simply translate ad,’ value
into-t, if the latter value is required, or a t value into d,’, if one wants to
express the size of the mean difference in the sample in standardized terms,
that is, in terms of the standard deviation of the differences.

Finally, and again as in Case 3, the d." value is slightly underestimated,
but to a degree which can be safely ignored unless n is small.

Illustrative Example

2.20 In example 2.6, an educational researcher was planning an experi-
mental comparison of two programed texts in algebra by assigning the
members of 50 IQ-matched pairs at random to the two texts, and, following
instruction, testing their achievement. Assume that the experiment has
been performed and the data marshalled for the significance test, to be per-
formed at a, = .05, as specified in the plans.

The test is of the significance of the departure of the mean difference,
Z =(X -Y), from zero, which is equivalent to a test of X — Y =0. He finds
Z = -2.78, s (of the Z’s)=8.22, and entering these in formula (2.5.10),
d,’ =(—).34. (Since the test is nondirectional, the negative sign does not

enter, other than to indicate the X is less than 7.) His specifications are:
a, = .05, n =50, d,/=.34.

In Table 2.3.5 for a, =.05, n=50, he finds d. = .40. Since this is a
one-sample test, he needs to find d.’ = .40V} = .28. Comparing his observed
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d,’ value of .34 with the criteriond,’ value of .28, he concludes that his depar-
ture from no difference of 2.78 (in favour of the X program) is significant at
a, =.05. If a value of t is required, it can be found from formula (2.5.9)

as t = .34V/50 = 2.40.



CHAPTER 3

The Significance of a Product Moment r,

3.1 INTRODUCTION AND USE

Behavioral scientists generally, and particularly psychologists with sub-
stantive interests in individual differences in personality, attitude, and
ability, frequently take recourse to correlational anlysis as an investigative
tool in both pure and applied studies. By far the most frequently used statis-
tical method of expression of the relationship between two variables is
the Pearson product-moment correlation coefficient, r.

r is an index of linear relationship, the slope of the best-fitting straight
line for a bivariate (X, Y) distribution where the X and Y variables have
each been standardized to the same variability. Its limits are — 1.00 to
+ 1.00. The purpose of this handbook precludes the use of space for a
detailed consideration of the interpretations and assumptions of r. For this,
the reader is referred to a general textbook, such as Cohen & Cohen (1983),
Hays (1981), or Blalock (1972).

When used as a purely descriptive measure of degree of linear relation-
ship between two variables, no assumptions need be made with regard to
the shape of the marginal population distribution of X and Y, nor of the
distribution of Y for any given value of X (or vice versa), nor of equal varia-
bility of Y for different values of X (homoscedasticity). However, when
significance tests come to be employed, assumptions of normality and
homoscedasticity are formally invoked. Despite this, it should be noted
that, as in the case of the t test with means, moderate assumption failure
here, particularly with large n, will not seriously affect the validity of signifi-
cance tests, nor of the power estimates associated with them.

75
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In this chapter we consider inference from a single correlation coefficient,
r,, obtained from a sample of n pairs (X, Y) of observations. There is only one
population parameter involved, namely r, the population correlation co-
efficient. It is possible to test the null hypothesis that the population r equals
any value ¢ (discussed in Chapter 4). In most instances, however, the behav-
ioral scientist is interested in whether there is any (linear) relationship
between two variables, and this translates into the null hypothesis, Hy:
r=0. Thus, in common statistical parlance, a significant r, is one which
leads to a rejection of the null hypothesis that the population r is zero. It
is around this null hypothesis that this chapter and its tables are oriented.
(For the test on a difference between two r’s, see Chapter 4.)

The significance test of r, may proceed by means of the t distribution,
as follows:

rvn-2
Vi-r2
where n is the number of (X, Y) pairs in the sample, and the appropriate
t distribution is that for n — 2 degrees of freedom.! As in tests on means,

the t criterion for rejection depends on the a (significance) level and the
directionality of the test:

G.1.1) t=

1. If either a positive or a negative value of r, is considered (a priori)
evidence against the null hypothesis, the test is nondirectional, i.e., two
tailed.

2. If the sign of r, is specified in advance, that is, if only positive (or
only negative) correlation is deemed relevant for rejecting the null hypoth-
esis, the test is directional, i.e., one tailed.

A word about regression coefficients. When one variable of the X, Y
pair, conventionally Y, can be looked upon as dependent upon X, one may
speak of the regression of Y on X. The slope of the best-fitting line for pre-
dicting Y from X, when each is in its original (*‘raw’’) unit of measurement,
is called the regression coefficient, Byx. Byy is simply the unstandardized
slope of Y on X and can be written simply as a function of r and the two
standard deviations, oy and oy:

(3.1.2) Byy=r :

ox

! In the power tables, minimum values of r, necessary for significance, given a and n,
are provided in the criterion r (r.) column. This obviates the necessity in most instances
of computing t from formula (3.1.1) and interpolating for df in t tables. See Section 3.5
which describes this procedure in detail.
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thus

(3.1.3) r=Byx .
Oy

Byx, being the slope of the regression line, indicates how many units
of change in Y are produced by a unit change in X, where the units are the
““raw ”’ values of the respective variables. In problems where such dependencies
can be assumed, and where the units in which X and Y are measured are
inherently meaningful (e.g., dollars, population densities), regression coeffi-
cients are often preferred to correlation coefficients. Also, regression coeffi-
cients remain constant under changes in the variability of X, while correlation
coefficients do not.

A test of the significance of B, i.e., that it departs from zero in the popu-
lation, is automatically provided from the test of r. A glance at formula
(3.1.2) shows that B is zero if and only if r is zero.? The researcher accustomed
to regression formulations in the two-variable case where X, Y pairs are
sampled need only translate his problem (including the effect size) into corre-
lation terms and proceed. (Tests on partial regression coefficients are discussed
in Chapter 9.)

3.2 THEe ErFect SIZE: r

The ES index offers no difficulty here (but see Section 11.1). The require-
ments for an ES index include that it be a pure (dimensionless) number, one
not dependent on the units of the measurement scale(s). The population cor-
relation co-efficient, r, serves this purpose.

Thus, a general formulation of the power estimation problem is: One
is going to test the significance (Hy: r =0) of a sample r, value at the a
significance criterion with n pairs of observations; if the population r is
some specified value (thus, the ES), what is the power of the test (the proba-
bility of rejecting the null hypothesis)? Tables 3.3 would be used to find the
power value.

Similarly, a general formulation of the sample size estimation problem
is: One plans to test the significance (Hy: r =0) of a sample r, value at the
a significance criterion and wishes to detect some specified population r
(this being the ES); he then specifies the desired power (probability of
rejecting the null hypothesis). How many pairs of observations, n, would
be necessary? Table 3.4 would be used to find the value of n.

2 The reader may object that B is zero when oy is zero whatever the value of r. How-
ever, when oy is zero, ris indeterminate, that is, it is not meaningful to talk of correlation
when one of the variables does not vary.
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3.2.1 r As PV aAND THE SiZE OF CORRELATIONAL EFFECTS. One concept-
ually useful way to approach an understanding of r is to consider r? (as
already noted in Chapter 2).> The square of the correlation coefficient is
the proportion of variance (PV) in either of the two variables which may be
predicted by (or accounted for, or attributed to) the variance of the other,
using a straight-line relationship (Cohen & Cohen, 1983). Concretely, given
an r of .50 between 1Q and course grades, r? = .25, so that 25% of the
variance in course grades for the members of this population may be attributed
to differences among them in 1Q. (Of course, the attribution of causality is a
logical or scientific issue, and not one of statistical inference, as such.) Note,
incidentally, that the descriptive use of r? (as that of r) is not dependent on
assumptions of normality or homoscedasticity.

Measures of proportion of variance are usually more immediately
comprehensible than other indices in that, being relative amounts, they
come closer to the behavioral scientist’s verbal formulations of relative magni-
tude of association. They have the additional virtue of providing a common
basis for the expression of different measures of relationships, e.g., standar-
dized difference between means (d), variation among means (correlation
ratio), as well asr.

The only difficulty arising from the use of PV measures lies in the fact that
in many, perhaps most, of the areas of behavioral science, they turn out to
be so small! For example, workers in personality-social psychology, both
pure and applied (i.e., clinical, educational, personnel), normally encounter
correlation coefficients above the .50-.60 range only when the correlations
are measurement reliability coefficients. In PV terms, this effective upper
limit implies something of the order of one-quarter or one-third of variance
accounted for. The fact is that the state of development of much of behavioral
science is such that not very much variance in the dependent variable is
predictable. This is essentially merely another way of stating the obvious:
that the behavioral sciences collectively are not as far advanced as the
physical sciences. In the latter, we can frequently account for upwards of
999 of dependent variable variance, for example, in classical mechanics.*
Thus, when we consider r = .50 a large ES (see below), the implication that
.25 of the variance accounted for is a large proportion must be understood
relatively, not absolutely.

3 Another possibly useful way to understand r is as a proportion of common elements
between variables. The implicit model for this interpretation is not compelling for most be-
havioral science applications (behavioral genetics may be one exception). See Ozer (1985) for a
contrary view and “Effect Size” in Chapter 11 for further discussion of r and .

* This is one way to understand the reason for the fact that applied statistical analysis
flourishes in the biological and social sciences and has only limited specialized applications
in pure physical science.
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The question, ‘“‘relative to what?”’ is not answerable concretely. The
frame of reference is the writer’s subjective averaging of PVs from his
reading of the research literature in behavioral science. Since no one reads
a stratified random probability sample of the behavioral science literature
(whose definition alone would be no mean task), this average may be biased
in a “soft” direction, i.e., towards personality-social psychology, sociology,
and cultural anthropology and away from experimental and physiological
psychology.

The preceding serves as an introduction to operational definitions of
“small,” ““medium,” and “large” ES as expressed in terms of r, offered as
a convention. The same diffidence is felt here as in Section 2.2 (and other
such sections in later chapters). A reader who finds that what is here defined
as “large” is too small (or too large) to meet what his area of behavioral
science would consider appropriate standards is urged to make more suit-
able operational definitions. What are offered below are definitions for use
when no others suggest themselves, or as conventions.

SMALL EFFECT SIZE: r=.10. An r of .10 in a population is indeed
small. The implied PV is r?= .01, and there seems little question but
that relationships of that order in X, Y pairs in a population would
not be perceptible on the basis of casual observation. But is it too
small?

It probably is not. First of all, it is comparable to the definition of a
small ES for a mean difference (Chapter 2), which was d =.2, implying
point biserial r =.10 (for populations of equal size). More important than
this, however, is the writer’s conviction that many relationships pursued in
‘*“soft™ behavioral science are of this order of magnitude. Thurstone once
said that in psychology we measure men by their shadows. As the behavioral
scientist moves from his theoretical constructs, among which there are hypo-
thetically strong relationships, to their operational realizations in measure-
ment and subject manipulation, very much *“noise’ (measurement unrelia-
bility, lack of fidelity to the construct) is likely to accompany the variables.
(See Section 11.3 for a discussion of psychometric reliability and power anal-
ysis.) This, in turn, will attenuate the correlation in the population between
the constructs as measured. Thus, if two constructs in theory (hence perfectly
measured) can be expected to correlate .25, and the actual measurement
of each is correlated .63 with its respective pure construct, the observed
correlation between the two fallible measures of the construct would
be reduced to .25 (.63) (.63) =.10. Since the above values are not un-
realistic, it follows that often (perhaps more often than we expect), we are
indeed seeking to reject null hypotheses about r, when r is some value
near .10.

We can offer no exemplification with known instances of population r's
of the order of .10, by the very nature of the problem. In fields where
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correlation coefficients are used, one rarely if ever encounters low r.’s on
samples large enough to yield standard errors small enough to distinguish
them from r’s of zero.

MEDIUM EFFECT SIZE: r=.30. When r=.30, r?=PV=.09, so that
our definition of a medium effect in linear correlation implies that 99
of the variance of the dependent variable is attributable to the independent
variable. It is shown later that this level of ES is comparabie to that of medium
ES in differences between two means.

Many of the correlation coefficients encountered in behavioral science
are of this order of magnitude, and, indeed, this degree of relationship
would be perceptible to the naked eye of a reasonably sensitive observer.
If we appeal to fields which use psychological tests, we find, for example,
that Guilford and Fruchter write that “the validity coefficient (r with criteri-
on) of a single test may be expected in the range from .00 to .60, with most
indices in the lower half of that range [1978, p. 87].”

When one considers correlations among tests of diverse abilities, average
r's run rather higher than .30. However, for example, for adolescents,
correlations among representative tests of creativity average to almost
exactly .30, and creativity tests have an average r with 1Q of just below .30
(Getzels & Jackson, 1962, p. 20). In another area, scores on the two major
variables of personality self-description, neuroticism (or trait anxiety) and
extraversion correlate about — .30 in college students and in psychiatric
populations (Jensen, 1965). In still another area, about 409, of the correla-
tion coefficients among the nine clinical scales of the Minnesota Multiphasic
Personality Inventory which are reported in the literature are in the .25-.35
range. Broadly speaking, it seems justifiable to identify as a medium ES in
correlation, a value at the midpoint of the range of correlations between
discriminably different psychological variables.

LARGE EFFECT SIZE: r =.50. The definition of a large correlational ES
as r=.50 leads to r?=.25 of the variance of either variable being asso-
ciated linearly with variance in the other. Its comparability with the defini-
tion of large ES in mean differences (d = .8) will be demonstrated below.
Here, we may simply note that it falls around the upper end of the range of
(nonreliability) r’s one encounters in those fields of behavioral science which
use them extensively, e.g., differential, personality-social, personnel, educa-
tional, clinical, and counseling psychology. Thus, Ghiselli writing in an
applied psychology framework states “‘the practical upper limit of predic-
tive effectiveness . . . [is] . . . a validity coefficient of the order of .50 [1964,
p. 61].” Guilford’s figure, as noted above, is similar. We appeal to the mental-
personality-social measurement field for our criterion because of its very
heavy use of linear correlation, both historically and contemporaneously.
One can, of course, find higher values of r in behavioral science. Reliability
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coefficients of tests, particularly of the equivalence variety, will generally
run much higher. Also, if effects in highly controlled **hard” psychology
(e.g., psychophysics) are studied by means of r’s, they would frequently be
distinctly higher than .50. But they are not generally so studied. It seems
reasonable that the frame of reference used for conventional definitions of
correlational ES should arise from the fields which most heavily use corre-
lations.

The example which comes most readily to mind of this .50 level of corre-
lation is from educational psychology, which gave birth to many of the
concepts and technology of correlation methods in behavioral science (e.g.,
Galton, Spearman). Correlations between 1Qs or total scores from other
comprehensive aptitude batteries correlate with school grades at values
which cluster around .50. In contrast, when one looks at near-maximum
correlation coefficients of personality measures with comparable real-life
criteria, the values one encounters fail at the order of a medium ES, i.e.,
r =.30.

Thus, when a investigator anticipates a degree of correlation between
two different variables ““‘about as high as they come,” this would by our
definition be a large effect, r =.50.

3.2.2 CoMPARABILITY OF ES FOR r wiTH d. It is patently desirable that
effect sizes given a qualitative label, e.g., ** medium,” when studied by means
of one design or parameter, be comparable to effects given the same label
when studied by another. An attempt has been made for the opera-
tionally defined small, medium, and large ES to be comparable across the
different ES parameters necessitated by the variety of tests discussed in this
book.

Strict comparability, defined in exact mathematical terms, poses numerous
difficulties. First, several alternative definitions are possible. Consider PV,
which seems a likely candidate. When a variable is measured on an ordered
equal-interval scale, so that the variance concept is meaningful, we can express
ES in terms of proportion of variance, as was done above and in Chapter 2.
But when the dependent variable is a nominal scale, we can no longer define
variance and PV but would need to move to its generalization, multivariance
or generalized variance, and enter the world of set correlation. (We do, in
fact, do so in Chapter 10, but the going is rough.) Or, we would need to
invoke from information theory the even more general (and much less less
familiar) concept of amount of information or uncertainty. If we decide
to forego nominal scale comparability and try to use PV as a “strictly” com-
parable base for ES for interval scales, we encounter two further difficulties.
One is that we would need to specify alternate models which would lead to
varying PV’s. For example, in Section 2.2 we defined the populations as dis-
tinct “points” and therefore, the relevant r as the point biserial r (r;). So con-
ceived, PV = rpz. But if our model is changed so that the populations are ad-
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jacent along a scale so that when combined they define a normal distribution
(e.g., an adult male population defined by a median cut into “tall” and
“short” men), the correlation with height of some dependent variable would
be given by the biserial ¢(r,) (Cohen & Cohen, 1983, pp. 66-67), so that PV
= r,. But since r,, is greater than r,, their squares and hence their PVs would
differ. Thus, the “same” difference between means would, depending on the
nature of the model assumption, lead to different proportions of variance.

A further problem would arise in that, having somehow defined strictly
comparable ES in PV terms, when the latter were then translated into more
familiar measures, awkward values which are not convenient multiples would
result. Thus, if a medium PV were defined as .10, this would lead tod = .667
(under the conditions defined in Section 2.2) and r = .316.

We are prepared to be content with less formal bases for comparability
than purely mathematical ones, utilizing the * state of the science” in relevant
areas of behavioral science, as we have done above. But we wish to be guided
in our operational definitions by quantitative considerations, here specifically
correlational comparability.

In Section 2.2, the d criteria for small, medium, and large ES were stated
and translated into point biserial r (r;) and r,’. The use of r, assumes that
population membership(X)is two-valued and ““ point’ in character. The t test
for r, which concerns us in this chapter, presumes normal distributions on
both X and Y. Comparability in PV would demand that the biserial r (r,),
for which a normal distribution is assumed to underlie the X dichotomy,
should be the basis of comparison. With populations of equal size (i.e.,
forming the dichotomy at the median),

(3.2.1) ry, = 1.253r,.

Thus, if we translate the d criteria to r, (Table 2.2.1) and then, by means
of formula (3.2.1) to r,, and compare the latter with the ES criteria set
forth above for r, we find the following:

ES d r,x1253=r, r
Small .20 .100 125 10
Medium .50 243 304 .30
Large .80 71 465 .50

Comparing the r, equivalent to the r criteria of the present chapter,
we find what are judged to be reasonably close values for small and large ES
and almost exact equality at the very important medium ES level. Thus, the
terms “small,”” ‘“medium,” and ‘“large” mean about the same thing in
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correlation terms as we go from consideration of mean differences to con-
sideration of r’s.

3.3 PoWER TABLES

The tables in this section yield power values when, in addition to the
significance criterion and ES =r, the sample size is specified. Thus, these
power tables will find their greatest use in determining the power of a test
of the significance of a sample r,, after the data are gathered and the test
is made. They can also be used in experimental planning by varying n, or
ES (=r), or a to determine the consequence which such alternatives have
on power.

Specifically, the power tables yield power values for the t test of Hy:
r=0, i.e., for the test of the significance of a product moment r,, determined
on a sample of n pairs of observations X, Y at the a significance criterion.
The tables give values for a, r, and n:

1. Significance Criterion, a. Tables are provided for the following val-
ues of a: a; =.01, a, =.05, a;=.10; a,=.0l, a,=.05, a,=.10, the
subscripts referring to one- and two-tailed tests. Since power at a, is to an
adequate approximation equal to power at a, = 2a, for power greater than
.10, one can determine power at a, =.02 (from the a, =.0] table), a, =.20
(from a, =.10), a, =.005 (from a, =.01), and a, =.025 (from a, = .05).

2. Effect Size, ES. The ES index here is simply r, the population product-
moment correlation coefficient. In directional (one-tailed) tests (a,), r is
understood as either positive or negative, depending on the direction posited

in the alternate hypotheses, e.g., H,: r= —.30. In nondirectional (two-
tailed) tests, r is understood as absolute, e.g., “‘given a level of population
r = .30, whether positive or negative. . . .”

Provision is made for r =.10 (.10) .90. Conventional definitions of ES
have been offered above, as follows:

small: r=.10,
medium: r = .30,
large: r=.50.

3. Sample Size, n. This is the number of pairs of observations X, Y
in the sample. Provision is made for n = 8 (1) 40 (2) 60 (4) 100 (20) 200 (50)
500 (100) 1000.

The values in the body of the table are the power of the test times 100,
i.e., the percentage of tests carried out under the given conditions which
will result in the rejection of the null hypothesis, H,: r = 0. The values are
rounded to the nearest unit and are accurate to within + 1 as tabled (i.e.,
to within .01).
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Table 3.3.1

n l’c .10 20 030 .ho .50 060 070 oao .”
8 789 02 03 05 08 13 22 37 60 88
9 750 02 03 06 10 16 27 Ly 69 93
10 Nns 02 03 06 n 19 32 52 76 96
n 685 02 o4 07 13 22 37 58 82 98
12 658 02 ol 08 |11 25 42 6l 86 99
13 634 02 05 09 16 28 113 69 90 99
1% 612 02 05 10 18 N 51 74 92 *
15 £92 02 05 10 20 34 55 78 ol

16 574 02 06 1 22 38 59 81 96
17 558 03 06 12 23 41 63 84 97
18 L3 03 06 13 25 43 66 86 98

19 529 03 06 14 27 46 69 89 98
20 516 03 07 15 29 L9 72 91 99

21 503 03 07 16 N 52 75 92 99
22 492 03 07 17 32 sh 77 o 99

23 482 03 08 18 34 56 79 95 *

2L 472 03 08 18 36 59 81 95

25 W62 03 08 19 37 61 83 96

26 453 03 09 20 39 63 85 97

27 bhs 03 09 21 i 65 87 98

28 W37 03 09 22 W3 67 88 98

29 430 03 10 23 bh 69 89 98

30 423 03 10 2 46 n 91 99

31 W6 ob n 25 47 73 92 99

32 409 (v " 26 49 75 93 99

33 403 ok W1 27 51 76 93 99

34 397 ol 12 28 52 78 ol 99

35 392 ol 12 29 sk 79 95 *

36 386 ol 12 30 55 80 95

37 381 ob 13 30 56 82 96

38 376 ol 13 31 58 83 96

39 in oh 13 32 59 84 97

4o 367 ol h 33 61 8s 97

b2 358 ol s 35 63 87 98

b 350 o5 15 37 66 89 98

46 342 05 16 39 68 90 99

48 33s 05 17 Ly 70 92 99
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Table 3.3.1 (continued)

85

n r. Jd0 .20 .30 Lo .50 .60 .70 .80 .90
50 328 05 18 42 72 93 99 * * *
52 322 05 18 u4 74 9% 99
[ 316 05 19 L 76 95 *
56 310 06 20 48 78 96
58 305 06 21 LT] 80 96
60 300 06 21 5 81 97
64 290 06 23 st 84 98
68 282 06 25 57 87 98
72 274 07 26 60 89 99
76 266 07 28 63 90 99
80 260 07 29 66 92 99
84 253 08 3 68 93 *
88 248 08 33 70 9l

92 242 08 34 73 95

96 237 09 36 75 96

100 232 09 37 716 97

120 212 1 bs 85 99

140 196 12 52 90 *

160 184 14 59 9%

180 173 16 65 96

200 164 18 70 98

250 1y 23 8 99

300 134 28 88 *

350 124 32 93

400 116 37 96

450 110 42 98

500 104 6 9

600 095 55 *

700 088 63

800 082 69

900 078 75

1000 Wy 8o

* Power valtues below this point are greater than .995.
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Power of t testof r =0 ata, =.05

n fc .IO .20 030 o“o 050 c6° 070 oao o”
8 621 08 12 18 26 37 52 68 85 97
9 582 08 13 20 29 L2 57 M 90 99
10 sh9 08 W 22 32 46 62 79 93 99
1} 521 09 15 23 35 50 67 83 95 *
12 L97 09 15 25 38 sh n 87 97

13 L6 09 16 26 Lo 57 7h 89 98

W 4s8 10 17 28 W) 60 78 91 98
15 W 10 18 30 Ls 63 81 93 99
16 426 10 19 n 48 66 83 95 99
17 L2 10 19 33 50 69 85 96 *

18 400 1 20 3B 852 N 87 97

19 389 n 2t 36 sk 73 89 97

20 378 11 22 37 56 75 90 98

21 369 1" 22 39 58 717 92 98

22 360 n 23 4 60 79 9 99

23 352 12 20 ] 62 81 9k 99

24 3uL 12 2h 42 6k 83 95 99

25 337 12 25 W& 65 84 95 99

26 330 12 26  us 67 85 97 *

27 323 13 26 L6 68 86 96

28 37 13 27 47 10 88 97

29 n 13 28 W9 n 89 97

30 306 13 28 5 72 90 98

N 301 13 29 51 % 90 98

32 296 W 30 52 715 9 98

33 291 W 30 853 76 92 99

34 287 14 n s4 77 93 99

35 283 14 32 [1] 78 93 99

36 279 W 32 5 79 9% 9

37 278 15 3 57 8 95 99

38 2n 15 1 58 8 95 99

39 267 1§ % 59 82 95 *

4o 26k 15 35 60 83 96

42 257 16 36 62 85 97

Ly 251 113 37 6L 86 97

L6 246 16 38 66 88 98

W8 2ho 17 39 67 89 98
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Table 3.3.2 (continued)
r

n re .10 .20 .30 .40 .50 .60 .70
50 235 17 13 69 90 98 * *
52 231 17 W2 n 9 99
sh 226 18 W3 72 92 9
56 222 18 Ly 73 93 9
58 218 19 45 75 o9 99
60 214 19 hé 76 9l 99
(N 207 20 48 79 95 *
68 201 20 50 8
72 195 21 52 83 97
76 190 22 sb 85
80 185 22 56 86 98
84 181 23 58 88 9
88 176 2b 59 89 99
92 173 2 6 90 99
96 169 25 63 9 99
100 165 26 6 92 9
120 151 29 n 9% *
140 140 32 77 98
160 130 35 82 99
180 123 38 86 99
200 17 i 89 *
250 104 L7 9%
300 095 s 97
350 088 59 98
Loo 082 &4 99
Lso 078 68 *
500 o74 72
600 067 79
700 062 84
800 058 88
900 055 91
1000 052 9%

* Power values below this pofnt are greater than .995.
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Table 3.3.3

fe .20 .30 .50 .60 .70 .80 .90
8 507 15 22 30 M 53 &7 8t 92 99
9 472 15 23 32 Lo 58 72 85 95 99
10 L3 16 24 34 47 61 76 88 97 *
1} 9 16 25 36 50 65 79 9 98
12 398 17 26 38 53 68 83 93 99

13 380 17 27 Lo 55 n 85 95 99
1w 365 17 28 42 58 74 87 96 99
15 351 18 29 uLL 60 76 89 97 *

16 338 18 30 45 62 79 90 98

17 327 19 3N 47 64 81 92 98

18 317 19 32 49 66 8 93 98

19 308 19 33 50 68 84 9l 99

20 299 20 3 52 70 8 95 99

21 291 20 35 53 72 87 9% 99

22 284 20 36 sk 73 88 97 99

23 277 21 36 56 75 89 97 *

24 27t 21 37 57 76 90 98

25 265 21 38 58 718 91 98

26 260 2 39 59 79 92 98

27 255 22 Lo 6t 80 93 99

28 250 22 ko 62 81 9 99

29 245 23 W 63 82 94 99

30 241 23 42 64 83 95 99

3N 237 23 43 65 84 95 99

32 233 23 43 66 85 96 99

33 229 2b Ly 67 86 96 99

34 225 26 45 68 87 97 *

35 222 2% ks 69 88 97

36 219 24 U6 70 88 97

37 216 25 W7 n 89 98

38 213 25 L8 72 90 98

39 210 25 48 73 90 98

4o 207 25 49 M 9 98

42 202 26 S0 75 92 99

L 197 26 51 77 93 99

46 192 27 53 78 9% 99

48 188 27  sb 79 9% 99
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Table 3.3.3 {continued)
r

n re 10 ,20 .30 .4bo .50 .60
50 184 28 55 81 95 99 *
52 181 28 56 82 96 *
sh 177 29 57 83 96
56 174 29 58 84 97
58 m 30 59 85 97
60 168 30 60 86 97
o4 162 N 62 88 98
68 1587 32 6l 89 98
72 153 33 66 90 99
76 149 34 68 92 99
80 145 3 70 93 99
8L 1 36 n ol *
88 138 36 73 95
92 135 37 74 95
96 132 38 75 96
100 129 39 76 96
120 118 42 82 98
140 109 46 86 99
160 102 49 90 *
180 096 52 92
200 09N 55 9%
250 081 62 97
300 074 87 99
350 069 72 99
400 o6k 76 *
450 061 80
500 057 83
600 052 88
700 oL48 91
800 oLs 9l
900 043 96
1000 ol 97

* Power values below this point are greater then .995.
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Table 3.3.4

n re 10 .20 .30 M40 .50 .60 .70 .80 .90
8 834 ol 02 03 05 08 14 26 L7 B0
9 798 o 02 03 06 10 18 32 56 88
10 765 o 02 ok 07 12 22 40 65 93
n 735 o 02 o4+ 08 15 27 W n 9%
12 708 o1 02 05 09 17 N 52 79 97
13 684 o1 03 05 10 20 35 58 8 99
b 661 o 03 06 12 22 Lo 64 87 99
15 641 ] 03 06 13 25 44 68 90 *
16 623 01 03 07 4 28 48 73 93

17 606 o 03 08 16 30 52 77 95

18 590 o oh 08 17 33 56 80 96

19 575 02 Ok 09 19 36 59 83 97
20 561 02 o4& 09 20 38 62 85 98

21 549 02 ok 10 21 ] 66 88 98
22 537 02 O n 23 43 8 90 99

23 526 02 O 12 25 L6 n 9N 99
24 515 02 05 12 26 4 W 93 99
25 505 02 05 13 28 5 76 % *

26 L96 02 05 w30 53 78 95

27 L87 02 06 W N 55 B0 96

28 479 02 06 15 33 57 82 96

29 wn 02 06 16 3 60 84 97

30 463 02 06 17 36 62 85 98

31 Lsé 02 07 17 37 6L 87 98

32 W9 02 07 18 39 66 88 98

33 L2 02 07 19 40 67 8 99

3b %13 02 07 20 42 69 90 99

35 3o 02 08 20 W3 n 91 99

36 424 02 08 2t 4s 72 92 9

37 Ny 02 08 22 W 93 99

38 h3 02 08 23 48 76 94 *

39 Lo8 02 09 2h Lo 77 95

bo Lo3 02 09 25 50 718 95

42 393 03 09 26 53 8 96

Ly 384 03 10 28 56 83 97

N3 376 03 1" 29 58 85 98

48 368 03 n 3t 61 87 98
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Table 3.3.4 (continued)
r

n rc 0,20 .30 L0 .50 60
50 361 03 12 33 63 8 99
52 354 03 12 34 66 90 99
sh 348 03 13 36 68 91 99
56 3 03 14 38 70 93 99
58 336 03 14 39 72 94 *
60 330 03 15 1Y) 74 ol
64 320 ok 16 Ly 17 96
68 310 ok 17 47 80 97
72 302 ol 19 50 83 98
76 294 ol 20 53 85 98
8o 286 ol 21 56 87 99
8L 280 05 23 59 89 99
88 273 05 24 61 9N 99
92 267 05 25 6L 92 *
96 262 05 27 66 ol
100 256 06 29 69 95
120 234 07 35 78 98
140 217 08 42 85 99
160 203 09 4 90 *
180 192 1" 55 ol
200 182 12 61 96
250 163 16 73 99
300 149 20 82 *
350 138 2L 89
400 129 28 93
Lso 121 32 9
500 115 37 97
600 105 45 99
700 097 53 *
800 091 60
900 085 67
1000 081 72

* Power values below this point are greater than .995.
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Table 3.3.5

Power of t testof r =0 ata, = .05

n rc .'0 020 -30 .‘00 .50 .60 » 070 oeo .90
8 707 06 07 N 16 25 37 s4 75 9%
9 666 06 08 12 19 29 43 62 82 97
10 632 0% 08 13 21 33 49 68 87 98
1" 602 06 09 14 23 36 54 73 91 99
12 576 06 09 16 26 Lo 58 78 93 99
13 553 06 10 17 28 L4 63 82 95 *
W 532 06 10 18 30 4y 66 85 96

15 514 06 1 19 32 50 70 88 98

16 L9y 07 1 21 35 53 73 90 98
17 482 07 12 22 37 56 76 92 99

18 468 07 12 23 39 59 79 ) 99
19 456 07 13 2L Y 62 81 95 99
20 Llyly 07 1 25 43 & 83 96 *

2t 433 07 14 27 us 66 8s 96

22 423 07 15 28 47 6 87 97

23 INE] 07 15 29 49 N 89 98

2h Loy 07 16 30 51 3 90 98

25 396 o8 16 N 53 75 91 99

26 388 08 17 33 5k 76 92 99

27 18 08 17 34 56 78 93 99

28 374 08 18 35 58 80 94 99

29 367 08 18 36 59 B 95 99

30 361 08 19 37 6 83 95 *

31 355 08 19 38 62 B 96

32 49 08 20 39 64 85 97

33 344 09 20 ho 65 86 97

34 339 09 21 42 67 87 97

35 334 09 21 L3 68 88 98

36 329 09 22 b 69 89 98

37 326 09 22 ks 70 90 98

38 320 09 23 L6 72 91 99

39 316 09 23 47 73 91 99

4o 312 09 24 48 74 92 99

42 304 10 25 50 76 93 99

Iy 297 10 26 52 78 9 99

L6 291 10 27 54 80 95 *

48 285 10 28 55 82 9
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Table 3.3.5 (continued)
,

n e 0,20 .30 .40 .50 .60
50 279 n 29 57 83 97 *
52 273 1" 30 59 85 97
sk 268 n 3 61 86 98
56 263 n 32 62 87 98
58 259 12 33 6l 89 98
60 25h 12 34 65 90 99
64 246 12 36 68 9N 99
68 239 13 38 n 93 99
72 232 13 39 73 9l *
76 226 1 Y] 76 95
80 220 1Y L3 78 96
84 218 15 hs 80 97
88 210 15 47 82 98
92 205 16 L8 83 98
96 201 16 50 85 98
100 197 17 52 86 99
120 179 19 59 92 *
140 166 22 66 95
160 155 24 72 97
180 thé 27 77 98
200 139 29 81 99
250 124 35 89 *
300 13 4 ol
350 105 46 97
400 098 52 98
450 092 56 99
500 088 61 99
600 080 69 *
700 o7h 76
800 069 81
900 065 85
1000 062 89

* Power values below this point are greater than .995.
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Tabie 3.3.6

n re 0 20 .30 MO0 .50 .60 .70 .80 .90
8 621 1} 14 19 27 38 52 68 85 97
9 582 1 15 21 30 42 57 74 90 99
10 549 1n 15 22 33 46 62 79 93 99
n 521 12 16 24 35 50 67 83 95 *
12 Ly7 12 17 25 38 54 n 87 97

13 L76 12 17 27 & 57 M 8 98

1 4s8 12 18 28 43 60 78 91 98

15 4 12 19 30 45 63 81 93 99

16 426 12 19 n L8 66 83 95 99
17 412 13 20 33 50 69 85 96 *

18 400 13 21 34 52 n 87 97

19 389 13 2 36 st 1 89 97

20 378 13 22 37 56 75 90 98

21 369 13 23 39 58 77 92 98

22 360 13 24 Lo 60 79 93 99

23 352 w2 W 62 81 9 99

24 344 W 25 42 6l 83 95 99

25 337 14 26 L 65 8l 95 99

26 330 I 26 b5 67 8 96 *

27 323 W 27 46 68 86 96

28 317 W 27 47 70 88 97

29 3N 15 28 49 N 89 97

30 306 15 29 50 72 90 98

31 301 15 29 51 7% 90 98

32 296 15 30 52 75 91 98

33 291 15 n 53 76 92 99

3N 287 15 3 sh 77 93 99

35 283 16 32 55 78 93 99

36 279 16 32 56 79 9% 99

37 275 16 33 57 80 95 99

38 27n 16 34 58 81 95 99

39 267 16 3 59 82 95 *

4o 264 16 35 60 83 96

42 257 17 36 62 8 97

(™ 253 17 37 64 86 97

(73 246 17 38 66 88 98

48 240 18 39 67 89 98
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Table 3.3.6 (continued)
r
n rc .10 «20 .30 40 .50 .60
50 235 18 L 69 90 98 *
52 231 18 42 n 91 99
54 226 19 43 72 92 99
56 222 19 L 3 93 99
58 218 19 bs 75 9% 99
60 21k 20 L6 76 9% 99
6L 207 20 48 79 95 *
68 201 21 50 81 96
72 195 22 52 83 97
76 190 22 [ 85 98
80 185 23 56 86 98
84 181 24 58 88 99
88 176 24 59 89 99
92 173 25 61 90 99
96 169 26 63 9 99
100 165 27 6l 92 99
120 151 29 N 96 *
140 140 32 77 98
160 130 35 82 99
180 123 38 86 99
200 17 ) 89 *
250 104 by o
300 095 sh 97
350 088 59 98
Loo 082 64 99
450 078 68 *
500 o7 72
600 067 79
700 062 84
800 058 88
900 055 91
1000 052 9%

* Power values below this point are greater than .995.
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Ilustrative Examples

3.1 A personality psychologist has performed an experiment in which
he obtained paired measures on a sample of 50 subjects. One of these variables
is a questionnaire score on extraversion, the other a neurophysiological
measure which his theory posits should relate to the former. His hypothesis
is formulated as nondirectional and he selects a, = .05 as his significance cri-
terion. Although his theory dictates a strong relationship, unreliability and
lack of high construct validity of his measures (e.g., social desirability
variance in his questionnaire measure) lead him to expect only a medium ES,
hence he posits r =.30 (PV =r? =.09). What is the power of the test of
the significance of r, he performs? His specifications are

a,=.05 r=.30, n=50.

In Table 3.3.5 (for a, =.05), column r =.30, row n = 50, power = .57.
Thus, a significance test with 50 subjects at an a, = .05 criterion has not much
more than a 50-50 chance of rejecting the null hypothesis when the popula-
tion r = .30.

It may be argued that a theory which leads to so nonobvious a prediction
as the correlation of measured electrical events in the nervous system with
responses to complex social and intrapersonal questionnaire items combined
in a certain specific way, should at least predict the direction of the association.
Indeed it does—it predicts a positive correlation. If the investigator would
have been prepared to renounce all interest in discovering an unanticipated
negative correlation (if such, despite his theory, should be the case), he
would have formulated his null and alternate hypothesis directionally (H,:
r <0, H,:r = +.30) and, leaving his other conditions unchanged, may have
instead used a one-tailed significance criterion, thus:

a, =05 r=.30, n=50.

In Table 3.3.2 for a, = .05 (instead of Table 3.3.5 for a, =.05), column
r =.30, row n = 50, power = .69. The use of a directional instead of a non-
directional test under these conditions (of a, r, and n) would result in his
chance of rejecting the null hypothesis being improved from .57 to .69.
Note that the formulation of this illustration is not intended to suggest any
manipulation of the directionality of the test after the data are gathered.
This is properly formulated in advance and maintained. However, these
tables may be used in experimental planning for seeking an optimum strategy.
This could include the decision as to whether to state the hypothesis direc-
tionally or nondirectionally and would lead to such comparisons as the above.
If we take this to be the case in the above example, the psychologist would
then need to decide whether, under the given conditions, the gain in power
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from .57 to .69 is worth forgoing the possibility of concluding that r is
negative. This decision will be made, of course, on substantive and not
statistical grounds.

3.2 An educational psychologist is consulted by the dean responsible
for admission at a small college with regard to the desirability of supple-
menting their criterion for admission by using a personality questionnaire.
The plan is to administer the test to entering freshmen and determine whether
scores on this test (X) correlate with freshman year grade point average (Y).
Following discussion it is determined that it can be assumed that for enter-
ing freshmen, X is not correlated with the selection criterion, so that its
correlation with Y, if any, represents incremental validity beyond present
selection practices. The decision is made that if r =.10, then it is worth
adding to the selection procedure. Each annual freshmen class numbers
about 500. The educational psychologist first seeks to determine power under
these conditions if the decision to proceed is made at thea, = .01 anda, = .05
criteria. Her specifications are

a, = .01, r=.10, n = 500,
a, =.05, r=.10, n = 500.

In Table 3.3.4 for a, = .01, with columnr = .10 and row n = 500, power =
.37. Then in Table 3.3.5 (for a, =.05) for the same column and row,
power = .61.

The educational psychologist finds herself dissatisfied with these results,
since, even with the a, = .05 risk, she has only a three in five chance of de-
tecting r = .10. She checks the consequence of a, = .10 (Table 3.3.6) for
these conditions and finds power = .72, the same as for a, = .10 (Table
3.3.2). Thus, even if she were to use an a, = .10 criterion (which she and the
dean judge to be too large a risk in this situation), or an a; = .05 criterion
(which would mean eliminating the possibility of a valid conclusion that r is
of sign opposite from the one anticipated), she would have power of not
quite three in four. Since even liberalizing conditions which are unacceptable
in the situation yield power values not as high as desired, she turns to other
possibilities.

The psychologist considers an experimental plan which involves combin-
ing the data for two successive years, so that n will equal about 1000. The
conditions now are

a,=.0l1, r=.10, n = 1000,
a, =.05, r=.10, n = 1000.

She uses Table 3.3.4 (for a, = .01), with columnr = .10 and row n =
1000, and finds power = .72. Then, she considers Table 3.3.5 (for a, = .05)
and finds power = 89. She suggests to the dean that if two successive years’
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admissions can be used (resulting in an additional year’s delay) and that if
the alpha risk of a, =.05 is acceptably small, that a population r=.10
can be detected with probability of almost nine in ten. The dean might well
find this procedure acceptable.

It may be noted that if X has a higher correlation with Y in the popu-
lation, say r = .20, the various conditions posited above yield power values
as follows:

n =500 n = 1000
(Table 3.3.4) a,=.01 97 >.995
(Table 3.3.5) a,=.05 .99 >.995
(Table 3.3.6) a,=.10 (a; =.05) >.995 >.995

It is obvious that if r is as large as .20, it hardly matters what alpha
criterion is chosen, and, moreover, it would certainly not pay to delay an
additional year to bring n from 500 to 1000. This illustrates how crucial the
ES decision may be in experimental planning.

3.3 An industrial psychologist is asked to perform an investigation of
the relationship between weekly wages (which vary as a function of training
and experience) and work output for a given job. The client’s purpose is
to decide on wage and qualification policy in a new venture. The economics
of the situation are such that if an additional dollar a week in wage (X)
is accompanied by as much as an additional 4 units (Y) of work output, it
would be advantageous to hire the best qualified workers who will require the
maximum salary. The ES is thus formulated in terms of a regression coeffi-
cient Byx = 4. The industrial psychologist can obtain appropriate data on
n = 120 workers and plans to perform a one-tailed test at the .0l level. The
one-tailed test is justified on the grounds that the situation does not require
distinguishing between a zero and a negative relationship in the null hypoth-
esis—either will lead to the same decision (see Section 1.2 and Cohen,
1965, pp. 106-111, and ref.).

Since the ES is a regression coefficient, in order to use Tables 3.3 and 3.4.1,
it must be converted into r. For this, values or estimates of the relevant
population standard deviations of X and Y are needed. Assume these
values are available, and are o = 8 and oy = 80. Thus, from formula (3.1.3),

r-syx——(«t)

Thus, the specifications are
a, =.0l, r=.40, = 120.
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In Table 3.3.1 (for a; =.0l), with column r= .40 and row n =120,
power = .99. Thus, if the relationship in the population is such that a dollar
increase in weekly pay is associated with an increase of 4 work units (which,
given oy and oy, implies r =.40), then, with n =120, the probability that
he will reject the null hypothesis at the a, = .0l criterion is .99. Note that
these conditions happen to yield equality of alpha and beta risks at .01, a
result which can, of course, be directly sought. For this, the sample size
Tables (3.4.1) are somewhat more convenient.

3.4 SaAMPLE S1ZE TABLES

The tables in this section list values for the significance criterion, the
r (= ES) to be detected, and the desired power. The number of paired observa-
tions (X, Y) required in the sample, n, is then completely determined. These
tables are designed primarily for use in the planning of experiments, during
which the decision on sample size is made. As already noted (Section 2.4),
a rational decision on sample size requires, after the significance criterion
and ES are formulated, attention to the question: How much power (or
how little Type H error risk) is desired?

The use of these tables is subject to the same assumptions of normality
and homoscedasticity as those applying to the power tables in the previous
section (see Section 3.1). Tables give values for a, r, and desired power:

1. Significance Criterion, a. The same values of a are provided as for
the power tables. Five tables are provided, one for each of the following
nonparenthetic a levels: a, =.01 (a,=.02), a,=.05 (a3, =.10), a, =.10
(a, =.20), a, =.01 (a, =.005), and a, = .05 (a, =.025).

2. Effect Size, ES. The population r serves as ES. For problems in
which the effect size is expressed as a regression coefficient, it is converted to
r by means of formula (3.1.3). The same provision for r is made as in the
power tables: .10 (.10) .90. For r values other than the nine provided, the
following formula, rounding to the nearest integer, provides an excellent
approximation®:

.100\2
(3.4.1) n=n;, T +2,

where n.,, is the necessary sample size for the given a and desired power
atr = .10 (obtained from the table), and z is the Fisher z transformation for

3 A check on formula (3.4.1) was made by applying it to the 96 values for a, = .005,
.025, .050, and .010, r = .20 (.10) .90 at power levels .50, .80, and .99. The mean discrepancy
from the rounded values of Tables 3.4 was +.01, with a standard deviation of .46. No
discrepancy exceeded 1.1. Since rounding error alone would result in a standard deviation
of discrepancies of .29, the approximation is more than adequate.
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the nontabled r value. The constant .100 is the value of the z transformation
when r = .10. Discussion of the Fisher z transformation is found in many
statistics textbooks (e.g., Hays, 1981). The next chapter contains an r to z
transformation table (4.2.2).

3. Desired Power. As in Chapter 2, provision is made for desired power
values of .25, .50, .60, %, .70 (.05), .95, .99. For discussion of the basis for
selecting these values, the provision for equalizing a and b risks, and the
rationale of a proposed convention of desired power of .80, see Section 2.4.

Summarizing the use of the n tables which follow, the investigator finds
(a) the table for the significance criterion (a) he is using, and locates (b) the
population r along the horizontal stub and (c) the desired power along the
vertical stub. n, the necessary sample size to detect r at the a significance
criterion with the desired power, is then determined. If the r value in his
specifications is not provided in the tables, he (a) finds the table for the
significance criterion he is using, and (b) enters it in columnr = .10 and row for
desired power, and reads out n . He then finds in Table 4.2.2 of the next
chapter the Fisher z value for his r, and enters it and n ,, in formula (3.4.1)
to compute n.

It should be noted that these tables are not valid under conditions of
range restriciton such as may occur in personnel selection. See Schmidt,
Hunter, and Urry (1976), Raju, Edwards, and LoVerde (1985), Alexander,
Carson, Alliger, and Barrett (1985), and their references.

Illustrative Examples

3.4 Reconsider the conditions of example 3.1, in which a personality
psychologist is concerned with the relationship between a neurophysiological
measure and a questionnaire score on extraversion. As originally described,
he wishes to detect an ES of r = .30 at a, = .05. His plan to use n = 50 subjects
resulted in a power estimate of .57. He will almost certainly consider this
value too low. Assume that he wishes power to be at the conventional .80
value and wants to know the sample size necessary for this. The specifications
are

a,=.05, r=.30, power=.80.

In Table 3.4.1 for a, =.05, column r =.30, row power = .80, he finds
n = 85. Thus, with these specifications of a and r, he will require 85 subjects
to achieve power of .80.

What if this psychologist had instead anticipated a strong relationship
between the two variables, r =.50 (our operational definition of a large
ES), using the same a and power:

a, = .05, r=.50, power = .80.
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Table 3.4.1
n to detect r by t test

a, = .01 (a, = .02)
r

Power .10 .20 30 .40 .50 .60 .70 .80 .90
.25 274 69 31 18 12 9 7 5 4
.50 541 135 59 31 20 14 10 7 5
.60 664 165 72 39 24 16 11 8 6
213 758 188 82 44 28 18 13 9 6
.70 810 201 88 48 29 19 13 9 6
.75 897 222 97 53 32 21 14 10 7
.80 1000 247 108 59 36 23 16 11 7
.85 1126 278 121 66 40 26 17 12 8
.90 1296 320 139 76 45 29 20 13 8
.95 1570 387 168 91 55 35 23 16 10
.99 2153 530 229 124 75 47 31 20 13
a; = .05 (a, = .10)
r
Power .10 .20 .30 .40 .50 .60 .70 80 .90
.25 97 24 12 8 6 4 4 3 3
.50 272 69 30 17 11 8 6 5 4
.60 361 91 40 22 14 10 7 5 4
2/3 431 108 47 26 16 11 8 6 4
.70 470 117 52 28 18 12 8 6 4
.75 537 134 59 32 20 13 9 7 5
.80 617 153 68 37 22 15 10 7 5
.85 717 178 78 43 26 17 12 8 6
.90 854 211 92 50 31 20 13 9 6
.95 1078 266 116 63 39 25 16 11 7
.99 1570 387 168 91 55 35 23 15 10
a, = .10 (a, = .20)
r
Power .10 .20 .30 .40 50 .60 70 .80 90
.25 39 11 6 4 3 3 3 3 3
.50 166 42 19 11 7 5 4 3 3
.60 237 60 27 15 10 7 5 4 3
2/3 294 74 33 18 12 8 6 4 4
.70 327 82 36 20 13 9 6 5 4
.75 383 96 42 23 14 10 7 5 4
.80 451 113 49 27 17 1 8 6 4
.85 537 134 58 32 19 13 9 6 4
.80 656 163 72 39 24 16 11 7 5
.95 854 211 92 50 31 20 13 9 6
99 1296 320 139 76 45 29 19 13 8
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Table 3.4.1 (continued)

a, = .01 (a, = .005)
r

Power 10 20 .30 40 5 .60 .70 .80 .90
25 362 91 40 23 15 1 8 6 5
50 662 164 72 39 24 16 12 8 6
.60 797 198 87 47 29 19 13 9 7
23 901 223 97 53 32 21 15 10 7
70 958 237 103 56 34 23 15 11 7
75 1052 260 113 62 a7 25 17 N 8
.80 1163 287 125 68 4 27 18 12 8
85 1209 320 139 76 45 30 20 13 9
90 1481 365 158 86 51 34 2 15 9
95 1773 436 189 102 62 40 % 17 1
.99 2390 588 254 137 82 52 34 23 13
a, = .05 (a, = .025)
r
Power 10 20 .30 .40 5 60 .70 .80 .90
25 167 42 20 12 8 6 5 4 3
50 385 96 42 24 15 10 7 6 4
60 490 122 53 29 18 12 9 6 5
23 570 142 63 34 21 14 10 7 5
.70 616 153 67 a7 23 15 10 7 5
75 692 172 75 4 25 17 11 8 6
.80 783 194 85 46 28 18 12 9 6
85 895 221 97 52 32 21 14 10 6
.90 1047 259 113 62 37 24 1% 1 7
95 1204 319 139 75 46 30 19 13 8
99 1828 450 195 105 64 40 27 18 1

The same table (Table 3.4.1 for a, =.05) for column r = .50, row power
=80 yields n = 28.

At the other extreme of our operational definitions, suppose he hypothe-
sized r = .10 (a small ES), keeping the other specifications constant:

a, = .05, r=.10, power = .80.

InTable 3.4.1 for a, = .05, for r = .10 and power =.80,n = 783.

Again we see how crucial anticipated ES is to the decision about sample
size. Over our range from large to medium to small ES, the n’s required go
from 28 to 85 to 783. Reversing the argument, it is apparent that a decision
about sample size implies some value for r (given a and desired power).
Many experiments are undertaken as if the experimenter were anticipating a
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very large ES, since presumably he would not bother to do the experiment
if he thought he had a low probability of rejecting the null hypothesis.

Another point incidentally illustrated here is the nonlinearity of the
r scale: At any given desired power level, equal increments in r do nor
produce equal or even proportional decrements in necessary n (as is implicit
in formula (3.4.1), i.e., n varies approximately as the square of the reciprocal
of the z value).

Experimental planning may involve preparing tables in which, for alter-
native power levels, the n’s necessary under varying alternative ES values
and alternative a criteria are assembled from Table 3.4.1 and scrutinized in
the light of the substantive issues of the research. A possible table for this
example is shown in Table 3.4.2.

Table 3.4.2
An Example of a Sample Size Planning Table
Power
.70 .80 .90
ES=r ES =7 ES=r

.20 .30 .40 .20 .30 .40 .20 .30 .40

a, = .01 201 88 48 247 108 59 320 139 76
a, = 05 117 52 28 153 68 37 21 92 50
a, = .10 82 36 20 113 49 27 163 72 39
a, = .01 237 103 56 287 125 68 365 158 86
a, = .05 153 67 37 194 85 46 259 113 62

An experimenter with such a table before him is in a position to make a
choice of an experimental plan which is consonant both with his knowledge
and informed hunches of his substantive field and with statistical analytic
issues. Thus, he might decide after reviewing the table that he is prepared to
expend the money and effort involved in running 85 or 86 subjects, but
would prefer the 85 subjects called for when he posits r = .30 at power = .80
for a, = .05 rather than the 86 called for when, with more stringent a, = .01
and greater power = .90, he must posit r = .40; he may not consider the risk
of assuming r so high worth the a and power advantage. He may consider
least desirable the plan which calls for n = 82, which allows for a distinctly
smaller ES or r=.20, but at the cost of less power (.70) and a large, one-
tailed Type I risk (a, =.10) or equivalently an even larger two-tailed Type I
risk (a, =.20).
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3.5 A social psychologist is planning an experiment in which college
students selected with regard to a personality questionnaire measure (Y)
will be subjected to various alternative communications in a study of atti-
tude change. Before this is undertaken, however, he considers it important
that it be demonstrable that his measure (Y) not be related to a questionnaire
measure of social desirability (X). He finds himself in the apparent position
of having to prove the null hypothesis thatr = 0, which is formally impossible.

However, instead of demanding of himself the impossible proof that
r = 0, he may revise this to an attempt to demonstrate that r is trivially small,
which is probably all that is ever meant by “no” relationship in behavioral
science (see Section 1.5.5). He may consider an r no greater absolutely than
.10 as meeting this criterion in this context. It now becomes possible to
mount an experiment from which the conclusion that r is trivially small may
properly be drawn. He sets up as the ES he wishes to detect r = .10. To assure
himself a good chance of detecting this value if it should obtain, he demands
relatively high power, say .90. Assume he is prepared to run a large risk that
he will mistakenly reject r = 0 by setting a, = .10. He now seeks the n which
will satisfy these specifications, which, summarized, are

a, =.10, r=.10, power = .90,

Table 3.4.1 for a; = .05 (a, = .10), for column r = .10, row power = .90,
yields n = 854. (Since both X and Y are obtained by group procedures, this
large sample may well be within his resources.®)

Assume that the data are collected and he finds r, = .04, which is not
significant at a, =.10. He can conclude that the population r is effectively
zero. This is because, if the population r is as large as .10, it is unlikely
(b=1—power =1 - .90 =.10) that he would have failed to find r, signifi-
cant.

In this way, experiments can be organized which can accomplish what is
really sought when we attempt to * prove null hypotheses.”” What we have
done instead is to mitigate the null hypothesis to mean *“trivially small” and
set up this small value as the ES (alternate hypothesis) in an experiment
which has enough power to detect it. If we then fail to reject the literal null
hypothesis, we can conclude that the effect is negligible.

¢ An alternative design for the overall study, which does not depend on this r being
trivially small (but makes other assumptions), would be a factorial design (Y levels by
communications) analysis of covariance in which the attitude change measure would be
the dependent variable and the social desirability control measure (X) would be the
covariate or “adjusting” variable. See Chapter 9.
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3.6 A research clinical psychologist is preparing an investigation of
rate of decay of the orienting reflex (OR) in various psychopathological
patient groups. An issue arises as to whether the OR is appreciably related to
amount of confusion as rated by trained observers (C). In the context of the
study, she decides that if the proportion of variance in OR associated with C
is as large as .10, she wants to perform a preliminary experiment at the
a, = .10level which will have power of .90 to detect it. Since PV = ? =.10,
ES =r = /.10 = .32, a value not provided in Table 3.4.1. She thus takes
recourse to formula (3.4.1), which requiresn ,, (from Table 3.4.1 fora, = .10)
and z, the Fisher z transformation of an r of .32. The latter is found in
Table 4.2.2 of the next chapter to be z =.332. n ,, is found in Table 3.4.1
fora, = .10in columnr = .10, row power = .90, as 854. Entering these val-
ues in formula (3.4.1),

.100\?
- 4_ — .S.
n = 85§ ('332> +2=179.5

Thus, if she is to have a .90 probability of detectingr = .32 (PV = =
.10) at the a, = .10 level, she will need a sample n of 80 cases.

If, on reconsideration, she decides she would prefer to use more stringent
a, = .05 level and is prepared to operate with .85 power to detect the same PV
=10, all that changes is the n ,, value. She uses Table 3.4.1 fora, = .05,r =
.10, power = .85, and finds n ,, = 895. Substituting in formula (3.4.1),

1002
n =895 (—335) +2=283.1,

a slightly larger value.

3.5 THe Use oF THE TABLES FOR SIGNIFICANCE TESTING OF r

Although the major purpose of this handbook is the exposition and facili-
tation of power analysis, the power tables contain criterion values of the
ES in the sample necessary to reach statistical significance. These values
facilitate the testing of null hypotheses when the sample results are deter-
mined.

The power tables in this chapter (Tables 3.3.1-3.3.5) contain, in the r,
column, the sample r, necessary to attain the significance level of the table for
the sample size of the row in which it appears. The r_ is taken as absolute
(of either sign) for nondirectional (two-tailed) tests, and as of the appropriate
sign in directional (one-tailed) tests. These values are of the same kind
as appear in some statistical texts, but provide many more values, both for
a and for n.
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Ilustrative Examples

3.7 Consider the analysis of the data arising from the experiment relating
extraversion to a neurophysiological measure given in example 3.1. Assume
that the data have been collected as planned, and the sample r, is found to
equal — .241. The specifications for the significance test are

a, =.05, n =50, r,= —.241.

Table 3.3.5 (for a, = .05) is used for n = 50, and the r, value is found to
equal .279. Since .241 (the sign is ignored because the test is two-tailed) is
smaller than r_, the null hypothesis is not rejected.

3.8 Reconsider the condition of example 3.2, where the validity of a
personality questionnaire to predict freshman grade point average is under
study. Assume that prior to data collection, the decision is made to test the
null hypothesis at a, =.05 and n = 500. When the data are collected, r, is
found to equal .136. Thus,

a,=.05 n=500, r,=.136.

In Table 3.3.5 (for a, = .05) at n = 500, the criterion value r_ is found to
be .088. Since r, exceeds this, the null hypothesis is rejected, and it is con-
cluded that there is a (nonzero) relationship between the questionnaire meas-
ure and grade point average.

3.9 The industrial psychologist in example 3.3 designed an experiment
using 120 paired observations to determine whether a regression coefficient
of wages on work unit output was significant at a, = .0l. In that example,
it was demonstrated how the regression coefficient could be converted to an
r and the tables of this chapter could be applied. In planning, his alternate
hypothesis was r =.40. When the sample data were analyzed, the r, was
found to equal + .264. The following specifications, then, are the conditions
for his test of the null hypothesis that population r =0:

a; =01, n=120, r =+.264.

He uses Table 3.3.1 (for a, = .01) at row n = 120 and finds thatr, =.212,
Since his sample r; exceeds the a; = .0l criterion value .212, and is of the
proper sign (since the test was directional), the null hypothesis is rejected.

Note that rejecting H,: ¥ = 0 means rejectingH,: B =0, i.e., if the correla-
tion is not zero, neither is the regression coefficient (as discussed in Section
.

)Note, too, that although the sample r, of .264 is much smaller than the
anticipated population r of .40 which figured in the experimental planning,
it is nevertheless significantly different from zero. (This comes about because
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the power of the experiment to detect an r = .40 was very high, .99.) The
rejection of the null hypothesis does not warrant the conclusion that the
specified alternate hypothesis (anticipated ES) is true, only that the null
hypothesis is false (subject of course to the Type I risk). See Cohen (1973) in
this regard.



CHAPTER 4

Differences between Correlation
Coefficients

4,1 INTRODUCTION AND USE

This chapter is concerned with the testing under various specified con-
ditions of hypotheses concerning differences between population correlation
coefficients. The previous chapter was devoted to a frequently occurring
special case of this issue, namely, the difference between a population r and
zero. In the present chapter, other cases are considered : the difference between
two population r’s when a sample is available from each (Cases 0 and 1), and
the difference between a population r and any specified hypothetical value
(Case 2).

Interest in relationships in behavioral sciences transcends the simple
question of whether a relationship exists (Chapter 3). Whether the degree of
relationship between two variables is greater in one natural population or
given experimental condition than it is in another, is an issue that arises with
some frequency. A related issue involves the question of whether, in a popula-
tion or condition, the degree of relationship differs from some specified value,
not necessarily zero. Tests of these issues are available through Fisher’s z
transformation of r (e.g., Cohen & Cohen, 1983, pp. 53-55, 62; Hays, 1981,
466-467; Blalock, 1972, 401-407), and the power analyses in this chapter re-
late to these tests.

The above informal statement requires closer specification. By “relation-
ship,” linear correlation indexed by the Pearson product-moment correlation
coefficient, r, is intended. The usual normality and homoscedasticity assump-
tions are formally assumed for the r’s involved (Cohen & Cohen, 1983),
but even with considerable departure from these assumptions, the validity of

109
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tabled a and power values is not greatly affected, particularly for large
samples.

The material in this chapter will be organized into *“cases,” according to
the specific hypothesis and sample(s) employed:

Case 0. r, values from equal size samples to testr, =r,.
Case 1. The same hypothesis, butn; £ n,.
Case 2. One sample drawn from a population to testr =c.

A word about differences between independent regression coefficients. As
such, the procedures and tables of this chapter do not provide a basis for
power analysis of the test of H,: B, — B, = 0.(Note, however, that if the
standard deviations of X and Y can be assumed equal over the two popula-
tions, the test of the equality of r’s is equivalent to the test of equality of B’s.)
The more general test can be analyzed by the method of Chapter 9.

4.2 THE EFFECT SIZE INDEX: q

The detectability of a difference in magnitude between population r’s is
not a simple function of the difference. That is, if we were to definej=r, —r,
and try to use j as our ES, we would soon discover that the detectability of j,
under fixed conditions of a and n, would not be constant, but would depend on
where along the r scale the difference j occurred. As a concrete example, when

l.r,=.50and r, = .25, j = .50 — .25 = .25; and when
2. r,=.90and r, =.65, j = .90 — .65 = .25 also.

But for these two equal differences of j = .25, given a, = .05 and n = 35 (for
example), the power to detect the first difference (.50 — .25) is only .22, while
the power for the second (.90 — .65) is .80. Thus, r does not supply a scale of
equal units of detectability, and so the difference between r’s is not an appro-
priate ES index.

The Fisher z transformation of r provides a solution to the problem.
When r’s are transformed by the relationship

l1+r
l—¢’

4.2.1) z=1}log,
equal differences between z's are equally detectable. Thus, we define as our
ES index

4.2.2) q=1z,— 1z, (directional)

|z, ~z,] (nondirectional).
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Thus, unlike ry —r,,z, -2z, =q gives values whose detectability does not
depend on whether the z’s (and hence the r’s) are both small or both large.
The power and sample size tables of this chapter provide entry for q =.10
(.10) .80 (.20) 1.40.

To facilitate the conversion of r, —r, to z, —~z, =q values, Tables 4.2.1
and 4.2.2 have been provided. Table 4.2.1 yields q values as a function of
r, —r,; Table 4.2.2 is the usual r to z transformation table.

Table 4.2.1

r, values as a functionof r, andq =2z, - 2z,

1221 -2,
ra J0 .20 .30 40 .50 .60 .70 .80 1,00 1,20 .40
.00 10 20 29 38 46 [ 60 66 762 834 885
.05 15 25 34 42 50 57 6l 69 782 848 896
.10 20 29 38 46 sh 60 66 72 801 862 905
.15 25 34 42 50 57 64 69 % 818 874 914
.20 29 38 46 54 61 67 72 76 834 886 922
.25 34 43 50 [1:] 6h 69 74 78 850 897 930

.30 39 W 5h 61 67 72 77 80 864 907 937
.35 b3 51 58 64 70 75 79 82 878 916 943
4o 48 55 62 68 73 77 81 84 890 925 949

45 53 59 66 n 76 79 8 86 902 933 955
.50 57 63 69 74 78 82 85 8 9h 91 960
.55 62 67 73 77 81 84 8 89 92k oSk 965
.60 66 71 76 80 83 8 88 90 935 956 970
.65 70 75 79 83 86 88 90 92 94k 962 975
.70 75 79 8 85 88 90 92 93 953 968 979
.75 79 6 85 88 90 92 93 9 962 974 983

.80 83 86 89 90 92 94 95 96 970 980 987
.85 88 90 91 93 94 95 96 97 978 985 990
.90 92 93 94 95 96 97 97 98 986 990 994
.95 96 97 97 98 98 98 99 99 993 995 997

Table 4.2.1 is generally more convenient for use in power analysis and when
ry and r, are of the same sign. Assume both positive and r; >r,. Givenr,,
the smaller, read across to r,, the larger. When r, is found, it is used to deter-
mine q, the column heading, which is the difference between the z transforma-
tions of the r’s, i.e.,q =z, —z, . For example, if you wished to detect a differ-
ence between populationr’s of .25 (=r,) and .50 (=r,), the table provides the
difference q between their respective z values, as follows: Locate in the first
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Table 4.2.2
Transformation of Product Moment r to 2

r 2 r z r 2 r z
.00 .000 25 .255 .50 .549 75 0.973
01 .010 .26 .266 .51 .563 .76 0.996
02 .020 27 277 .52 .576 77 1.020
03 030 .28 .288 .53 .590 .78 1.045
04 040 .29 299 .54 .604 .79 1.07
05 .050 .30 310 .55 .618 .80 1.099

06 060 31 32 .56 .633 81 1127
07 .070 32 332 57 .648 82 1.157
.08 .080 33 .343 .58 .662 .83 1.188
09 090 34 .354 .59 .678 84 1.221
.10 .100 .35 .365 .60 .693 .85 1.256
n 110 .36 377 .61 709 .86 1.293
A2 A1 37 .388 .62 725 87 1.333
A3 AN .38 .400 63 J41 .88 1.376
A4 A4 39 412 .64 .758 .89 1.422
15 15 .40 424 .65 775 90 1.472
186 161 41 436 .66 .793 9 1.528
A7 A72 42 448 .67 811 92 1.589
.18 182 43 460 .68 829 .93 1.658
19 192 44 472 .69 .848 94 1.738
20 .203 ..45 .485 .70 867 95 1.832
21 .213 .46 .497 N .887 96 1.946
.22 224 .47 510 72 .808 97 2,092
23 234 .48 523 73 929 98 2.298

24 245 49 536 .74 950 99 2,647
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column the value r, = .25, then read across tor, = .50, and at the top of the
column, find q = .30.

Since one cannot have both convenient multiples of .10 for q and sim-
ultaneously convenient multiples of .05 for bothr, and r,, the use of Table
4.2.1 may require interpolation in q. Thus, for r, =.25, r, = .60, entry in the
row for r, =.25 yields q = .40 for r, = .58 and q = .50 for r, = .64. Linear
interpolation gives the approximate value of q = .433.

Alternatively, for exact values of q, Table 4.2.2 may be used to locate
r, =.60 and r, = .25 and their respective z values found: z, = .693, z, = .255.
Then,q =.693 — .255 = .438. Note that in either case, interpolation would be
needed when this nontabled q value is used in the power tables (but not for
sample size determination?).

Table 4.2.2 would also be used when r, and r, are of different sign. For

example, forr, = + .60 andr, = — .25, the respective z values are found from
Table 4.2.2 as z; = +.693 and z,= —.255. Then q=2z,—z, = +.693—
(—.255)=.948.

Finally, Table 4.2.2 will be necessary to find q, when the power tables are
used for significance testing, as described in Section 4.5.

In practice, the need to use nontabled values of q in power and sample size
determination will not arise frequently. This is because one rarely has so
highly specified an alternate hypothesis in terms of r, and r, values that one
must find power or sample size for a value of q which is not tabled. A less
exact specification of the r, —r, difference permits the use of the nearest
tabled value of q in Table 4.2.1 and the later tables of this chapter. Indeed,
the even less exact procedure of defining q as * small,” “ medium,” or *““large”
with the operational definitions proposed below will suffice for many purposes.

4.2.1 “SMALL,” ‘““MEDIUM,” AND ““LARGE” DIFFERENCES IN CORRELA-
TION. To provide the behavioral scientist with a frame of reference in which to
appraise differences in degree of correlation, we attach specific values of q to
the adjectives “small,” ‘““medium,” and ‘‘large” to serve as operational
definitions which are offered as conventions. This conforms to the general
plan which has been followed with each type of statistical test in this hand-
book. Again, the reader is urged to avoid the use of these conventions, if he
can, in favor of exact values provided by theory. However, it is less likely here
than, say, in testing differences between means, that contemporary theory will
lead to exact alternative-hypothetical values of q.

EQUAL UNITS AND AMOUNTS OF RELATIONSHIP. Differences in “amounts™
of relationship expressed in Fisher z’s, i.e., @ values, are not generally

! As will be seen below, determining n from the sample size table (Table 4.4.1) requires
no interpolation. For nontabled values of q, formula (4.4.1) is used.
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familiar to behavioral scientists. Indeed, the intuitive concept *‘amount”
of relationship requires specification for it to be useful. It is frequently
pointed out in textbooks in applied statistics that r is an index number,
not a measurement on a linear scale of equal units, and that in consequence
equal changes in r do not represent equal changes in amount of relationship
at different points along the range of possible values. (It has already been
stated above that equal differences in population r’s are not equally detect-
able.)

There are, however, simple functions of r which more closely accord with
intuitive notions about amounts of relationship so that differences in these
functions are equal in some acceptable sense.

One of these functions has already been encountered. Given an r for a
population of X,Y pairs, r?, the *“ coefficient of determination,” is the propor-
tion of variance (PV) in either variable which is linearly accounted for by the
other. Thus, the quantity r,2 —r,? represents amount of change in the pro-
portion of variance accounted for; equal amounts of PV change can be mean-
ingfully understood as equal amounts of change in amount of relationship,
anywhere along the r scale. In this sense, the r,, r, pairs .38, .10 and .88, .80
represent equal differences in amount of relationship, since in both pairs,
r,2 —r,? = .134—the larger r, of each pair accounts for 13.4 % more variance
than the smaller; similarly the pairs .60, .00 and .92, .70 (r,2 — r,? = .36).

Another of those conversion functions is the complement of the coefficient
of alienation, 1 — V1 —r2, expressed as percent and called E, the *“index of
forecasting efficiency” (Guilford & Fruchter, 1978, pp.356-358). E indexes
the amount of reduction in errors of prediction relative to the case wherer =
0, when errors of prediction are measured by their standard deviation about
the linearly predicted value. This standard deviation, called the “standard er-
ror of estimate,” is reduced as rincreases, and whenr = + 1, becomes zero,
so that E = 100%. When a pair of ¢’s is converted to a pair of E’s, the index
E, — E,, in the sense of amount of reduction in error standard deviation,
represents another meaningful rendition of the concept “differences in
amount of relationship” which is independent of where on the r scale the
difference occurs. In this sense, the r , r, pairs .38, .10 and .53, .40 represent
(approximately) equal differences in amount of relationship, since in both
pairs, E; — E, = 7%—the larger r, of each pair results in an additional 79,
reduction of standard error of estimate over the smaller r; similarly the pairs
.50, .25 and .64, .50 (where E, — E, = 109).

The difference functions r,2 —r,2 and E, — E, are not equivalent, yet
each offers a reasonable rendition of *“equal differences in amount of relation-
ship.” Our ES index, q =z, —z, was chosen on the criterion of equal detect-
ability, rather than equal amounts. Fortunately, over the most frequently
encountered values of the correlation scale, equal q values yield not grossly
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unequal values of either r,2 —r,? or E, — E,. Thus equal detectability over
much of the correlation scale represents approximately equal “differences in
amount of relationship™ as rendered either by difference in proportion of
variance accounted for or by percent reduction in the standard error of
estimate. In the description of our operational definitions of ‘small,”
“medium,” and *‘large” q values, each will be interpreted in the latter terms
and the range of approximate constancy will be described for each.

SMALL EFFECT SIZE: q=.10. A small difference between correlations
is defined as q =.10. The following pairs of r’s illustrate this amount of
difference: .00, .10; .20, .29; .40, .48; .60, .66; .80, .83; .90, .92; .95, .96
(Table 4.2.1).

When the smaller r, falls between .25 and .80, aq = .10 implies r,? —r,?
falling in the range .05-.08. (Outside theser , limits, r,> —r,2 is below .05).
Thus one can generally think of a small difference in correlation as one for
which the population of larger r has an X, Y percentage shared variance
5-89 larger than that of the population with the smallerr.

In terms of difference between amounts of relationship expressed in fore-
casting efficiency terms for r, between .25 and .95, q =.10 implies E, — E,
values of 3-59%. (For r, outside these limits, E, — E, is smaller than 39.)

MEDIUM EFFECT SIZE: q =.30. With q =.30 taken to define a med-
ium ES, we find (Table 4.2.1) the following pairs of r’s illustrating this
amount of difference: .00, .29; .20, .46; .40, .62; .60, .76; .80, .89; .90, .94;
.95, .97.

When the smaller r, falls between .15 and .75, qQ = .30 implies a difference
between r? falling between .15-.23. Taking a narrower range of r, between
.25 and .70, r,? —r,? falls between .18-.23. Thus, over the middle of the
correlation scale, a medium difference in correlation can be understood as one
for which the population of larger r has a percentage of shared variance
between X and Y which is about 20 9; larger than that of the smaller r. Outside
these ranges of r,, the shared variance differenceis less; forlow r,, it reaches a
minimum value (for r, = .00, r, = .29) of .084.

Interpreted in forecasting efficiency terms, for r, between .25 and .90,
q = .30 implies E, — E, values of 10-159,, values outside these r, limits again
yielding smaller discrepancies in E, — E,.

LARGE EFFECT SIZE: q =.50. A large difference in r’s is operationally
defined as one which yields q =.50. Pairs of r’s illustrating this degree of
difference are: .00, .46; .20, .61; .40, .73; .60, .83; .80, .92; .90, .96; and .95,
.98 (Table 4.2.1). Here it becomes particularly obvious how different is
our approach via q from the simple differencer; —r,.

Large differences, so defined, mean r, % —r,? values falling in the range .28
to .38 when r, (the smaller) falls between the limits .10-.70, or, taking a slightly
narrower range for r, of .20 to .65, PV differences of .32 to .38. Thus, a large
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difference in r’s in the middle of the scale is taken to mean one which involves
about a third of the total variance.

In terms of difference in forecasting efficiency, when r, lies between .20
and .80, E, — E, is within the limits of 20-259%,. If the latter seems small to
the reader, it should be pointed out that a substantial reduction of the stan-
dard error of estimate from its maximum value when r = 0 requires very large
values of r. Thus, for example, when one considers the definition in Chapter 3
of a large ES, r = .50, one finds that its E value is only 13.4%. For E to be as
much as 50 %, r must be .866. Thus, a difference between E’s of 20-25 9 should
be consonant with the intuitive conception of a large difference between
amounts of correlation.

Comparison with Definitions for Significance Test of r. We can reinterpret
the operational definitions of “small,” ‘““medium,” and *large” ES of
Chapter 3 on significance testing of asingle r in the light of the q of the present
chapter. Since q =z, —z,, and r, =0 transforms to z, =0, given the defini-
tions of Chapter 3 of ES =r =.10, .30, and .50, these become respectively
q=.10, .31, and .55. They are thus approximately comparable with the q
values .10, .30, and .50 of the present chapter. However, the set r = .10, .30,
.50 yields smaller values when expressed as r? and E differences from zero
than those of the middle range described above. Thus the ES definitions for
differences in relationship expressed as shared variance or reduction in error
of prediction are larger than the ES definitions for significance testing of a
single r.

4.3 POwWER TABLES

When the significance criterion, ES, and sample size are specified, the
tables in this section can be used to determine power values. Their major use
will thus be after a research is performed or at least planned. They can, of
course, also be used in research planning by varying n, ES, or a, or all three,
to see the consequences to power of such alternatives.

4.3.1 Cask 0:n, =n,. The power tables are designed to yield conveni-
ently power values for the normal curve test of the difference between the
Fisher transformations of the r’s (q =z, —z,) of two independent samples of
equal size. This is designated Case 0; other cases are described and illustrated
in later sections. Tables give values for a, q, and n:

1. Significance Criterion, a. Six tables are provided for the following
values of a: a; = .01, a, =.05, a; =.10, a, = .01, a, = .05, a, =.10, where
the subscripts refer to one- and two-tailed tests. Since power at a, is to an
adequate approximation equal to power at a, = 2a, for power greater than
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Table 4.3.1

Power of Normai Curve Testofr, =r,
via Fisher z transormation at a, = .01

117

q
n q. .10 .20 .30 40 .50 .60 .70 .80 1.00 1.20 .40
8 1.4n 02 02 03 05 06 8 n 14 23 33 46
9 1.343 02 02 ob 05 07 10 13 17 28 4o sh
10 1.243 02 03 o4 06 08 n 15 20 32 4y 62
n 1.163 02 03 o4 06 09 13 18 23 37 53 68
12 1.097 02 03 05 07 10 15 20 26 42 59 b
13 1.040 02 03 05 08 n 16 22 30 &6 64 79
th .992 02 03 05 08 12 18 25 33 51 69 83
15 .950 02 03 06 09 14 20 27 36 55 73 86
16 912 02 03 06 10 15 21 29 39 59 77 89
17 .879 02 ol 06 10 16 23 32 42 63 80 92
18 849 02 o4 07 1" 17 25 34 4s 66 83 93
19 .822 02 o4 07 12 18 26 36 Ly 69 8 95
20 .798 02 ol 07 12 19 28 39 5 72 88 9%
21 .775 02 ol 08 13 20 30 W 53 75 90 97
22 .755 02 ol 08 1% 22 322 3 56 78 92 98
23 .736 02 05 08 " 23 33 46 58 80 93 98
24 718 02 05 09 15 24 35 48 60 82 9% 99
25 .701 02 05 09 16 25 37 50 63 84 95 9
26 .686 02 05 10 16 26 39 52 65 86 96 99
27 672 02 05 10 17 28 4o sb 67 87 97 99
28 .658 02 05 10 18 29 &2 56 69 8 97 *
29 645 02 05 " 19 30 b 58 n 90 98
30 .633 03 06 1 20 31 4s 60 713 £l 98
3 .622 03 06 1 20 32 47 62 75 92 98
32 611 03 06 12 21 W L8 63 76 93 99
33 .601 03 06 12 22 35 50 6% 78 9 9
34 .591 03 06 13 2 36 52 67 79 95 99
35 .582 03 06 13 23 37 53 68 81 95 99
36 .573 03 07 13 24 38 sL 70 82 96 99
37 564 03 07 4 25 Lo  s6 n 83 96 *
38 .556 03 07 1 26 W 57 73 85 97
39 .548 03 07 15 26 b2 59 74 8 97
4o .54 03 07 15 27 W3 60 75 87 98
42 .527 03 07 16 29 &g 63 78 89 98
bhy 514 03 08 17 30 48 65 80 90 99
L .502 03 08 18 32 50 68 82 92 99
48 RTT) 03 08 18 33 52 70 84 93 99
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Table 4.3.1 {continued)

q

[ % A0 .20 .30 L0 .50 .60 .70 .80 1.00 1,20 1.40
50 L80 03 09 19 35 sk 72 86 % 99 * *
52 L70 03 09 20 36 5 M 87 95 *
Sh 461 03 09 20 38 8 76 8 96
[13 M52 oh 10 22 39 60 78 90 96
58 R ol 10 23 ) 62 79 9 97
60 3l o 10 23 42 63 8 92 97
6k L2 o N 25 45 €7 B4 94 98
68 ko8 ok 12 27 48 70 8 95 99
72 +396 oh 12 29 51 73 88 9% 99
76 .385 ok 13 30 s« 726 90 97 99
80 .375 o4 W 32 56 718 92 98 *
84 .365 05 15 3% 59 80 93 98
88 .357 05 15 36 61 82 99

92 349 05 16 37 63 8 95 9
96 30 05 17 39 66 86 96 99
100 .33 05 18 W 68 88 97 99
120 +304 06 21 4 77 93 9 *
140 .281 07 25 56 84 97 -

160 .263 07 29 63 8 98

180 247 08 33 69 92 9

200 .234 09 37 7 95 *

250 .206 12 47 8 99

300 191 13 s 91 99

350 A7 16 62 95 *

400 165 18 69 97

450 .156 20 75 98

500 148 23 80 99

600 135 27 87 *

700 125 32 92

800 17 37 95

900 110 2 9

1000 104 46 98

* Power values below this point are greater than .995.
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Table 4.3.2
Power of Normal Curve Testof r, =r,
via Fisher z transformation at a, = .05
q

n . Jd0 .20 .30 40 .50 .60 .70 .80 1.00 1,20 1.k0
8 1.040 07 09 12 16 20 24 30 35 k7 60 N
9 .950 07 10 M 17 22 27 33 & s 67 78
10 .879 07 10 14 19 2 30 37 W s9 13 83
" .822 07 N 15 20 26 33 L0 W8 & 77 88
12 776 08 n 16 2 28 3 M 52 6 8 9
13 .76 08 12 16 23 30 38 47 56 72 8 9
"W +701 08 12 17 2 32 W 50 59 76 88 95
15 .672 o8 12 18 25 3 W3 53 62 79 90 9%
16 N o8 13 19 27 36 45 56 65 82 92 9
17 .622 08 13 20 28 37 48 58 68 8 o4 o8
18 .606 09 1h 20 29 39 s0 61 n 8 95 9
19 .582 09 18 21 30 52 63 73 8 9% 9
20 564 09 W 22 32 43 sh 65 15 90 97 99
21 .548 09 15 23 33 W 56 67 717 9 97 9
22 «534 09 15 2 3 46 S8 70 79 92 98 *
23 .520 09 16 2 35 47 60 N 8 9 98
24 .508 09 16 25 36 49 62 73 83 o 9
25 L4196 09 16 26 38 5 h 75 84 95 99
26 485 10 17 27 39 852 65 77 8 9% 9
27 75 10 17 27 4 55 6 718 8 97 9
28 65 10 17 28 W 55 68 8 88 97 *
29 hs6 10 18 29 42 8 70 & 89 98
30 Y] 10 18 29 43 58 n 82 9 98
3 el 10 18 30 & 59 73 8 9 98
32 432 10 19 31 45 60 74 8 92 98
33 h2s 10 19 3 u 6 7 8 93 99
34 A8 n 20 32 LY 63 76 87 93 99
35 NY]] n 20 33 48 64 77 88 9 99
36 .bos n 20 33 L9 65 79 88 95 9
37 .399 n 21 3% S50 66 B 8 95 99
38 393 n 21 35 5 6 & 9 9% 9
39 .388 n 21 35 52 68 82 9 96 *
bo .382 n 22 36 53 69 8 9 96
42 2372 n 2 37 S5 n 8 93 97
i .363 12 23 39 57 73 86 9 98
46 .355 12 24 4 58 75 87 95 98
] K1Y 12 2 B 60 77 89 95 98
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Table 4.3.2 (continued)
q

) 9 Jd0 .20 .30 M0 .50 .60 .70 .80 1.00 1.20 1.40
50 339 12 25 42 62 18 90 9% 9 * * *
52 .332 13 26 4 63 8 9 97 99
sh 326 13 26 45 65 & 92 97 9
56 .320 13 27 4 66 82 93 97 9
58 314 13 28 47 67 8 93 98 9
60 .308 13 28 48 69 8 9 98 *
64 .298 W 29 50 n 87 95 99
68 .289 14 N 53 74 89 96 9
72 .280 1w 32 55 76 90 97 99
76 272 15 33 87 78 92 98 *
80 .265 15 3 59 80 93 98
84 .258 16 35 60 82 94 99
88 .252 16 37 62 8 95 9
92 247 16 38 6 8 95 99
9% .24 16 39 66 8 9 99
100 .236 17 W 68 8 97 9
120 .231 19 45 74 92 99 *
140 .199 2 SO 80 95 99
160 .186 22 55 84 97 *
180 175 24 59 88 98
200 .166 26 63 9 99
250 46 30 73 9% *
300 135 3 79 98
350 125 37 & 99
Loo 17 Lo 88 *
450 110 W 9
500 .10k 4y 93
600 .095 53 96
700 .088 59 98
800 082 6l 99
900 .078 68 *
1000 Ry 72

* Power values below this point are greater than .995
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Table 4.3.3

Power of Normal Curve Testofr, =r,
via Fisher 2 transformation at a, = .10

121

q
n % JAO .20 .30 M0 .50 .60 .70 .80 1,00 1,20 1.4o
8 K:1 13 17 2 26 3 37 4 Lk 62 13 82
9 JT40 13 17 22 28 34 Lo 47 sk 67 79 87
10 688 W 18 24 30 36 W 5 59 72 8 9
n 641 W 19 25 3 39 W 55 62 76 81 %4
12 .60k W 20 26 33 W 50 58 66 80 90 95
13 .573 w20 27 35 W3 52 6 69 8 92 97
10 .Shy 15 2 28 37 46 55 64 72 B6 94 98
15 .523 15 2 29 38 48 57 67 715 88 95 98
16 .503 15 22 30 4 50 60 69 18 90 9 99
17 1A 15 23 3N W 52 62 72 80 91 97 99
18 68 16 23 32 43 53 6l T 82 93 98 99
19 53 16 24 33 b 55 66 76 84 9% 98 *
20 R 16 24 34 Ls 57 68 78 85 95 99
2 A27 16 25 35 W4y 59 70 79 87 9% 99
22 A6 17 25 36 48 60 7N 81 88 96 99
23 kos 17 26 37 k9 62 13 82 89 97 99
24 .396 17 26 38 51 63 75 84 90 97 *
25 .387 17 27 39 52 65 76 8 92 98
26 .378 17 27 40 53 66 77 8 92 o8
27 .370 17 28 Lo sk 67 79 87 93 99
28 .363 18 28 W 55 69 80 88 9 99
29 355 18 29 42 56 70 81 89 95 99
30 .349 18 29 43 57 n 82 90 95 99
31 2343 18 30 Wb 59 72 83 91 96 9
32 337 18 30 4 60 7 84 92 96 99
33 3% 19 N 4s 61 % 85 92 97 *
34 .326 19 3 46 62 75 8 93 97
35 .320 19 3 by 62 76 87 N 97
36 .316 19 32 47 63 77 88 94 98
37 3N 19 32 48 6+ 78 88 95 98
38 .307 19 33 49 65 79 89 95 98
39 .302 20 33 50 66 80 90 95 98
40 .298 20 3 so 67 81 90 96 98
42 .290 20 35 52 69 82 91 9% 99
Ly .283 20 35 s§3 70 8 92 97 9
L6 .277 21 36 sh 72 85 93 98 99
W8 .270 21 37 56 73 86 9 98 99
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Table 4.3.3. {continued)

q

n qc 0 .20 30 M0 .50 .60 .70 .80 1.00 1,20 1.40
50 .26k 21 38 57 T4 87 95 98 * * * *
52 +259 22 39 58 76 88 95 99
54 254 22 39 59 77 89 96 99
56 249 22 40 60 78 90 96 99
58 J2uh 22 1Y) 61 79 9 97 99
60 .240 23 L2 63 80 92 97 99
&4 .232 23 43 65 82 93 98 *
68 .225 26 W 67 8 94 98

72 .218 2 46 68 BS 95 99
76 .212 25 by 70 87 96 99

80 .207 25 48 72 88 97 99
8k .201 26 50 73 90 97 99
88 .197 26 s % 09N 98 *

92 .192 27 52 16 92 98

96 .188 27 53 8 9 98

100 184 28 s 19 99 99

120 .168 30 60 8k 96 99

140 .155 32 65 89 98 *

160 o145 35 69 92 99

180 .136 37 73 9% 99

200 .129 39 76 96 *

250 113 by 84 98

300 .108 4y 88 9

350 .097 51 91 *

400 .091 55 94

450 .086 58 96

500 .081 62 97

600 074 67 99

700 .069 72 9

800 .06k 7%

900 061 80

1000 .057 83

* Power values below this point are greater than ,995.
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Table 4.3.4
Power of Normal Curve Testof r, =r,
via Fisher z transformation at a, = .01
9

n 9 10 ,20 .30 .40 .50 .60 ,70 .80 1,00 1,20 1.ko0

8 1.629 ] 01 02 03 ob 05 07 09 16 25 36

9 1.487 ot ot 02 03 o 06 09 12 20 n b
10 1.377 o 02 02 03 05 07 10 14 2% 37 52
1" 1,288 ] 02 02 o4 06 08 12 16 28 43 59
12 1.21% o1 02 03 o4 06 10 14 19 32 Ly 65
13 1.152 )] 02 03 05 07 " 16 22 37 (11 n
14 1.098 ] 02 03 05 08 12 17 24 ) 59 76
15 1,052 01 02 03 08 09 13 19 27 Ls 64 80
16 1,010 ] 02 ol 06 10 15 21 30 b9 69 )
17 .973 o1 02 ol 06 n 16 23 32 83 73 87
18 940 ot 02 () 07 " 18 26 35 56 76 90
19 M )] 02 ol 07 12 19 28 38 60 79 92
20 .884 01 02 ol 08 13 20 30 bo 63 82 93
21 .859 01 02 05 08 1% 22 32 L3 66 85 95
22 .836 0 03 05 09 15 23 34 L6 69 87 9%
23 815 ()] 03 05 09 16 25 36 48 72 89 97
24 795 o0 03 o5 10 17 26 38 5 75 91 98
25 777 o 03 06 n 18 28 Lo 53 7 92 98
26 .760 )] 03 06 n 19 29 L2 55 79 93 99
27 o Tk 01 03 06 12 20 N W4 58 81 9% 9
28 .728 o 03 07 12 2 32 L6 60 83 95 99
29 41 02 03 07 13 27 34 L8 62 8s 96 99
30 701 02 03 07 13 23 36 50 64 86 97 99
3 .688 02 03 07 11 2u 37 52 66 88 97 *
32 .676 02 oh 07 15 25 39 54 68 89 98
33 .665 02 ol og 15 26 Lo 55 70 90 98
34 654 02 o+ 08 16 27 k2 57 72 91 98
35 N 02 o4 08 16 28 L3 59 73 92 99
36 634 02 ol 09 17 29 LY 61 75 93 99
37 .625 02 o4 09 18 30 L6 62 76 9k 99
38 616 02 ol 09 18 3 L7 6 78 95 99
39 .607 02 o 10 19 32 k9 65 79 95 99
Lo .599 02 ol 10 20 34 50 67 81 96 *
L2 .583 02 05 " 2 36 53 70 82 97
44 .569 02 05 1" 22 38 56 72 85 97
L6 .556 02 05 12 24 Lo 58 75 87 98
L8 o543 02 05 12 25 42 6 77 89 98
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Table 4.3.4 (continued)}
q
n 9 J0 .20 .30 M0 .50 .60 ,70 .80 1.00 1,20 1,40
so .53 02 13 26 b 63 79 90 * *
52 520 02 113 28 hé 65 81 92

05
06
54 .510 02 06 w29 48 68 8 93
56 .50 02 06 15 30 50 69 85

58 A9 02 06 16 32 82 72 8 95

60 82 02 07 16 33 [ 3 88 95
64 M67 02 07 18 36 57 77 90 97
68 52 02 08 19 38 6 80 92 98

»83888

72 138 02 08 21 1Y) (] 83 9% 98
76 U026 03 09 22 bk 67 8s 95 99
80 As 03 09 24 46 70 87 96 9
84 05 03 10 25 bo n 89 97 99
88 .395 03 10 27 ) 75 91 98 *
92 .386 03 n 28 sh 78 92 98
96 .378 03 " 30 56 80 9l 9

100 .370 03 12 N 8 82 95 99

120 337 os 15 39 69 8 98 *

140 31 o4 18 he 7 9% 99

160 .291 s 21 53 83 97 *
180 274 05 24 60 88 98
200 .260 06 28 66 92 99
250 .228 07 38 79 97 *
300 .21 09 44 86 99
350 196 n 52 92 *
400 .183 12 60 95

450 172 th 66 97

500 .163 16 72 98

600 49 20 8 *

700 .138 24 88

800 .129 28 92
900 122 32 95
1000 W15 37 97

* Power values below this point are greater than .995,



4.3 POWER TABLES 125
Table 4.3.5
Power of Normal Curve Testof r; =r,
via Fisher z transformation at a, = .05
q

n q. J0 .20 .30 .o .50 .60 .70 .80 1,00 1.20 1.40

8 1.240 05 06 08 10 12 16 20 r 35 48 50

9 1,132 05 06 08 1 1% 18 23 28 L) 55 68
10 1.048 05 07 09 12 15 20 26 32 L6 61 75
1 .980 05 07 (o] 13 17 22 29 36 52 57 8o
12 924 06 07 10 14 19 25 32 Lo 56 72 8
13 877 06 07 10 15 20 27 35 43 61 77 88
14 .836 06 08 1 16 22 29 38 L7 65 80 91
15 .800 06 08 1 17 23 3 Lo 50 69 84 93
16 .769 06 08 12 17 25 33 43 53 72 86 95
17 L) 06 08 12 18 26 35 L6 56 75 89 96
18 6 06 09 13 19 28 38 48 59 78 9N 97
19 .693 06 09 14 20 29 Lo 51 62 81 92 98
20 672 06 09 & 30 42 53 65 83 94 98
2 .653 06 09 15 22 32 Ly 56 67 85 95 99
22 .636 06 09 15 23 33 L6 58 69 87 96 99
23 .620 06 10 16 r3 35 48 60 72 88 97 99
2l .605 06 10 16 25 36 49 62 h 90 97 *
25 . 591 06 10 17 26 38 51 6L 76 9N 98
26 .578 06 10 18 27 39 53 66 77 92 98

27 .566 04 n 18 28 W 55 68 719 93 99

28 .554 06 1" 19 29 42 56 70 81 9l 99

29 . Sub 07 11 19 30 (AN 58 n 82 95 99
30 .534 07 1" 20 3 45 60 73 8k 96 99
3 524 07 12 20 32 U6 61 75 8s 96 99
32 .516 07 12 21 33 48 63 76 86 97 *
33 .506 07 12 21 34 L9 64 77 87 97
34 98 07 12 22 35 51 66 79 88 98
35 490 07 13 22 36 52 67 80 89 98
36 483 07 13 23 37 53 68 81 90 98
37 475 07 13 24 38 Sh 70 82 9 98
38 469 07 13 24 39 55 n 83 92 99
39 462 07 4 25 4o 56 72 84 92 99
Lo 56 07 1 25 W 58 73 8 93 99
42 Jakly 07 t 26 42 60 75 87 ok 99
L) 433 07 15 27 LL 62 78 89 95 99
Lé 423 08 15 29 L1 () 79 90 96 *
48 L3 08 16 30 48 66 81 9 97
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Table 4.3.5 (continued)
q

n 9. .10 .20 .30 .40 .50 .50 .70 .80 1,00 1.20 1.40
50 R 08 16 3 49 68 83 92 97 * * *
52 <396 08 17 32 51 70 Bk 93 9
[ .388 08 17 33 52 n 35 U 93
56 .381 o8 18 b1 s4 n 87 95 98
58 374 08 18 35 55 75 33 9% 99
60 367 08 19 36 57 76 89 96 99
64 <355 09 20 38 60 79 N 97 99
68 oJub 09 21 4o 63 81 93 98 *
72 334 09 22 42 65 84 9% 98
76 324 09 23 Li 68 86 95 99
80 316 10 24 46 70 87 96 99
8 .308 10 25 48 72 89 97 99
88 300 10 26 50 7% 90 97 *
92 .29 10 27 52 76 92 98
96 .287 10 28 53 78 93 98
100 .281 n 29 55 80 9l 99
120 .256 12 33 63 86 97 *
140 237 13 38 70 9t 99
160 221 1h 43 76 9% 99
180 .208 16 47 81 96 *
200 .198 17 51 85 98
250 473 20 62 92 99
300 161 23 68 96 *
350 149 26 75 98
4oo .139 29 80 99
L50 Bk 32 85 99
500 A2 35 88 *
600 13 ] 93
700 .105 L6 96
800 .098 51 98
900 .093 56 99
1000 .088 61 99

* Power values below this point are greater than .995.
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Table 4.3.6
Power of Normal Curve Testofr, =r,
via Fisher z transformation at a, = .10
q

n 9. Jd0  ,20 .30 L0 .50 .60 .70 .80 1,00 1,20 1.40
8 1.040 10 12 14 17 20 25 30 35 L8 60 n
9 +950 n 12 15 18 22 28 33 L)) 54 67 78
10 .879 n 12 15 19 24 30 37 Ll 59 3 83
n .822 " 13 16 20 26 33 Lo L8 6h 7 88
12 <776 n 13 17 22 28 36 [ 52 68 82 9
13 .736 n 13 18 23 30 38 47 56 72 85 93
14 .701 n 14 18 24 32 [ 50 59 76 88 95
15 672 n 14 19 26 34 43 53 62 79 90 96
16 N TR )| W 20 27 3 ks 56 65 82 92 97
17 .622 1" 15 20 28 38 L8 58 68 8k 9l 98
18 .606 n 15 2t 29 39 50 61 n 86 95 99
19 .582 " 15 22 n ] 82 63 73 88 9% 9
20 564 n 16 23 32 5h 65 75 90 97 9
21 S48 12 16 23 33 L 56 67 17 9 97 9
22 .53 12 16 24 34 46 58 70 79 92 98 *
23 +520 12 17 25 35 L8 60 n 8t [ 98

2b .508 12 17 25 37 k9 67 n 83 9% 99

25 RT3 12 17 26 38 51 64 75 84 95 99
26 485 12 18 27 39 52 65 n 86 96 99

27 s 12 18 27 ko sh 67 78 87 97 99

28 65 12 18 28 W 55 €68 80 88 97 *

29 M56 12 19 29 42 56 70 L] 89 98
30 L8 12 19 30 43 58 n 82 90 98
n Abo 12 19 30 W 59 n 84 9 98

32 432 12 20 N 4s 60 7h 8s 92 98

33 25 13 20 32 46 61 75 86 93 99
34 18 13 20 32 LY4 63 76 87 9 99
35 A 13 21 33 L8 64 77 88 94 9

36 05 13 21 3 4 é5 79 88 95 99

37 399 13 21 3% 50 66 80 89 95 99
38 «393 13 22 35 51 67 81 90 96 99
39 .388 13 22 36 52 68 82 9N 96 *
Lo .382 13 22 36 53 69 83 9 96
L2 372 13 23 38 55 n 84 93 97
bh +363 13 24 39 57 n 86 9% 98
46 355 14 2 bo 58 75 87 95 98
L8 347 1LY 25 W 60 124 89 95 98




128

4 DIFFERENCES BETWEEN CORRELATION COEFFICIENTS

Table 4.3.6 {continued;
q

n qc A0 .20 .30 W0 .50 .60 .70 .80 1.00 1,20 1.40
50 +339 1L} 25 43 62 78 90 9% 9 * * *
52 2332 W 26 Wb 63 80 9 97 99
s .326 1 26 45 65 8 92 97 99
56 320 14 27 46 66 82 93 97 99
58 31 15 28 W 67 84 93 98 99
60 .308 15 29 L8 69 13 9% 98 *
(43 .298 15 30 5 n 87 95 99
68 .289 15 3N 53 M 89 9% 99
72 .280 16 32 55 76 90 97 99
76 .272 16 33 57 78 92 98 *
80 .265 16 35 59 80 9 98
84 .258 17 36 60 82 9% 99
88 .252 17 37 62 83 95 99
92 247 17 38 64 85 95 99
96 .241 17 39 66 8 9 99
100 .236 18 W 68 87 97 99
120 .231 20 U5 74 92 9 *
140 Jd99 21 50 80 95 99
160 .186 23 55 8k 97 *
180 175 25 59 88 98
200 166 26 63 9 99
250 146 n 73 96 *
300 135 3 79 98
350 .125 37 8 99
Loo JA17 b0 88 *
450 J10 W 9
500 A0k b7 93
600 «095 53 9%
700 .088 59 98
800 082 64 99
900 .078 68 *
1000 074 72

* Power values below this point are greater than .995.
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(say) .10, the tables can also be used for power at a, = .02, a, = .20, a, = .005,
and a, = .025.

2. Effect Size, ES. This is the difference between Fisher z-transformed r’s,
q, whose properties are described in Section 4.2. Tables 4.2.] and 4.2.2
facilitate the conversion of r,, r, pairs into q values. Provision in the power
tables is made for q = .10 (.10) .80 (.20) 1.40. Conventional definitions of ES
have been offered, as follows:

small: q=.10, medium: q = .30, large: q=.50.

3. Sample Size, n. This is the size of each of the two samples whose r,’s
are being compared. Provision is made for n =8 (1) 40 (2) 60 (4) 100 (20)
200 (50) 500 (100) 1000.

The values in the body of the table are the power of the test x 100, i.e.,
the percentage of tests carried out under the given conditions which will
result in the rejection of the null hypothesis. They are rounded to the nearest
unit and are accurate to within +1 as tabled.

Hlustrative Examples

4.1 A marriage counselor has been studying the issue of personality
similarity as a factor in the quality of marriage relationships. She has gath-
ered data on several personality questionnaire variables from 60 husband-
wife pairs in marriages rated as harmonious (Group 1) and from another 60
pairs with marital difficulties (Group 2). The study design involves the deter-
mination of the husband-wife correlation in each group for each personality
variable, followed by a test of the significance of the difference between the
two groups’ r.’s (for each variable), i.e., Hy:r; = r,. Her significance criterion
isa, = .05. Given that the ES is g = .30 (the optional definition of a medium
difference), what is the power of each test? The specifications are

a, =.05, q=.30, n,=n,=n=60,

To find the test’s power, in Table 4.3.5 for a, = .05, column q = .30, and
row n = 60, power = .36. Thus, the probability of a significant (a, = .05)
result is only slightly greater than one in three if the two populations differ in
degree of relationship by q = .30 (e.g., population r values of .20, .46, or .40,
.62 or .60, .76 from Table 4.2.1, or, if of opposite sign, e.g., —.15, .15 or —.10,
+.20).

If one posits large (q = .50) instead of medium ES, one finds in the same
table and row, but for column q = .50, power =.76. Only if one is seeking to
detect an ES of q = .60-.70 does power increase to the low nineties, but this
ES implies r pairs such as .20, .70 or .40, .80 or opposite sign pairs of the
order of —.30, +.30 or —.10, +.50.
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4.2 A theory of psychopathology yields the derivation that the correla-
ation between two variables X, Y, should be higher for paranoid schizo-
phrenics than for catatonic schizophrenics. A research psychiatrist gathers the
relevant data for 180 cases in each diagnostic group, in order to perform a
one-tailed significance test at a, = .01. On the several alternative hypotheses
that the difference inr is small (q = .10), medium(q = .30), and large (q = .50),
what is the power in each instance? Specifications are

.10
a,=.0l, q=.30, n, =n,=n=180.
.50

In Table 4.3.1 fora; = .01, row n = 180, and for columns q = .10, .30, and
.50, one finds respectively power values of .08, .69, and .99. The extreme
spread of these power values strongly suggests the importance of deciding
how large the anticipated ES is (at least at this level of n). Depending on the
ES, the experiment has either a poor, fairly good, or virtually certain proba-
bility of a significant result. If the result is not significant, the only con-
clusion that can be drawn is that the difference in degree of relationship
between the populations favoring the paranoid schizophrenics, if any, is not
large. Were the degree of relationship large, with power of .99 to detect a
large effect, it would likely have been found. A medium or small difference
may well exist; the latter possibility, in particular, is quite consonant with the
results. Of course, given nonsignificant results, the investigator cannot con-
clude that a difference exists, whatever the a priori power.

4.3.2 Casi 1:n; # n,. The tables will yield power values when, under
the conditions for a valid test of the significance of the difference between two
population r’s, samples of different sizes are drawn. In such cases, compute

0 =3, = 3)

4.3.1) n ¥n,—6

+3,

and use the n’ value in the n column of the table. Unless one of the n’s is very
small (<10), the power value found is an exact value.? Also, all of the
interpretative material of Section 4.3.1 on differences between degrees of
relationship holds for Case 1.

Ilustrative Example

4.3 A psycholinguist has developed and used in a series of researches a
certain procedure (P,) for measuring speech disruption whose population
reliability (i.e., correlation between parallel forms) is estimated as falling in

the .75-.85 range. For theoretical and practical reasons, he designs an alter-

2 That is, it is as exact as the Case 0 value, i.e., accurate within £ 1.
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native procedure (P,;) whose reliability compared to P, he wishes to assess.
For practical reasons he is interested in the possibility thatr, >r,, but differ-
ence in the other direction would also be quite meaningful to theory. Thus a
nondirectional test is indicated, and he elects to use a, = .05. If r, is approxi-
mately .80, he is interested in the possibility that r, is about .10 away (par-
ticularly if it is about .90). Reference to Table 4.2.1 indicates that the r pairs
.75,.88; .80, .90; and .85, .93, all of which define an ES = q = .40 (i.e., be-
tween medium and large), represent the magnitude involved. Now, he has
accumulated data on the original procedure for n, = 260, and uses the new
procedure on an independent sample of n;, = 51. What is the power of the
test?
a,=.05 q=.40, n;=51+#260=n,.
With unequal n, he finds [from formula (4.3.1)]

_2/(51 —3)260—3) +3= 2 (48)(257)
T 514260—6 305

In Table 4.3.5 for a, = .05, column q = .40, and row n’ =n = 84, power =
.72. Thus, his chances are (not quite) three in four of detecting a difference of
q = .40, given these conditions.

Note the implication of n’. His samples of 51 and 260, a total of 311 cases,
yields as much power as two equal samples of 84 cases, a total of 168 cases.
As previously noted in two-sample comparisons, for a given total number
cases, optimal power for any specified conditions occurs when the total
number is divided equally. That is, an equal division of his 311 cases would
yield two samples of 155 cases, for which the power would be .93 (interpola-
ting in Table 4.3.5), instead of the value of .72 for the actual unequal division.

’

+3=84.

4.3.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST r =c. Thus far
we have considered the power of the normal curve test via the difference
between Fisher’s transformations of r’s of two independent samples, where
the null hypothesis is r, =r,. The same transformation and test can be used
to test the departure of the r of a single population from some specified value
c. The null hypothesis for the one-sample test is r = ¢. The test is employed
when, given a sample of n cases, the investigator’s purpose is to determine
whether the data are consonant with the hypothesis that the population r is
.50 or .90 or —.25 or any other value. It is thus the general case of which the
test of Chapter 3 that r is zero is a special case.

Although the special case r = ¢ = 0 arises frequently in behavioral science,
the r = ¢ # 0 form is also encountered. It will be found useful in psycho-
metric technology where experience has led to certain expectations or
standards for values of reliability and validity coefficients which would then
serve as values for c. In behavioral genetics or other areas of behavioral
science where strong theory exists, derivations from theory may also yield
specific values of ¢ whose statistical testing brings important information.



132 4 DIFFERENCES BETWEEN CORRELATION COEFFICIENTS

For the one-sample case (Case 2), we define our ES as for the other cases,
i.e., as the difference between z-transformed r’s, but whereas in formula

(4.2.2), r,—2, is an estimable population parameter, here it is a constant, so
that for Case 2

432 q,=1z,-1z, (directional)
=|z,~2z.| (nondirectional),

where z, = the Fisher z transformation of the alternative-hypothetical r as
before and

z_ = the Fisher z transformation of the null-hypothetical c.

There is no conceptual change: q,’ is the difference between the (alternate)
population value (r;) and the value specified by the null hypothesis (c) ex-
pressed, as before, in units of the z transformation. The interpretation of
q,’ proceeds exactly as described in Section 4.2 with regard to Table 4.2.1, r?,
and E, and the operational definitions of small, medium, and large ES.

The tables, however, are not applied to the value q," since they are con-
structed for Case 0, where there are two sample statistics (z, and z,) which
each contribute sampling error variance to the observed sample difference, for
a total variance of 2/(n — 3). Here only one sample contributes sampling error
variance, yielding half the amount, 1/(n — 3). This is simply allowed for by
finding

4.3.3) q=q, V2.

The q value is sought in the tables, while q,’ is the ES index which is inter-
preted. This procedure is exact.?

If q," is chosen as a convenient multiple of .10, q will in general not be a
multiple of .10. Thus the operational definitions of ES for q,’ of .10, .30, and
.50 become, for the one sample test,q = .14, .42, and .71. Linear interpolation
between power values will provide values which are sufficiently close (within
.01 or .02) for most purposes.

Mustrative Example

4.4 A social psychologist has developed a considerable body of data on
attitudes toward the mentally ill. One of his scales yields an alternate-form
correlation coefficient which he can estimate as being very close to .60 in the
population. He has prepared a revision of this scale to improve its reliability
but must weigh an improvement of reliability against the loss of compara-
bility of a revised scale. He decides that if he could raise the population

3 Unlike the one-sample test of a mean (Section 2.3.4) which proceeds by a t test
with its dependence on varying n and df, the present test uses the normal curve for all n,
and no overestimation of power occurs when the tables are used for the one-sample test
of r.
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reliability (correlation) to the middle seventies, say .76 (see Table 4.2.1), it
would warrant the replacement of the original scale. Thus, he will perform
a one-sample test to determine whether he can conclude that the revision is
superior. As formulated, he has no interest in the possibility that the revision
has lower reliability; thus his test is one-tailed (directional), and he selects as
his significance criterion a; = .05. He administers the revised scale to a sample
of 50 subjects.

The null hypothesis he is testing is, therefore, r < .60 with an alternative
hypothesis (or ES) of r =.76. Informally stated, his research questions are:
Does the revised scale have reliability in the population better than .60? For
the power analysis, he asks: If it is as high as .76, what is the probability that
I will conclude that it is better than .60 with n =50 at a, =.05?

Reference to Table 4.2.1 shows that the .60, .76 values of r yield q,’ = .30
(and incidentally, why the author chose the value .76). Note that q,’ = .30

represents a medium effect. For table entry, we need q=.30V 2=.424.
Summarizing the specifications

a,;=.05, q=.424, n=350.

In Table 4.3.2 for a; =.05 and row n =150, he finds power in columns
q = .40 and .50 to be .62 and .78, respectively. Linear interpolation between
these values yields power at q = .424 of (424 — .40)(.78 — .62)/.10 + .62 = .66.
Thus, if ¢ = .76, his a; = .05 test for n = 50 has a two in three chance of get-
ting a significant result, warranting the conclusion that r > .60. Note that no
mention has been made of the sample r; this is irrelevant to the power anal-
ysis, which may (or better, should) be performed prior to the data collection.

4.4 SAMPLE Si1zE TABLES

The tables in this section list values of the significance criterion, the ES
to be detected, and the desired power. One then finds the necessary sample
size. Their primary utility lies in the planning of experiments to provide a
basis for the decision as to the number of sampling units (n) to use.

4.4.1 Case0:n, =n,. The use of the sample size tables first described is
that for which they were optimally designed, Case 0, where they yield the
sample size, n, for each of two independent samples whose population r’s
are to be compared. The description of their use in two other cases follows this
subsection. Tables are entered with a, q, and desired power.

1. Significance Criterion, a. The same values of a are provided as in the
power tables, a table for each of the following: a, = .01 (a, =.02), a, =.05
(a,=.10), a, =.10 (a; =.20), a, = .0l (a; =.005), and a, = .05 (a; = .025).

2. Effect Size, q. This value is defined and interpreted as above [formula
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Table 4.4.1
n to detect q = 7, -z, by Fisher
z Transformation of r
a) = .01 (a, = .02)
Q
Power .10 .20 30 L0 .50 .60 .70 .80 1,00 1,20 1.40
.25 sh9 139 6l 37 25 18 1h 12 8 7 6
.50 1085 27 123 n 46 33 25 20 1k n 9
. 1334 336 151 86 [{3 ho 30 2b 16 12 10
2/3 1523 | 2 98 I 4s 22 18 W N
.70 1628 409 184 105 68 48 36 28 19 W 1n
.75 1804 4s3 203 115 75 53 W N 21 16 12
.80 2010 505 226 128 83 59 ey 34 23 17 13
.85 2265 568 264k kb 93 66 k9 38 26 19 15
.90 2606 é5h 292 166 107 75 56 b 29 21 16
95 3157 792 353 200 129 9N 67 52 35 25 19
.99 4333 1085 484 274 176 123 91 n b6 33 25
a = .05 (a2 = .10)
q
Power .10 20 .30 ) +50 .60 .70 .80 1,00 1,20 1.kO
.25 19 50 2 15 n 8 7 6 I3 & 4
.50 Sty 138 63 37 25 18 W n 8 7 6
60 724 183 83 48 32 23 18 1 10 8 7
2/3 865 218 99 57 37 27 21 16 12 9 7
.70 by 238 108 62 41 29 2 18 12 10 8
.75 1079 272 123 70 46 33 2 20 b 10 9
.80 1240 32 we 80 52 37 28 22 15 12 9
.85 Y] 362 163 93 8 43 32 25 17 13 10
.90 176 15]) 193 110 72 51 38 30 20 15 12
.95 2167 sl 243 138 90 63 by 37 25 18 1)
.99 Nnsy 792 353 200 129 9 67 52 35 25 19
a = .10 (.L' .20)
qQ
Power .10 .20 30 M0 .50 .60 .70 .80 1,00 1,20 1,40
.25 12/ 2 n 8 6 5 4 4 b e ..
.50 331 85 39 2h 16 12 10 8 6 5 5
.60 474 121 55 32 22 16 13 10 8 6 5
2/3 589 150 68 4o 26 19 15 12 9 7 6
.70 655 166 75 Ly 29 b3] 16 13 10 8 6
75 768 194 88 51 34 2b 19 15 " 8 7
. 905 228 103 59 39 28 2 17 12 9 8
.85 1078 72 122 70 46 33 2 20 1 10 8
.90 1317 n 149 85 56 39 30 24 16 12 10
.95 176 43 193 110 72 51 38 30 20 15 12
.99 2606 65L 292 166 107 75 56 L 29 2 16
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Table 4.4.1 (continued)

8, = .0 (n' = ,005)
q

Power .10 .20 J0 40 .50 .60 .70 .80 1,00 1,20 1.40
.25 726 184 .5} 48 32 23 18 1 10 8 7
.50 1330 335 150 86 56 40 30 28 16 12 10
.60 1604 403 181 103 67 by 3 28 19 14 n
2/3 1811 Lss 204 16 75 53 o 3 21 16 12
.70 1925 Wy 217 123 80 56 b2 33 22 16 13
.75 2116 531 238 135 88 62 b 36 24 18 b
.80 2339 587 263 149 96 68 51 39 26 19 15
.85 2613 €55 293 166 107 75 56 W 29 21 16
.90 2979 7 33h 189 122 86 6 b9 33 28 18
.95 3566 894 399 226 1h¢ 102 7% 59 39 28 21
<99 4809 1205 537 303 195 137 101 78 5 36 28

.= .05 (a' = ,025)
q

Power .10 .20 .30 0 .50 .60 .70 .80 1.00 1.20 1,40
.25 333 86 4o 2h 16 12 10 8 6 s [
.50 m 195 88 51 51 24 19 15 1 8 7
.60 983 u8 n2 & 42 30 23 18 13 10 8
2/3 1146 289 130 7% 49 3s 26 W n 9
.70 1237 312 1o 80 52 37 28 22 15 12 9
+75 139 350 157 90 59 b2 n 25 17 13 10
.80 15713 39 177 100 66 Ly 35 28 19 1k N
.85 1799 hs2 203 118 75 53 o 3 21 15 12
.90 2104 28 236 13 87 9] 6 36 24 18 14
.95 2602 653 292 165 107 75 56 W 29 21 16
99 3677 922 un 233 150 105 78 60 Wo 29 22

(4.2.2)] and used as in the power tables. The same provision is made: .10 (.10)
.80 (.20) 1.40.

To find n for a value of q not tabled, a good approximation is given by
substituting in

N o—3

4.4, =10 <43
( l) n lqu +
where n_,, is the necessary sample size for the given a and desired power at
q = .10, and q is the nontabled ES. Round to the nearest integer.

3. Desired Power. Provision is made for entering the sample size tables
with desired power values of .25, .50, .60, 2/3, .70 (.05) .95, .99. See the dis-
cussion in Section 2.4.1 on the selection of these values and considerations
affecting choice in a given investigation. The suggestion of desired power =
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.80 to serve as a convention, in the absence of other bases for choice, is reiter-
ated here.

Summarizing the Case 0 procedure, the investigator finds (@) the table
for the significance criterion (a) he is using, and looks for () the difference in
z-transformed r’s(q)along the horizontal stub and (c) the desired power along
the vertical stub. He then finds n, the necessary size of each sample to detect
q at the a significance criterion with the desired power.

Illustrative Examples

4.5 Reconsider example 4.1, where a research study in personality simi-
larity between spouses as a factor in the quality of marital relationships is
described. In its initial formulation, a medium difference in correlation, i.e.,
ES =q = .30 was posited, and the significance criterion of a, = .05 was to be
used. If power of .80 is desired, what is the sample size necessary? The speci-
fications thus are

a, =.05, q=.30, power = .80.

In Table 4.4.1 for a, =.05, column q=.30, and row power =.80,
n = 177. The investigator will thus need samples of good and poor marital
pairs with 177 couples in each in order to detect a q = .30 difference in
z-transformed correlations at the a, = .05 level. If she reconsiders her speci-
fications and is content to posit q =.50 instead, the sample size required in
each group is 66.

4.6 Inexample 4.2, a study testing for a higher correlation of a given pair
of variables in paranoid than in catatonic schizophrenics was described. The
significance criterionis a, = .01. Assume that the psychiatrist is content with
power of .75 and poses the question: How many cases are required, assuming
successively that q =.10, .30, and .50?

10
a, =.0l, q=.30, power = .75.
.50

In the section of Table 4.4.1 for a, = .01 and row power = .75, the values
in columns q = .10, .30, .50 are found to be 1804, 203, and 75, respectively.
She may then decide that she is content to try to detect a medium effect and
plan to collect samples of 203 cases of each schizophrenic type. Alternative-
ly, she may reconsider her significance criterion. If she sets it at a, = .05, she
finds from Table 4.4.1 (specifications otherwise the same) n’s of 1079, 123,
and 46 for the three q levels; if she sets it at a, = .10, she finds in the next
section of the table 768, 88, and 34. Her explorations in sample size require-
ments can be summarized in tabular form:
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n FOR DESIRED POWER = .75

q

.10 .30 .50

Significance .01 1804 203 75
level &, .05 1079 123 46
.10 768 88 34

Depending on her resources for data gathering and the theory being test-
ed, she can make a choice among these possibilities, or investigate others
(non-directional a, q of .20, .40).

44.2 Case l: n,; 5 n,. One does not ordinarily plan to use samples of
unequal size (since equal sample sizes are optimal), but Case 1 can occur in
planning when a value of r, is already available from a given sample or one
sample’s size is necessarily fixed by circumstances, so that the researcher’s
freedom in setting sample size is restricted to only one of the two samples.
With one sample size fixed at ng, this value will generally differ from that of
the other sample, whose size is at the researcher’s disposal (ny). As in Case 0,
given a, q, and desired power, Table 4.4.1 gives values for n. To find ny,
substitute the fixed sample size (ng) and the n read from the table in

=nF(n+3)—6n

4.4.
(44.2) " o —n-3

(See Section 2.4.2 when denominator is zero or negative.)

Illustrative Example

4.7 Return to consider again the situation described in example 4.3. The
issue is whether a new procedure (P,) has a significantly different (a, = .05)
parallel form correlation from that of an older procedure (P,). The ES to be
detected is q = .40, and a sample is already available to estimate the correla-
tion of P, with ng = 260. Assuming that he desires power of .90, what sample
size ny does he require for the test?

If he were unconstrained in the choice of n for both samples, i.e., if Case 0
conditions prevailed, his specifications would simply be

a, = .05, q=.40, power = .90,

In the section of Table 4.4.1 for a, = .05, with column q = .40 and row
power = .90, one finds that samples of 134 cases each would be required. But
in this instance, he already has one sample whose size is fixed at ng = 260.
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Thus, the other sample need only contain (substituting ng = 260 and n = 134
in formula (4.4.2))

o 20001344 3) —60134) _
VTT60) - 134-3

Thus, the availability of a sample of ng = 260 cases makes it possible for
him to satisfy his specifications (attain power of .90 to detectq = .40 ata, =
.05) with a sample for the new procedure of 91 cases.

4.4.3 Cast 2: ONE SAMPLE OF n OBSERVATIONS TO TEST r =¢. In using
the n tables for the one-sample test, the only departure from Case 0 is that
which was discussed in connection with the power tables for Case 2, the proper
value of q to be sought in the table (see Section 4.3.3 for details). Briefly, if
one is testing with a single sample the null hypothesis that the population r
has some specified value, i.e., H, : r =¢, and scales his ES in the usual way,
as a difference betweenz-transformed values of r, and ¢, namelyq,’ =z, —z_,
then value is determined for q =q,’ v'2. If the resultantq is not tabled (a likely
occurrence), he takes recourse to the procedure described in connection with
formula (4.4.1).

Illustrative Example

4.8 We return to example 4.4, where a social psychologist, engaged in an
attitude-scale revision effort, plans a test at a, =.05 of H, :r = .60 against
the alternate H, : r, = .76. Instead of assuming a sample size and determining
the resulting power, as was done in problem 4.4, let us here assume that he
seeks the sample size necessary for power to be .95. Note that this is an in-
stance in which the investigator wishes the two kinds of errors to be equal,
i.e.,, Type I =.05, Type lI=b=1—-.95=.05.

As before, for r’s of .60 and .76, the difference in z units (Table 4.2.1) is
.30, which is q,". To use the table we require q = .30 V2 = .4243, as in prob-
lem 4.4. Thus, the specifications are

a, =.05, q=.4243, power = .95.

Since q = .4243 is not tabled, we follow the procedure described in Section
4.4.1. In the part of Table 4.4.1 for a;, =.05, row power = .95, and column
q=.10, find n ,,=2167. Then substitute n ;,=2167 and q=.4243 in
formula (4.4.1) for the required n:

2167 -3

n=m+3=123.

Thusif r = .76, a one-sample test of H,, : r = .60 performed at thea, = .05
level will have .95 probability of a significant result if the sample n is 123.
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4.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING

4.5.1. GENERAL INTRODUCTION. Provision has been made in the power
tables to facilitate significance testing. Power analysis is largely concerned
with the planning of experiments and thus with the alternate-hypothetical
ES. Once the experiment is performed, attention turns to the assessment of
the null hypothesis in the light of the sample data.

We accordingly redefine our ES index, q, so that its elements are sample
statistics, rather than population values, and call it q,. For cases 0 and 1,
where the r’s of two independent samples are being compared, the sample r,
values are transformed into sample Fisher z, values, and

(4.5.1) q, =1, — I, (directional)
= lzsl - stl (nondirectional).

Thus, q, is simply the difference in sample z values. It is related to the
unit normal curve deviate (or *“critical ratio’’) x, by*

452 = x [ Mtn2=6

#2) 9 "\/ (s —3)n; = 3)
_ (n, =3)n,—3)

(4.5.3) x= q,\/m .

The relationships are stated here for the more general situation where
the sample n’s need not be equal. They simplify for the Case 0, equal n
condition (see below).

The value of q, necessary for significance is called q., i.e., the criterion
value of q,. The second column of the power Tables 4.3, headed q., carries
these values as a function of n. Using these values, the investigator need not
compute the normal curve deviate x. He simply finds the z transformations
of his sample r,’s in Table 4.2.2, then finds their difference, q,, and compares
it with the tabled q. value for his sample size. If the obtained q, value equals
or exceeds q., his obtained difference is significant at the a value for that
table; otherwise, it is not.

4.5.2 SIGNIFICANCE TESTING IN CaSE 0, n; =n, =n. In Case 0, where
n, =n, =n, the relationships between q, and the normal deviate x are simpli-
fied:

4.5.4) q.=x [ 2

n—-3

_q [r—3
(4.5.5) X = qs\/ >

b

4 The unit normal curve deviate is frequently represented by the symbol z. We use x
here to avoid confusion.
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[Formula (4.5.4) was used in the computation of the q. values of the
power tables, x being the normal curve deviate for the a criterion.}

The Case 0 use of the q, values is quite straightforward: The investigator
looks up the z, values for the twor.’s in Table 4.2.2, finds their difference, q,
{formula (4.5.1)], and uses the appropriate power table depending on a, in
the row for his n( =n, =n,), checking whether his q, value equals or exceeds
the tabulated q, value.

Illustrative Example

4.9 Consider the conditions of example 4.1, where a marriage counselor
is studying the difference in husband-wife correlation on a series of person-
ality variables between 60 marriages rated,as harmonious (Group 1),and
60 having marital difficulties (Group 2). The significance criterion is a, = .0S.
When the data are analyzed, it is found for a specific variable A that re, is

.42 and r,_is .16. She looks up the z transformation of these r’s and finds z;
= .448 and z; = .161. Thus, q; = .448 — .161 = .287. Her specifications,
thus are

a, = .05, n = 60, q, = .287.
In Table 4.3.5 (for a, = .05) for row n = 60, she finds under q_ the value

.367. Since her q, is smaller than q., her observed difference is not significant
at a, = .05. [From formula (4.5.5), x = .287 V(60 — 3)/2= 1.53.]

Assume now that for another variable B, she finds r, = .35,r, = —.14.
Transformed by means of Table 4.2.2, these r values yield, respectively,
z, = 365, z,, = — .141. By formula (4.5.1) for nondirectional tests,

q, = |.365 — (~ .141)| = |.506] = .506.

The specifications remain the same as for variable A, except that
now q, =.506. Since this exceeds the q. =.367, the difference in correla-
tion for variable B is significant at a, = .05. [From formula (4.5.5), x = .506
/(60 — 3)/2 =2.70.]

Consider now the results for a third variable, C. Assume she finds r;, =

— .20, r,, = —.06. Transformed, these r values yield, respectively, z, =
— 203, z,, = — .060. By formula (4.5.1) for nondirectional tests,
q,=]—.203—(—.060)| = | —.143| = .143,

which is less thanq, = .367 and hence not significantata, = .05. [From formu-
la (4.5.5), x =.143V/(60— 3)/2 = .76.]



4.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING 141

4.10 Example 4.2 described a study in clinical psychiatry which
depended on comparing at the a, = .01 level correlations of two variables
between (a) paranoid and (b) catatonic schizophrenics, r,, being predicted
the larger. When samples of n = 180 are analyzed, it is found that r,, = .60,
r,, =.36. When transformed, these yield z, =.693 and z,, =.377. Thus
q, = .693 —.377 = .316. The specifications are

a,=0l, n=180, q,=.316.

Table 4.3.1 (for a, =.01) for row n=180 and column q., yields the
value .247. Since q, (.316) exceeds the criterion value (.247), it can be con-
cluded at a, =.01 that the relationship is significantly larger for the para-
noids. [If desired, x can be found from formula (4.5.5) to be .316V/(180 — 3)/2
=2.97.] Note that if the r.’s for paranoids and catatonics were reversed,
i.e., if the sample results were contrary to the predicted direction, no q
values need be determined—the difference, being contrary to the predicted
direction in a directional test, is nonsignificant whatever its magnitude.

To make another point, we assume instead that r, , r,, turn out to be

+.15, —.14 sothatzsl,zsz are .151, —.14l,and q, = .151 — (—.141) =.292.
Now, since q, =.292 is greater than q. = .247, the difference between r.’s
is significant, i.e., we conclude that r, is (algebraically) greater than r,.
Note that this is true despite the fact that neither is significantly different
(at the same a, = .01 level) from zero. (In Chapter 3, Table 3.3.1, r_ for
n =180 is .173, which neither value exceeds.) Thus, two-sample values
departing in opposite directions from zero may be significantly different
from each other while neither is significantly different from zero. There is
no contradiction if nonsignificance is properly interpreted as the data not
warranting the rejection of the null hypothesis. Thus, the results of each
sample do not warrant the conclusion that its population r is not zero, but,
together, they do warrant the conclusion that the population r’s differ
(subject, of course, to the Type I error).

4.5.3. SIGNIFICANCE TESTING IN CASE 1, n; # n, . The fact of inequality
of sample sizes in significance testing using the tabled q. values requires
only finding the harmonic mean of the (n — 3)’s, n’, as described in Section
4.3.2 [formula (4.3.1)]:

o Am = =3)

3.
n,+n,—6

In using Tables 4.3, values of n’ are substituted for n. Otherwise, exactly
the same procedure is followed as in Case 0.

If the normal curve deviate value x is desired, it is found using formula
(4.5.3), or, if n’ has been found, it is computationally simpler to substitute
n’ for n in formula (4.5.5).
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Ilustrative Example

4.11 Example 4.3 describes an investigation in psycholinguistics designed
to improve the reliability (parallel forms correlation) of a speech disruption
measure. The statistical test takes the form of comparing the r.’s for the
new (P,) and old (P,) procedure at the a, = .05 significance level. Assume he
findsr, = .89 forn, =51 andr,, =.79 for n, = 260. The transformed values

are found to bez, =1.422 and z,, =1.071, so that
q=|1.422 — 1.071} = |.351] = .351.
To use the table, find n’ from formula (4.3.1):

(51— 3)(260 — 3)
T 514260~6

’

+3 =84

(as before in example 4.3).
The specifications for significance testing of the sample difference are:
a, =.05, n'=84, q,=.351

Table 4.3.5 for a, = .05, row n =84, and column q., yields .308. Since
q, exceeds q., the difference in sample correlations is significant. (If desired,
x may be found from formula (4.5.5) as .351V/(84 — 3)/2 = 2.23.)

Note that in planning (example 4.3), an ES of q = .40 was posited. Des-
pite the fact that the observed difference q, = .351 fell short of this, it was
nevertheless significant. As has been noted previously, this can only occur
when, for the planning specifications, power exceeds .50. (In this example,
it was .72))

4.5.4 SIGNIFICANCE TESTING IN CASE 2: ONE SAMPLE, H,: r =c. When
the null hypothesis takes the form: The r of a population of paired values
from which a sample of n observations has been randomly drawn equals ¢,
an adjustment must be made of the tabled q. value. Since the tables were
constructed for Case O conditions (two samples of equal size), they are
designed to allow for sampling error variance of two zs, while in Case 2
there is only one. To find the proper criterion for one-sample tests of
r =c, one finds

(4.5.6) q. =q.V}=.707q.,

where q, is the tabulated value for n.
As for the observed q, value for Case 2, we follow the principle expressed
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in (4.5.1), and simply define q," as we defined q,’ [formula (4.3.2)], merely
substituting the sample value of z, for the population parameter z,:
4.5.7) q, =z, — %, (directional)

= |z, —z,] (nondirectional)

The prime is used to denote that a one-sample test is involved. The
relationships between q,” and the normal deviate x for this case are now

(4.5.8) q = x \/T ,

-3
(4.5.9) x=q,/Vn-3.

Formula (4.5.9) can be used if the exact value of the normal deviate
(““critical ratio™) is desired, e.g., for reporting results for publication.

Hlustrative Example

4.12 In example 4.4, which was concerned with an attempt to improve
the reliability of an attitude scale, a test of Hy: r <.60 at a;, =.05 (i.e.,
predicting r> .60) with a sample of n =50 was described. When the data
are collected, the social psychologist finds r,=.72. Can he safely conclude
that the new scale has a population reliability coefficient (alternate form
correlation) greater than .60? He converts these two values of r, to z,,
and finds their difference:

q,’ =.908 — .693 = .215.
This is the sample ES. His specifications, then, are
a; = .05, n =50, q, =.215.
In Table 4.3.2 (for a, =.05) with row n =50, he finds in column q_,

.339. This would be the criterion for a two-sample test. For this one-sample

case, he goes on to find [formula (4.5.6)] q." = .339V'} = (.707)(.339) = .240.
This is the relevant criterion value, and sinceq,’ = .215 is less than q." = .240,
he cannot conclude at a, = .05 that the population reliability of the new pro-
cedure exceeds .60.

If he wishes to determine the exact normal curve deviate value x which

would result from the test, he finds [formula (4.5.9)] x = 215V/50 — 3 =.147.



CHAPTER 5

The Test That a Proportion Is .50
and the Sign Test

5.1 INTRODUCTION AND USE

It arises with some frequency in behavioral science that a null hypothesis
takes the form that the fraction of a population of potential observations
having some defined characteristic is one-half, i.e., Hy: P =.50. Examples
come to mind from areas as diverse as political science (opinion or political
polling), experimental psychology (learning theory, psychophysics), and
behavior genetics. Thus, for example, the question as to whether or not
there is majority support in the electorate for a course of action by the
national administration could be approached by polling a suitably drawn
sample and testing the null hypothesis that the proportion of the population
in favor is .50; rejection of this null hypothesis leads to the conclusion. As
another example, the ability of an experimental subject to detect a near-
threshold stimulus which is presented on a random half of a series of trials
can be assessed by testing the null hypothesis that on a very long series he
would be correct in his judgments of present-absent on P = .50 of the trials.
The finding that the sample P is greater than .50 and significant would lead
to the conclusion that he is (at least on some trials) making the perceptual
discrimination. Research in extrasensory perception involving the calling of
the side of a coin or the color of the suit of a playing card would test null
hypotheses of the same form.

The fact that in many human populations the sexes are about equally
divided leads to the relevance of the P = .50 test in studies of sex differences.
Thus, if an investigator is interested in the relationship between sex and a
definable characteristic (say, falling into a given psychiatric diagnostic group

145
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or a political party), he can draw a random sample of a group having the
characteristic and test the null hypothesis that the proportion of males is
.50. Departure from .50 is taken as evidence for a sex difference in incidence
of the characteristic, and therefore a relationship between sex and the
characteristic.

The widest application of the test of Hy: P = .50 arises in the form of
the nonparametric *‘Sign Test” (Siegel, 1956, pp. 68-75). Consider the
following circumstances. We have a population of X, Y paired observations,
and we are concerned with the relative magnitude of the X’s and Y’s. if
we can merely say for each pair in a sample whether X is greater than Y (so
that X — Y is positive) or X is less than Y (so that X — Y is negative), we have
a basis for deciding whether the X population is stochastically larger or
smaller than the Y population. By ‘‘stochastically larger (smaller)” we
simply mean that in more than half of the X, Y pairs in the population, X
is larger (smaller) than Y. Under these circumstances, the null hypothesis
that the X and Y populations are stochastically equal is simply H,: P =.50,
where P is the proportion of pairs in which X (or Y) is larger.

Note that no assumption need be made about the shape of either the X
or the Y distributions, or of their joint (bivariate) distribution. Indeed, it
is not even necessary that the values of the variables be expressed in metric
(i.e., interval or ratio scale) form: only ‘larger than” or “smaller than”
judgments are required. Thus, the test is distribution-free, and sinc. no
estimation of population parameters are called for, nonparametric as well.

If stronger assumptions are permitted, specifically, if it can be assumed
that X —Y =Z values are normally distributed and with equal variance,
then the t test for dependent means of Section 2.3.5 is appropriate, and, for
equal specifications, more powerful. Further, with large samples, moderate
failure of these assumptions is tolerable. The investigator may nevertheless
choose to perform the less powerful sign test as a ““shortcut™ or ‘‘approxi-
mate” test (Welkowitz, Ewen, & Cohen, 1982, Chapter 17).

This test can equally be used for a test of the difference between correlated
or dependent proportions (Hays, 1973, pp. 740-742). If we assess X and Y
as having some attribute present (1) or absent (0), then our X, Y pairs are
either (1, 0), (0, 1), (1, 1), or (0, 0). We then discard the instances of the latter
two possibilities, where we cannot make a judgment of “* greater than.” Now,
if the proportions having the attribute differ between X and Y, then P, the
proportion of differing X, Y pairs in which X is greater than Y, will depart
from .50. Thus, the null hypothesis is again P = .50, and the methods of this
chapter can be applied.

The statistical term for the test model under consideration is the
*symmetrical binomial cumulative distribution.” It is frequently referred
to by this name in the statistical literature [see MacKinnon (1959, 1961) for
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some useful tables]. *‘Symmetrical” is used for P=1— P =.50; tests of
other values of P proceed by means of other binomial cumulative distribu-
tions (see Hays, 1973, pp. 185-197). The methods of the next chapter may
be used to test the more general hypothesis Hy: P =k, where k is any
proportion.

5.2 THe ErfrecT Size INDEX: g

We index departure from P = .50 simply by the distance in units of
proportion from .50, i.e.,

(5.2.1) g=P-500r.50-P (directional),

and
g=|P—.50] (nondirectional).

In this form, our null hypothesis is that g =0. A test of Hy: P=.50
when P, is actually .60 represents an alternate hypothesis or ES of g =.60
— .50 =.10. Unlike some of the other ES indices in this book, g is fortu-
nately expressed in a unit which is immediately comprehensible to the
behavioral scientist.

5.2.1 *“SMALL,” **MEDIUM,” AND ‘“LARGE™ VALUES OF g. We offer as
conventions operational definitions of qualitatively defined levels of ES
here with, if anything, greater diffidence than in the previous chapters (see
particularly the general discussion in Section 1.4). Since g is so transparently
clear a unit, it is expected that workers in any given substantive area of the
behavioral sciences will very frequently be able to set relevant ES values
without the proposed conventions, or set up conventions of their own
which are suited to their area of inquiry.

They are offered here for whatever use they may afford researchers in
areas where effect sizes are obscure, for use with the sign test where experi-
ence in an area may not provide a guide, and for the sake of symmetry of
exposition. One further reason lies in a larger effort to make behavioral
scientists using statistical inference more aware of the sizes of the effects
they are studying. It must be reiterated, however, that a basis for positing g
which comes from theory or experience should automatically take precedence
over these conventions.

SMALL EFFECT SIZE: g =.05. With g = .05 as the definition, we are con-
sidering a division of the population of .55:.45 as a small departure from
the null (.50:.50). This may be considered either too large or too small a
criterion, depending on the reader’s perspective.

For a normally distributed population of differences, the division between
the highest .55 and the lowest .45 of them comes at about one-eighth (.126)
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of their standard deviation away from their mean (see discussion of U,,
Section 2.2 and Table 2.2.1). If such a division obtained in a sign test, with
.55 positive and .45 negative, the mean of the positive differences would be
.85, and of the negative differences (—).75, when expressed in units of the
(total) standard deviation of the differences. This may well seem like very
little, less than “‘small,” particularly when one considers that at P =.50,
these tail means are .80 and — .80.

On the other hand, consider political polling. In a presidential election, a
candidate who garners 559 of the popular vote is said to have won by a land-
slide. (In only 11 of the 28 presidential elections since 1872 did the popular
plurality candidate get more than 559 of the vote; in only 4, more than
609,.) In opinion polling on closely divided issues (where it is most relevant),
a .55:.45 division is sizable. Another relevant fact: the well-known excess
of women over men among the aged amounts to a female-male sex ratio of
.547:.453 in the population aged 65 and over (for the year 1970). Also the
difference in vocabulary knowledge between adult siblings of opposite sex
is such that in about 559, of the pairs who differ, the female will be superior
[estimated from Wechsler (1958, p. 147)).

Thus, the g = .05 criterion for a small departure may be too large or
too small from some specific viewpoint; it seems, however, a reasonable
criterion for general use.

MEDIUM EFFECT SIZE: g =.15. A .65:.35 split is. offered as a conventional
definition of a medium departure from .50:.50. ‘This is a 13:7 ratio, i.e.,
approximately 2:1. (If exactly 2 to 1 is desired, it is provided in the tables
atg=1.)

In a normal distribution of differences, the highest .65 are cut off at
.385 of a standard deviation away from the mean. Interpreted as a sign test
with .65 positive differences, the mean of these differences is .96, while that
of the negative differences is (—).77 (in standard units). Thus, if adult
mixed-sex sibling pairs were given a standard Arithmetic Reasoning test,
in about two-thirds of the cases where the siblings differed, the brothers
would get the larger score [estimated from Wechsler (1958, p. 147)).

In more familiar terms, and returning to divisions in the popular vote
in presidential elections, there never has been a division as extreme as
.65:.35 since popular vote totals became available (1872). (The largest
proportion polled up to 1972 was .608 by Roosevelt in 1936. Ironically, this
was the year of the Literary Digest Poll debacle, when Landon’s election was
predicted by a socioeconomically biased sample.)

An instance of a division of the order of g=.15 can be drawn from
mortality statistics. If one were to collect very large and equal random
samples of black and white births inthe East South Central States, those dy-
ing before the age of one year would contain almost twice as many blacks
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as whites (.643:.357).!

Another instance of a medium effect size is the sex difference in incidence
of manic-depressive psychosis: Authorities generally agree that the diag-
nosis is made about twice as frequently in females than in males, hence
P~ .67 and g~ .67 — .50 = .17 (see Campbell, 1953, p. 70).

For another example, consider again normally distributed populations
of differences between adult brother-sister pairs with regard to two intelli-
gence subtest variables, arthmetic reasoning and a speeded digit-symbol
substitution task. In the arithmetic subtest, in approximately .64 of the
pairs, the brothers would obtain the higher score, and in the digit-symbol
subtest, in the same proportion of the pairs the sisters would show superior
performance (estimated from Wechsler (1958, p. 147)). Thus, g~.14 in
both instances, a medium departure.

LARGE EFFECT SIZE g =.25. We operationally define as a large ES a
.75:.25, or 3:1 split. In line with our orientation in setting the ES conven-
tions, this should be a departure from .50:.50 which is fairly obvious to the
observer’s naked eye, yet not so large as to render statistical analysis wholly
superfluous (see Section 1.4).

In a normally distributed population of differences, the largest .75 of
them are cut off at .674 of a standard deviation below the mean. When
interpreted as a sign test with .75 positive differences, the mean of the
positive differences would be 1.10 and the mean of the negative differ-
ences (—).60 (in standard units). Thus, there would be a half standard
deviation separation between the means of the positive and negative tail
segments.?

It is difficult to come by well-known examples to illustrate a departure
fromthe null of g = .25, i.e., .75:.25 population splits where .50: .50 represents
“no effect.” For example, as already noted, no recorded popular vote for
the U.S. presidency has approached this size, and no brother-sister difference
in the area of human abilities, such as were used to illustrate small and
medium ES are known which are of this magnitude.

An obvious example can be drawn from Mendelian genetic ratios. For
the simple case of single gene complete dominance inheritance, the matings
of heterozygous parents yield offspring .25 of whom would manifest
the recessive character. Thus, the ratio among phenotypes showing to

! Computed from Bureau of the Census (1975, Table 89, p. 63).

2 The reader should not confuse this with the medium ES of d = .5 separation between
means of different whole normal populations, standardized by their common within popu-
lation standard deviation, used in connection with the t test (see Section 2.2). Here tail
segments of a single normal population are involved, and the standardizing unit is the
total standard deviation, a much larger unit than the within-population standard deviation.
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not showing the recessive trait would be .25:.75, thus a departure of .25
from a null hypothesis which posits equal incidence of the two pheno-
types.

One can find populations that split .75:.25, but they are not compelling
examples unless there is a reasonable basis for stating a .50:.50 null hypothe-
sis. For example, the proportion of adult males in the U.S. who are unmarried
is close to .25, but to consider this a g = .25 departure from .50:.50 seems
forced in the absence of any particular reason to posit an equiprobable null
hypothesis for single/not single. Or, in other words, what effect is there none
of if the proportion of single men were .50?

The area of sex differences has provided some useful illustrations of
small and medium ES. On can find examples of large sex differences, but
they are larger than our g =.25 criterion. Thus, when one identifies the
sex distribution in samples of school children who are stutterers or behavior
problems or who are diagnosed as reading disability cases or color blind,
the departure from a no sex effect .50 incidence for boys is typically at least
.30 (i.e., .80:.20), color blindness (usually a sex-linked recessive character)
rising to about g = .40 (i.e., .90:.10).

One example of a g = .25 sex difference can be offered: If one were to
draw large and equal samples of male and female arrests from police blotters
in U.S. cities of over 2500 population, and then to identify the arrests for
auto theft, 759 of them would be males!

5.3 Power TABLEs

The tables in this section yield power values when, in addition to the
significance criterion and ES ( = g), the sample size is specified. They should
therefore be used in finding the power of the test of Hy: P = .50 (or g =0),
after the data are gathered. They can also be used in planning experiments

" by varying n, ES, or a, or all three, to determine the consequence to power
of such alternative specifications. The tables give values for ‘“‘nearest™ a,
g, and n:

1. Significance Criterion, a. Since frequencies are discrete, the (exact)
binomial test cannot be performed at a constant conventional value of a,
such as .05 or .0l. For example, when a population P = .50, and a random
sample of n = 10 cases is drawn, the probability (a,) of a 10:0 or 0:10 distri-
bution in the sample is .002, of a 9:1 or 1:9 distribution is .021, and of an
8:2 or 2:8 distribution is .109. No tests ar a, = .01, .05, or .10 are possible
because intermediate values for frequences between 10 and 9 and between
9 and 8 are not possible. Thus, for each value of n in each power table,
the exact value of a, or a, for the test is given. This is generally® the nearest
available value to the conventional .01, .05, and .10 criteria.
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Tables are provided for the following ““nearest™ values of a: a, ~ .01,
a; ~ .05, a; ~.10; a,~.0l, a,~ .05, a,~.10, the subscripts referring to
one- and two-tailed tests. Since power at a, closely approximates power at
a, = 2a,, for power greater than .10, one can also determine power at a, ~
.02 (from the a, ~ .0l table), a,~.20 (from a, ~.10), a, ~.005 (from
a, ~ .01, and a, ~.025 (from a, ~.05). In each instance one simply doubles
or halves the exact values for a, or a, given in the table. These will, however,
not necessarily be the nearest possible values to those desired.

2. Effect Size, ES. The ES index here is g, the discrepancy in the popu-
lation from the null-hypothetical P =.50. In directional (one-tailed) tests
(a,), g is understood as either positive or negative, depending on the direc-
tion posited in the alternate hypothesis, e.g., H,: g= — .15 (i.e., P, =.35).
In nondirectional (two-tailed) tests, g is understood as absolute, e.g., *“given
a departure from .50 or .15, whether positive or negative. . . .”

Provision is made for g = .05 (.05) .40, and also }. Conventional defini-
tions have been offered above, as follows:

small: g=.05(.55:.45)
medium: g = .15 (.65:.35),
large: g=.25(.75:.25).

3. Sample Size, n. This is the number of observations in the sample.
Depending on the nature of the application of the test, observations may be
single, or as in the *“Sign Test,” paired. Provision is made for n=8 (1)
40 (2) 60 (4) 100 (20) 200 (50) 500 (100) 1000.

The values in the body of the table are the power of the test times 100,
i.e., the percent of tests carried out under the given conditions which will
result in the rejection of the null hypothesis, H,: P = .50 at the exact level
of a given in the third column. The values are accurate to two places,
as given. For a few values of n (250, 350, and 450), exact binomial values
are not available in published tables and the normal approximation was
used. (Also, see Cohen, 1970.)

(For the meaning and use of v, see Section 5.5).

3 An occasional exception is made in order to provide more values. For example,
when n = 16, a break of 12:4 or 4:12 is significant at a, =.077. This is given in Table 5.3.5
for a, x.05. A break of 11:4 or 4:11 is significant at a, =.210 and is given in Table 5.3.6
for a, % .10, even though .077 is closer to .10 than .210 is. This exception avoids duplicating
the information in that line of the table in Table 5.3.6 and instead provides an additional
line of values.
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Table 5.3.1
Power of Sign Test (P = .50} ata, = .01

9

n v , 05 10 15 1/6 .20 .25 .30 .35 Lo
8 8 ook (1] 02 03 O 06 10 17 27 W3
9 9 002 00 ol 02 03 o« 08 13 23 39

10 9 on 02 05 09 10 15 2 38 sk

1" 10 006 o1 03 06 08 1 20 32 49 70

12 n 003 o 02 Ok 05 09 16 27 ks 66

13 n on 03 o6 N w20 32 50 69 87

1 12 006 02 ok o8 1 16 28 'Y 65 84

15 13 004 0l 03 06 08 13 24 40 60 82

16 13 o1 o3 o7 13 17 25 k0 60 79 93

17 1 006 02 05 10 13 20 35 5§ 76 92

18 15 00k o1 03 08 10 16 N 50 72 90

19 15 010 03 07 15 19 28 W 67 86 96

20 16 006 02 o5 12 15 PN | 63 83 96

21 16 013 Ok 10 20 25 36§57 n 92 99

22 17 008 03 07 16 21 Nn 52 713 90 98

23 18 005 02 05 13 17 27 W47 69 88 98

24 18 on Ol 1 21 26 39 6 81 9% 9

25 19 007 03 07 17 22 3 5 18 93 99

26 19 o1l 05 12 26 32 W6 69 87 97 *

27 20 010 03 10 22 28 M 6 84 96

28 21 006 02 07 18 23 36 60 82 95

29 2 012 Ol 12 26 33 48 n 89 98

30 22 008 03 09 22 29 W43 67 81 9

3 23 005 02 07 19 25 39 63 85 97

32 23 010 o 12 27 3B 50 MW 9 98

33 24 007 03 09 23 3o us 70 89 98

34 24 012 05 1 N 39 §§ 79 9 99

35 25 008 ol 1" 27 3 51 76 93 99

36 26 006 03 09 23 30 W7 3 9 99

37 26 010 Ol 13 n 39 57 81 95 99

38 27 007 03 1 27 35 52 78 9% 99

39 27 012 05 16 36 bk 62 85 96 *

Lo 28 008 Ok 13 3 Lo 58 82 9%

42 29 010 05 15 35 W 63 8 97

by 30 on 05 17 39 49 67 89 98

46 3 013 06 19 L3 $3 n 91 99

48 33 007 Ok 1h 35 us 6+ 88 98
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Table 5.3.1 (continued)

153

g
n v . .05 10 5 1/6 .20 .25 .30 .35 ko
50 W 008 o 16 39 49 68 90 99 * *
52 35 009 05 18 43 53 72 92 99
s 36 010 06 20 W6 86 76 9% 99
56 37 o1 06 22 49 60 79 9% *
58 18 012 07 24 53 63 81 96
60 4o 007 ol 18 4s 56 76 95
6L 42 008 06 22 52 63 82 97
68 by 010 07 25 S8 69 B 98
72 46 012 08 29 63 74 89 99
76 b9 008 06 25 59 70 88 99
80 [1) 009 07 29 64 75 9N 99
84 53 o1t 08 32 69 79 93 99
88 [ 012 09 36 713 83 95 *
92 58 008 07 N 70 80 9
96 60 009 o8 35 n 84 95
100 62 010 10 38 77 86 97
120 1 o1 12 47 8 93 99
140 84 on 13 sk 9N 96 *
160 95 on 15 60 9 98
180 106 010 17 65 96 99
200 17 010 18 69 98 99
250** 144 010 2 80 99 *
300, m 009 26 87 *
350 197 010 33 93
koo 224 009 36 95
bso 250 010 L2 98
500 277 009 45 98
600 329 010 55 *
700 1) on 63
800 433 on 70
900 485 on 76
1000 537 o10 80

* Power values below this point are greater then .995,
** Normal approximation.
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Table 5.3.2

Power of Sign Test (P = 50) at a, ~ .05

9
n v a3y .08 .10 .15 1/6 ,20 .25 .30 .35 ko
8 7 035 06 1 17 20 26 37 50 66 8
9 8 020 oh 07 12 1 20 30 kb 60 77
10 8 055 10 17 26 3o 38 53 68 82 93
1" 9 033 06 12 20 23 N 4 62 718 9
12 9 073 13 23 35 39 by és 79 9 97
13 10 o046 09 17 28 32 42 58 75 88 97
14 n 029 06 12 20 26 3 52 70 8 96
15 n 059 12 22 35 Lo 52 69 8 9 99
16 12 038 09 17 29 3 45 63 80 92 98
17 12 072 15 26 42 48 60 77 89 97 *
18 13 ou8 1" 21 35 n 53 72 87 96 99
19 W 032 08 16 30 35 47 67 8 95 99
20 14 058 13 25 b2 48 61 79 9 98 *
21 15 039 10 20 36 42 55 4 89 97
22 15 067 15 29 47 sk 67 B4 o 99
23 16 ou7 12 2 W 48 62 80 93 98
2 17 032 09 19 36 42 56 77 9N 98
25 17 os54 13 27 47 sk 68 B 95 99
26 18 038 10 23 W 48 63 82 94 99
27 18 061 15 31 52 59 713 8 97 *
28 19 Olsls 12 26 46 [ 68 86 96 99
29 19 068 17 3 56 6 77 92 98 *
30 20 o49 W 29 51 8 73 8 97
N 21 035 1" 25 W6 53 69 87 97
32 2 055 15 32 55 63 77 92 98
33 22 040 12 28 S50 558 73 9 98
34 22 061 17 35 59 67 81 9% 99
35 23 o045 13 N sk 62 77 92 99
36 23 066 18 38 63 n 8h 95 99
37 24 o9 15 3 58 66 81 9l 9
38 25 036 12 29 8§ 62 717 93 9
39 25 osk 16 36 62 70 8 96 99
Wo 26 oo 13 32 57 66 81 95 99
42 27 Olsds 15 34 (3] 69 8h 96 9
4 28 [+ 1] 16 37 6le 72 86 97 *
b6 29 052 17 o 67 75 88 98
48 30 056 18 42 70 78 90 98
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Table 5.3.2 (continued)
g
n v a, 06 10 .5 1/6 .20 .25 30 .35 kO
50 N 059 20 45 73 80 92 99 & * *
52 32 063 21 47 715 82 93 99
54 1 038 15 38 68 77 90 98
56 35 oh1 16 1 n 79 9 9
58 36 o43 17 43 73 81 93 99
60 37 046 18 4s 75 8 % 99
64 39 052 20 49 79 86 95 *
68 i 057 23 53 83 8 97
72 Ll 038 18 k7 79 87 9
76 ué ol2 20 s1 8 8 97
80 48 046 22 55 8 92 98
84 50 ost 2h 58 88 93 98
88 52 055 25 61 90 95 99
92 sk 059 27 64 91 96 99
9% 57 o1 2 59 90 95 99
100 59 0bhs 2 62 9 9% 99
120 70 out 26 68 95 98
140 80 osk 3 78 98 99
160 91 o048 35 81 99 *
180 102 o043 35 8 99
200 12 052 k2 89 *
250" 139 050 45 93
300, 165 oh7 52 97
350 191 050 59 98
Loo 217 o49 6 99
L50** 243 050 68 *
500 269 o049 72
600 32 o047 78
700 3n 052 85
800 424 o048 88
900 475 051 92
1000 527 o4y 93

* Values below this point are greater than .995, unless other values are

specified.
ok Normal approximation.
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Table 6.3.3
Power of Sign Test (P = .50) ata, =~ .10

<

-
OW OO~ ~ O

145 22 32 43 47 55 68 80 89 96

172 27 38 & 56 65 18 8 95 99
13 19 30 43 L7 57 n 84 93 98
194 30 Wb 58 63 72 84 93 98 *
133 23 35 50 11] 65 79 90 97 99
090 17 28 42 48 s8 7 8 95 99

151 26 4o 56 62 72 85 9% 98 *
105 20 33 49 55 66 81 92 98
166 29 ks 62 67 718 89 96 99
19 23 37 55 61 72 86 95 99

132 25 b2 60 66 7 90 97 99

143 28 4s 65 n 81 93 98 *
105 22 39 59 65 7 90 97 *
076 17 33 53 59 73 88 96 99

1158 2h 42 63 70 81 93

98
98
124 26 46 67 73 84 95 99
092 21 Lo 62 €9 81 93 99
132 28 b9 70 7 87 96 99

100 23 43 65 72 84 95
075 19 38 60 68 81 94

081 21 W 64 n 84 95
15 27 W9 72 79 8y 97

088 22 [ 68 75 86 96 99
121 29 52 75 81 9N 98 *
0% 24 46 n 78 89 97
128 30 sk 7 8L 92 98
100 26 L9 74 80 9N 98

&
N
w
-
N
o
©°
~4
o
®
~
0
x
*33888

077 21 kb 69 77 88 97
082 23 47 72 8 90 98
087 26 43 75 82 92 99
092 26 52 77 8 93 99
097 27 sk 79 8 9% 99




5.3 POWER TABLES 157
Table 5.3.3 (continued)
9
n v °, .05 .10 .15 1/6 .20 .25 .30 .35 4o
50 30 101 29 56 8 87 95 99 * * *
52 n 106 30 58 83 89 96 *
sk 32 1o n 60 8 90 97
56 33 14 33 62 86 9N 97
58 34 119 34 6h 88 92 98
60 36 078 26 5% 8 89 96
6l 38 084 28 59 86 9N 97
68 4o 091 3 63 88 93 98
72 L2 097 33 66 90 95 99
76 Ll 103 35 69 92 9% 99
80 46 109 37 72 93 97 99
84 48 115 39 74 95 97 *
88 51 083 33 69 93 97 99
92 53 087 35 72 9 97 *
96 55 092 36 74 95 98
100 57 097 38 76 96 98
120 68 085 39 80 98 99
ko 78 102 L7 87 99 *
160 89 089 'Y} 89 99
180 99 102 53 93 *
200, 110 089 53 9
250 136 100 60 97
300 162 092 66 98
350™* 187 100 ™99
oo 213 106 77 *
Lso 239 100 80
500 265 097 83
600 316 103 88
700 367 106 92
800 L9 095 9%
900 470 097 96
1000 521 097 97

* Values below this point are greater than .995, unless other values are

specified.

** Normal approximation.
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Table 5.3.4
Power of Sign Test (P = .50) at a,. = .01

9
.2 .05 10 -'5 '/6 .20 025 030 .35 "‘o
008 o 02 03 ol 06 10 17 27 43
00k 1)) o 02 03 Ol o8 12 3 39
002 00 (1) o 02 0 06 n 20 35
012 02 03 06 08 n 20 32 49 70
006 (] 02 Ol 05 09 16 27 W 66
003 o o 03 ok 06 13 23 Lo 62
013 02 ok 08 n 16 28 4s és 84

007 o 03 06 08 13 24 Lo 60 82
() ()] 02 0s 06 10 20 35 56 79
o 02 oS 10 13 20 35 55 76 92
008 ol 0 08 10 16 N 50 72 90
ook o 02 06 08 13 26 46 68 88
012 02 0% 12 15 W 63 83 96
007 ol oh 09 12 20 37 59 80 95
00k o1 03 07 10 16 32 sk 77
on 02 05 13 17 27 47 69 88 98
007 o o4 10 117 23 42 66 86 97
015 03 07 17 22 3 s 718 S 99
009 02 0% 1 19 30 52 7% 92 99
006 01 ol n 15 26 47 n 90 99
(1} ] 03 07 18 23 36 60 82 95 *
008 02 06 15 20 32 56 719 o 9
005 o1 (" 12 17 28 1) % 9 99
on 02 07 19 25 39 63 8 9 *

007 02 06 16 21 3 59 83 96
ol 03 09 23 30 &S 70 89 98

o 03 09 23 30 &7 T 9N 9
ok 03 N 27 35 52 78 9k

g
S
8
£
°
+38 838

010 03 10 28 36 55 8 96
on 03 12 n 40 60 8s 97
013 ob 1% 511 45 6h 88 98
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Tabile 5.3.4 (continued]
9

n v . 05 .10 .15 1/6 .20 .25 .30 ,35 4O
50 35 007 02 10 28 37 57 8k 97 * *
52 36 008 03 1" n W 61 87 98
sk 37 009 03 13 35 45 66 B9 99
56 38 010 oh W 318 49 69 9N 99
58 39 012 ok 16 42 52 73 93 99
60 Lo 01) 05 18 45 56 76 95 *
(- %] 008 03 15 W 52 74 9% 99
68 Ls 010 oh 18 47 59 80 96 *
72 47 013 o5 21 53 65 B4 98
76 50 008 ob 18 s0 62 82 97
80 52 010 s 2 55 67 86 98
8 sh 012 05 25 60 72 90 99
88 57 007 ol 21 57 69 88 99
92 59 009 05 24 62 ] 9N 99
96 61 010 (3 27 66 78 93 *
100 (3] 012 07 N 70 81 95
120 75 008 06 32 715 86 97
140 86 009 07 40 8 92 99
160 97 009 09 LY 89 95 *
180 108 009 10 53 9 97
200 119 009 11 59 95 99
250 146 010 15 72 99 *
300 173 009 19 8 *
3s0™ 200 010 23 87
o 226 on 29 9
450 253 010 32 95
500 279 on 18 97
600 332 010 bs 99
700 385 009 52 *
800 437 010 éo
900 489 010 67
1000 sht 010 7

* Values below this point are greater than .995, unless other values are

specified.

*& Norma! approximation.
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Table 6.3.5
Power of Sign Test (P = 50) at a; = .06
9
n v a, 05 10 5 1/6 .20 .25 .30 .35 b
8 7 070 08 n 17 20 26 37 50 66 8
9 8 039 05 07 12 1 20 30 W& 60 77
10 9 o1 03 05 09 10 15 24 38 &%
n 9 065 08 12 20 2 N 4 62 718 9N
12 10 039 os 09 15 18 25 39 s6 M B8
13 n 022 03 06 1 W20 33 50 69 87
11 n 057 07 13 22 26 3 52 70 85 9%
15 12 035 s 09 17 2 30 4 65 82 9
16 12 077 10 17 29 34 45 63 80 92 98
17 13 o049 07 13 246 28 39 57 76 90 98
18 14 o3 s 10 19 23 33 Ss2 72 88 97
19 11 o6k 09 17 30 35 47 67 8k 95 99
20 15 ol 06 13 25 30 42 62 80 93 99
21 16 027 o 10 20 25 3 57 77 92 99
22 16 052 08 16 30 36 W49 70 87 9 *
23 17 035 06 12 25 N 65 B+ 95 99
24 17 o6h 10 19 36 k2 8 17 9N 98 *
25 18 ol3 07 15 N 37 [Y) 3 89 97
26 19 029 05 12 26 32 k& 69 87 97
27 19 052 08 19 36 L3 58 79 93 99
28 20 036 06 15 n 38 53 75 91 98
29 20 061 10 22 n 48 6h 8 95 99
30 21 0l3 07 18 36 L3 59 80 9% 99
N 22 029 06 14 N 38 sh 77 9 9
32 22 050 9 21 Lo 48 64 B85 96 99
33 23 035 07 17 36 43 60 82 95 99
34 23 058 10 23 4s 53 69 88 97 *
35 20 ol 08 20 ho 48 65 86 97
36 24 065 1" 26 49 58 9 98
37 25 o047 09 22 4 53 70 89 98
38 26 03k 07 19 ho 48 66 87 97
39 26 053 10 25 49 5§57 7 9 98
bo 27 038 08 2 Wb 53 70 90 98
b2 28 Olily 09 2 48 57 7% 92 99
b 29 o049 10 26 82 3] 7B 9% 99
173 30 o5k n 29 56 65 81 95 99
48 3N 059 12 n 59 68 8k 96 *
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Table 5.3.5 (continued)
9

n v o, .06 10 .15 1/6 .20 .25 ,30 .35 4O
50 32 065 17 W 62 n 8 97 * * *
52 £ 036 09 26 s4 64 1] 96
sk 35 o4o 10 28 s§7 67 8 97
56 36 ok n 30 60 70 8 97
58 ” 048 "M 33 63 13 88 98
60 18 052 12 35 66 76 90 98
64 Lo 060 W 39 n 80 92 99
68 43 038 1" 3w 67 17 9N 9
72 4s ol 12 38 712 8 93 99
7 47 050 th b2 76 84 95 *
80 by 057 16 4 80 87 96
8h 52 038 12 W 76 85 96
88 b 042 W W 8 88 97
92 56 o47 1s 48 83 90 98
96 58 052 17 st 8 92 98
100 60 057 18 sk 87 93 99
120 n 055 21 61 92 97 *
1o 82 052 2 67 95 98
160 93 o048 2% 12 97 9
180 104 ol 2 16 98 99
200 "G 056 N 83 99 *
250™* 3] 050 3 89 *
300 167 0s7 M 9%
3s50™* 194 050 4 %
Loo 220 os1 52 98
450** 246 050 58 99
500 272 osh 62 *
600 325 o5 67
700 m 054 7
800 428 052 ]
900 480 ok9 8s
1000 53 osb 89

* Values below this point are greater than .995, unless other values are

specfified.

** Normal approximatfon.
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Tabie 5.3.6
Power of Sign Test (P = .50) ata, = .10

9

n v . .05 .10 .18 1/6 .20 .25 .30 .35 kO
8 é 289 3 37 45 49 56 68 80 90 96
9 7 180 20 26 35 39 Ly 60 e 86 95
10 8 109 13 18 27 30 38 53 68 82 93
n 8 227 25 32 L4 48 57 @& 8 93 98
12 9 Wé 17 24 35 40 49 65 19 9 97
13 10 092 n 18 28 32 42 8 315 88 97
11 10 180 21 30 43 48 59 T4 87 95 99
15 n ns 15 23 35 W 52 69 84 9% 99
16 n 210 25 35 S0 855 66 B 92 98 *
17 12 w3 18 27 L2 W8 60 77 8 97 *
18 13 096 13 2 36 W 53 72 87 9% 9
19 13 167 2 32 W s 67 83 93 98 *
20 W ns 15 26 4 u @ 9% 9N 98

21 15 078 n 20 36 42 55 % 89 97

22 15 134 18 30 48 &b 67 B 9 99

23 16 093 13 % W 48 62 80 93 98

r ) 16 152 20 3% 53 60 73 88 96 99

28 17 108 15 28 47 s& 68 8 95 99

26 18 076 n 23 W k8 63 82 o9 99

27 18 122 17 N 52 59 13 89 97 *

28 19 087 13 26 46 [ 68 86 96 99
29 19 136 19 35 5 64 77 92 98 *

30 20 099 15 29 5 58 73 89 97

n 2 on n 25 46 53 69 8 97

32 2 110 17 33 55 63 77 92 98

33 22 080 13 28 50 58 73 90 98

3 22 121 18 36 59 67 B 9l 99

35 23 090 15 N 54 62 77 92 9

36 23 132 20 39 63 n 84 95 9

37 2 099 16 b L 58 66 81 ols 99

38 25 073 13 29 8§ 62 717 9 9

39 25 108 18 37 62 70 8 96 99

Lo 26 081 |1 32 57 66 81 95 9

42 27 088 15 35 [9) 69 84 96 99

by 28 096 17 37 &b 72 86 97 *

W6 29 104 18 &0 67 75 88 98

48 30 " 20 &2 70 78 90 98
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Table 5.3.6 {continued)
9
n v 02 .05 .10 o15 '/6 20 25 30 35 obo
50 3 ns 2 Lg 73 80 92 99 * * *
52 32 126 22 4y 75 82 93 99
54 3 076 16 38 68 n” 90 98
56 35 081 17 L)) n 79 91 99
58 36 087 18 43 73 81 93 99
60 37 092 19 4s 75 8 9 99
6h 39 103 21 (1} 79 86 95 *
68 h "y 23 53 83 8 97
72 Ll 076 18 &7 79 87 9
76 46 085 20 8 83 8 97
80 48 093 22 55 B85 92 98
8L 50 101 2 8 88 93 98
88 52 109 2% 6 90 95 99
92 54 " 8 & 9 9% 99
96 57 082 23 59 90 95 9
100 59 089 2u 62 9N 96 99
120 70 082 26 68 95 98 *
140 80 108 3% 78 98 99
160 9N 097 35 81 9 *
180 102 086 36 84 9
200, 112 10l 42 89 *
250 139 100 4 93
300 165 09k 52 97
350™* 191 100 59 98
koo 217 099 & 99
450 243 100 68 *
500 269 098 72
600 321 094 78
700 372 104 85
800 W24 097 88
900 475 102 92
1000 527 094 93

* Values below this point are greater than .995, unless other values are

specified.

#k Normal approximation.
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Illustrative Examples

5.1 A class in political science at a large state university undertakes
a research project, as follows: There are about to be student government
elections, and the class attempts to forecast the result by polling a random
sample of 100 students who indicate they will vote. Two candidate slates
are in contention, and, among other questions, respondents are asked their
slate preference. A test is to be performed at the a, a5 .05 level of the null
hypothesis that either slate will poll .50 of the votes. Assuming that, in
fact, the present split in the student body is .55: .45, i.e., that g = .55 — .50
= .05, what is the power of the test? The specifications are;:

a,~.05 -g=.05 n=100

In Table 5.3.5 (for a, ~.05), one finds that the closest exact value to
a, =.05 for n=100 is a, = .057. At that level, for column g = .05, power
equals .18. Thus, if the population split is .55:.45, there is only an 18 %
chance of detecting this slight edge at the a, = .057 level with n = 100.

Other things equal, what is the probability that a .60:.40 population
split is detectable?

a,=.057, g=.10, n=100.

In row n =100 of Table 5.3.5 in column g=.10, one finds power of
.54, Thus, there is only about an even chance of detecting a .60:.40 disparity
in preference for the two slates with n =100 at a, =.057. Under these
conditions, apparently, a sample of 100 cases is insufficient for useful fore-
casting, unless P departs a great deal from .50. Note that one must posit
g = .15, a population .65: .35 split ‘hence a ‘“‘landslide”) for the power of
the test to be usefully large (i.e., .87).

5.2 An experimental psychologist undertakes an investigation in
which he randomly assigns the two members of 24 litter pairs of rats to an
E (impoverished environment) and C (control) condition. At maturity,
each of the pairs is brought together and a panel of three observers renders
judgments as to which of the two is the more aggressive, a majority vote being
determining. These circumstances call for a sign test. The null hypothesis
is that Pz <.50, to be tested at a;~ .05, against the directional alternative
that Pg > .50, that is, that more of the E members would be judged aggres-
sive, this being the expectation derived from his theory. The latter leads him
to expect a strong effect, which he operationally defines as “large,” i.e.,
g =.25. Thus, his exact alternate hypothesis is that the population Pg = .50
+ .25 = .75. Given the latter, what is the power of the test? The specifications
are:

a,~.05, g=.25, n=24
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Note that although there are 48 animals involved, the observational unit
is the pair, which can yield a positive (E > C) or a negative (E < C) difference
in dominance, hence n = 24,

In Table 5.3.2 for a, as.05, one notes first that for row n = 24, the nearest
to the .05 exact value of a, =.032. (The next most stringent criterion for
a, at n =24 is .076—see Table 5.3.3.) Reading over to column g = .25, one
finds his power to be .77. Thus, if the effect is that large, he has a fairly good
chance (about 3 in 4) of rejecting the null.

However, if the observational judgment about aggressiveness is difficult
to make, as evidenced, for example, by many split decisions among the
judges, he might reason that the large effect expected from theory may be
attenuated by measurement (judgment) error, and that perhaps he should
not expect more than a 2:1 rather than a 3:1 predominance of E members
being judged the more aggressive, hence g =P — .50 =% — } = }. For this
alternate hypothesis, that is for g =} along row n =24 (where a, =.032),
the power =only .42. He might consider liberalizing his a, criterion,
since the discreteness has forced him to use a, = .032 when he was prepared
to work at a, = .05. He revises his specifications to

a, »~.10, g=% n=24

In Table 5.3.3 for a; .10, he finds (as noted before) that at n=24
he can work at the exact value a, =.076, which is not very far from his
originally intended a; = .05 level. Reading over to g = }, he finds power =
.59, which he may still find inadequate for his purpose.

5.3 An educational psychologist has designed an experiment to decide
which of two alternative frame sequences more effectively teaches a small
unit of plane geometry in a programed textbook. A group of 300 subjects
was formed into 150 pairs, the members of each matched for available
mathematical aptitude score, sex, and class. They were assigned textbooks
differing only in whether the A or B version of the unit was included in
their program. When the text was completed, the students were given a
criterion problem and the “passers” were determined. The test performed
involved finding whether the (correlated) proportions of passers in the A
and B groups differ (Hays, 1973, pp. 740-742), or, equivalently, whether,
out of the pairs whose outcomes (pass or fail) differ (n,), the proportion who
had the A versions differ from .50. Note that this number cannot be known
in advance, but varies inversely with the degree of between pair correlation,
i.e., the stronger the relationship between pair members, necessarily the
fewer pairs will have differing outcomes. He wishes to be able to reject the
null hypothesis if, in the population, there is a .60:.40 split among those
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pairs who have differing outcomes, thus g =.10. As stated, the test is non-
directional, and he has set a, ~.05. He finds, after the experiment is com-
pleted, that in 60 of the 150 pairs, the pass—fail outcomes of the two members
of the pair differ, i.e., ny = 60. What is the power of the test? The specifica-
tions are:

a,~.05 g=.10,b, n=60.

In Table 5.3.5 (for a; ~.05) for n =60, he first finds that the exact a,
value for the test at that n is .052. In column g =.10, he finds power =.35.
He might well consider this power value inadequate for his purpose. He
reconsiders the plan.

It occurs to him that he can liberalize his significance driterion, since a
Type I error in this situation is relatively tolerable. Thus:

a,~.10, g=.10, n=60.

Now, in Table 5.3.6 (for a,=.10) for n =60, he first finds that the
exact a, value is .092, and for g = .10, finds power = .45. This still leaves him
with a less than equiprobable chance of rejecting the null for these specifi-
cations.

He then decides to consider even further liberalization of his significance
criterion: He can test at a, ~.20 by using the a, ~.10 criterion on a two-
sided basis:

a, .20, g =.10, n=060.

In Table 5.3.3 for a, ~.10, but used in a way that makes a; ~.20, he
first finds that for n = 60, the exact a, value is .078, so for his intended use,
a, = 2(.078) = .156. For g = .10, he finds power = .56.

Although by progressively liberalizing his a, criterion from .052 to
.156, he has increased power from .35 to .56, he may well decide that the
latter value is still inadequate. If he cannot reasonably expect g > .10, his
only recourse within this design is to increase n.

5.4 SAMPLE Size TABLES

The tables in this section give values for the significance criterion, the
g (=ES) to be detected, and the desired power. The sample size, n (ie.,
the number which is the base of the sample proportion to be tested), is
then determined. These tables are designed primarily for use in making the
decision about sample size during the planning of experiments. As Section
2.4 points out, a rational decision on sample size requires, once a significance
criterion and ES are formulated, attention to the question: how much power
(how little Type II error risk) is desired?



5.4 SAMPLE SIZE TABLES 167
Toble 5.4.1
n to detect g in the Sign Test (P = .50)
a, = .01 (a, = .02)
9

Power .08 .10 .15 1/6 .20 .25 .30 .35 M0
.25 274 69 32 27 19 " n 7 7
.50 sk 135 60 by 32 22 17 % n
.60 665 166 5] 59 b2 27 19 1% n
2/3 759 189 83 67 W 30 19 17 n
.70 811 202 89 72 Ly 32 22 17 n
.75 899 223 98 79 [T 34 25 17 1%
.80 1001 248 109 88 60 37 27 19 1
.85 127 219 122 98 67 b2 30 19 17
.90 1297 321 140 12 ” 50 32 22 17
.95 157 388 169 135 92 56 37 27 19
.99 2154 530 230 184 124 75 50 35 25

= .05 (az = ,10)
]

Power .05 .10 .15 1/6 .20 .25 .30 .35 40
.25 95 28 13 13 8 8 5 5 5
.50 b3 68 30 28 18 13 8 8 5
.60 360 90 42 35 23 16 " 8 8
2/3 430 107 &7 37 28 18 13 n 8
.70 469 1113 51 Uk 30 18 13 n 8
.75 536 133 58 b9 35 23 13 n 8
.80 616 152 $ 53 k3] 23 16 13 8
.85 76 ”m 7 62 bk 28 18 13 n
.90 853 210 9 73 50 33 23 16 "
.95 1077 265 115 92 62 bo 28 18 13
.99 1568 385 166 133 89 sh 35 26 18

3 = .10 (.2 = ,20)
]

Power .05 .10 .15 1/6 W20 .25 30 .35 LMo
.25 39 % 9 7 7 L 4 4 &4
.50 164 u6 21 19 W 9 7 4 4
.60 235 59 28 21 17 9 9 7 4
2/3 292 4] 35 28 19 h 9 7 7
.70 325 81 k)] 30 21 1 9 7 7
.75 381 o AN 35 26 17 17 9 7
.80 W9 m ug 39 28 19 1h 9 7
.85 535 132 57 49 35 21 e 9 7
.90 654 161 70 56 39 26 19 12 9
.95 852 209 90 72 by 30 21 ] 9
.99 1293 37 136 109 73 ) 28 21 1h
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Table 5.4.1 (continued)

., = 0 (.' s ,005)
L]

Power .05 .10 .15 1/6 .20 .25 30 L35 LMo
.25 353 92 bl I 26 18 12 8 8
.50 663 166 7h 60 42 26 18 12 12
.60 800 199 88 n 1] k1 24 12 12
2/3 903 225 99 80 55 3 26 15 15
.70 960 239 105 8s 58 39 26 15 15
.75 1054 262 1s 93 6 39 26 15 15
.80 1165 289 127 102 70 bl 32 15 15
.85 1301 322 1 14 78 49 E]N 24 18
.90 1483 367 160 129 88 sh 37 26 18
.95 1775 438 191 153 104 64 bl 32 21
.99 2392 589 255 205 139 84 55 39 26

a2, = .05 (a, = .025)
9

Power .05 .10 .15 1/6 .20 .25 .30 .35 &0
.25 166 bl 20 17 12 9 6 6 6
.50 384 96 by 37 25 17 12 9 6
.60 489 122 5h by 32 20 15 9 9
2/3 570 142 62 50 37 25 17 12 9
.70 616 153 67 5h 37 25 17 12 9
75 692 172 75 61 biy 28 17 15 9
.80 783 194 85 68 49 30 20 15 12
.85 895 22) 97 78 53 32 25 17 12
.90 1047 259 13 90 61 4o 28 17 15
+95 129 319 138 m 75 L9 32 23 17
.99 1827 b9 194 155 108 &3 42 30 20

As was pointed out above in Section 5.3, the use of the exact binomial
test precludes the use of exact conventional significance criteria because
of the discreteness of sample frequencies. In order to avoid the cumber-
someness of supplying the exact a values for each value of n read from
the table, the values of n read from the table are to be interpreted as
follows:

I. n Less than 50. The exact a value which was used is no greater than
the stated value; it is the (discrete) value of a below the stated value. Thus,
the actual a values for, say, the table for a, = .05 are more or less below .05.
Accordingly, the power values, being for actual a generally less than nominal
a, will be (slightly) lower than would be the case if the exact values could
be used.
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2. n of 50 or More. The normal approximation to the binomial was
used, and the n values are the nearest integral number (as is true throughout
the book), not the next largest.

Tables give values for a, g, and desired power.

1. Significance Criterion, a. The same values are provided as for the
power tables, but as just noted, are for exact values not exceeding the nomi-
nal value when the value of n read from the table is less than 50. Five tables
are provided, one for each of the following nonparenthetic a levels: a, = .01
(a, =.02), a, = .05 (a,=.10), a; =.10 (a; = .20), a, = .01 (a, =.005), and
a, =.05 (a, =.025).

2. Effect Size, ES. The difference between the alternative-hypothetical
value of P and .50 =g, the ES index. The same provision for g is made
as in the power tables: .05 (.05) .40 and }. For g values other than the nine
provided, the following formula, rounding to the nearest integer, provides
a good approximation:

Nos
(54.1) n= -K,

400g*
where n 45 is the necessary sample size for the given a and desired power at
g = .05 (obtained from the table), and K is a constant which varies with the
desired power, as follows*:

Power: .50 .60 § .70 .80 8 90 .95 .99
K: 0 05 1015 25 30 35 60 90

3. Desired Power. As in the previous chapters, provision is made for
desired power values of .25, .50, .60, &, .70 (.05), .95, .99. For discussion
of the basis for selecting these values, the provision for equalizing a and b
risks, and the rationale of a proposed convention of desired power of .80,
see Section 2.4,

Summarizing the use of the following n tables, the investigator finds
(a) the table for the significance criterion (a) he is using, locates (b) the popu-
lation (alternate-hypothetical) value of g and (c) the desired power along the
vertical stub. He then finds n, the necessary sample size to detect g at (when
n < 50, no more than) the a significance criterion with the desired power.
If the g value in his specifications is not provided, he locates the value for

“The approximation is the normal approximation, thus the n found will be the
estimated value af the a value necessary for the desired power. It will thus be comparable
in its interpretation to the tabled values of n > 50, i.e., the nearest number, not the next
largest, as is the case with tabled values of n < 50.
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N s in the relevant a table in column g = .05 and the row for desired power.
This is used, together with the value of K for the desired power, in formula
(5.4.1) to compute n.

Illustrative Examples

5.4 Consider again the situation described in example 5.1, where a
political science class undertakes a project involving polling a sample of
the college student body with regard to student government elections. As
described there originally, they wish to detect a .55:.45 division between
two slates (hence, g = .05) at a, = .05. Their original intention to use n = 100
respondents who would express a preference led to power of .18. We may
safely assume that this value is found inadequate. Assume now that they
wish to have power at the proposed conventional value of .80 and seek the
necessary sample size to achieve this. The specifications are:

a,=.05, g=.05, power = .80.

In Table 5.4.1 in the section for a, = .05, column g = .05, row power =
.80, one finds n = 783. This is a very large sample, indeed, far larger than
the originally intended n = 100. It thus takes many cases to detect a small
ES (g = .05) with conventional desired power of .80.

If they posit instead that the division in the student population may be
as large as .60:.40 (hence, g = .60 — .50 = .10), a value which falls between
the operational definitions of small and medium ES for this test, what is
the sample size required? The new specifications:

a, = .05, g=.10, power = .80,

In the same line (power = .80) of the same table (Table 4.5.1. in the
section for a, = .05), for column g = .10, one finds n = 194,

5.5 The experimental psychologist of example 5.2 was studying the
effects of an impoverished early environment on the aggressiveness of rats.
Using litter pairs (one E and one C), the plan is, following the experimental
manipulation, to have judgments rendered as to which pair member is the
more aggressive. He intends a directional sign test at about a, = .05, pre-
dicting that the E member will be more frequently judged the more aggres-
sive. Assume that although he anticipates a large rrue effect, because of
expected judge unreliability, he posits as an alternate hypothesis g = Pg — .50
= § — } = }. He desires power to be .80. What is the required n? The specifi-
cations are

a, = .05, g=1, power = .80.
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In the section of Table 5.4.1 for a; = .05 in column g = } for row desired
power = .80, he finds n = 53 litter pairs. Since n> 50, a normal curve test is
envisaged.

Assume that this is a much larger experiment than he had planned to
mount. He wonders how much reduction in n would occur if he reduced his
desired power to .70, keeping the other specifications unchanged, i.e.,

a, =.05, g=4%, power = .70.

In the a; = .05 section of Table 5.4.1, in column g =}, he now reads
from row power = .70 that the necessary n is 44. Since n < 50, the specifica-
tion is for an exact binomial sign test ata, < .05 and power >.70. To find the
exact value of a; and power, he uses the power table for a; ~ .05, Table 5.3.2
for n = 44. He finds there in column a, that the exact value is .048 at which
criterion column g = } gives exact power .72,

This n is still rather large for his resources. While in the power Table
5.3.2, he glances upward along the a; column and notices that if he slightly
liberalizes his a, criterion to .054 and applies it with n =39, g = }, power =
.70. Thus, he can save 5 (=44 — 39) litter pairs by working at a, =.054
instead of .048 and with power of .70 instead of .72, differences he might
well consider trivial.

He glances a little further up the a, column and notes that if he further
liberalizes his a, criterion to .066 this value can be used in a test where
n =36, at g =}, power =.71. He thus has essentially the same power at a
saving of three more pairs, if he is prepared to use the a; = .066 significance
criterion.

He decides that he is quite prepared for a, to exceed .0S, but is uncomfor-
table about the (1 —.71 =) .29 Type II (b) risk. 1n studying the test at
n = 36, he notes that the risk ratio, .29:.066, is such that he runs about a
4 times larger risk of failing to obtain significance if g =} than of getting
a spuriously significant result if g <0 (i.e., if the directional null hypothesis
is true). Although, as was suggested in Section 2.4, such a ratio is consonant
with the conventional scientific caution, an investigator’s knowledge about
the place of his specific research effort in his research context requires
(certainly permits) that he set values for a and b and thus their ratio. Our
experimental psychologist determines that he wishes to reduce the risk
ratio, and is quite prepared to liberalize his a, criterion in order to increase
his power to about .80. He thus changes his specifications to

a,=.10, g=4, power = .80.

Using again the sample size Table 5.4.1, but in the section for a, = .10,
for column g = {, row power = .80, he finds n = 39. Since n <50, the table
assumes an exact binomial test, so a, <.10 and power>.80. To determine
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exact values, he turns to power Table 5.3.3 (for a, = .10) and, for rown =39,
sees that the exact a; =.100 and the exact power at g =4} is .80. (It is, of
course, a coincidence that his specifications are met exactly.) His risk ratio
isnowb=1-.80=.20to a, =.100, exactly 2 to 1. He may proceed on the
basis of these specifications, or seek others in the vicinity of n =39, e.g., at
n = 38, where power is .84 and the two risks are almost equal, .16:.128,
or if he does not wish to exceed a, =.10, at n = 40 where the risk ratio is
.23:.077, or at n = 37 where it is .22 to .094.

5.6 The test of the null hypothesis that P =.50 (or g =0) as applied
to a test of correlated proportions was illustrated in problem 5.3. In that
problem, an education psychologist was comparing two alternate pro-
gramed frame sequences in a unit of plane geometry, by forming matched
pairs of students, supplying them with one or the other sequence, and
determining whether they passed a criterion problem. For the test, only the
pairs whose pass—fail outcomes differ are relevant, since the null hypothesis
formulation is that among such pairs, P = .50 of them come from sequence
A (or B).

If, as described initially in problem 5.3, he expects a .60:.40 split among
the pairs with differing outcomes (g = .10), plans to use the a, = .05 signifi-
cance criterion, and wishes power to be .75, his specifications are

a, = .05, g=.10, power = .75.

In the a, =.05 section of Table 5.4.1 with column g =.10 and row
power = .75, he finds n =172. Since this represents the number of pairs of
differing outcome, which he anticipates to be one-third of the total number
of pairs, this means that these specifications require that he have a total
of 3(172) = 516 pairs or 1032 subjects in all. Assuming classes of 30 students,
this would require some 35 classes in plane geometry!

Assume the validity of the exclamation point, specifically that in the
entire city there are only 26 classes in plane geometry, and that furthermore,
he is not sure he can get the cooperation of every last one of the teachers
involved. He reconsiders his specifications, and, as in problem 5.3, realizes
that the nature of the decision is such that he can afford a larger Type I
error criterion, so he changes his specifications to

a, =.10, g=.10, power =.75.

In the section of Table 5.4.1 for a;, = .10 in column g = .10, row power =
.75, he finds n = 133. This means a total of 399 pairs on the expected one-
third of total differing in outcome, or 788 students, or 26-27 classes. He
knows that there will be some defections from the 26 classes in the city’s
high schools, so he decided to liberalize his a criterion to a, =.20. He
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reasons that in this situation, failure to detect the alternate-hypothetical
.60:.40 discrepancy is almost as serious as a mistaken conclusion of the
superiority of one sequence over the other. Since he is committed to a
1 —.75=.25 (=b) risk of the former, he decides to raise the latter to .20
(=a,). What sample size is now demanded? The specifications are

a,=.20, g=.10, power = .75.

In Table 5.4.1 the subtable for a, =.20 is used and for column g=.10
and row power =.75, n = 94, the number of differing pairs required. This,
in turn, requires in all 3(94) = 282 pairs—or 564 students—a total of 19 classes
which is close to the total number he can expect to get.

In the above example, we have manipulated only the significance criterion.
In other problems where there is a fixed maximum n permitted by the re-
sources (which, of course is true, in principle, for all research problems),
other specifications instead of (or in addition to) the significance criterion
may be more appropriately modified. Thus, some of the specifications which
result in about the same required n from Table 5.4.1 are tabulated.

a, g Power n
.01 3 75 92
.02 15 .75 98
.02 3 .85 98
.05 .10 .50 96
.05 15 .85 97
10 .10 .60 90
.10 .15 .90 91
.10 $ .95 92
.20 .15 .95 90

The investigator must weigh the alternative specifications for his prob-
lem from such a sample size table, and decide his best strategy. It was
implicitly assumed in this problem that the investigator could not reasonably
anticipate g greater than .10, nor was he prepared to tolerate less than 3:]
odds that, given a .60:.40 split, he would be able to make a definitive deci-
sion favoring the A or B sequences. This then left him to consider the signifi-
cance criterion, which, given the nature of the problem, we saw he could
liberalize.

5.7 A psychiatrist plans an experiment involving a single neurotic
subject to determine whether, for this subject, psychoanalytic sessions following
ingestion of a very small dosage of LSD are more productive than those
following placebo. His purpose is to decide, after the experimental series,
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either to continue the psychoanalysis with LSD or without it (strictly, with
placebo). The design is to determine randomly which of the sessions in
each successive pair is to be an LSD session, the other to be placebo. Trans-
cripts of the tape-recorded sessions are to be submitted to a panel of judges
who must render a blind consensus judgment as to which session of each pair
is the more productive.

He reasons that unless in the population® there is a superiority of the order
of 4:1 favoring LSD sessions, he would just as soon not decide in its favor;
hence he expects a population split of .80:.20, or g=.80—.50=.30. As
formulated, the test is nondirectional and he decides that the significance
criterion be a, =.05. Finally, if g is in fact .30, he wants to be fairly sure
that he will reject the null and fixes the desired power at .90. How many
session pairs does he require for these specifications, which are, in summary

a, = .05, g =.30, power = .90.

In Table 5.4.1 in the section for a; = .05 with column g = .30 and row
power = .90, he finds n = 23. He will thus need 23 pairs of sessions to satisfy
the specifications. Since the n is less than 50, he can determine the exact
conditions of the binomial test by referring to the power table for the a, = .05
level, Table 5.3.2. In that table with n =23, he sees that for the binomial
test, the exact a, value is .047 at which, given g = .30, power = .93. He might
look at other n values in the vicinity to see if they yield paired values of exact
a, and exact power which he prefers to those at n =23 (for example, at
n =22, a; =.067 with power =.94; at n =24, a, =.032 with power =.91,
etc.).®

It is insufficiently appreciated in many areas of the behavioral sciences
that statistical investigations can be usefully undertaken with single subjects.
The n of a study is the number of observations or instances, not necessarily
the number of organisms or sets of organisms. Naturally, in investigations
of single subjects, the populations to which generalizations can be made or
inferences drawn are made up of instances or observations of rhat subject
and cannot validly transcend him to populations of subjects. Still, such single
subject experiments and their logically limited conclusions can be of either
practical utility (as in the above example) or heuristic importance. For a

5 The population here is, as is so often the case in behavioral sciences, an abstraction.
It may be thought of as all the session pairs that might occur under the conditions specified.

S There is an alternative statistical-design strategy for problems of this kind which
may well be superior to the preset fixed n described in this problem. “Sequential™ tests
proceed by assessing each experimental unit (usually a subject, but here, a session) as it
becomes available and deciding whether to draw a conclusion or observe another experi-
mental unit. Such tests require special procedures originally described by Wald (1947)
and, less technically, by Fiske and Jones (1954).
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treatment of the rationale, method, and some applications of single subject
studies see Davidson and Costello (1969).

5.8 Assume that a certain mathematical model in signal detection pre-
dicts a proportion of success over a given series of trials to be .68, hence
g =.18, while the null hypothesis is that P =.50. What is the n required,
if the psychologist wishes power at .95 for a directional test at a, = .05,
that is, equal a and b risks at .05? The specifications are

a, =.05, g=.18, power = .95.

Since g = .18 is not tabled, the psychologist must take recourse to formula
(5.4.1), which requires n 45, the n required under the conditions stated when
g = .05.

In Table 5.4.1 in the section for a, = .05, at row power = .95, he finds in
column g = .05 the value 1077 =n ,,. Substituting that value, g =.18, and
the value for K for power = .95 provided with formula (5.4.1), he finds

1077

= ————-60=831-60=771.
n 2000.18)? 6 1-6

Thus, the normal (or chi square) approximation test will yield a probabi-
lity of .95 of rejecting Ho: P = .50 if the actual P = .68 when n=77. (Note
that since the test is directional, the standard normal curve deviate
required for significance at the .05 level is > 1.65. If the equivalent chi square
form of the test is used, the criterion is the one tabled for one df (u=1) at
a =.10, namely 2.706.)

5.5 THE Use ofF THE TABLES FOR SIGNIFICANCE TESTING

As was the case in previous chapters, the power tables provide a signifi-
cance criterion column to facilitate the performance of the statistical test of
the null hypothesis after the data are collected. This is particularly useful
for the test of this chapter, since it obviates the necessity of using a separate
set of tables for the binomial function.

For any given n, the significance criterion in the test of H,: P = .50 is
simply the number of observations in the larger (or smaller) subgroup defined
with regard to the presence or absence of the characteristic under study (e.g.,
males, success, positive differences, etc.). If this number departs sufficiently
from 4n, the null hypothesis is rejected.

The power tables in this chapter (Tables 5.3.1-5.3.5) contain, in the v
column, the number of observations in the larger portion of the sample
necessary to attain the exact significance level (given in column a) for the
sample size of the row in which it appears. For nondirectional (two-tailed)
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tests, v is simply the number in the larger portion; for directional (one-
tailed) tests, it is assumed that the test has been oriented so that the predicted
direction is the one in which the larger portion occurs, since no matter
how extreme the departure from .50, if it is in the wrong direction in a
one-tailed test, the result is not significant.

Except for the three values of n double-asterisked in Tables 5.3.1-5.3.5,
all the values given for v are exactly the minimum number needed to reject
the null hypothesis (P = .50, g =0) at the exact significance criterion given
in the next column (a) using the symmetrical binomial test. At n =250,
350, and 450, the value v is that required by the normal (or equivalently chi
square) approximation to the binomial.

Illustrative Examples

5.9 Consider the analysis of the data arising from the political science
class project to forecast the result of a student government election using
a sample of 100 voters at a, ~.05. When the sample results are tallied, it
is found that one of the two slates has garnered 57 (=v,) of the 100 votes.
The specifications for the significance test are

a, ~ .05, n = 100, v, = 57.

In Table 5.3.5 for a, &~ .05 at row n = 100 it is first found that the nearest
exact value to a, of .05 is at .057 (from column a,). For significance at
a, =.057, in the same row, it is found that the larger portion must contain
v = 60 cases. Since 57 is less than 60, the departure from P, = .50 is insufficient
for rejection at a, = .057.

Let us consider the same situation from the perspective of problem
5.4, where it was finally decided, on the basis of a power analysis, that n
should equal 194. Assume, instead, that the survey is accomplished with
n =200 voter respondents, at the a, ~.05 level as before, and that one of
the two slates has v, = 116 adherents. The specifications for the test of signifi-
cance now are:

a, ~ .05, n = 200, v, =116.

The same table (5.3.5 for a, ~.05) is used for row n=200, and now
the exact a, value equals .056 (from column a,). In the same row, the cri-
terion for significance (at the a, = .056 level) is found in column v to be 114.
Since 116 exceeds this (minimum necessary) value, the null hypothesis is
rejected at the .056 level, and the class concludes that the slate in question
has a majority of the voting population.
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5.10 Reconsider the circumstances of example 5.2, where an experimen-
tal psychologist was studying the effect on litter pairs of an early impoverished
environment (versus control) on aggressiveness. Assume that the experiment
was carried out as planned, and that it was found that 17 (=v,) of the
24 E rats were judged more aggressive (in the predicted direction). Is this
significantly different from the 12 expected on the null hypothesis? The speci-
fications are

a,~.05, n=24, v,=IT.

In Table 5.3.2. (for a, ~.05) for row n=24, he finds first that the
nearest a, exact value to .05 is (in column a,) .032, at which level he requires
a minimum of 17 (=v) pairs in which the E rat was judged the more aggres-
sive. Since there are 17 (=v,) in this group, his results are significant, and
he can reject the null hypothesis at a;, =.032 (see example 5.12 below).

5.11 The educational psychologist in example 5.3 was studying which
of two frame sequences more effectively taught a unit of plane geometry.
Using matched pairs of students, he found that 60 (of the original 150) pairs
were made up of members one of whom had passed and the other of whom
had failed the criterion problem. Assume, as originally specified in example
5.3, that the test was planned to be performed at the a, ~.05, and that it
was found that the students in sequence A who passed the criterion problem
while their matches failed numbered 35. The specifications for the signifi-
tance test are

a,~.05, n=60, v,=35

In Table 5.3.5 (for a,~.05) for n =60, he finds first that the exact a,
value nearest .05 is .052, and for significance at that level he requires v = 38.
Since his observed v, falls short of that value, he cannot reject the null hypo-
hesis and conclude superiority for sequence A.

When this problem was revisited in example 5.6, the educational psycholo-
gist eventually decided that his needs would be better met by using the
a, ~.20 level. Assume that, on the basis of power considerations, he uses
an initial sample size that results in his having 96 pairs of subjects with
differing outcomes on the criterion. Let us say that he finds that of these
there are 59 for which those with sequence A passed (while their matches on
B failed). Does this lead to rejection of the P = .50 null hypothesis? The
test specifications are

a,~.20, n=9, v,=59.

Although there is no power table headed “. . . at a, ~~.20,” the values
for v are the same as those given for a; ~.10. Accordingly, in Table 5.3.3
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for row n =96, he finds in column a, that a test is available at a, = .092,
He can treat it as providing a test at 2a, =.184 =a,. At this level, if the
larger portion has v = 55 or more cases of the 96, he can conclude that the
frame sequence of that portion is superior. Since sequence A superior
pairs numbered 59, the null hypothesis is rejected and the superiority of
sequence A affirmed at the .184 significance level.

5.12 In example 5.7, a psychiatrist was planning a study of the effects
of LSD in a single patient on the productivity of psychoanalytic sessions by
randomly assigning LSD or placebo to successive pairs of sessions. His
planning specifications (a, = .05, g =.30, power = .90) led to the determina-
tion that he required n =23 pairs of sessions. Assume that he has now
performed the experiment as planned and finds that his judges have decided
that in 16 of the paired sessions, the session preceded by LSD was more
productive than the one preceded by placebo. Does this warrant rejecting
the null hypothesis? The specifications are

a,; .05, n =23, v, = |6.

L]

In Table 5.3.2 for a, .05 and row n = 23, he finds that v = 16 (for exact
a, = .047). In other words, when the population P =.50, he will obtain a
16:7 (or more extreme) break in the predicted direction .047 of the time in
random sampling. Since his v, is included in the critical region (i.e., 16-23
out of 23), he rejects the null and concludes that for this patient, LSD leads
to more productive sessions than placebo.

Note that his sample proportion is 16/23 =.70, which is less than the
.80 he hypothesized in the alternative hypothesis, yet this result led to a
proper rejection of the null hypothesis. This can occur whenever the power
planned for exceeds .50. This makes it clear that the rejection of the null
hypothesis (P = .50) does not carry the implication that the alternate hy-
pothesis (P = .80 or g = .30) is necessarily true. His sample value of .70 is
not consistent with P = .50 (at a; = .047), but is consistent with many val-
ues of P, including in this instance .80.



CHAPTER 6

Differences between Proportions

6.1 INTRODUCTION AND USE

This chapter is concerned with the testing of hypotheses concerning
differences between independent population proportions (P). Chapter 5
was devoted to a frequently occurring related issue, namely, the difference
between a population proportion and .50. In the present chapter, other cases
are considered: the difference between two independent population P’s when
a random sample is available from each, and the difference between a popula-
tion P and any specified hypothetical value.

A proportion is a special case of an arithmetic mean, one in which the
measurement scale has only two possible values, zero for the absence of a
characteristic and one for its presence. Thus, one can describe a population
as having a proportion of males of .62, or, with equal validity (if not equal
stylistic grace), as having a mean *“male-ness” of .62, the same value neces-
sarily coming about when one scores each male 1, each nonmale 0, and finds
the mean. It follows, then, that the same kinds of inferential issues arise
for this special kind of mean as arise for means in general.

When one considers a difference between independent population pro-
portions it becomes apparent that one can just as well think of the issue in
terms of a relationship between two variables. Thus, if the P of Republicans
in a given population above a certain income level is .30 and the P of Demo-
crats above that level is .20, it is a matter of convenience or habit of thought
whether this is viewed as a difference between Republicans and Democrats
in income or as a relationship between political affiliation and income.
It is apparent, then, that differences between proportions (as, indeed, be-
tween means) can be viewed in correlational terms.

179
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It is possible to approach the testing of hypotheses about proportions
by different statistical techniques, including the classical normal curve
test using a ‘“‘critical ratio” applied directly to the proportions (Edwards,
1972, pp. 42-44; Guilford & Fruchter, 1978, pp. 159-161; Blalock, 1972, pp.
228-232), by a chi-square contingency test (see Chapter 7 and references), by
a special case of the hypergeometric probability distribution (“Fisher’s Exact
Method”) for 2 x 2 tables (Hays, 1981, pp. 552-554; Owen, 1962, pp.
479-496), or by means of a normal curve test applied to the arcsine transfor-
mation of the proportions. Despite its unfamiliarity, it is the last of these al-
ternatives that provides the basis for the approach of this chapter because of
certain advantages it has, particularly from the viewpoint of power analysis.
However, the results from using any of these procedures will be the same to a
close approximation, particularly when samples are not small (Cohen, 1970).

The types of tests on proportions which the methods of this chapter
facilitate are organized into cases, according to the specific hypothesis and
sample(s) employed:

Case 0. P, values from equal size samples to test P, =P, .
Case 1. The same hypothesis, butn, = n, .

Case 2. One sample drawn from a population to test P =c.

6.2 THE ARCSINE TRANSFORMATION AND THE EFFECT SIZE INDEX: h

P, shares with the product moment r, the difficulty that the standard
deviation of the sampling distributions depend upon their population para-
meters, which are unknown. A consequence of this is that the detectability
of a difference in magnitude between either population P’s or r’s is not a
simple function of the difference. This problem and its resolution for differ-
ences in r’s was discussed in Section 4.2 (g.v.). The same problem with P’s
has a similar resolution.

If we were to define j =P, — P,, and try to use j as our ES, we would
soon discover that the detectability of some given value of j, under given
fixed conditions of a and n, would not be constant, but would vary depend-
ing upon where along the scale of P between zero and one the value j occurred.
Concretely, when

1. P, =.65 and P, = 45, j = .65 — .45 =.20; and when
2. P, =.25and P, = .05, j =.25 — .05 = .20 also.

But for these two equal differences of j = .20, given a, = .05 and n = 46 (for
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Table 6.2.1

P, values as a function of P, and h = ¢; - ¢,

L A
’, o0 .20 .30 Lo .50 .60 .70 .80 ,90 1,00 1,10 1.20
.05 07 10 13 17 2 25 30 3 39 Wk L9 5k
.10 13 17 2 25 29 3b 39 L& b9 sh 59 63
.5 19 23 27 32 3% W w6 s 56 61 6 n
.20 2 29 33 38 43 LB 53 58 63 67 72 76
.25 29 3 39 b 49 sS4 59 64 68 T3 77 &
.30 35 Lo L 49 sS4 59 6 69 73 18 82 85
51 Lo 45 50 55 60 65 69 M 78 82 86 89
o 45 50 55 60 65 69 4 18 82 8 89 92
M5 50 55 60 65 69 7h 78 82 86 89 92 95
.50 55 60 65 69 74 78 82 86 8 92 95 97
.55 60 65 69 M 78 82 8 8 92 95 97 98
.60 65 70 74 78 82 8 89 92 95 97 98 99
.65 70 74 78 82 86 89 92 95 97 98 99 *
.70 74 79 83 86 90 92 95 97 98 99 *
.75 79 83 87 90 93 95 97 98 99 4
.80 84 87 9N 93 96 97 99 * *
.85 88 9 9 96 98 99 *
«90 93 95 97 99 * *
.95 97 98 99 *

* Values below this point are greater than ,995.

example), the power to detect the first difference (.65 — .45) is .48, while
the power for the second (.25 —.05) is .82. Thus, P does not provide a
scale of equal units of detectability, hence the difference between P’s is not
an appropriate ES index.

As was the case with r, a nonlinear transformation of P provides a solution
to the problem. When P’s are transformed by the relationship.!

6.2.1) ¢ =2 arcsin \/F,

equal differences between ¢’s are equally detectable. Thus, we define as the
ES index for a difference in proportions

(6.2.2) h=¢,— ¢, (directional)
= |¢, —¢,| (nondirectional).
! The use of the symbol ¢ for the arcsin transformation should not be confused with

its use elsewhere in this book to represent the fourfold point product-moment correlation
coefficient.
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Thus, unlike P, —P,, ¢, — ¢, =h gives values whose detectability does
not depend on whether the ¢’s (and hence the P’s) fall around the middle or
on one side of their possible range. The power and sample size tables in this
chapter provide values for h = .10 (.10) 1.20.

Tables 6.2.1 and 6.2.2 provide the necessary conversion of P, — P, to
¢, — ¢, =h values. Table 6.2.1 gives h values as a function of P, — P,;
Table 6.2.2 is a P to ¢ transformation table.

Table 6.2.1 is likely to be more convenient for use in power analysis,
and when the tabled h values are sufficient. It provides direct conversion
of P, — P, to ¢, — ¢, =h values for tabled h. Taking P, > P,, locate at
the left P,, the smaller P, and read horizontally to P, the larger. When
P, is found, determine the heading of the column which is h, the difference
between the arcsine transformations of the P’s, that is, ¢, — ¢,. For example,
with P’s of .35 (=P,) and .50 (= P,), the table provides the difference
h between their respective ¢ values, as follows: Find in the first column
P, = .35 and read across to P, = .50; then read up to the head of that column,
where you find h = .30.

Since one cannot have both convenient multiples of .10 for h and simul-
taneously convenient muitiples of .05 for both P, and P,, the use of
Table 6.2.1 may require interpolation in h. Thus, for P, =.25 and P, = .50,
values in the row for P, =.25 indicate that h=.50 for P, =.49 and
h=.60 for P, =.54. Linear interpolation gives the approximate value of
h=.52.

Alternatively, for exact values of h, P, = .50 and P, = .25 may be located
in Table 6.2.2 and their respective ¢ values found: ¢, = 1.571, ¢, = 1.047.
Then, h=1.571 — 1.047 = .524. Note that with the resulting nontabled
h value, interpolation would be required in order to use it in the power tables
(but not for sample size determination?).

Table 6.2.2 will also be useful for finding h, when the power tables are
used for significance testing, as described in Section 6.5.

In practice, the need to use nontabled values of h in power and sample
size determination will not arise frequently. This is because one rarely has
so highly specified an alternate hypothesis in terms of P, and P, that one
must find power or sample size for a value of h which is not tabled. A looser
specification of the P, — P, difference permits the use of the nearest tabled
value of h in Table 6.2.1 and the later tables in this chapter. Indeed, the
even looser procedure of defining h as *“small,” “medium,” or “large,”
with the operational definitions proposed below, will suffice for most pur-
poses.

2 As will be seen below, determining n from the sample size Table (4.4.1) requires no
interpolation. For nontabled values of h, formula (6.4.1) is used.



6.2 THE ARCSINE TRANSFORMATION AND THE EFFECT SIZE INDEX: h 183
Table 6.2.2
Transformations of Proportion (P) to ¢**

P ¢ P ¢ P ¢ P ¢
.00 .000* 25 1.047 .50 1.571 .75 2.094
.01 .200 26 1.070 51 1.591 .76 2.118
.02 .284 .27 1.093 .52 1.611 77 2.141
.03 .348 .28 1.115 53 1.631 .78 2.165
.04 .403 .29 1.137 .54 1.651 .79 2.190
.05 .451 .30 1.159 55 1.67 .80 2.214
.06 .495 .31 1.181 .56 1.691 .81 2.240
.07 .536 .32 1.203 57 1.711 .82 2.265
.08 574 .33 1.224 .58 1.731 83 2.292
.09 .609 34 1.245 .59 1.752 84 2.319
10 644 35 1.266 .60 1.772 .85 2.346
RE 676 .36 1.287 .61 1.793 .86 2.375
12 .707 37 1.308 .62 1.813 87 2.404
A3 .738 .38 1.328 .63 1.834 .88 2.434
14 .767 .39 1.349 .64 1.855 .89 2.465
.15 .795 .40 1.369 65 1.875 90 2.498
.16 823 41 1.390 .66 1.897 9 2.532
A7 .850 .42 1.410 67 1918 92 2.568
18 876 .43 1.430 .68 1,939 93 2.606
19 902 .44 1.451 .69 1.961 94 2.647
.20 927 .45 1.47 .70 1.982 .95 2.691
.21 952 .46 1.491 N 2.004 .96 2.739
.22 376 .47 1.511 .72 2.026 .97 2.793
.23 1.000 .48 1.531 .73 2.049 .98 2.858
.24 1.024 .49 1.551 .74 2.07Mm 99 2.941

1.00 3.142*

“For observed P, = 0, ¢, = 2 arcsin 1/4n;
for observed P, = 1, ¢, = 3.142 - ¢, (Owen, 1962, p. 293).
**This table is abridged from Table 9.9 in Owen, D. B., Handbook of Statistical

Tables. Reading, Mass.: Addison-Wesley, 1962. Reproduced with the permission of the

publisher, (Courtesy of the U.S. Atomic Energy Commission.)
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6.2.1 “SMALL,” *“MEDIUM,” AND “LARGE” DIFFERENCES BETWEEN
PrROPORTIONS. To provide the investigator with a frame of reference for
the appraisal of differences between proportions, we define the adjectives
“small,” “medium,” and ‘“‘large” in terms of specific values of h at these
levels to serve as conventions, as has been done with each type of statistical
test discussed in this handbook. As before, the reader is counseled to avoid
the use of these conventions, if he can, in favor of exact values provided
by theory or experience in the specific area in which he is working,.

As noted above, in working with h, we use an index of ES which provides
units which are equal in detectability, rather than equal in units of raw
differences in proportion (i.e., j = P, — P,). This means that for any given
value of h, the value of j varies depending on whether j occurs symmetrically
about .50 as a midpoint between P, and P,, where it is at its largest, or
toward either tail (P, near zero or P, near one), where it is at its smallest.
If we restrict ourselves to the part of the P scale between .05 and .95, the
range of j is tolerably small. Thus, we do not have to pay a large price in
consistency of interpretation of h in terms of P, — P, = for the convenience
of using an equal power unit. In the description of each conventional
level of ES which follows, the range of j values for each value of h will be
described.

SMALL EFFECT SIZE: h=.20. A small difference between proportions
is defined as a difference between their arcsine transformation values of .20.
The following pairs of P’s illustrate this amount of difference: .05, .10; .20,
.29; .40, .50; .60, .70; .80, .87; .90, .95 (Table 6.2.1). The (P,, P,) pairs
yielding any value of h are symmetric about P =.50 (where ¢ =1.571);
also, j is largest when P, and P, are symmetrical about .50. Thus, for h = .20,
j reaches its maximum of .100 when the Ps are .45 and .55. The minimum
value of j is not useful, since it approaches zero as P, approaches one or
P, approaches zero. If we stay within a P range .05-.95, the minimum
value of j is .052. Summarizing then, a small difference between proportions,
h = .20, means a raw difference j which varies from .05 near either extreme
to .10 around the middle of the P scale. As can be seen from the values of
P given above, and from Table 6.2.2, between .20 and .80, j equals .09 or
.10 when h = .20.

As has already been noted, a difference between populations 1 and 2 in
the proportions having attribute X can alternatively be viewed as a relation-
ship between population membership (1 versus 2) and having-not having
X. This relationship can be indexed by the product-moment correlation
coefficient r, which, when applied to dichotomous variables, is frequently
called the phi or four-fold point correlation coefficient. When the two
populations are equally numerous, the value of this r implied by h=.20
varies narrowly from .095 (for P’s of .05-.10 or .90-.95) to .100 (for P’s of
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.45-.55). This is quite consistent with the definition of a small r given in
Section 3.2.

In summary, a small difference in proportions is a difference of about .10
(down to .05 near the extremes) and is equivalent to an r of about .10.

MEDIUM EFFECT SIZE: h = .50. With h = .50 taken to define a medium
ES, we find (from Table 6.2.1) the following pairs of P’s illustrating this
amount of difference: .05, .21; .20, .43; .40, .65; .60, .82; .80, .96. The
difference j reaches its maximum of .248 for P values of .376 and .624. Within
a restricted .05-.95 scale for P, the minimum value of j is .160 (P’s of .050
and .210 or .790 and .950). Over a broad range of midscale values, say between
.20 and .80, a medium difference between proportions is a j of .23 to .25.

Expressed in terms of r, this is equivalent to a value of .238 to .248.
This is lower than our operational definition of a medium ES for r in general,
which was .30, but quite consistent with the more relevant point biserial r
or 7 (see Sections 3.2, 8.2).

Thus, a medium difference in proportions is a raw difference of about
.20 to .25 over most of the scale and is equivalent to an r between population
and attribute of about .25.

LARGE EFFECT SIZE: h = .80. A large difference in proportions is oper-
ationally defined as one which yields h=¢, — ¢, =.80. Pairs of P’s
illustrative of this degree of difference are: .05, .34; .20, .58; .40, .78; .60,
.92; .80, .996. The maximum difference is .390 and occurs for P’s of .305
and .695. For P’s between .05 and .95, the smallest difference is .293 (for
P’s of .050 and .343 or .657 and .950). Over a wide range of midscale
values (P’s between .12 and .88), a large difference between proportions is
.35 to .39.

Again, when this difference in proportions is translated into a fourfold
product moment r, the value ranges between .37 and .39. Note, again, that
this value is smaller than the ES for a large r defined in Section 3.2, which
was .50.

Thus, a large ES in differences between proportions is defined as being
about .35 to .39, and implying an r between population membership and
presence-absence of the attribute of about .37-.39.

For a further consideration of the interpretation of the difference be-
tween proportions (j) as a measure of effect size, see Section 11.1 “Effect
Size” in Chapter 11 and Rosenthal and Rubin (1982).

6.3 POWER TABLES

When the significance criterion, ES, and sample size are specified, the
tables in this section can be used to determine power values. Thus, they
will receive their major use after a research is performed, or at least after

3 The equality of the maximum } for a given value of h with the r for this maximum
(both .100 here) is no accident. For any value of h, this equality holds. When two pro-
portions are symmetrical about .50, their difference equals the fourfold point r.
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Table 6.3.1

Power of Normal Curve Test of P, = P,
via ArcsineTransformation at a, = .01

" he .10 ,20 .30 .0 .50 .60 .70 .80 .90 1.00 1,10 1.20
10 1.040 02 03 05 08 11 16 22 30 38 46 55 6k
)] .992 02 03 05 08 12 18 25 33 W1 Ss1 60 69
12 .950 02 03 06 09 & 20 27 36 u4s 55 6 73
13 912 02 03 05 10 15 21 29 39 49 59 68 717
1 879 02 ok 06 10 16 23 32 42 52 63 72 80
15 849 02 ok 07 11 17 25 3 4s 56 66 75 83
16 .823 02 O 07 12 18 26 36 L7 59 69 18 86
17 .798 02 o 07 12 19 28 39 50 62 72 81 88
18 775 02 ok 08 13 20 30 W1 53 65 75 83 90
19 .755 02 ok 08 W 22 32 43 56 67 77 8 9N
20 736 02 05 08 14 23 33 46 58 70 80 88 93
21 al:] 02 05 09 15 24 35 4B 60 72 82 89 9
22 .701 02 05 09 16 25 37 S0 63 715 8 9 95
2 .686 02 05 10 17 26 39 52 65 77 86 92 96
24 .672 02 05 10 17 28 Lo sk 67 19 87 93 97
25 .658 02 05 10 18 29 L2 56 69 80 89 9 97
26 J6hs 02 05 11 19 30 Lk 8 N 82 90 95 98
27 .633 03 06 11 20 31 45 60 73 B4 91 96 98
28 .622 Q3 06 11 20 32 4y 62 715 85 92 96 98
29 .611 03 06 12 21 3M L8 63 76 86 93 97 99
30 .601 03 06 12 22 35 S0 65 78 88 9 97 99
Nn .59 03 06 13 23 36 51 67 79 89 95 98 99
32 .582 03 06 13 23 37 53 68 81 90 95 98 99
k3] .573 03 07 13 2 38 sk 70 82 91 96 98 99
34 .56k 03 o7 W 25 LO 56 N 83 92 96 99 =
35 .556 03 07 W 26 W1 57 73 8 92 97 99

36 .548 03 07 15 26 L2 59 4 86 93 97 99

37 o541 03 07 15 27 43 60 75 87 o 98 99

38 <534 03 07 15 28 Lk 61 77 88 94 98 99

39 .527 03 07 16 29 45 63 78 89 95 98 99

Lo .520 03 08 16 30 46 64 79 89 96 98 =

42 .508 03 08 17 31 49 66 81 91 95 99

by 496 03 08 18 33 51 69 8 92 97 99

L6 u8s 03 09 19 3% 53 71 8 93 98 99

48 Mers 03 09 20 36 5 73 86 9t 98 99
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Table 6.3.1 (continued)
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n he .10 .20 .30 .4bo .50 .60 .70 .80 .90 1,00 1,10 1.20
50 65 03 09 20 37 57 75 8 95 99 * * &
52 456 03 10 21 39 59 77 89 9% 99
sh 48 oh 10 22 4o 61 79 91 97 99
56 b0 oh 10 23 42 63 80 92 97 99
58 432 oh 11 24 43 64 B2 93 98 99
60 Jh2s o 1N 25 45 66 83 93 98
64 Ln oh 12 26 b7 69 8 95 99
68 .399 o4 12 28 S50 72 88 96 99
72 .388 ok 13 30 53 75 90 97 99
76 3n o4 14 32 56 78 91 98
8o .368 o5 1 33 58 80 93 98
84 .359 05 15 35 60 82 94 99
88 .351 05 16 37 63 8 95 99
92 343 05 17 39 65 8 96 99
96 .336 o5 17 4o 67 87 97 99
100 329 05 18 42 69 B8y 97 *
120 +300 06 22 S0 78 9k 99
140 .278 07 26 57 B85 97 =«
160 +260 08 30 64 89 98
180 .245 08 33 70 93 99
200 .233 09 37 75 95 *
250 .208 n 46 85 98
300 .190 W 55 91 99
350 176 16 63 95 *
Loo 165 18 69 97
4so .155 20 75 99
500 47 23 80 99
600 134 28 87 «+
700 20 32 92
800 16 37 95
900 10 42 97
1000 104 46 98

* Power values below this point are greater than .995.
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Table 6.3.2

Power of Normal Curve Test of P, = P,
via ArcsineTransformation at a, =.05

n h, .10 .20 .30 k0 .50 .60 .70 .80 .90 1,00 1,10 1,20
10 736 08 12 17 23 30 38 47 56 6 72 79 8%
1 .70 08 12 17 24 32 W1 50 59 68 76 83 88
12 .672 08 12 18 25 3 43 53 62 71 79 85 90
13 645 08 13 19 27 36 k5 5 65 4 82 88 92
1 .622 08 13 20 28 37 48 58 68 77 84 90 9
15 .601 09 1 21 29 39 50 61 71 79 86 9N 95
16 .582 09 W 21 30 W1 52 63 73 82 88 93 96
17 +560s 09 W& 22 32 43 54 65 75 84 90 9% 97
18 .548 09 15 23 33 44 56 68 77 85 91 95 97
19 534 09 15 24 3 L6 5B 70 79 87 92 96 98
20 .520 09 16 24 35 47 60 72 81 89 9 97 98
21 .508 09 16 25 36 49 62 73 83 90 % 97 9
22 96 09 16 26 38 51 64 75 8 91 95 98 99
23 k85 10 17 27 39 52 65 77 86 92 9% 98 99
2% A28 10 17 27 4o 53 67 718 8 93 97 98 99
28 RY11 10 17 28 &4 85 68 80 88 9 97 99 *
26 RS 10 18 29 42 56 70 8 8 95 98 99

27 b8 10 18 29 43 58 71 82 90 95 98 99
28 ko 10 18 30 4 59 73 8 91 9% 98 99
29 32 10 19 31 45 60 74 B85 92 96 98 99
30 k25 10 19 31 46 61 75 86 93 97 99

3N 418 1M 20 32 47 6 16 8 93 97 99

32 L1 11 20 33 48 64 77 88 9% 97 99

33 405 11 20 33 49 65 79 88 95 98 99

34 .399 11 21 3% 50 66 B0 89 95 98 99

35 393 1 21 35 51 67 8 90 9 98 99

36 .388 1M 21 35 52 68 82 91 9% 99 *

37 .382 1M1 22 36 83 69 8 91 9% 99

38 377 11 22 37 54 70 8 92 97 99

39 372 12 22 37 s N B 93 97 9

40 .368 12 23 38 56 72 8 93 97 9

42 .359 12 23 39 57 M 87 9 98 99

1Y .351 12 24 W1 8§59 76 88 95 98

b6 2343 12 25 &4 61 77 8 9% 9

48 .336 13 25 43 62 79 90 9% 99




6.3 POWER TABLES

Table 6.3.2 (continued)
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n he .10 ,20 .30 .40 .50 .60 .70 .80 .90 1,00 1.10 1.20
50 .329 13 26 L4 64 80 91 97 99 & * * *
52 .323 13 27 45 65 82 92 97 99
sh 317 13 27 47 67 83 93 98 99
56 3N 13 28 48 68 B4 94 98
58 .305 1 28 49 69 8 94 98
60 .300 th 29 50 71 8 95 99
64 29N 1 30 52 73 8 96 99
68 .282 1 32 sb 75 90 97 99
72 276 15 33 56 77 91 97 99
76 .267 15 3 58 79 92 98 *
80 .260 16 35 60 81 94 98
B4 254 16 36 62 83 9% 99
88 248 16 38 63 B4 95 99
92 L243 17 39 65 86 96 99
96 .237 17 4o 67 8 97 99
100 .233 17 &1 68 88 97 *
120 L212 19 46 75 93 99
140 197 21 st 81 96 99
160 184 23 56 85 97 *
180 A7 2, 60 89 98
200 164 26 64 91 99
250 47 30 72 96 *
300 134 3 79 98
350 124 38 84 99
Loo 116 by 88 *
450 .110 W 9
500 04 47 9
600 .095 53 97
700 .088 59 98
800 .082 & 99
900 .078 68
1000 .074 72

* Power values below this point are greater than .995,
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Table 6.3.3

Power of Normal Curve Testof P, =P,
via ArcsineTransformation at a, = .10

h

n he 10 .20 .30 Lo .50 .60 .70 .80 .90 1,00 1,10 1.20
10 .573 15 20 27 35 L4 52 61 69 77 83 88 92
n Sh7 15 21 28 37 W6 55 64 72 80 86 90 9
12 .523 15 21 29 38 48 557 67 75 82 88 92 9%
13 .503 15 22 30 4 S0 60 69 78 B4 90 ob 96
1 L8k 15 23 31 W1 52 62 72 80 B 91 95 97
18 468 16 23 32 W43 53 64 M 82 B8 93 96 98
16 53 16 26 33 kb 55 66 76 B4 90 9 97 98
17 k0 16 24 3 45 57 68 78 85 91 95 97 99
18 427 16 25 35 L7 59 70 79 87 92 9 98 99
19 6 17 25 36 48 60 71 81 88 93 96 98 99
20 o5 17 26 37 49 62 73 82 8 9 97 99 9
2 .396 17 26 38 5 63 75 8 90 95 97 99 *
22 .386 17 27 39 852 65 76 85 9N 96 98 99

23 .378 17 27 W 53 66 77 8 92 9 98 99
2% .370 17 28 &0 S 67 79 87 93 97 99 99

285 .362 18 28 M1 55 69 80 88 94 97 99 »

26 355 18 29 42 s6 70 81 89 95 98 99

27 49 18 29 43 S7 N 82 90 95 98 99

28 342 18 30 4 59 72 83 91 9% 98 9

29 .337 18 30 L 60 73 8 92 9 98 99

30 33 19 31 45 61 7h 85 92 97 99

n .326 19 3N W6 62 75 8 93 97 9

32 .320 19 32 47 62 75 87 9o 97 99

33 316 19 32 W7 63 77 88 94 98 99

3 3N 19 32 48 64 78 88 95 98 99

35 .306 19 33 49 65 79 89 95 98 99

36 .302 20 33 S50 66 80 90 95 98 99

37 .298 20 3 SO0 67 81 90 96 98

38 294 20 3 51 68 82 91 9% 9

39 «290 20 35 52 69 8 91 9% 99

Lo .287 20 35 52 69 8 92 97 9

1'Y] .280 21 36 s« M 8 93 97 99

oy 273 21 37 55 72 86 9 98 99

[V .267 21 37 56 7 87 9 98 99

48 .262 21 38 57 75 88 95 98 &
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Table 6.3.3 {continued)
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n he .10 .20 .30 .40 .50 .60 .70 .90 1.00 1,10 1.20
50 .256 22 39 59 76 89 96 99 *
52 .251 22 4o 60 78 90 9% 99
sk 247 22 Lo 61 79 9N 97 99
56 242 23 W 62 80 91 97 99
58 .238 23 L2 63 81 92 97 99
60 .234 23 43 64 82 93 98 99
" .227 24 Lh 66 B4 94 98 *
68 .220 24 L5 68 85 95 99

72 204 25 47 70 87 96 99

76 .208 25 48 71 88 96 99

80 .203 26 49 73 8 97 99
8k .198 2 s1 15 9 97 *

88 .193 27 52 76 9 98

92 .189 27 83 77 92 98

9% .185 28 shb 79 93 99

100 .181 28 55 80 9 99

120 165 31 61 8 97 &

140 .153 33 65 89 98

160 43 36 69 92 99

180 .135 37 13 9% 9

200 .128 39 76 9% *

250 118 L 83 98

300 .105 48 88 99

350 .097 52 91 &

Loo .091 55 94

450 .085 59 96

500 .081 6 97

600 .074 67 99

700 .069 72 99

800 .06l 76 *

900 .060 80

1000 .057 83

* Power values below this point are greater than .995.
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Table 8.3.4

Power of Normal Curve Test of P, = P,
via ArcsineTransformation at a, = .01

[

n h, 10 .20 .30 L0 .50 .60 .70 .80 .90 1,00 1.10 1,20
10 1.152 o1 02 03 05 07 11 16 22 29 37 Uus sk
n 1.098 o1 02 03 05 08 12 18 24 32 W1 50 59
12 1.052 01 02 03 06 09 13 19 27 36 Uus 55 6b
13 1.010 or 02 03 06 10 15 21 30 39 43 59 69
1h 973 ofr 02 o 06 11 16 23 32 L2 Ss3 63 N
15 940 o1 02 o 07 11 18 26 35 U6 s6 67 76
16 oM ol 02 ok 07 12 19 28 38 49 60 70 79
17 .80 0Ofr 02 ok 08 13 20 30 L0 52 63 I 82
18 .859 o1l 02 05 08 14 22 32 43 55 66 77 8%
19 .836 ot 03 05 09 15 23 34 45 58 69 79 87
20 815 ol 03 05 09 16 25 36 48 61 72 8 8
21 .795 o1 03 05 10 17 26 38 51 63 75 84 9
22 77 of 03 06 11 18 28 Lo 53 66 77 86 92
23 .760 o1 03 06 11 19 29 42 55 68 79 88 93
2% STk ol 03 0§ 12 20 31 4 58 1 81 89

28 .728 ol 03 06 12 21 32 46 60 73 8 91 95
26 STk 02 03 07 13 22 3 4B 62 75 85 92 96
27 .701 02 03 07 13 23 36 50 64 77 8 93 97
28 .688 02 03 o7 b 24 37 52 66 79 88 9 97
29 .676 02 Ok 08 15 25 39 5S4 68 80 89 95 98
30 .665 02 o 08 15 26 4o 55 70 82 90 95 98
n .65k 02 ok 08 16 27 42 57 72 8 9 9 98
32 . Glhs 02 O 08 16 28 43 89 73 85 92 97 99
33 634 02 Ok 09 17 29 Wk 61 75 86 93 97 99
3h 625 02 o 09 18 30 46 62 77 87 9 97 99
35 .616 02 Oh 09 18 31 47 64 78 B8 95 98 99
36 607 02 Ok 10 19 32 49 65 79 89 95 98 99
37 599 02 Oh 10 20 34 S50 67 81 90 95 98 &
38 591 02 O 10 20 35 52 68 82 91 9% 9

39 .583 02 o5 11 21 36 53 70 8 92 97 99

ho .576 02 05 11 22 37 s TN B4 93 97 9

2 562 02 05 11 23 39 57 M 86 9k 98 99

bWl 549 02 05 12 2 W1 59 76 88 95 98 *

L6 537 02 05 13 26 43 62 78 90 96 99

48 .526 02 06 13 27 &5 64 80 91 97 99
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Table 6.3.4 (continued)
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n he .10 .20 ,30 k0 .50 .60 .70 .80 .90 1,00 1,10 1.20
50 5158 02 06 1k 28 L7 66 82 92 97 99 # *
52 +505 02 06 15 30 4y 69 B4 93 98 99
sk 496 02 06 15 31 51 7 86 oh 98
56 487 02 06 16 32 53 73 87 95 99

58 78 02 07 17 3 55 4 88 96 99

60 70 02 07 18 35 5 76 90 9% 99
&4 55 02 07 19 38 60 79 92 97 99
68 kb2 02 08 20 WO 63 82 93 98 &
72 A29 02 08 22 43 66 85 95 99

76 A1 03 09 23 W6 69 8 96 99

80 hoy 03 09 25 48 72 8 97 99

84 .397 03 10 26 51 75 91 98 &

88 .388 03 11 28 853 77 92 98

92 .380 03 11 29 5 79 93 99

96 372 03 12 31 58 81 o 99

100 364 03 12 33 60 83 95 99

120 .33 oh 15 4o 70 90 98 &

%o .308 ok 18 47 78 95 99

160 .288 05 22 54 B4 97

180 .272 05 25 61 89 98

200 .258 06 28 66 92 99

250 .230 07 37 18 97 *»

300 .210 09 u4s 86 99

350 .195 1M 53 92

400 .182 12 60 95

450 172 W &6 97

500 .163 16 72 98

600 49 20 81 *

700 .138 2L 88

800 .129 8 92

900 121 32 95

1000 .15 37 97

* Power values below this point are greater than .995,
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Table 6.3.5

Power of Normal Curve Test of P, = P,
via ArcsineTransformation at a, = .05

h

n h .10 .20 .30 k0o .50 .60 .70 .80 .90 1,00 1,10 1,20
10 .877 06 07 10 15 20 27 35 W3 s52 &1 69 77
n .836 06 08 11 16 22 29 38 L7 556 65 73 80
12 .800 06 08 11 17 23 31 4O 50 60 69 77 8k
13 769 06 08 12 17 25 33 43 53 63 72 Bo 86
11 Ly 06 08 12 18 26 36 W6 56 66 75 B3 89
15 6 06 09 13 19 28 38 uB 59 69 78 85 91
16 .693 06 09 1 20 29 WO 51 62 72 81 88 92
17 672 06 09 1 21 31 k2 53 65 75 83 B89 9k
18 .653 06 09 15 22 32 4k 56 67 77 85 91 95
19 .636 06 09 15 23 3 W6 58 69 79 87 92

20 .620 06 10 16 24 35 4B 60 72 B1 89 9k 97
21 .608 06 10 16 25 37 W9 62 I 83 90 95 97
22 .59 06 10 17 26 38 51 64 76 8 91 95 98
23 .578 06 10 17 27 39 53 66 77 86 92 96 98
24 .566 06 11 18 28 W1 55 68 79 8 93 97 9
2 554 06 11 19 29 42 56 70 81 89 9% 97 99
26 . Shhy 07 11 19 30 4 S8 71 82 90 95 98 99
27 »533 07 11 20 31 45 60 73 84 91 9% 98 9
28 .52L 07 12 20 32 W5 61 75 B85 92 96 98 99
29 518 07 12 21 33 L8 63 76 8 93 97 99 *
30 .506 07 12 21 3b L9 64 77 87 9 97 99

3 498 07 12 22 35 50 66 719 88 9h 98 99

32 490 07 13 22 36 52 67 80 89 95 98 99

33 L83 07 13 23 37 53 69 81 90 96 98 99

3 Y 07 13 23 38 54 720 82 91 96 98 99

35 L69 07 13 24 39 55 7N B3 92 9% 99 *

36 U462 07 1k 24 kO 56 72 84 92 97 99

37 Ms6 07 1 25 W1 58 73 B85 93 97 99

38 450 07 1+ 26 W1 59 74 86 9% 98 9

39 Skl 07 s 26 42 60 75 87 94 98 99

ho 438 07 15 27 43 61 77 88 95 98 99

42 A28 07 15 28 45 63 79 89 96 98 «

bl 18 08 16 29 L7 65 80 91 9% 99

46 409 08 16 30 u8 67 82 92 97 99

48 400 08 17 31 50 69 8 93 97 99
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Table 6.3.5 (continued)
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n he .10 .20 ,30 ko .50 .60 .70 .80 .90 1.00 1.10 1,20
50 392 08 17 32 52 N 85 9 98 99 * * &
52 .384 08 18 33 53 72 86 95 98 «
sh 377 08 18 3% 55 M 88 95 99
[13 370 08 18 35 56 75 89 96 99
58 .364 08 19 37 58 77 90 9% 9
60 .358 09 19 38 59 78 91 97 99
6 346 09 20 4o 62 81 92 98 99
68 .336 09 21 42 65 8 o4 98 *
72 .327 09 22 Wb 67 85 95 99
76 .318 09 23 L6 69 87 96 99
80 .310 10 24 W8 72 8 97 9
8 .302 10 25 49 74 90 97 =

88 .295 10 26 81 76 91 98

92 .289 0 27 83 77 92 98

9% .283 n 28 5 719 93 9

100 .277 1 29 56 81 o9 99

120 «253 12 3% 6+ 87 97

140 234 1 39 n 92 9

160 219 16 43 77 95 9

180 .207 16 48 81 97 =

200 196 17 52 85 98

250 178 20 61 92 9

300 .160 23 69 9% *

350 148 26 75 98

400 139 29 81 99

450 131 32 85 99

500 124 35 89 »*

600 113 41 93

700 .108 46 96

800 .098 52 98

900 <092 56 99

1000 . 61 99

* Power values below this point are greater than ,995,
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Table 6.3.6

Power of Normal Curve Testof P, = P,
viaArcsineTransformation at a, = .10

h

L .10 .20 .30 .40 .50 .60 .70 .80 .90 1,00 1.10 1.20
10 736 1M 13 18 23 3 138 47 56 64 72 79 8%
}] .701 1M s 18 24 32 W1 50 59 68 76 83 88
12 .672 1M th 19 26 W &3 53 62 NN 719 8 90
13 645 1M W 20 27 36 L5 56 65 7 82 88 92
14 622 11 15 20 28 38 48 58 68 77 8 90 9k
15 .601 1M 15 21 29 39 5 61 71 79 86 91 95
16 .582 1M 15 22 N bk 52 63 73 82 88 93 96
17 564 11 16 23 32 W3 s& 65 75 84 90 9% 97
18 548 12 16 23 33 M 556 68 77 85 91 95 97
19 534 12 16 24 34 46 58 70 79 87 92 96 98
20 520 12 17 25 35 48 60 72 81 89 94 97 98
b3 508 12 17 25 37 49 62 73 83 90 9% 97 99
22 4196 12 17 26 38 51 6 75 84 91 95 98 99
23 48s 12 18 27 39 52 65 77 B6 92 96 98 99
24 75 12 18 28 Lo sk 67 78 87 93 97 98 99
28 65 12 18 28 41 55 68 80 8 94 97 99
26 56 12 19 29 42 56 70 81 89 95 98 99
27 A8 12 19 30 &4 58 71 82 90 95 98 99
28 Jibo 12 19 30 L 59 73 8 91 9% 98 99
29 L32 12 20 31 k5 60 T4 8BS 92 96 98 99
30 M25 13 20 32 4 6 75 86 93 97 99 *
3 A8 13 20 32 47 63 76 87 93 97 9
32 RA) 13 21 33 48 6k 77 688 9% 97 99
k3] 4os 13 21 3 49 65 79 88 95 98 99
3 <399 13 21 34 50 66 80 89 95 98 99
35 393 13 22 35 51 67 81 90 9 98 99
36 .368 13 22 36 52 68 82 91 96 99 =
37 .382 13 22 36 53 69 83 91 9 99
38 377 13 23 37 sb 70 83 92 97 9
39 372 13 23 38 55 n 8 93 97 99
ho .368 13 23 38 56 72 8 93 97 9
42 #359 1w 26 39 57 7% 87 o4 98 99
bl 2351 W 2 W1 59 76 B8 95 98
4 34 W 25 42 61 77 BY 96 99
48 336 W 26 L3 62 79 9% 9% 99
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Table 8.3.6 {continued)
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n h, 10 ,20 .30 k0 .50 .60 .70 .80 ,90 1,00 1.10 1.20
50 329 th 26 4b 64 80 91 97 99 * * * *
52 .323 th 27 45 65 82 92 97 99
sk 317 15 28 47 67 8 93 98 99
56 K1k 15 28 LB 68 84 o 98 &
58 .305 15 29 49 69 85 9 98
60 .300 15 29 50 71 8 95 99
4 291 15 31 52 73 88 96 99
68 .282 16 32 sh 75 90 97 99

72 274 16 33 5 77 9N 97 9
76 .267 16 3 58 79 92 98 «*

80 +260 17 35 60 81 9 98

8h 254 17 37 62 B3 9% 9

88 .248 17 38 64 B4 95 99

92 213 18 39 65 86 96 99

95 .237 18 Lo 67 87 97 99

100 .233 18 L1 68 88 97 =

120 212 20 W6 75 93 99

140 .197 22 51 81 96 99

160 184 2) 56 85 97 +*

180 173 25 60 89 98

200 164 26 64 91 99

250 47 3o 72 96 &

300 L34 3 79 98

350 124 38 84 99

Loo 116 41 88 *

450 .110 W 9

500 104 48 o

600 .095 54 97

700 .088 59 98

800 .082 6 99

900 .078 68 *

1000 .074 72

* Power values below this point are greater than .995.
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it is planned. They can, of course, also be used in research planning by
varying n, ES or a, or all three to see how their variation affects power.

6.3.1 Case 0: n; =n,. The power tables of this chapter are designed
to yield directly power values for the normal curve test of the difference
between P’s of two independent samples of equal size (via the arcsine trans-
formation). This is designated Case 0. Other cases are described and illus-
trated in succeeding sections. Tables arc entered with a, h, and n.

1. Significance Criterion, a. Six tables are provided for the following
values ofa:a, =.0l,, .05, .10 and a, = .01, .05, and .10, where the subscripts
refer to one- and two-tailed tests. since power at a, is to a close approxima-
tion equal to power at a, =2a, for power greater than (say) .10, the tables
can also be used for power at a, = .02, a, = .20, a, =.005, and a, = .025.

2. Effect Size, ES. This is the difference between arcsine-transformed
P’s, i.e., ¢, — ¢, =h, whose properties are described in Section 6.2. Table
6.2.1 facilitates the conversion of P, P, pairs into h values. The tables pro-
vide for h=.10 (.10) 1.20. Conventional or operational definitions of ES
have been offered, as follows:

small: h=.20,
medium: h = .50,
large: h=.80.

3. Sample Size, n. This is the size of each of the two samples whose
proportions are being compared. Provision is made for n =10 (1) 40 (2) 60
(4) 100 (20) 200 (50) 500 (100) 1000.

The values in the table are the power of the test times 100, i.e., the per-
cent of tests carried out under the given conditions which will result in the
rejection of the null hypothesis. They are rounded to the nearest unit and
are accurate to within +1 as tabulated.

Illustrative Examples

6.1 A social psychologist is interested in the cross-cultural generaliza-
bility of the finding in the United States that first-born and only child Ss
(A) more frequently than later-born Ss (B) prefer waiting with others to
waiting alone while anticipating an anxiety provoking experience. In a non-
Western culture, he performs a replicating experiment for which he obtains
the cooperation of 80 S’s of each birth order type, 160 in all. The prior work
in the U.S. suggests that about two-thirds of the A’s prefer waiting “to-
gether” while only about half of the B’s do. On the expectation of a



6.3 POWER TABLES 199

difference of similar magnitude in the other culture, even though both P’s
might rise or fall under his particular conditions, he posits an ES of about
the same size, namelyh = .30 (actually,h =¢ ¢, — ¢ 5o = 1.918 — 1.571 = .347
from Table 6.2.2). He plans a directional test of H,: P, = Py at a, = .05.
What is the power of the test? The specification summary is

a, =.05, h = .30, n, =ng=n=§0.

In Table 6.3.2 for a, = .05, column h =.30, and row n =80, he finds
power = .60. Thus, he works with only 3: 2 odds of obtaining a significant
(a, = .05) result if the populations in the new culture have proportions
whose ¢'s differ by .30 in favor of the A sample. Note that h = .30 when the
following pairs of proportions are compared: .10 and .21, .25 and .39,
.40 and .55, .60 and .78, .75 and .87, .90 and .97, as well as .50 and .65,
the values approximated by the original experiments.

On the reasonable assumption that the psychologist finds the power value
of .60 unsatisfactorily low, he would need to change his plans, either by
increasing n or by increasing a, preferably the former. This assumes, of
course, that the experiment has not yet been run. If it has, and his results
were nonsignificant, he could not readily conclude that the U.S. finding did
not generalize, since even if h were .30 in the new culture, his b risk was
much too large (1 — .60 = .40) for such a conclusion. If, on the other hand,
the results were significant, although he can conclude that P, > Py, he cannot
conclude that the population difference in terms of h was .30 (although his
results are consistent with h being .30, and, of course, other values).

6.2 A clinical psychologist plans a research in which patients, upon
admission to a mental hospital, are randomly assigned to two admission
wards of different treatment atmospheres, one *‘ custodial-authoritarian™ (C),
the other “therapeutic-democratic” (T). Among other criteria, she plans six
months after admission, to compare the proportions that have been dis-
charged. The issue, then, is the effect of the atmosphere of the initial ward
placement on length of stay in the hospital. The hospital admits about 50
patients a month, and she plans to assign randomly to C and T conditions
for a four-month period, yielding two samples of about 100 cases each. She
reviews Table 6.2.1 and decides that the ES she expects is given by h = .40,
since the pairs of proportions which differ by this amount around the middle
of the scale of P (where from experience she expects the results to lie) are .40
and .60, .45 and .65, .50 and .69, and .55 and .74. The test will be performed
at a, = .05. She wishes to assess the power of the eventual test of the signifi-
cance of the difference between P and P1. In summary, the specifications
are

a,=.05, h=40, nc=n;=n=1]00.
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To find the power of this test, use Table 6.3.5 (for a, = .05) with column
h = .40, row n = 100; power is .81. She thus has about four chances in five
of concluding (at the .05 level) that the atmosphere difference has conse-
quence to length of stay if the difference in proportions amounts to h = .40,
If either (a) she wishes a better probability than .81 under these specifica-
tions, or (b) she wants to assure high power if the difference in proportions
were smaller, say h = .30, she might consider running her experiment longer
in order to get more S’s. If she can run a fifth month for a total of about 250
Ss, under condition (a) above the specifications are:

a, = .05, h = .40, Nc=ny=n= 125,

In Table 6.3.5, again for column h = .40, and roughly interpolating
between the rows n =120 and n = 140, we find power with this larger n to
be about .88 (i.e., one-quarter of the way between .87 and .92), a better than
7:1 chance of rejecting the null hypothesis if h = .40. Or, assuming the (b)
condition, the specifications become

a, = .05, h = .30, nc=n;=n=125,

When we move to the left one column in Table 6.3.5, i.e., to h =30,
roughly interpolating again between the rows n =120 and n = 140, we find
power to be about .66 (i.e., one-quarter of the way between .61 and .71).
This value may well give her pause.If h is as small as .30, she would have to
run about seven months (so that n = 180) to get power of .81 at a, = .05.

6.3.2 Cast 1: n, % n,. The tables will yield valid power values for
tests on differences between population proportions when samples of differ-
ent sizes are drawn. In such cases, find the harmonic mean of n, and n,, i.e.,

_2nn,

(6.3.1) n = ain

and use the n column of the power table for n’. The results of this procedure
are exact,* provided that neither n is very small (< 10).

Illustrative Example

6.3 In example 6.1 we described a cross-cultural research on the experi-
mental hypothesis that first-born and only children (A) have a preference for
waiting with others rather than alone relative to the later born (B) while
anticipating an experience that is contemplated with anxiety. There, we
posited that the social psychologist obtained the cooperation of 80 Ss of

4 That is, as exact as the Case 0 value, generally within +1 as tabulated.
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each birth-order type. It was found there that if h = .30, the probability
of finding a difference significant at a, =.05 was .60. That example was
somewhat artificial, in that in canvassing people to volunteer for the experi-
ment, it is likely that the number of first and only born volunteers would not
equal the number of later born volunteers, since there are more of the latter
in most populations, particularly in a non-Western culture. If, for example,
80 A’s and 245 B’s volunteered, it would be a mistake to accept only 80 of
the B’s in order to keep the sample n’s equal. The mistake lies in the loss
of power through reduced total n. What is the power of the test using all
the volunteers? Keeping the other conditions the same, the specifications are

a,=.05, h=.30, n,=80+#245=ng.
With unequal n’s, one finds [from (6.3.1)]

. 2(80)(245)

= = 120.6.
80 + 245 120.6

Using Table 6.3.2 for a; = .05, as before, and column h = .30, but now
row n = 120, one finds that power = .75, in contrast with the value of .60
obtained for n, =ny = 80.

6.4 A proposition derivable from psychoanalytic theory holds that the
incidence of homosexuality should be higher in female paranoid schizo-
phrenics (P) than in females bearing other psychiatric diagnoses (0). A
clinical psychologist has records available for 85 P’s and 450 O’s. On the
expectation that the difference in relative incidence or proportion of cases
in which homosexuality is found in the case records of the two popula-
tions is “medium,” i.e., h = .50, what is the power of a (directional) test of
Hy: P, <P, at a; = .01? The specifications are

a, =.01, h = .50, np =85 +#450 =n,.
For unequal n’s, first find [from formula (6.3.1))

_ 2(85)(450)
T 85+450

’

= 143.0.

Using Table 6.3.1 (for a; = .01) for column h =.50, row n = |40, one
finds power = .97.

The psychologist formulated the test as directional, since the theory’s
prediction was not merely that there would be a difference, but that P, > P,
Theories normally do predict the direction of differences. However, if, in
fact, it turned out that the sample proportions differed in the direction
opposite to prediction, no conclusion could be drawn no matter how great
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the difference. (See Section 1.2 and Cohen, 1965, pp. 106~111.) 1t is instruc-
tive to inquire here what the power would be if a nondirectional test, which
permits conclusions in either direction, were performed. The specifications
are to be otherwise held constant, i.e.,

a,=0l, h=.50, n'=143

In Table 6.3.4 (for a, =.0l1) for column h = .50, row n = 140, we find
power = .95, in contrast to the a; =.0l power value of .97. The clinical
psychologist might well decide that the loss in power is trivial, and that it
is worth formulating the problem in nondirectional (two-tailed) terms to
make possible the converse conclusion.’

6.3.3 Case 2: ONE SAMPLE OF n OBSERVATIONS TO TEST P =c¢. Thus
far we have been considering the power of the test of the difference between
proportions of two independent samples, where the null hypothesis is
P, = P,. Essentially the same test procedure can be used to test the depar-
ture of the P in a single population from some specified value c. H, for the
one-sample test is P = c. The test is employed when, given a random sample
of n cases, the investigator’s purpose is to determine whether the data are
consonant with the hypothesis that the population P is .62 or .90 or any
other value. It is thus the general case of which the test that P = .50 of
the preceding chapter is a special case.®

Although the special case P =c¢ =.50 occurs quite widely in behavioral
science (including particularly the ““Sign Test”’), the case of P =c .50 is
not as frequently found. Increasingly, however, the use of mathematical
models provides ever stronger and more precise hypotheses, which are
frequently cast in a form which predicts values of P not generally equal to
.50. The rejection or affirmation of such hypotheses may proceed by use of
the tables provided in this chapter.

For Case 2 we define the ES as for the other cases, that is, as the differ-
ence between arcsine-transformed P’s. However, in formula (6.2.2), P,—¢,
is an estimable population parameter. Here it is a constant, so that for Case 2

(6.3.2) hy, =¢, — ¢ (directional)
=|¢, — ¢ | (nondirectional),
where ¢, = the arcsine transformation of P, as before, and
é. = the arcsine transformation of ¢.
s It should be noted that the smaliness of the power difference is due to the fact that
the power values are close to 1.00.
6 As in the case where Hg:P = .50, the test of Hg:P = ¢ can be performed exactly

by means of tables for the binomial distribution. The present procedure, however, requires
no additional tables and provides an excellent approximation unless n is quite small.
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There is no conceptual change in the ES; h,’ is the difference between
the (alternate) population value P, and the value specified by the null hypoth-
esis, ¢, expressed in units of the arcsine transformation of formula (6.2.1).
and Table 6.2.2. The interpretation of h,’ proceeds exactly as described in
Section 6.2 with regard to Table 6.2.1 and the operational definition of
small, medium, and large ES.

The power and sample size tables, however, cannot be used directly with
h,’ since they are constructed for Case 0, where there are rwo sample statis-
tics each of which contributes sampling error variance for a total of 2/n.
Here, there is only one sample contributing sampling error variance, yielding
half the amount, 1/n. This is simply allowed for by finding

(6.3.3) h=h,"V2=1414h,".

The value h is sought in the tables, while h,’ is the ES index which is
interpreted.

If h,’ is chosen as a convenient multiple of .10, h will in general not be
such a multiple. Thus, the proposed operational definitions of ES for h,’
of .20, .50, and .80 become, for table entry, .28, .71, and 1.13. Linear inter-
polation between columns will provide values which are sufficiently close
(within .0l or .02) for most purposes.

Illustrative Example

6.5 A mathematical model predicts that a certain response will occur
in (Hy: P, =c =) .40 of the animals subjected to a certain set of conditions.
An experimental psychologist plans to test this model using n = 60 animals
and as the significance criterion a, = .05. Assuming that the model is incor-
rect, and that the population rate is actually .50, what would be the power of
this test?

The ES is found directly from Table 6.2.1, where, from .40 (column P,)
to .50 amounts to a difference in ¢’s of .20. This value is for h,’. For entry
into the power table, we require [from (6.3.3)], h =h2’\/5= 20 V2 =28.
Thus, the specifications are

a, = .05, h=.28, n = 60.

In Table 6.3.5 (for a, =.05), row n =60, for column h = .20, power is
.19 and for h = .30, power is .38. Interpolating linearly between these values,
we approximate the power as .19 + (.38 —.19)(.28 — .20)/(.30 — .20) = .34.
Thus, even if a discrepancy of .50-.40 in the parameter existed, the experi-
ment as planned would have only about one chance in three of detecting it.
It is apparent that if this experimental plan is followed, and the result is
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a nonsignificant departure of the sample P value, the psychologist would
be making an error to conclude that the results were confirmatory of the
model. Our alternate hypothetical value of .50 would likely be considered a
large discrepancy in this context, and failing to reject the model when there
was only a one-third chance of doing so, given a large true departure from
it, can hardly be considered confirmatory.

The above results hold to a sufficient approximation whether the test is to
be performed by means of the arcsine transformation (as described in Section
6.5), or the exact binomial, or the approximations to the latter provided by
either the normal curve test using proportions or the equivalent x? *“ goodness
of fit” test on frequencies.

6.4 SAMPLE SizE TABLES

The tables in this section list the significance criterion, the ES to be
detected, and the desired power. One then can find the necessary sample
size. Their primary utility lies in the planning of experiments to provide
a basis for the decision as to the sample size to use.

6.4.1 Case0:n, =n,. The use of the sample size tables is first described
for the application for which they were optimally designed, Case 0, where
they yield the sample size, n, for each of two independent samples whose
populations P’s are to be compared. The description of their use in two
other cases follows this subsection. Tables give values for a, h, and desired
power:

1. Significance Criterion, a. The same a values are provided as in the
power tables by means of a table for each of the following:a, = .01 (a, = .02),
a, =.05 (a,=.10), a; =.10 (a,=.20), a,=.0l (a, =.005), and a,=.05
(a; =.025).

2. Effect Size. h is defined and interpreted as above {formula (6.2.2)]
and used as in the power tables. The same provision is made: h =.10 (.10)
1.20.

To find n for a value of h not tabled, substitute in

(6:4.1) n= o

s 100h*’

where n ,, is the necessary sample size for the given a and desired power at
h = .10 (read from the table) and h is the nontabled ES. Round to the nearest
integer.

3. Desired Power. Provision is made for desired power values of .25,
.50, .60, 2/3, .70 (.05) .95, .99.(See Section 2.4.1 for a discussion of the basis
for the selection of these values, and the proposal that power = .80 serve
as a convention in the absence of another basis for a choice. )
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Table 6.4.1

n to detect h = ¢, - ¢, viaArcsineTransformation

205

a = .01 (.2 = ,02)

R

Power 0 .20 .30 ko .50 .60 .70 .80 .90 1.001.101.20
.28 sk6 136 61 w2 15 N 9 7 § 5 &4
.50 1082 271 120 68 43 30 22 17 13 1N 9 8
.60 1331 333 148 83 53 37 27 21 16 13 1N 9
2/3 1520 380 169 95 61 L2 31 26 19 15 13 1
.70 1626  L0o6 181 102 65 45 33 25 20 16 13 1N
.75 1801 450 200 113 72 50 37 28 22 18 15 13
.80 2007 502 223 125 80 Ss6 M 31 25 20 17 14
.85 2262 565 251 141 90 63 46 35 28 23 19 16
.90 2603 651 289 163 106 72 53 41 32 26 22 18
.95 3154 789 35 197 126 88 64 L9 39 32 26 22
.99 4330 1082 481 271 173 120 88 68 53 43 36 30
8, = .05 ('z .10)
h
Power .0 ,20 .30 .o .50 .60 .70 .80 .90 1,00 1.10 1,20
.25 188 4 21 12 8 5 4 3 2 2 2 1
.50 s 136 60 3 22 15 1 8 7 s 4 4
.60 721 180 80 45 29 20 15 11 9 7 6 8
2/3 862 215 96 sh 34 26 18 13 1N 9 7 [3
.70 941 235 105 59 38 26 19 15 12 9 8 7
.75 1076 269 120 &7 43 30 22 17 13 1N 9 7
.80 1237 309 137 77 49 3 25 19 15 12 10 9
.85 1438 359 160 90 8 Lo 29 22 18 14 12 10
.90 1713 428 190 107 69 48 35 27 21 17 b 12
95 2164 541 240 135 87 60 W+ 34 27 22 18 1§
+99 3154 789 350 197 126 88 64 Ly 39 32 26 22
8 = .10 (a2 .20)
h
Power Jd0 .20 .30 0 .50 .60 .70 .80 .90 1.00 1.10 1.20
.25 7 18 8 5 3 2 2 1 1 1 1 1
.50 328 82 36 13 9 7 5 4 3 3 2
.60 in 118 s2 29 19 13 10 7 & 5 4 3
2/3 586 1w 65 37 23 16 12 9 7 6 5 b4
.70 652 163 712 W 26 18 13 10 8 7 §5 &
.75 765 91 85 u8 N 21 16 12 9 8 6 &
.80 902 225 100 56 36 25 18 1 1n 9 7 6
.85 1075 269 119 67 43 30 22 17 13 N 9 7
.90 b 328 16 82 53 36 27 21 16 13 N 9
.95 1713 428 190 107 69 48 35 27 21 17 14 12
.99 2603 651 289 163 10b 72 53 L1 32 26 22 18
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Table 6.4.1 {continued)

8, = .01 (o, = .005)
1

Power J0O .20 .30 .o .50 .60 .70 .80 .90 1.00 1.10 1.20
.25 723 181 80 45 29 20 15 1 9 7 6 §
.50 1327 332 Wy 83 53 37 27 21 16 13 1N 9
.60 1601 &4oo 178 100 64 LW 33 25 20 16 13 N
2/3 1808 452 201 113 72 50 37 28 22 18 15 13
.70 1922 481 214 120 77 53 39 30 2 19 16 13
.75 213 528 235 132 85 59 43 33 26 21 17 18
.80 2336 58k 260 16 93 65 48 36 29 23 19 16
.85 2610 652 290 163 10k 72 53 1 32 26 22 18
.90 2976 o 331 186 119 83 61 46 37 30 25 20
.95 3563 891 396 223 W3 99 73 56 L4 36 29 25
.99 4806 1202 53k 300 192 134 98 75 59 4B 4O 33

.Lg oosh(:l = -025)

Power 0o .20 30 Lo .50 .60 .70 .80 .90 1.00 1,10 1,20
25 330 83 37 21 13 9 7 5 b 3 3 2
.50 768 192 85 k8 3 21 16 12 9 8 6 5
.60 980 245 109 &) 39 27 20 15 12 10 8 7
2/3 13 286 127 N 6 32 23 18 W N 9 8
.70 1234 309 137 77 L9 3 25 19 15 12 10 9
.75 1388 M7 15k 87 56 39 28 22 17 b 11 10
.80 1570 392 174 98 63 L4 32 25 19 16 13 1
.85 1796 L49 200 112 72 50 37 28 22 18 15 12
.90 2101 525 233 1N 8 58 43 33 26 21 17 1§
.95 2599 650 289 162 10k 72 53 L 32 26 21 18
.99 3674 919 Lo8 230 W7 102 75 57 ULs 37 30 26

The Case 0 procedure involves finding (a) the table for the significance
criterion (@) being used, then finding (b) the difference in arcsine-transformed
P’s (h) along the horizontal stub and (c) the desired power along the verti-
cal stub. This gives n, the necessary size for each sample to detect h at the a
significance level with the desired power.

Illustrative Example

6.6 Consider again the research in example 6.1, where there is described
a crosscultural test of the experimental hypothesis that, in circumstances
which arouse anxiety, Ss who were first-born or only children more fre-
quently prefer to wait with others than do Ss who were later born. It was
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found there that if the population proportions differed by h = .30, a test of
the null hypothesis at a, =.05 using samples of 80 cases in each group,
would have only a .60 probability of rejection (power). If power of .80 is
desired, what sample sizes should be used? The specifications are

a,=.05 h=.30, power=.80.

Table 6.4.1 for a, = .05, column h = .30, and row power = .80 yields n =
137. The social psychologist would thus need samples of 137 each of the two
kinds of Ssin order to have a probability of .80 of rejecting the null hypoth-
esis if the population P’s differed by h = .30.

6.4.2 Case 1: n,# n,. Although in manipulative experiments one
does not ordinarily plan to use samples of unequal size (since the equal n
condition is optimal), unequal n’s can occur in planning when a sample pro-
portion is already available for one population or when the size of one
sample is necessarily fixed by other circumstances. In such an eventuality,
the investigator is free to set the size of only one of the two samples. With
on: sample size fixed at np, the problem is to determine the necessary size
of the sample whose size is at the investigator’s disposal (ny). Table 6.4.1
is used as in Case 0 with a, h, and desired power, and n is determined. In
order to find ny, substitute the fixed sample size (n;) and the n read from
Table 6.4.1 in

(6.4.2) ny= —0F

= Znp-n’

(See Section 2.4.2 when denominator is zero or negative.)

Illustrative Example

6.7 A psychopharmacologist plans to study the efficacy of a new drug
for first psychiatric admissions bearing a given admission diagnosis. He wishes
to compare the discharge rate four months from admission of patients
treated with this drug (E) with that of patients currently treated by other
means (C). He wishes to detect with power of .90 a small difference, in either
direction from the rate for C patients, accepting the proposed convention
of a small difference of h =.20. He plans the test at the a, = .0l criterion.
From past records of n. = 1600 patients bearing the diagnosis, he has avail-
able a sample P¢. His specifications summary is

a,=.0l, h=.20, power = .90.

In the section of Table 6.4.1. for a, =.01, column h=.20, and row
power =.90, he finds n = 744, Thus, his specifications are met by two samples,
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each of 744 cases. But he already has one sample of ng = 1600 cases for the

C group. To find how many patients he requires in the E group, he substitutes
in formula (6.4.2) to find

744(1600)
ny= m = 485 cases.
Thus, the availability of a sample of np = 1600 cases makes it possible
for him to satisfy his specifications (attain power of .90 to detect h=.20
at a, = .01) with a sample for the new drug of 485 cases.

6.4.3 CASE 2: ONE SAMPLE OF n OBSERVATIONS TO TEST P=c. In
using the n tables for the one-sample test, the only departure from Case 0
is that which was discussed for the use of the power tables for Case 2, namely
the proper value of h to use the tables (see Section 6.3.3). Briefly, to test
with a single sample the null hypothesis that a population P has some
specified value, i.e., Hy: P=c, and the ES is indexed in the usual way,
as a difference between arcsine transformed values of the alternate, P,,
and c, namely h,” = ¢, — ¢,, entry into the n tables is made withh =h,’ V2.
If, as is probable, the resultant h is not tabled, recourse is taken to formula
(6.4.1).

INustrative Example

6.8 Return to example 6.5, where an experimental psychologist was
testing a derivation from a mathematical model that a population response
rate was P = .40. With a test to be performed at a, = .05, given that the true
parameter differs from .40 by ES =h,’ = .20, how large a sample of animals
does he need to attain power of .95? He sets this high power requirement
because he wishes to interpret nonsignificance as confirmatory of the model
(Section 1.5.5).

Since there is only one sample P yielding sampling error, as described in
Section 6.3.3, for the table entry he requires [formula (6.4.1)lh=h," V2 =
.20V 2 = .2828. Thus, the specifications are

a, = .05, h =.2828, power = .95.

Since h =.2828 is not tabled, he follows the procedure described in
Section 6.4.1. Use the part of Table 6.4.1 for a, =.05, row power = .95,
and column h=.10 to find n ;4 =2599. Then substitute n o = 2599 and
h = .2828 in formula (6.4.1) for the required n:

2599

n= W=325.
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Thus, if P=.50, a one-sample test of H,: P = .40 performed at the
a, =.05 level, in order to have .95 probability of rejection of M,, must
have sample n = 325. (This is much larger than the n = 60 experiment origi-
nally posited, but a nonsignificant result from the latter would have been
inconclusive.)

6.5 THE Use OF THE TABLES FOR SIGNIFICANCE TESTING

6.5.1 GENERAL INTRODUCTION. As a convenience to the researcher,
provision has been made in the power tables to facilitate significance test-
ing. Power analysis is primarily relevant to the planning of experiments and
thus with the alternate-hypothetical ES. Once the experiment is performed
and the data are in, attention turns to the assessment of the null hypothesis
in the light of the sample data.

For significance testing, we redefine our ES index, h, so that its elements
are observed sample statistics rather than hypothetical population para-
meters, and call it h,. For Cases 0 and 1, where the P’s of two independent
samples are being compared, the sample P, values are transformed by the
arcsine function, and

(6.5.1) h,=¢, —¢, (directional)
= ¢, —4,|  (nondirectional).

Thus, h, is simply the difference in sample ¢ values. It is related to the
unit normal curve deviate (or *“critical ratio’’) x, by

_ n, +n,

(6.5.2) h, = x \/_n,nz .

6.53) x=h, J_
n, +n,

These formulas are stated generally, so that the sample n’s need not be
equal. They simplify for the Case 0 condition of equal n (see below).

The value of h, necessary for significance is called h,, i.e., the criterion
value of h,. The second column of the power tables 6.3, headed h,, carries
these values as a function of n, Using these values, the normal curve deviate
x need not be computed. One simply finds the sample difference in arcsine
transformed ¢’s using Table 6.2.2, and compares it with the tabled h, value
for his sample size. If the obtained h, value equals or exceeds h,, his obtained
difference is significant at the a level for that table; otherwise, it is not.
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6.5.2 SIGNIFICANCE TESTING IN Cast 0, n; =n, =n. When the sample
sizes are equal, the relationship between h, and the normal deviate x are
simplified:

(6.5.4) h, =x \/ 2,
n
(6.5.5) x=h, \/ g .

[Formula (6.5.4) was used for the computation of the tables, q. values, x
being taken as the normal curve deviate for the a criterion.]

Use of the h, values in Case 0 is straightforward: the investigator looks
up the arcsine P = ¢ values for the two P,’s in Table 6.2.2, finds their differ-
ence, h,, and enters the appropriate power table depending on a, in the row
for his n (=n; =n,), and checks whether his h, value equals or exceeds the
tabled h, value.

Illustrative Example

6.9 Reconsider the research described in example 6.2, where a clinical
psychologist was planning a study to compare the relative treatment effec-
.tiveness of two ward atmospheres (T and-C) by comparing the proportions
of 100 cases originally admitted to each ward who are discharged within
six months. Now assume that the experiment is performed as planned and
the sample proportions discharged turn out to be .41 for the C condition
and .57 for the T condition. Is this difference significant at the planned
a, = .05 level? First, she looks up the ¢ transformation of these P_’s in Table
6.2.2, and finds them to be respectively, 1.390 and 1.711. Thus, h, = |1.711 —
1.390| = .321. Therefore, the specifications are:

a,=.05, n=100, h, =.32I.

In Table 6.3.5 (for a, = .05) for row n = 100, she finds under h_ the
value .277. Since her h, value exceeds h,, her observed difference is signifi-
cant. This determination may be sufficient for her purposes, but if she wants
the exact normal deviate value, x, she can substitute in formula (6.5.5) and
find x = .321 V100/2= 2.27.

6.5.3 SIGNIFICANCE TESTING IN CASE 1, n; # n,. Inequality of sample
sizes in significance testing using the tabled h_ values requires only finding
the harmonic mean of the two n’s, n’, as described in Section 6.3.2 [formula
(6.3.1)]:
2n;n,

- n+n,’
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The Tables 6.3 are applied, using n’ for n. The procedure is otherwise
exactly the same as for Case 0.

If the normal curve deviate value x is desired, it is found using formula
(6.5.3), or, if n’ has already been found, more simply by substituting n’ for
n in formula (6.5.5).

Ilustrative Example

6.10 Example 6.3, which in turn referred to example 6.1, described a
cross-cultural test of the experimental hypothesis that, under anxiety con-
ditions, first-born and only children (A) more frequently than later-born (B)
prefer to wait with others. As revised in example 6.3, sample sizes of n, = 80
and ng = 245 are available for a test at a, = .05. Assume now that when the
experiment is run, he finds the sample proportions preferring to wait with
others to be 56/80 = .70 for the A sample and 159/245 = .65 for the B sample.
Since the difference is in the predicted direction (P, > Pg), the test pro-
ceeds. The P,’s are transformed to ¢’s by finding in Table 6.2.2 the values
respectively of 1.982 and 1.875. Their difference, h, = 1.982 — 1.875 =.107,
is found. For use in the table, find n’ from formula (6.3.1) (as in example
6.3):

_ 2(80)(245)
T 80+ 245

’

= 120.6.

The specifications for significance testing of the sample difference are:
a,=.05 n=1206 h,=.107.

Table 6.3.2 (for a, =.05) for row n =120 and column h, yields .212
Since h, is smaller than the criterion h,_, the difference is not significant at
a, = .05.7 Thus, the research provides no warrant for concluding the general-
izability of the United States finding to this culture.

6.5.4 SIGNIFICANCE TESTING IN CASE 2: ONE SAMPLE, H,: P =c. When
the null hypothesis takes the form: *“For a population from which a sample
of n observations is randomly drawn, the P having a given characteristic
equals ¢,” an adjustment must be made of the tabled h, value. This is because
the tables were constructed for Case O conditions and hence allow for

7 When n’ is not tabulated, and intermediate h. values are desired, linear interpolation
will usually provide an adequate approximation. If greater accuracy is desired, either h,
or x can be solved by using formulas (6.5.2) and (6.5.3).
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sampling error variance of two P.’s, while in Case 2 there is only one. The
proper criterion for one sample tests of P =c is

(6.5.6) h’=hV}=.707h_,

where h_ is the tabulated value for n.

As for the observed h, value for Case 2, we follow the principle expressed
in (6.5.1) and simply define h," as we defined h,’ [formula (6.3.2)}, merely
substituting the sample value of 4, for the population parameter ¢, :

(6.5.7) h'=é,— ¢, (directional)
= |¢ — b] (nondirectional).

The prime is used to denote a one-sample test. The relationships between
h,” and the normal deviate x for the case are now

, 1
(6.5.8) hs = x\/'—‘ s
(6.5.9) x=h'Vn.

Formula (6.5.9) can be used if the exact normal deviate (*critical ratio”)
is desired, e.g., for reporting results for publication.

IHustrative Example

6.11 Assume that the experimental psychologist of example 6.5, follow-
ing the power analysis described therein, actually performs the experiment
to test Hy: P = .40, but uses instead the more liberal rejection criterion of
a, = .20 and a larger sample size of n = 100, both of these changes in specifi-
cations serving to make it easier to detect departures from, and hence reject,
the model. (The reader can determine as an exercise that, if in fact, P = .50,
then power is now approximately .75.) Given these new conditions, he finds
that the sample proportion of animals giving the response is 47/100 = 47,
Can he conclude from this result that the null hypothesis is false, i.e., that
the value predicted by the mathematical model, .40, is incorrect?

He finds the arcsine transformations of these two values from Table
6.2.2 to be 1.511 (for .47) and 1.369 (for .40), and their difference [formula
(6.5.7)]h, = |1.511 — 1.369| = .142. This is the sample ES. His specifications,
then, are

a,=.20, n=100, h’'=.142.

Table 6.3.3 (for a, = .10, but used here for a, =.20), with row n = 100
and column h,, gives the value .181., This would be the criterion for a
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two-sample test where each n = 100. For this one-sample case, he goes on to
find [formula (6.5.6)] h,’ = .181V'} = (.707)(.181) = .128. This is the relevant
criterion value, and since the sample h,’ = .142 exceeds it, the null hypothesis
of P =c = .40 is rejected. The experiment, thus, casts serious doubt on the
validity of the model.

If he wishes to determine the exact normal deviate value x which would

result from this test, he finds [formula (6.5.9)] x =.142V/100 = 1.42.



CHAPTER 7

Chi-Square Tests for Goodness of Fit
and Contingency Tables

7.1 INTRODUCTION AND USE

This chapter is concerned with the most frequent application of the
chi-square (x?) distribution in behavioral science applications, namely to
sets of frequencies or proportions. Two types of circumstances may be dis-
tinguished:

1. Case 0: Goodness of Fit Tests. Here a single array of categories of
sample frequencies or proportions is tested against a prespecified set which
comprise the null hypothesis (Edwards, 1972, pp. 53-55; Hays, 1981, pp.
537-544).

2. Case 1: Contingency Tests. Here observed frequencies. are each classi-
fied simultaneously by means of two different variables or principles of
classification, i.e., in a two-way table. The joint frequencies are tested against
a null hypothesis which specifies no association between the two bases of
classification (see the following: Hays, 1981, pp. 544-552; Edwards, 1972,
pp. 55-65; Blalock, 1972, pp. 275-314).

The chi-square test on frequencies is quite general in its applicability
to problems in data analysis in behavioral science, in both manipulative
experiments and survey analysis. It is particularly appropriate with variables

215
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expressed as nominal scales or unordered categories, e.g., religion, marital
status, experimental condition, etc.

When used for frequency comparisons, the chi-square test is a non-
parametric test, since it compares entire distributions rather than para-
meters (means, variances) of distributions. Thus, other than the need to
avoid very small hypothetical frequencies (see Hays, 1981, pp. 521), the test
is relatively free of constraining assumptions.

Milligan (1980) shows how the tables of this chapter can be used for
determining power for the analysis of multidimensional contingency tables
using the loglinear model.

In the following section, the two types of tests will be described in greater
detail in the context of the ES index.

7.2 THE EFFeCT SIZE INDEX: W

We require for an ES index a * pure” number which increases with the
degree of discrepancy between the distribution specified by the alternate
hypothesis and that which represents the null hypothesis. We achieve * pure-
ness’’ here by working with relative frequencies, i.e., proportions. In both
cases, there are ““ cells’; categories in Case 0 and joint categories in Case 1.
For each cell, there are two population proportions, one given by the null
hypothesis, the other by the alternate. The ES index, w, measures the dis-

crepancy between these paired proportions over the cells in the following
way:

AN LN
(7.2.1) W—JZ—-T;._,
i=1

where P,; = the proportion in cell i posited by the null hypothesis,
P, = the proportion in cell i posited by the alternate hypothesis and
reflects the effect for that cell, and
m = the number of cells.

Thus, for each cell, the difference between the two hypothetical P’s
is squared and divided by the null-specified P,; the resulting values are
then added over the cells, and the square root taken.

Note the identity in structure of formula (7.2.1) with that of the standard
computing formula for x? with frequencies; in w, proportions are used in
place of frequencies (for generality), and the population values replace the
sample values.! Indeed, if the sample proportions are used in the formula

!'The technically oriented reader will note that w is simply the square root of the
noncentrality parameter, lambda, divided by the total sample size.
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in place of the P,;’s, and the resulting w’ is squared and multiplied by N,
the total sample size, the result is the sample x? value.

w varies from zero, when the paired P’s in all cells are equal and hence
there is no effect and the null hypothesis is true, to an upper limit which
depends on the nature of the problem, as is detailed below.

The structure of y? tests on distributions (hence w) is ““naturally” non-
directional. Only when there is u = 1 degree of freedom in x?, are there only
two directions in which discrepancies between null and alternate can occur.
With more than 1 df, departures can occur in many directions. The results
of all these departures from the null are included in the upper tail rejection
region, and, as normally used, x? tests do not discriminate among these and
are therefore nondirectional. The tests will be so treated here.

7.2.1 Case0: w AND GOODNESS OF Fit. The null hypothesis for goodness
of fit tests is simply:

Ho: P01, Poz, POJ’ aeey Pom, (.Zl POi = ]) Y

i.e., a specified distribution of proportions in. m cells, summing to unity. A
population of independent observations is posited as falling into m mutually
exclusive and exhaustive classes with a specified proportion in each,

The source of such null-hypothetical distributions varies in different
behavioral science applications. One common example is a test of the hypoth-
esis that a population is normally distributed on a continuous variable
X. Then, Hy is the array of proportions in successive step intervals of X
which would accord with the form of the normal distribution (Hays,
1981, 542-544). For m = 9 intervals, the successive Py values might be:
H,:.020, .051, .118, .195, .232, .195, .118, .051, .020.

In some areas of behavioral science, a strong theory may yield predicted
distributions of populations over relevant classes, or cells. For example,
a behavioral geneticist may be enabled by Mendelian theory to predict the
ratio of four behavior types resulting from cross-breeding to be 1:3:3:9.
The theory would be expressed in proportions in the H,: .0625, .1875, .1875,
.5626 (Edwards, 1972, p. 54f).

Another source of H, might be an empirical distribution determined for
the population in the past, as in census data. A contemporary sample could
be tested against such an H, in a study of social or economic change.

The logical structure of many experiments, e.g., those resulting in deci-
sions or the expression of preference among m alternatives, suggests a
null hypothesis of equiprobability: Hy: Py, =Py, =Py =+ = Py, = 1/m.
Thus, a study of consumer preference among m =4 advertising displays
would posit H,: Py, =.25fori=1, 2, 3, 4.
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The test for equiprobability can be seen as a generalization of the test
Hy: P =.50 to which Chapter 5 was devoted. In the present context, the
test of Chapter 5 is the test for equiprobability when m = 2, where g = iw.

Furthermore, the Case 0 circumstance for x? tests of frequencies for
m = 2 is an alternative procedure to the Chapter 6, Case 2 test that the
proportion of a population having a given characteristic equals some specified
value c. In present terms, the same hypothesis is stated as Hy: Py, =,
Po,=1-c

By whichever of the above relevant approaches an H, set of Py,’s is
established, the alternative hypothesis is expressed by a paired set of P,;’s
and the departure or ES defined by w of formula (7.2.1). It is clear that
with no departure, the numerator of each cell’s contribution is zero, hence
w =0 when there is no effect, i.e., the null hypothesis is true. In general,
the maximum value of w in Case 0 applications is infinity. This occurs when
the null hypothesis specifies that for any given cell, Py = 0. If zero values
for the Py; are ruled out as inadmissible, w can become as large as we like by
defining any P, value as very small (relative to its fixed paired P, value).

For the special circumstances of equiprobability in m cells, the maximum
value of w is \/ m — 1. Thus, for the m = 4 advertising displays, the maxi-
mum possible value of w, which occurs when all respondents prefer one dis-
play, is /4~ 1= /3=173.

Despite the general upper limit of infinity, in practice, for sample sizes
large enough to yield valid results with the x? test, it is not generally neces-
sary to make provision for w greater than .90 (a long way, indeed, from
infinity!).

In Case O tests, in general, the degrees of freedom (u) for x? is simply
m — 1. An exception to this rule occurs where additional degrees of freedom
are “lost” because of additional parameter estimation. In the normal
curve fitting test, for example, where the sample yields estimates of the
mean and standard deviation, each estimate costs an additional degree of
freedom, so that u = m — 3. In the other examples given above, u is always
m— 1.

In a later section, operationally defined values of w for *small,” “ me-
dium,” and ““large” ES will be offered.

7.2.2 Case 1: w AND CONTINGENCY TESTS. The most frequent applica-
tion of x? in behavioral science is to what are variously called *contin-
gency,” *“independence,” or ‘““association” tests. They can also be viewed
as tests of the equality of two or more distributions over a set of two or
more categories.

Consider a circumstance where there are two variables or classification

schemes, each made up of mutually exclusive and exhaustive categories.
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Call one of the variables R, made up of r > 2 categories, and the other K,
made up of k > 2 categories. If all the members of a population are simul-
taneously characterized with regard to their category assignment on R and
K, the results can be expressed in a two-way table of dimension r x k, with
rk cells. In each cell, we can write the proportion of observations in the
population which it contains. From such a table, one can determine whether
R is associated with (or contingent upon, or not independent of) K in the
population, or, equivalently, whether the r subpopulations on the R variable
having differing distributions over the k categories of K.2

For concreteness, consider the cross-classification Table (7.2.1) in which
a sub-population has been jointly characterized with regard to sex = R(r = 2)
and political preference = K (k = 3). Note that the marginal (i.e., total)
distribution for sex is .60, .40, and that for political preference .45, .45, .10.

TABLE 7.2.1

P, VALUES IN A JOINT DISTRIBUTION OF SEX AND
POLITICAL PREFERENCE

Sex
Dem. Rep. Ind. marginal
Men 22 .35 .03 .60
Women .23 .10 .07 .40
Preference
marginal 45 45 10 1.00

Note that although the marginal ratio of men to women is.60 : .40 or 3: 2, the
ratio for Republicans is 3.5:1, and the Democrats are made up about equally
of men and women (i.e., 1:1). Similarly, one might note that although there
are equal marginal proportions of Democrats and Republicans, there are
more Republicans than Democrats among the men and the preference is
reversed among the women. This inequality of ratios within a column (or row)
of the table with the column (or row) marginal ratios constitutes evidence that
R and K are not independent of each other, or that they are associated.

A formal way to describe this association proceeds by asking the question,
**Given the two marginal distributions in this population, what cell values
would constitute independence {or no association)?” This is readily found
for each cell by multiplying its row marginal proportion by its column
marginal proportion. Consider the proportion of men-Democrats which

2 R and K can be interchanged; the relationships are symmetrical.
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would evidence no association: Since .60 of the population are men, and
.45 of the population are Democrats, the condition of no association would
lead us to expect (.60)(.45) = .27 of the population being men-Democrats.
The other no-association cell proportions are similarly computed and are
given in Table 7.2.2. Note that this operation has resulted in within row (or
column) ratios being equal to the row (or column) marginal ratios. In the
circumstance described in Table 7.2.2, in contrast to that in Table 7.2.1,
given the knowledge of a person’s sex, one can make no better a guess as to
political preference than doing so without such knowledge. The converse is
also true, since the association is symmetric.

TABLE 7.2.2

Py (NO ASSOCIATION) VALUES IN A JOINT DISTRIBUTION
OF SEX AND PoLITICAL PREFERENCE

Sex
Dem. Rep. Ind. marginal
Men .27 27 .06 .60
Women 18 .18 .04 40
Preference
marginal 45 45 .10 1.00

Although the above has been described in terms of association between
R and K, it could also be understood as an inquiry into whether the different
R groups (the two sexes) have the same proportional distribution over the
various categories of K (political preference). In Table 7.2.1, they clearly
do not, while in the no-association condition described in Table 7.2.2, they
do.?

In the analysis of contingency tables, the null hypothesis conventionally
tested is that of no association. Thus, for the issue of association between
sex and political preference, the null hypothesis is represented by the P,
values in the cells of Table 7.2.2. Small departures from these values would
represent weak association (or dependence), large departures strong associa-
tion. The degree of departure or ES index is given by w, as defined in formula
(7.2.1). 1t is applied in r x k contingency tables in the same way as in good-
ness of fit tests. Each of the rk = m cells has a null-hypothetical P, value
given by the product of the marginal proportions (such as in Table 7.2.2)
and an alternate-hypothetical P, value reflecting the association posited

3 Again we note that R and K can be interchanged.
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(as in Table 7.2.1). For the problem considered, using the values in these
tables,

Z (P,, - l“o,)2 \/( 22 -~ 27)2 (35— 27)2 - (.07 — .04)?
27 .04

=./.0093 +.0237 + .0150 + .0139 + .0356 + .0225
= /-1200 = .346.

Thus w = .346 indexes the amount of departure from no association, or
the degree of association between sex and political preference in this popula-
tion. Equivalently it can be understood as indexing the difference between
men and women in their distribution over political preference.

In Case | tests, the number of degrees of freedom associated with the
x? for an r x k contingency table is given by

(7.2.2) u=(r-1)k-1).

For the 2 x 3 table under consideration, u=(2—-1)3 -1)=(1)2)=2.
Because the marginals of both rows and columns are fixed, it is not the
number of cells less one, as in Case 0.4

In contingency tables, the maximum value of w depends upon r, k, and
the marginal conditions. If r and k are assigned so that r is not larger than
k (this will be assumed throughout) and no restriction is put on the marginals,

maximum w is \/ r — 1. Thus, in the example, no P, values can be written

which yield w greater than \/ 2 — 1 = 1. If for both marginals the classes have
equal proportions, i.e., 1/r for one set and 1/k for the other, maximum
=/r(r— 1/k.
W AND OTHER MEASURES OF ASSOCIATION. Although w is a useful ES
index in the power analysis of contingency tables, as a measure of association

it lacks familiarity and convenience. As noted above, its maximum is \/ r—-1;
hence w varies with the size of the smaller of the table’s two dimensions.

There are several indices of association for r x k contingency tables
which are familiar to behavioral scientists and which are simply related
to w. These will be briefly described, and formulas relating them to w will
be given. In Table 7.2.3, for the convenience of the reader, the equivalent
values for these other indices are given for the values of w provided in the
power and sample size tables in this chapter. The formulas and table make
possible indexing ES in terms of these other measures.

4 For example, note that in Table 7.2.1, after one has specified the 2 (=u) values .22
and .35, all the other cell values are determined by the requirement that they sum to the
row and column totals.
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TABLE 7.2.3

EQUIVALENTS OF W IN TERMS OF C, ¢, AND ¢’

¢I
w C r=2¢ 3 4 5 6
10 .100 10 071 .058 050  .045
20 .196 .20 141 JA15 100  .089
.30 .287 .30 212 173 .150 134
40 371 .40 .283 .231 200 179
S0 447 .50 354 289 250 224
60 514 .60 424 346 300 .268
70 573 .70 .495 404 350 313
.80 .625 .80 .566 .462 .400 .358
90  .669 .90 .636 520 450 402

* This column gives the equivalents in terms of ¢, the
product-moment correlation coefficient for the fourfold
(2 x 2) table.

Contingency Coefficient, €. The most widely used measure of association
in contingency tables is C, Pearson’s coefficient of contingency (Hays, 1981,
p. 558). The relationship among C, x2, and w is given by

_ XZ _ w2
(7.2.3) c_\/x2+N_\/w2+1

(The first expression gives the sample C value, the second that of the
population.)

For the population data of Table 7.2.1, for example, where w? = 3462 =
.12, the C value equals \/.12/(.12 + 1) = /.12/1.12 = .33.

To express w in terms of C,

(1.2.4) w= \/—i

1-C?

C =0 when w =0, indicating no association. The maximum value of C
is not 1, but increases towards 1, as maximum w increases, We have seen
that maximum w equals ./ r — 1. Therefore, substituting in (7.2.3), maximum
C= \/ (r — 1)/r. For example, a 2 x k table (k > 2) has a maximum C of
J(Z -D2= \/{= .71, while a 5§ x k table (k > 5) has a maximum C of
\/ S-1/5 =\/4/—5 = .89. This varying upper limit dependency on r is
generally considered a deficiency in the measure, becoming particularly
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awkward when one wishes to compare C values coming from tables of
different size.

Note the relationship between w and C in Table 7.2.3. As w increases,
C increases, but with progressively smaller increments.

¢, The Fourfold Point Correlation Coefficient. Among contingency tables,
the most frequently analyzed in behavioral science is the 2 x 2 table. In 2 x
2 tables, one can conceive of each of the R and K dichotomous dimensions as
scaled O for one category and 1 for the other (or any other distinct values) and
compute a product-moment correlation coefficient between the two dimen-
sions. In such circumstances the correlation coefficient® is called ¢ (see
Cohen & Cohen, 1983, pp. 65-66; Guilford & Fruchter, 1981, pp. 316-318).
Its relationship to w is one of identity:

©
(7.2.5) ¢ = \/'ﬁ =W,
(The first expression is the sample ¢ value, the second that of the popula-
tion.)

Since ¢ is a bonafide product moment correlation coefficient, ¢? is
interpretable as the proportion of variance (PV) shared by the two variables
R and K (see Chapter 3; also Chapters 2, 4, 6, 11). Thus, for the 2 x 2 table,
w? gives directly the PV shared by the two dichotomies.

Cramér’s ¢’. A useful generalization of ¢ for contingency tables of any
dimensionality is provided by Cramér’s statistic ¢' (Hays, 1981, p. 557;
Blalock, 1972, p. 297);

X W
(7.2.6) ¢_\/N(r——l)—\/m’

where r is, as before, not greater than k. (Again, the first expression gives
the sample value and the second the population value.) w in terms of ¢’ and
r is given by

(7.27) w=grol.

Naturally, ¢’ cannot be interpreted as a product-moment correlation,
since neither R nor K is, in general, metric or even ordered. But it does have
a range between zero and a uniform upper limit of one. The latter is true
because, as we have seen, the upper limit of w in a contingency table is

\/r—l.

% Not to be confused with the same symbol, ¢, to indicate the arcsine transformation of P
in Chapter 6.
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That ¢’ is a generalization of ¢ can be seen when we note that for a
2 x 2 table, r=2; formula (7.2.6) then gives ¢’ = w/\/2 —1=w(=4¢)
This is why the ¢ equivalents of Table 7.2.3 are given under ¢’ for r = 2.
The latter is more general, since it applies not only to 2 x 2 tables but to
2 x k tables. For example, for the association between sex and political

preference in Table 7.2.1, a 2 x 3 table, ¢’ = .346/\/2 — 1 =.346.

7.2.3 *“SMALL,” “MEDIUM,” AND “LARGE” w VALUES. Since w is not
a familiar index, it becomes particularly important to have some guide to
its magnitude for the purpose of power analysis or the estimation of neces-
sary sample size or both. The best guide here, as always, is the development
of some sense of magnitude ad hoc, for a particular problem or a particular
field. Since it is a function of proportions, the investigator should generally
be able to express the size of the effect he wishes to be able to detect by
writing a set of alternate-hypothetical proportions for either Case 0 or Case 1,
and, with the null-hypothetical proportions, compute w. Some experimen-
tation along these lines should provide one with a “feel” for w.

As in the other chapters, values of w for *“ small,” ** medium,” and ** large”
ES are offered to serve as conventions for these qualitative adjectives. Their
use requires particular caution, since, apart from their possible inaptness
in any given substantive context, what is subjectively the “same” degree
of departure (Case 0) or degree of association (Case 1) may yield varying
w as the size of r, k, or u (degrees of freedom) changes, and conversely.
Note, for example, in Table 7.2.3, that for constant e, ¢’ decreases as r
increases. The investigator is best advised to use the conventional definitions
as a general frame of reference for ES and not to take them too literally.

SMALL EFFECT SIZE: w = .10. For Case 0 goodness of fit applications,
w = .10 for the following H,, H, pairs, where in each instance H, posits
equiprobability for the m cells, and the H, values are placed at equal intervals
and symmetrically about 1/m:

m= 2 H,: .50 .50
H,: .45 .55 (same as g =.05; see Section 5.2)

m= 3 H,: .333 333 333
H,: 293 333 374
m= 4 Hg: 25 .25 .250 .250
H,: 216 .239 261 .284
m= 5 Hg: 200 .200 .200 .200 .200
H,: .172 .186 .200 .214 .228
m=10 H,: .100 .100 .100 .100 .100 .100 .100 .100 .100 .100
H,: 084 088 .091 .095 .098 .102 .105 .109 .112 .116
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The illustration of Case | instances of w = .10 would demand the presen-
tation of several cumbersome contingency tables. Instead, attention is called
to Table 7.2.3, where equivalents of w = .10 for C, ¢, and ¢’ are given. Note
that what is defined as a small degree of association implies a C of .100, and
for a 2 x 2 table, a ¢ also of .100. For larger tables, Cramér’s ¢’ decreases,
so that when the smaller dimension (of r categories) is 6, ¢’ = .045.

MEDIUM EFFECT SIZE: W = .30. To illustrate a medium ES in Case 0 appli-
cations, the following H,, H, pairs are presented in all of which w =.30:

m= 2 H,: .50 .50
H,: .35 .65 (same as g =.15; see Section 5.2)

m= 3 H,: .333 333 .333
H,: 211 .333 .456

m= 4 H,: .25 .250 .250 .250
H,: .149 216 .284 .35

m= 5 Hg: .200 .200 .200 .200 .200
H,: .115 .158 .200 .242 .285

m=10 H,: .1600 .100 .100 .100 .100 .100 .100 .100 .100 .100
H,: .053 .063 .074 .084 .095 .105 .116 .126 .137 .147

For contingency tables (Case 1) we note, as before, the equivalences from
Table 7.2.3. Equivalent to w = .30 are € = .287 and the fourfold ¢ = w = .10.
For ¢’ in larger tables, constant w = .30 implies diminishing values, e.g.,
¢’ =.134 for r = 6.

The P, values relating sex to political preference of Table 7.2.1 yielded
an w = 346, slightly above our operational definition of a medium effect.

LARGE EFFECT SIZE: w = .50. As before, we here illustrate the large ES for
Case 0 by a series of Hgy, H, pairs for each of which w = .50: '

m= 2 H,: .50 .50
H,: .25 .75 (same as g =.25; see Section 5.2)

m= 3 Hy .333 .333 .333
H,: .129 .333 .537

m= 4 H,: 250 .250 .250 .250
H,: 082 .194 306 .418

m= 5 Hg: .200 .200 .200 .200 .200
H,: 059 .129 .200 271 .34

m=10 H,: .100 .100 .100 .100 .100 .100 .100 .100 .100 . 100
H,: 022 .039 .056 .074 .091 .109 .126 .143 .161 .178
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For contingency tables, a large degree of association as defined here
implies € = .447 and for the 2 x 2 table, ¢ = w = .50 (Table 7.2.3). For
larger tables, the ¢’ values decrease with constant w = .50 as r increases, e.g.,
forr =6, ¢’ =.224,

SOME FURTHER COMMENTS ON ES AND w. The Case 0 illustrations above
were all for H, of an equally spaced departure from an H,, of equiprobability.
This was done for the sake of simplicity, but should not mislead the reader.
Any full set of proportions can be tested as an H,, and w will index the de-
parture of any H, from it. Thus, when we define w = .30 as a medium depar-
ture of H, from H,, or ES, any discrepancy yielding w = .30 is so defined.
For example, for m = 4, the following H,, H, pair also represents an ES
of w = .30 and their detectability by means of a x? test is the same as for the
m = 4 illustration above:

H,: 250 250 .250 .250
H,: .380 .207 .207 .207

This is a w = .30 departure from equiprobability in which the effect is
concentrated in the first category, the remainder being equiprobable.

The following pair illustrates yet another w = .30 departure from equi-
probability for m = 4, one in which the effect is divided equally between the
first two categories, and between the last two:

H,: .250 .250 .250 .250
H,: 325 .325 .175 .175

Since the departure from H, may occur in many ways, and since H,
may itself occasionally represent other than an equiprobable distribution,
clearly any given value of w may arise from a multiplicity of patterns of dis-
crepancies. It is the size of w which is important. An investigator may specify
an H, appropriate to his purpose, and posit an H,; which he believes to be
the true state of nature. He then obtains some specific w, say .30. He may
be wrong about the specific H, set of P, values he has posited, but the power
(or sample size) he determines from the tables for w = .30 will hold for any
H, which yields w = .30. Thus, however they may have come about, his
inference can be viewed as testing Hy: w = 0 against H,: w = .30,

We reiterate a word of caution about the use of constant w values to define
a given level of departure, such as the operational definitions of *““small,”
“medium,” and “large” ES as applied to Case 1 contingency tests. It was
noted several times above that constant w implies a decreasing value for ¢’
as table size (specifically r) increases (see Table 7.2.3).° If an investigator
thinks of amount of association in terms of ¢, then clearly he cannot use the

¢ This is also true for a measure of association not discussed here. Tschuprow’s T
(Blalock, 1972, p. 296). The remarks about ¢ in this context hold also for T.
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operational definitions suggested above, or any other pegged to a constant w.
Thus, for example, if he is prepared to define a “large” amount of associa-
tion as a ¢’ = .40, this implies varying w depending on r: it would be
w = .40 fora 2 x k table, w=.57fora 3 x ktable, --- w= .89 fora6 x k
table [formula (7.2.7) and Table 7.2.3}.

7.3 Power TABLES

The power tables for this section are given on pages 228-248.

The 42 tables in this section are used when an overall sample size N is
specified together with the degrees of freedom (u), the significance criterion a,
and the ES, w; the tables then yield power values. As throughout this hand-
book, power tables find their major use after an experiment has been per-
formed. They can also be used in experimental planning by varying N (and/or
ES, and/or a) to study the consequences to power of such alternatives.

Tables list values for a, u, w, and N:

1. Significance Criterion, a. Since x? is naturally nondirectional (see
above, Section 7.2), 14 tables (for varying u) are provided at each of the a
levels .01, .05, and .10.

2. Degrees of Freedom, u. At each a level, a table is provided for each
of the following 14 values of u: 1 (1) 10, 12 (4) 24. They have been selected
so as to cover most problems involving y? comparisons of proportions
(or frequencies) likely to be encountered in practice. In particular, since for
r x k contingency tables, u = (r — 1)(k — 1), the larger values of u (12, 16, 20,
24) were chosen so as to have many factors. Thus, tables whose r x k are
2x25 3x13, 4x9, and 5 x 7 all have u =24, When necessary, linear
interpolation between u values in the 10-24 range will yield quite adequate
approximations.

3. Effect Size, w. For either Case 0 or Case 1 applications, w as defined
in formula (7.2.1) provides the ES index. Provision is made for finding nine
values of w: .10, (.10) .90. As a frame of reference for ES magnitude, con-
ventional definitions have been offered above, as follows:

small: w=_10,

medium: w = .30,

large: w=.50.

4. Sample Size, N. This is the total number of cases in the comparison.
Provision is made for N = 25 (5) 50 (10) 100 (20) 200 (50) 400 (100) 1000.
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Note that although all the tables begin at N = 25, for the Case 0 and Case 1
application of x? of this chapter, samples of this size will yield tests of dubious
validity as u increases. See Section 7.4 for discussion and references on this
point.

The values in the body of the tables are the power times 100, i.e., the
percent of tests carried out under the specified conditions which will result
in the rejection of the null hypothesis. They are rounded to the nearest unit,
and they are generally accurate to within +1 as tabled.

7.3.1 Case 0: GOODNESs OF F1T TEsTS. By the way of review: In Case 0,
the H, is a set of proportions (Py;) in m categories which reflect no effect
in a way appropriate to the problem. The H, is another set of proportions
(Py;) in the m categories which collectively reflect the effect. Each category
contributes a value (P,; — Py;)?/Po; to a total, whose square root, w, indexes
the ES. The u for a given problem is m — 1, unless there are further con-
straints due to parameter estimation, as e.g., in fitting a normal distribution,
where u = m — 3 (see Section 7.2.] and references).

INlustrative Examples

7.1 A market researcher is seeking to determine the relative preference
by consumers among four different package designs for a new product. He
arranges to have a panel of 100 consumers each select the single design he
prefers over the rest. He performs a x* test at a =.05 on the preference
distribution against a null hypothesis of equal preference, i.e.,

A B C D
Ho: 25 .25 25 .25

What is the power of this test, if in fact, in the population, the actual distri-
bution is

A B C D
H,: .3750 .2083 .2083 .2083 ?

First, one finds w for this alternative {formula (7.2.1)]:

=.289.

"o \/(.3750 — .2500)% N 3(.2083 — .2500)?
- .2500 .2500
The degrees of freedom, u, for this application is m — 1 = 3, there being only

one constraint on the freedom of the category P values to vary, namely the
requirement that they sum to 1.00. Thus, the summary of his specifications is

a =05, us=3, =289, N = 100.
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In Table 7.3.17 for a = .05 and u = 3 at row N = 100, we find power for
column w = .20 to be .36 and for w = .30 to be .71. Linear interpolation
yields (approximate) power of

.289 — .20
36+( 89— 20)

36+ 3535, (71 = 36 = 36 + .31 = 6.

Thus, if H, is true, or for any other H, which yields a w = .289, the market
researcher has about a 2 in 3 chance of rejecting the null hypothesis of equal
preference in the population among the four designs.

7.2 A psychometrician needs to determine whether a population dis-
tribution of scores on a psychological test under development is normal.
He secures a random sample of 200 Ss, and by methods described by Hays
(1981, pp. 542-544) determines that for 9 step intervals of his score distribu-
tion, a normal distribution would have the following proportions in succes-
sive intervals:

H,: .020 .051 .118 .195 .232 .195 .118 .051 .020

After experimenting with several alternate population distributions, he con-
cludes that he wishes to be able to detect a departure from normality of
w =.20. Since the burden of *“ proof”’ of normality is his, he selects a = .10
as his significance criterion in order to be lenient in his rejection of the null
hypothesis of normality. Under these conditions, what is the power of his y?
test for goodness of fit to normality ?

To determine the u, consider that in the fitting of the normal distribution
to his sample values, in addition to the usual constraint of summation of the
proportions to .100, he has estimated from his sample two population para-
meters, the mean and standard deviation. Thus, his degrees of freedom are
Uu=m-3=9-3=6.

The specifications for the power of the y? test are:

a=.10, u=06, w =20, N = 200.

In Table 7.3.34 (for a = .10, u = 6) for column w = .20, row N = 200, he
finds power = .66. Under the circumstances, he might consider that, given a
departure of w = .20 from normality, a probability of rejection of normality
of only .66 might not be sufficient.

7.3.2 Caske |: CONTINGENCY TEesTs. In Case 1, we deal with a two-way
table of variables R and K which has rk = m cells, each containing a propor-
tion of the population. The m null-hypothetical proportions P,; are those
which reflect no association between R and K and are found as products
of the marginal proportions, as in Table 7.2.2. The alternate-hypothetical
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proportions P,; are another set which then necessarily reflect some associa-
tion, of greater or lesser degree. The amount of association or departure
from H, is found as in Case 0, i.e., each of the m cells contributes a value
(Py; — Poi)?/Py; to a total whose square root is w. The u for a given problem
is (r — 1)(k — 1). Such problems can be viewed equally as concerning asso-
ciation between R and K or as concerning differences among the r subpopula-
tions in distributions over the k categories (or k subpopulations over the r
categories).

INustrative Examples

7.3 A political scientist is studying the relationship between sex and
political preference (Democrat, Republican, Independent) for a certain popu-
lation. Assume that she knows, or can estimate, the marginals, i.e., the pro-
portions of men and women voters, and the proportions of each political
preference in the population. She has available a sample of N = 140 voters
for the x? contingency test, which she performs at the a = .01 significance
level. Her null hypothesis is expressed by the P, in Table 7.2.2 above, which
reflects no association between voter sex and politial preference or, equiva-
lently, no sex difference in political preference distribution. The degrees of
freedom for the test, u = (2 — 1)(3 — 1) = 2. If the joint proportions in the
population are the P,; of Table 7.2.1, what is the power of the test? It has
been shown above (Section 6.2) that the ES of the departure of the P,; from
the Py, is w = .346. Then,

a=.0l, u=2, w =346, N = 140.
Table 7.3.2 (fora = .01) atu = 2, N = 140, power forw = .30is .75 and

for w = .40, .97. Linear interpolation gives the (approximate) power for w
= .346 as

(.346 — .30)
TS+ (:40 = .30)

Thus, if the population proportions are as in Table 7.2.1, or for any other
set of values yielding w = .346, the probability of rejecting the hypothesis of
no association at a = .0l using 140 respondents is .85.

(.97 — .75) = .85.

7.4 A clinical psychologist is studying the predictive validity of a new
psychodiagnostic procedure administered to patients upon admission to a
psychiatric hospital, using as a criterion final psychiatric diagnosis. Assume
that 80 patients are classified into the diagnostic categories ** brain damaged,”
* functional psychotic,” and *“ psychoneurotic,” both by the psychodiagnostic
procedure and by the final diagnosis. The contingency table for assessing pre-
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dictive validity will thus be a 3 x 3 table, with u=(3 — 1)(3 — 1) = 4. If the
degree of association in the population is indexed by a Cramér ¢’ of .20, what
is the power of a x? test using a = .05 as the significance criterion ?

To be used in the power tables, the ¢’ must be converted into its w equiva-
lent. From formula (7.2.7), noting that r(=k) = 3, we find w = .20\/ 3-1=
.283. The specifications, then, are:

a = .05, u=4, w = 283, N = 80.

In Table 7.3.18 (for a = .05, u=4) for row N = 80, we find power at
w = .20 to be .26 and at w = .30 to be .55. Interpolating linearly for w = .283,
power is found to be approximately

26 4 (283 = 20)

. m (.55 — .26) = .50.

Thus, at the level of association of ¢’ = .20 posited for the population, it is
a “toss-up” whether a contingency test significant at @ = .05 will result with
N = 80.

7.5 A community psychiatry research team undertakes an inquiry into
the association between religious-ethnic group (r = 5) and type of diagnosis
given (k = 6) in a statewide population of child clinic referrals. Data are
available for N = 400 referrals. If the degree of association is small (w = .10;
C =.100; ¢’ = .050 from Table 7.2.3), what is the power of a x? test per-
formed at the 0.1 level ? For this large table, u is equal to (5 — 1)(6 — 1) = 20.
The specifications, in summary form, are

a=.0l, u =20, w =10, N = 400.

In Table 7.3.13 for a = .01 and u = 20, column w = .10, and row N =
400, we find power to be .05(!). Note that even if the lenient @ = .10 criterion
is used instead (Table 7.3.41), power is still only .26. If the actual association
is “medium” w = .30, and from Table 7.2.3, C = .287, ¢' = .150),ata = .01,
power is .92 and at a = .05, power is .98.

7.4 SaMPLE Si1zE TABLES

The sample size tables for this section are given on pages 253-267.

The tables in this section give values for the significance criterion (a),
the degrees of freedom (u), the ES to be detected (w), and the desired power.
The necessary total sample size N then may be found. As with the other
sample size tables in this handbook, they will be used primarily in the plan-
ning of experiments where they provide a basis for the decision as to the
sample size to use.
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TABLE 74.1

N 10 DETECTWBY y2 ATa=.0l,u=1,2,3

u=1
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 362 90 40 23 14 10 7 6 4
.50 664 166 74 41 27 18 14 10 8
.60 800 200 89 50 32 22 16 13 10
2/3 904 226 100 56 36 25 18 14 11
.70 961 240 107 60 38 27 20 15 12
.75 1056 264 117 66 42 29 22 17 i3
.80 1168 292 130 73 L7 32 24 18 14
.85 1305 326 145 82 52 36 27 20 16
.90 1488 372 165 93 60 41 30 23 18
.95 1781 4i4s 198 in Al 49 36 28 22
.99 2403 601 267 150 96 67 49 38 30
u=2
w
Power .10 .20 .30 .ho .50 .60 .70 .80 .90
.25 L67 117 52 29 19 13 10 7 6
.50 819 205 91 51 33 23 17 13 10
.60 975 244 108 61 39 27 20 15 12
2/3 1092 273 121 68 Ly 30 22 17 13
.70 1157 289 129 72 46 32 24 18 14
.75 1264 316 140 79 51 35 26 20 16
.80 1388 347 154 87 56 39 28 22 17
.85 1540 385 7 96 62 43 31 24 19
.90 1743 436 194 109 70 48 36 27 22
.95 2065 516 229 129 83 57 42 32 25
.99 2742 685 305 17 110 76 56 43 34
u=3
w
Power .10 .20 .30 Lho .50 .60 .70 .80 .90
.25 shy 136 60 34 22 15 11 8 7
.50 93! 233 103 58 37 26 19 15 1
.60 1101 275 122 69 4y 31 22 17 14
2/3 1227 307 136 77 LT 34 25 19 15
.70 1297 324 144 81 52 36 26 20 16
.75 1412 353 157 88 56 39 29 22 17
.80 1546 386 172 97 62 43 32 24 19
.85 1709 427 190 107 68 47 35 27 21
.90 1925 481 214 120 77 53 39 30 24
.95 2267 567 252 142 91 63 L6 35 28
.99 2983 746 331 186 119 83 61 47 37

253
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TABLE 7.4.2

N 10 DETECT W BY X* ATa=.0l,u=4,5,6

ueh
w
Power 10 .20 .30 .k .50 .60 .70 .8 .90
.25 607 152 67 38 24 17 12 9 7
.50 1023 256 114 64 i 28 21 16 13
.60 1206 301 134 75 48 33 25 19 15
2/3 1338 335 149 84 54 37 27 2] 17
.70 W12 353 157 88 56 39 29 22 17
.75 1534 383 170 96 61 43 3 24 19
.80 1648 W12 183 103 66 46 34 26 20
.85 1847 462 205 115 74 51 38 29 23
.90 2074 518 230 130 83 58 42 32 26
.95 2433 608 270 152 97 68 50 38 30
.99 3180 795 353 199 127 88 65 50 39
um= i
w
Power 0 .20 .30 4o .50 .60 .70 .80 .90
.25 663 166 74 ] 27 18 1k 10 8
.50 1103 276 123 59 b 3 23 17 14
.60 1294 323 14k 81 52 36 26 20 16
2/3 1434 359 159 90 57 40 29 22 18
.70 1512 378 168 94 60 42 31 24 19
.75 1640 L30] 182 102 66 46 33 26 20
.80 1787 W47 199 112 n 50 36 28 22
.85 1966 492 218 123 79 55 ko 31 24
.90 2203 551 24s 138 88 61 45 34 27
.95 2576 644 286 161 103 72 53 ho 32
.99 3350 837 372 209 134 93 68 52 I
u==6
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 713 178 79 45 29 20 15 1 9
.50 1175 294 131 73 47 33 24 18 15
.60 137 343 153 86 5¢ 38 28 21 17
2/3 1521 380 169 95 61 b2 3 24 19
.70 1601 40 178 100 64 4k 33 25 20
.75 1736 434 193 108 69 48 35 27 21
.80 1887 472 210 ns 75 52 ° 39 29 23
.85 2073 518 230 130 83 58 42 32 26
.90 2318 580 258 145 93 64 47 36 29
.95 2704 676 300 169 108 75 55 42 33

.99 3502 876 389 219 140 97 n 55 43
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TABLE 74.3

N 10 DETECT W BY x> ATa=.0l,u=17,8,9

255

u=7
w
Power .10 .20 .30 40 .50 .60 .70 .80 .90
.25 758 190 84 47 30 21 15 12 9
.50 1241 310 138 78 50 34 25 19 15
.60 1447 362 161 90 58 4o 30 23 18
2/3 1599 hoo 178 100 64 ' 33 25 20
.70 1683 421 187 105 67 47 34 26 21
.75 1820 455 202 1k 73 51 37 28 22
.80 1979 45 220 124 79 55 40 31 24
.85 2171 543 24 136 87 60 L 34 27
.90 2424 606 269 151 97 67 L] 38 30
.95 2821 705 313 176 113 78 58 4h 35
.99 3641 910 Los5 228 146 101 Th 57 45
us§
w
Power .10 .20 .30 .ho .50 .60 .70 .80 .90
.25 8ol 200 89 50 32 22 16 13 10
.50 1302 325 145 81 52 36 27 20 16
.60 1515 379 168 95 61 42 31 24 19
2/3 1673 ns 186 105 67 46 34 26 21
.70 1759 440 195 110 70 49 36 27 22
.75 1900 475 2H 119 76 53 39 30 23
.80 2064 516 229 129 83 57 42 32 25
.85 2261 565 251 14) 90 63 46 35 28
.90 2521 630 280 158 101 70 51 39 3
.95 2929 732 325 183 17 81 60 3 36
.99 3769 942 419 236 151 105 77 59 47
u=9
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 840 210 93 53 34 23 17 13 10
.50 1359 340 15) 85 Sk 38 28 21 17
.60 1579 395 175 99 63 44 32 25 19
2/3 1741 435 193 109 70 48 36 27 21
.70 1830 457 203 114 73 51 37 29 23
.75 1975 ok 219 123 79 55 40 31 24
.80 2143 536 238 134 86 60 L 33 26
.85 2346 586 260 147 94 65 48 37 29
.90 2612 653 290 163 104 73 53 4 32
.95 3030 758 337 189 121 84 62 47 37
.99 3889 972 432 243 156 108 79 61 48
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TABLE 7.4.4

N 10 DETECT W BY x? AT 2= .01, u=10, 12, 16

us=10
w

Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 877 219 97 55 35 24 18 1h 11
.50 1413 353 157 88 57 39 29 22 17
.60 1639 410 182 102 66 46 33 26 20
2/3 1805 45 201 13 72 50 37 28 22
.70 1896 474 21 119 76 53 39 30 23
.75 2046 511 227 128 82 57 2 32 25
.80 2218 554 246 139 89 62 45 35 27
.85 2425 606 269 152 97 67 49 38 30
.90 2698 675 300 163 108 75 5 k2 33
.95 3126 781 347 195 125 87 64 LT] 39
.99 4002 1001 ks 250 160 11 82 63 49

us= 12

w

Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 995 249 11 62 40 28 20 16 12
.50 1513 378 168 95 61 42 31 24 19
.60 1750 438 194 109 70 49 36 27 22
2/3 1925 48) 214 120 77 53 39 30 24
.70 2020 505 224 126 81 56 41 32 25
.75 2177 Skl 242 136 87 60 Ll 34 27
.80 2356 589 262 147 94 65 48 37 29
.85 2573 643 286 161 103 71 53 40 32
.90 2858 Ttk 318 179 14 79 58 45 35
.95 3302 826 367 206 132 92 67 52 4
.99 4211 1053 468 263 168 17 86 66 52

u=16
Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 1072 268 119 67 43 30 22 17 13
.50 1690 422 188 106 68 47 34 26 21
.60 1948 487 216 121 78 54 4o 30 24
2/3 2137 534 237 134 85 59 by 33 26
.70 2240 560 249 140 90 62 Le 35 28
.75 2408 602 268 150 96 67 49 38 30
.80 2601 650 289 163 104 72 53 4 32
.85 2834 709 315 177 113 79 58 111 35
.90 3139 785 349 196 126 87 6k 49 39
.95 3614 903 4o2 226 145 100 74 56 45

.99 4580 145 509 286 183 127 93 72 57
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TABLE 7.4.5

N 10 DETECT W BY x? AT 2 =.0], u =120, 24

257

u= 20
w
Power .10 .20 .30 L4o .50 .60 .70 .80 .90
.25 1181 295 131 74 47 33 24 18 15
.50 1845 461 205 15 74 51 38 29 23
.60 2121 530 236 133 85 59 43 33 26
2/3 2322 581 258 145 93 65 47 36 29
.70 2432 608 270 152 97 68 50 38 30
.75 2611 653 290 163 104 73 53 2] 32
.80 2816 704 313 176 113 78 57 1 35
.85 3063 766 340 191 123 85 63 48 38
.90 3385 846 376 212 135 94 69 53 42
.95 3886 972 432 243 155 108 79 61 48
.99 4903 1226 545 306 196 136 100 77 61
us= 24
w
Power .10 .20 .30 .ho .50 .60 .70 .80 .90
.25 1280 320 142 80 51 36 26 20 16
.50 1986 496 221 124 79 55 | 31 25
.60 2278 569 253 142 91 63 46 36 28
2/3 2490 622 277 156 100 69 51 39 3
.70 2606 651 290 163 104 72 53 n 32
.75 2794 699 310 175 112 78 57 4y 34
.80 3010 753 334 188 120 84 61 47 37
.85 3269 817 363 204 131 91 67 51 40
.90 3607 902 401 225 144 100 74 56 45
.95 4132 1033 459 258 165 1s 84 65 51
.99 5193 1298 577 325 208 1 106 81 64
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TABLE 7.4.6

N 10 DETECT W BY ¥? ATa =05, u=1,2,3

us= |
w
Power .10 .20 .30 .ho .50 .60 .70 .80 .90
.25 165 1] 18 10 7 5 3 3 2
.50 384 96 43 24 15 1" 8 6 5
.60 490 122 Sh 31 20 14 10 8 6
2/3 571 142 63 36 23 16 12 9 7
.70 617 154 69 39 25 17 13 10 8
.75 694 175 77 43 28 19 14 1 9
.80 785 196 87 49 31 22 16 12 10
.85 898 224 100 56 36 25 18 14 1"
.90 1051 263 117 66 42 29 21 16 13
.95 1300 325 144 81 52 36 27 20 16
.99 1837 459 204 115 73 51 37 29 23
uw=2
w
Power .10 .20 .30 Jho .50 .60 .70 .80 .90
.25 226 56 25 14 9 6 5 4 3
.50 496 124 55 31 20 14 10 8 6
.60 621 155 69 39 25 17 13 10 8
2/3 N7 179 80 4s 29 20 15 n 9
.70 770 193 86 48 31 21 16 12 10
.75 859 215 95 Sh 34 24 18 13 11
.80 964 241 107 60 39 27 20 15 12
.85 1092 273 121 68 m 30 22 17 13
.90 1265 316 1 79 51 35 26 20 16
.95 1544 386 172 97 62 43 32 24 19
.99 2140 535 238 134 86 59 4l 33 26
u=3
w
Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 258 65 29 16 10 7 5 4 3
.50 576 144 64 36 23 16 12 9 7
.60 715 179 79 45 29 20 15 n 9
2/3 820 205 91 51 33 23 17 13 10
.70 879 220 98 55 35 24 18 14 1
.75 976 244 108 61 39 27 20 15 12
.80 1090 273 121 68 m 30 22 17 13
.85 1230 308 137 77 49 34 25 19 15
.90 1417 354 157 89 57 39 29 22 17
.95 1717 429 191 107 69 48 35 27 21

.99 2352 588 261 147 94 65 48 37 29
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TABLE 74.7

N 10 DETECT W BY ¥ AT2a=.05,u=4,5,6
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us=4
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 308 77. 34 19 12 9 6 5 4
.50 642 160 Al 40 26 18 13 10 8
.60 792 198 88 50 32 22 16 12 10
2/3 911 228 101 57 36 25 19 4 1
.70 968 242 108 61 39 27 20 15 12
.75 1072 268 119 67 43 30 22 17 13
.80 1194 298 133 75 48 33 24 19 15
.85 1342 336 149 84 54 37 27 21 17
.90 1540 385 171 96 62 43 31 24 19
.95 1857 46k 206 116 74 52 38 29 23
.99 2524 631 280 158 101 70 52 39 31
u=5
w
Power .10 .20 .30 L4o .50 .60 .70 .80 .90
.25 34) 85 38 21 14 9 7 5 4
.50 699 175 78 ' 28 19 14 11 9
.60 859 215 95 54 34 2k 18 13 n
2/3 979 245 109 61 39 27 20 15 12
.70 1045 261 116 65 42 29 21 16 13
.75 1155 289 128 72 46 32 24 18 14
.80 1283 321 143 80 51 36 26 20 16
.85 1439 360 160 90 58 4o 29 22 18
.90 1647 412 183 103 66 46 34 26 20
.95 1978 494 220 124 79 55 40 31 24
.99 2673 668 297 167 107 74 55 42 33
u=6
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 370 92 4 23 15 10 8 6 5
.50 750 188 83 47 30 21 15 12 9
.60 919 230 102 57 37 25 19 4 1
2/3 044 261 116 65 42 29 21 16 13
.70 1114 279 124 70 45 31 23 17 14
.75 1229 307 137 77 9 34 25 19 15
.80 1362 341 151 85 54 38 28 21 17
.85 1526 381 170 95 61 42 31 24 1a
.90 1742 435 194 109 70 48 36 27 22
.95 2086 521 232 130 83 58 43 33 26
.99 2805 701 312 175 12 78 57 LT 35
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TABLE 7.4.8

N 1o DETECT W BY }¥* AT 2= .05,u=7,8,9

u - Z
w
Power 00 .20 .30 40 .50 .60 .70 .80 .90
.25 397 99 4y 25 16 11 8 6 5
.50 797 199 89 50 32 22 16 12 10
.60 973 243 108 61 39 27 20 15 12
2/3 1104 276 123 69 by 31 23 17 14
.70 1177 294 13 74 47 33 24 18 15
.75 1296 324 144 8) 52 36 26 20 16
.8 1435 359 159 90 57 40 29 22 18
.85 1604 401 178 100 64 45 33 25 20
.90 1828 457 203 14 73 51 37 29 23
.95 2184  sh6 243 136 87 61 4s 34 27
.99 2925 731 325 183 117 81 60 46 36
u=§8
w
Power 10 20 30 4o 50 60 70 80 90
.25 422 105 47 26 17 12 9 7 5
.50 840 210 93 53 34 23 17 13 10
.60 1024 256 114 64 4 28 21 16 13
2/3 1160 290 129 72 46 32 24 18 14
.70 1235 309 137 77 49 34 25 19 15
.75 1359 340 151 85 54 38 28 21 17
.80 1502 376 167 94 60 42 31 23 19
.85 1677 419 186 105 67 47 34 26 21
.90 1908 477 212 119 76 53 39 30 24
.95 2274 569 253 142 91 63 46 36 28
.99 3036 759 337 189 121 84 62 47 37
us=3
w
Power .10 .20 .30 ) .50 .60 .70 .80 .90
.25 445 1 49 28 18 12 9 7 5
.50 881 220 98 55 35 24 18 14 11
.60 1071 268 119 67 43 30 22 17 13
2/3 1212 303 135 76 48 34 25 19 15
.70 1289 322 143 81 52 36 26 20 16
.75 1417 354 157 89 57 39 29 22 17
.60 1565 391 174 98 63 43 32 24 19
.85 1745 436 194 109 70 48 36 27 22
.90 1983 496 220 124 79 55 40 31 24
.95 2359 590 262 147 94 66 48 37 29

.99 3139 785 349 196 126 87 64 49 39
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N 10 DETECT W BY X% AT a= .05, u= 10, 12, 16

TABLE 7.4.9
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u=10
W
Power .10 .20 .30 ko .50 .60 .70 .80 .90
.25 L6z 117 52 29 19 13 10 7 6
.50 919 230 102 57 37 26 19 14 11
.60 1115 279 124 60 LH n 23 17 14
2/3 1260 315 140 79 50 35 26 20 16
.70 1340 335 149 84 54 37 27 21 17
.75 1472 368 164 92 59 41 30 23 18
.80 1624 Loé 180 102 65 45 33 25 20
.85 1809 452 201 113 72 50 37 28 22
.90 2053 513 228 128 82 57 42 32 25
.95 2438 610 271 152 98 68 50 38 30
.99 3236 809 360 202 129 90 66 51 4o
u=12
W
Power .10 .20 .30 ko .50 .60 .70 .80 .90
.25 508 127 56 32 20 14 10 8 6
.50 990 248 110 62 4o 28 20 15 12
.60 1198 299 133 75 48 33 24 19 15
2/3 1351 338 150 84 54 38 28 21 17
.70 1435 359 159 90 57 40 29 22 18
.75 1574 393 175 98 63 Ly 32 25 19
.80 1734 433 193 108 69 48 35 27 2]
.85 1928 482 214 120 77 54 39 30 24
.90 2183 5ué 243 136 87 61 LT 34 27
.95 2586 646 287 162 103 72 53 4o 32
.99 3416 854 380 214 137 95 70 53 42
us=16
W
Power .10 .20 .30 .bo .50 .60 .70 .80 .90
.25 581 145 65 36 23 16 12 9 7
.50 16 279 124 70 45 3] 23 17 14
.60 1343 336 149 84 54 37 27 21 17
2/3 1511 378 168 94 60 42 31 24 19
.70 1603 401 178 100 64 45 33 25 20
.75 1753 438 195 110 70 49 36 27 22
.80 1927 482 214 120 77 54 39 30 24
.85 2137 534 237 134 85 59 by 33 26
.90 2412 603 268 151 96 67 k9 38 30
.95 2845 71 316 178 114 79 58 (1] 35
.99 3733 933 415 233 149 104 76 58 46
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TABLE 7.4.10

N 10 DETECT W BY x? AT a = .05, u = 20, 24

u = 20
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 646 161 72 40 26 18 13 10 8
.50 1226 307 136 77 49 34 25 19 15
.60 1471 368 163 92 59 4 30 23 18
2/3 1651 413 183 103 66 46 34 26 20
*70 1750 437 194 109 70 49 36 27 22
.75 1911 478 212 119 76 53 39 30 24
.80 2096 524 233 131 84 53 43 33 26
.85 2320 580 258 145 93 64 47 36 29
.90 2613 653 290 163 105 73 53 2] 32
.95 3072 768 341 192 123 85 63 48 38
.99 4010 1002 446 251 160 m 82 63 50
u= 24
w
Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 704 176 78 4y 28 20 14 1 9
.50 1326 331 147 83 53 37 27 21 16
.60 1587 397 176 99 63 by 32 25 20
2/3 1778 Ly 198 m 7 49 36 28 22
.70 1882 470 209 118 75 52 38 29 23
.75 2053 513 228 128 82 57 42 32 25
.80 2249 562 250 141 90 62 46 35 28
.85 2484 621 276 155 99 59 51 39 3
.90 2794 698 310 175 12 78 57 by 34
.95 3276 819 364 205 131 91 67 St 40

.99 4259 1065 473 266 170 18 87 67 53
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TABLE 7.4.11

N 10 DETECT W BY Y2 ATa=.10,u=1,2,3
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ue= |
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 91 23 10 6 4 3 2 1 1
.50 270 68 30 17 1" 8 6 4 3
.60 360 90 40 23 14 10 7 6 4
2/3 430 108 48 27 17 12 9 7 5
.70 470 118 52 29 19 13 10 7 6
.75 538 134 60 34 22 15 1" 8 7
.80 618 155 69 39 25 17 13 10 8
.85 719 180 80 4s 29 20 15 1 9
.90 856 214 95 53 34 24 17 13 11
.95 1082 271 120 68 43 30 22 17 13
.99 1577 394 175 99 63 by 32 25 19
us= 2
w
Power .10 .20 .30 L 4o .50 .60 .70 .80 .90
.25 127 32 14 8 5 4 3 2 2
.50 356 89 40 22 14 10 7 6 4
.60 465 116 52 29 19 13 9 7 6
2/3 550 137 61 34 22 15 11 9 7
.70 597 149 66 37 2h 17 12 9 7
.75 677 169 75 42 27 19 ih 11 8
.80 n 193 86 48 31 21 16 12 10
.85 888 222 99 55 36 25 18 14 1
.90 1046 261 16 65 42 29 21 16 13
.95 1302 326 145 81 52 36 27 20 16
.99 1856 464 206 116 74 52 38 29 23
u=3
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 155 39 17 10 6 4 3 2 2
.50 418 104 L6 26 17 12 9 7 5
.60 541 135 60 34 22 15 1 8 7
2/3 636 159 71 40 25 18 13 10 8
.70 688 172 76 43 28 19 4 H 8
.75 776 194 86 49 3 22 16 12 10
.80 880 220 98 55 35 24 18 14 11
.85 1008 252 12 63 40 28 21 16 12
.90 1180 295 131 74 47 33 24 18 15
.95 1457 364 162 91 58 LT} 30 23 18
.99 2061 513 228 128 82 57 42 32 25
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TABLE 7.4.12

N 10 DETECT W BY x> ATa =.10,u=4, 5,6

u=b
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 178 [ 20 11 7 5 4 3 2
.50 469 117 52 29 19 13 10 7 6
.60 604 151 67 38 24 17 12 9 7
2/3 706 176 78 ' 28 20 14 [k} 9
.70 763 191 85 48 31 21 16 12 9
.75 857 214 95 Sh 34 24 17 13 11
.80 968 242 108 61 39 27 20 15 12
.85 1105 276 123 69 ' 3 23 17 14
.90 1288 322 143 81 52 36 26 20 16
.95 1583 396 176 99 63 b4 32 25 20
.99 2209 552 245 138 88 61 45 35 27
u=5
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 198 50 22 12 8 3 4 3 2
.50 Sih 128 57 32 21 14 10 8 6
.60 658 164 73 41 26 18 13 10 8
2/3 766 192 85 48 31 2] 16 12 9
.70 827 207 92 52 33 23 17 13 10
.75 927 232 103 58 37 26 19 14 1
.80 1045 261 116 65 42 29 21 16 13
.85 1189 297 132 74 48 33 24 19 15
.90 1382 345 154 86 S5 38 28 22 17
.95 1691 423 188 106 68 47 35 26 21
.99 2344 586 260 147 94 65 48 37 29
u=6
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 216 54 24 14 9 6 4 3 3
.50 553 138 61 35 22 15 11 9 7
.60 706 176 78 44 28 20 14 11 9
2/3 820 205 91 Si 33 23 17 13 10
.70 884 221 98 55 35 25 18 14 1"
.75 990 247 10 62 40 27 20 15 12
.80 13 278 124 70 45 31 23 17 14
.85 1264 316 140 79 51 35 26 20 16
.90 1465 366 163 92 59 4 30 23 18
.95 1787 L1y 199 112 71 50 36 28 22

.99 2465 616 274 154 99 68 50 39 30
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TABLE 7.4.13

N 1o DETECT W BY ¥* AT2=.10,u=7,8,9
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u=7
w
Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 233 58 26 15 9 6 5 4 3
.50 590 147 66 37 24 16 12 9 7
.60 750 187 83 47 30 21 15 12 9
2/3 870 217 97 Sh 35 24 18 14 n
.70 936 234 104 59 37 26 19 15 12
.75 1047 262 116 65 42 29 21 16 13
.80 1175 294 131 73 47 33 24 18 15
.85 1332 333 148 83 53 37 27 21 16
.90 1541 385 171 96 62 43 31 24 19
.95 1875 469 208 nz 75 52 38 29 23
.99 2574 6ub 286 161 103 72 53 4o 32
u=8
w
Power .10 .20 .30 4o .50 .60 .70 .80 .90
.25 249 62 28 16 10 7 [ 4 3
.50 624 156 69 39 25 17 13 10 8
.60 791 198 88 49 32 22 16 12 10
2/3 916 229 102 57 37 25 19 14 1
.70 985 246 109 62 39 27 20 15 12
.75 1099 275 122 69 44 31 22 17 14
.80 1232 308 137 77 49 34 25 19 15
.85 1395 349 155 87 56 39 28 22 17
.90 1611 403 179 101 64 45 33 25 20
.95 1955 489 217 122 78 54 40 31 24
.99 2676 669 297 167 107 7h 55 42 33
u=3
w
Power .10 .20 .30 R .50 .60 .70 .80 .90
.25 263 66 29 16 1t 7 S 4 3
.50 655 164 73 ] 26 18 13 10 8
.60 829 207 92 52 33 23 17 13 10
2/3 958 240 106 60 38 27 20 15 12
.70 1030 258 114 6b 41 29 21 16 13
.75 1148 287 128 72 46 32 23 18 14
.80 1286 322 143 80 S1 36 26 20 16
.85 1454 364 162 91 58 40 30 23 18
.90 1677 419 186 105 67 47 34 26 21
.95 2031 508 226 127 81 56 41 32 25
.99 2770 692 308 173 111 77 57 43 34
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TABLE 7.4.14

N 10 DETECT W BY X2 AT 2 = .10, u =10, 12, 16

u=10
w
Power .10 .20 .30 ho .50 .60 .70 .80 .90
.25 277 69 31 17 1 8 6 4 3
.50 685 171 76 43 27 19 14 11 8
.60 865 216 96 54 35 24 18 14 11
2/3 939 250 111 62 40 28 20 16 12
.70 1073 268 119 67 43 30 22 17 13
.75 1195 299 133 75 48 33 24 19 15
.80 1337 334 149 84 53 37 27 21 17
.85 1510 377 168 94 60 42 31 24 19
.90 1739 435 193 109 70 48 35 27 21
.95 2102 525 234 131 84 58 43 33 26
.99 2858 715 318 179 (R 79 58 45 35
u= 12
w
Power .10 .20 .30 ko .50 .60 .70 .80 .90
.25 303 76 34 19 12 8 6 5 4
.50 740 185 82 46 30 21 15 12 9
.60 931 233 103 58 37 26 19 15 1
2/3 1073 268 119 67 43 30 22 17 13
.70 1152 288 128 72 46 32 24 18 14
.75 1281 320 142 80 51 36 26 20 16
.80 1430 358 159 89 57 4o 29 22 18
.85 1612 403 179 101 64 45 33 25 20
.90 1853 463 206 116 74 51 38 29 23
.95 2233 558 248 140 89 62 46 35 28
.99 3022 756 336 189 121 84 62 47 37
u=16
w
Power .10 .20 .30 Lho .50 .60 .70 .80 .90
.25 348 87 39 22 14 10 7 5 4
.50 838 210 93 52 34 23 17 13 10
.60 1049 262 117 66 LY 29 21 16 13
2/3 1205 301 134 75 48 33 25 19 15
.70 1291 323 143 81 52 36 26 20 16
.75 1432 358 159 90 57 4o 29 22 18
.80 1595 399 177 100 64 Ly 33 25 20
.85 1793 448 199 112 72 50 37 28 22
.90 2054 513 228 128 82 57 42 32 25
.95 2464 616 274 154 99 68 50 38 30

.99 3310 828 368 207 132 92 68 52 4
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TABLE 7.4.15

N 10 DETECT W BY x? AT 2= .10, u = 20, 24
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u= 20
w
Power .10 .20 .30 .ho .50 .60 .70 .80 .90
.25 388 97 43 24 16 11 8 6 5
.50 924 231 103 58 37 26 19 14 1
.60 1153 288 128 72 46 32 24 18 14
2/3 132) 330 147 83 53 37 27 21 16
.70 1414 353 157 88 57 39 29 22 17
.75 1565 391 174 98 63 43 32 24 19
.80 1740 435 193 109 70 48 36 27 21
.85 1951 488 217 122 78 [1] 4o 30 24
.90 2230 557 248 139 89 62 46 35 28
.95 2666 667 296 167 107 74 54 42 33
.99 3562 891 396 223 142 99 73 56 44
u = 24
w
Power .10 .20 .30 .40 .50 .60 .70 .80 .90
.25 425 106 47 27 17 12 9 7 5
.50 1002 250 1 63 40 28 20 16 12
.60 1246 n 138 78 50 35 25 19 15
2/3 1425 356 158 89 57 4o 29 22 18
.70 1524 381 169 95 61 42 3 24 19
.75 1685 421 187 105 67 47 34 26 21
.80 1870 468 208 117 75 52 38 29 23
.85 2094 524 233 i3] 84 58 43 33 26
.90 2388 597 265 149 96 66 49 37 29
.95 2848 712 316 178 114 79 58 b 35
.99 3788 947 421 237 152 105 77 59 47
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For typographic convenience, the 42 tables are arranged generally three
to a table number, by a levels and successively tabled u values within each
a level. The subtable for the relevant a, u combination is found and entered
with w and desired power. The same provisions for a, u, and w are made as
for the power tables in Section 7.3, as follows:

1. Significance Criterion, a. Table sets are provided for nondirectional a
of .01, .05, and .10, each set made up of tables for the values of u.

2. Degrees of Freedom, u. For each a level, tables are provided in succes-
sion for the 14 values of u =1 (1) 10, 12 (4) 24.

3. Effect Size, w. w is defined by formula (7.2.1) and interpreted as de-
scribed in Section 7.2. As before, 9 values of w are given: .10 (.10), .90.
For w values not tabled, find N by

N.lO
(7.4.1) = T00w?’
where N, is the necessary sample size for the given a, u, and desired power
at w = .10 (read from the table), and w is the nontabulated ES. Round to the
nearest integer. This formula may be used not only for w values in the range
covered by the table, but also for w less than .10 or greater than .90.

4. Desired Power. Provision is made for desired power values of .25,
.50, .60, 2/3, .70 (.05), .95, .99. See Section 2.4.1 for the basis for selection of
these values, and a discussion of the proposal that .80 serve as a convention
for desired power in the absence of another basis for a choice.

A caveat is necessary at this point. Some values of N are given in the
tables which are quite small (i.e., large w and a, small u and power). These
are not to be taken as a sanction for the use of x? tests where the null-hypo-
thetical frequencies (Py;N) become very small, since such tests are of question-
able validity. These small N values are given for the sake of completeness
and for other applications of x?, not illustrated here, which are not limited in
this way. For useful guidance with regard to sample size requirements in x?,
the reader is referred to the textbooks cited in Section 7.2.

7.4.1 Case 0: GoopNEss OF Fir. For Case 0 tests, one finds the subtable
for the significance criterion (a) and degrees of freedom (u) which obtain,
locates w and desired power, and finds N, the necessary total sample size.
For nontabulated w, use formula (7.4.1).
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Hlustrative Examples

7.6 Reconsider the problem posed in example 7.2, where a psycho-
metrician is testing by means of x? the conformity of a sample distribution of
test scores to the normal curve for m = 9 step intervals, the latter constituting
H,. He wished a lenient (a = .10) test of H,. Given that the population de-
parture is w = .20, it was found that power was .66 for N = 200. On the
assumption that the power is too small for a convincing ‘ demonstration” (see
Section 1.5.5) of normality, how many cases would he need for power to be .99 ?

Recalling that in such applications, u=m — 3 =6, his specification
summary is

a =10, u==6, w =20, power = .99

He uses the last subtable of Table 7.4.12 for a =.10, u =6, column

= .20, and row power = .99, and finds N = 616. With this sample size, he
runs a b risk of only 1 —~.99 = .0l that, if the departure from normality
is w = .20, he will fail to detect it at a = .]0.

If this sample size is a great strain on his resources, he might consider
settling for power = .95 (hence b = ,05), where, from the same subtable, he
finds the necessary N to be 447,

7.7 Consider example 7.1 again, now from the point of view of sample
size decision as part of experimental planning. The market researcher wishes
to detect a departure in the population from equal preference among m =4
package designs by means of a x? test with u = m — | = 3, using an a = .05
significance criterion. The alternate hypothesis which was posited resulted in
w = .289. From the power tables, it was found that, using N = 100, power
was .67. If the conventional .80 power were desired, what N would be
required ?

a = .05, u=23, w = 289, power = .80.

Since w =.289 is not tabled, the use of formula (7.4.1) is required.
For N ;,, the sample size needed to detect w = .10 with power = .80 for
= .05 and u =3, we use the third subtable of Table 7.4.6 (for a = .05,
u=3) for column w=.10 and row power = .80, and find N ,, =1090.
Substituting in formula (7.4.1),

1090

= —100(.2892) = 130.5.

Thus, 131 repondents will lead to a .80 probability of rejecting the null
hypothesis of equal preference at a = .05, given that the population departure
is indexed by w = .289.
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7.4.2 CasE 1: CONTINGENCY TEST. As in Case 0, one finds the necessary
total sample size N in Case ! by finding the subtable for the significance
criterion (a) and degrees of freedom [u = (k — 1)(r — 1)] which obtain, and
seeking w and the power desired. Formula (7.4.1) is again used for non-
tabulated w.

Ilustrative Examples

7.8 In example 7.5, a community psychiatry research team was studying
the relationship between religious-ethnic group membership (r =5) and
diagnosis (k = 6) for child clinic referrals. To detect w = .10 at the a = .01
significance level by a x? contingency test with u = (5 — 1)(6 — 1) = 20, it
was found that for N = 400, power was only .05. What sample size is required
for conventional desired power of .80? The specification summary is

a=.0l, u =20, w =10, power = .80.

The first subtable for Table 7.4.5 (for a = .01, u = 20) for column w = .10
and row power = .80, is used to determine N = 2816.

Later in example 7.5, the same problem was considered using the less
stringent a = .10 significance criterion. To find N for power of .80, in the first
subtable of Table 7.4.15 (for a = .10, u = 20) locate column w = .10 and row
power = .80, the result is N = 1740, still a very large N. In contrast, if a
medium ES (w = .30) could have been posited, power = .80 at a = .01 would
be attained with N = 313 (first subtable of Table 7.4.5).

7.9 Reconsider example 7.3, where a political scientist was studying the
relationship between sex (r = 2) and political preference (k = 3). Assuming
the degree of relationship given by the alternate-hypothetical P,; of Table
7.2.1, and the null-hypothetical or no association P,; of Table 7.2.2, w was
found to equal .346. For the 2 contingency test withu =2 - 1)(3 - 1) =2,
at the a = .01 level with N = 140 cases, power was found to be .55. Assume
now that power is desired to be .99, so that b = .01 = a, i.e., that the Type I
and Type II risks are equal and very small. What sample size is needed?

a=.0l, u=2, w = .346, power = .99.

Since w = ,346 is not tabulated, recourse will be taken to formula (7.4.1).
To find the N needed to detect w = .346 for a = .01, u = 2, and power = .99,
the second subtable of Table 7.4.1 (for a = .01, u =2) is used for column
w = .10 and row power =.99, and N ,, = 2742 is found. Substituting in
formula (7.4.1),

2742

N=—r—
100(.346%)

=229.0.
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Thus 229 respondents are needed to yield a = b = .01 risks in a contin-
gency test of this 2 x 3 table, given an ES of w = .346.
Maintaining the a = brequirement, but at .05, what N would be necessary ?

a =.05, u=2, w =346, power = .95.

To find N ,,, the second subtable of Table 7.4.6 (for a = .05, u=2) is
used for column w = .10 and row power = .95, and 1544 is found. Substituting
in formula (7.4.1),

1544

= W = 1290.

The reduction in stringency from a = b = .01 to a = b = .05 results in a
reduction in sample size demand from 229 to 129.



CHAPTER 8

The Analysis of
Variance

8.1 INTRODUCTION AND USE

This chapter deals with an entire class of problems in tests of the equality
of a set of k population means, where k equals two or more. The methods
of this chapter can also be used for tests of the equality of sets of mean
differences, as in tests of interactions. The test statistic is the F ratio, and
the model is that of the test on means of “fixed effect ”” variates in the analysis
of variance and covariance (Edwards, 1972; Winer, 1971; Hays, 1981). In its
simplest form, it is a * one-way’’ (“ randomized groups’’) design with equal
n in each sample. The power and sample size tables in this chapter are de-
signed for greatest simplicity in these applications (Case 0). More complicated
designs involving fixed effects can also be power-analyzed with the help of
these tables, as will be described below. In all cases, however, the null
hypothesis states that the means or mean difference of specified (“‘fixed”)
populations are equal, or, equivalently, that ‘effects” defined as linear
functions of means are all zero. Section 8.3.5 shows how power analysis
on various tests of means, which will have been described in the context of
the analysis of variance, can be performed in analogous analysis of co-
variance designs.

The tests here can be viewed as extensions of the tests of Chapter 2,
where only two fixed population means are involved. Or, conversely, the
t test on two means is, in fact, merely a special case of the F test on k means
where k = 2, as is detailed in most statistics textbooks. As such, the same
formal model assumptions are made: that the values in the k populations
are normally distributed and have the same variance, o2. It is, however, well

273
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established that moderate violations of these assumptions have generally
negligible effects on the validity of null hypothesis tests and power analyses.
For evidence on the issue of the ““robustness™ of F tests with regard to both
Type I and Type II error in the face of assumption violation, see Scheffé
(1959, Chapter 10), and for a less technical summary, Cohen (1965, pp.
114-116)." Note that no assumption is made about the distribution of the k
population means for fixed effects.

The F test on means for fixed effects can occur under a variety of circum-
stances for which the tables in this chapter may be used:

Case 0. One-way analysis of variance with n’s equal. This is the simplest
design, where without other considerations, one compares k means based
on samples of equal size.

Case 1. One-way analysis of variance with unequal n’s.

Case 2. Tests of main effects in factorial and other complex designs.

Case 3. Tests of interactions in factorial designs.

Analysis of Covariance. Each of the above cases has its analog in the
analysis of covariance.

8.2 THE EfrecT Size INDEX: f

Our need for a pure number to index the degree of departure from no
effect (i.e., k equal population means) is here satisfied in a way related to
the solution in Chapter 2, where there were only two means. Recall that the
difference in means was “standardized” by dividing it by the (common)
within-population standard deviation, i.e.,

2.2.1) d=""™M

o

.

Since both numerator and denominator are expressed in the (frequently
arbitrary) original unit of measurement, their ratio, d, is a pure or dimen-
sionless number.

With k>2 means such as we deal with here, we represent the spread
of the means not by their range as above (except secondarily, see below),
but by a quantity formally like a standard deviation, again dividing by the
common standard deviation of the populations involved. It is thus

! Budescu and Applebaum (1981) have shown that when the F test is applied to samples
from binomial and Poisson population distributions, the use of variance stabilizing transfor-
mations results in little change in significance level or, in most cases, power. Budescu (1982) re-
ported that for normally distributed populations with heterogeneous variances, substituting for
o in the denominator of Equation (8.2.1) the square root of the n;-weighted population variance
results in good power approximations.

Also, Koele (1982) shows how to calculate power for random and mixed models, and dem-
onstrates that they have much lower power than that for fixed effects. Barcikowski (1973) pro-
vides tables for optimum sample size/number of levels for the random effects model.
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(8.2.1) f="2,

where, for equal n (Cases 0 and 2),

(8.2.2) 0, =

the standard deviation of the population means expressed in original scale
units. The values in the parentheses are the departures of the population
means (m;) from the mean of the combined populations or the mean of
the means for equal sample sizes (m), and are sometimes called the (fixed)
“effects”; the o’s of formulas (8.2.1) and (2.2.1) are the same, the standard
deviation within the populations, also expressed in original scale units. f is
thus also a pure number, the standard deviation of the standardized means.
That is to say that if all the values in the combined populations were to be
converted into z ““ standard >’ scores (Hays, 1973, p. 250f), using the within-
population standard deviation, fis the standard deviation of these k mean z
scores.

f can take on values between zero, when the population means are all
equal (or the effects are all zero), and an indefinitely large number as o,
increases relative to o.

The structure of F ratio tests on means, hence the index f, is *“ naturally”
nondirectional (as was the index w of the preceding chapter). Only when
there are two population means are there only two directions in which
discrepancies between null and alternative hypotheses can occur. With
k > 2 means, departures can occur in many *‘directions.” The result of all
these departures from the null are included in the upper tail rejection region,
and, as normally used, F tests do not discriminate among these and are
therefore nondirectional.

f is related to an index ¢ used in standard treatments of power,? nomo-
graphs for which are widely reprinted in statistical testbooks (e.g., Winer,
1971; Scheffé, 1959) and books of tables (Owen, 1962). ¢ standardizes by the
standard error of the sample mean and is thus (in part) a function of the size
of each sample, n, while f is solely a descriptor of the population. Their rela-
tionship is given by

é
2. f=—,
(8.2.3) v
or

(8.2.9) ¢=fVn

2 This use of the symbol ¢ is not to be confused with its other uses in the text, as the
fourfold-point product-moment correlation in Chapter 7 or as the arcsine transformation
of a proportion in Chapter 6.
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The above description has, for the sake of simplicity, proceeded on the
assumption that the sizes of the k samples are all the same. No change in
the basic conception of f takes place when we use it to index the effect
size for tests on means of samples of unequal size (Case 1) or as an ES
measure for tests on interactions (Case 3). In these applications, the defini-
tion of f as the “‘standard deviation of standardized means™ requires some
further elaboration, which is left to the sections concerned with these cases.

The remainder of this section provides systems for the translation of
f into (a) a range measure, d, and (b) correlation ratio and variance propor-
tion measures, and offers operational definitions of ‘*small,” *‘medium,”
and ‘‘large™ ES. Here, too, the exposition proceeds on the assumption of
equaln per sample and is appropriate to the F test on means (Cases 0 and 2).
In later discussion of Cases | and 3, qualifications will be offered, as necessary.

8.2.1 f AND THE STANDARDIZED RANGE OF POPULATION MEANS, d. Al-
though our primary ES index is f, the standard deviation of the standardized
k population means, it may facilitate the use and understanding of this
index to translate it to and from d, the range of standardized means, i.c., the
distance between the smallest and largest of the k means:

(8.2.5) d = Dmax” Mimin

g

’

where m_,, = the largest of the k means,
m,,;, = the smallest of the k means, and
o =the (common) standard deviation within the populations
(as before).

Notice that in the case of k = 2 means (n equal), the d of (8.2.5.) becomes
the d used as the ES index for the t test of Chapter 2. The relationship be-
tween f and d for 2 means is simply

(8.2.6) f=13d,

i.e., the standard deviation of two values is simply half their difference,
and therefore

(8.2.7) d =2f.

As the number of means increases beyond two, the relationship between
their standard deviation (f) and their range (d) depends upon exactly how
the means are dispersed over their range. With k means, two (the largest and
smallest) define d, but then the remaining k — 2 may fall variously over the
d interval; thus, f is not uniquely determined without further specification
of the pattern of separation of the means. We will identify three patterns
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and describe the relationship each one has to f, which is also, in general, a
function of the number of means. The patterns are:

1. Minimum variability: one mean at each end of d, the remaining
k — 2 means all at the midpoint.

2. Intermediate variability: the k means equally spaced over d.

3. Maximum variability: the means all at the end points of d.

For each of these patterns, there is a fixed relationship between f and
d for any given number of means, k.

Pattern |. For any given range of means, d, the minimum standard
deviation, f,, results when the remaining k — 2 means are concentrated at
the mean of the means (0 when expressed in standard units), i.e., half-way
between the largest and smallest. For Pattern 1,

(8.2.8) f.=d !
- TNV 2k
gives the value of f for k means when the range d is specified. For example,

7 (= k) means dispersed in Pattern | would have the (standardized) values
—4d,0,0,0,0, 0, + 4d. Their standard deviation would be

1 —
fi=d \/T‘/) = V071429 = .267d,
slightly more than one-quarter of the range. Thus, a set of 7 population
means spanning half a within-population standard deviation would have
f=.267(.5)=.13.

The above gives f as a function of d. The reciprocal relationship is
required to determine what value of the range is implied by any given (e.g.,
tabled) value of f when Pattern | holds, and is

(8.2.9) d, = fV2k.

For example, for the 7 (= k) means dispersed in Pattern 1 above, their range
would be

d, =fV2(7)=fV14 =3.74f.

A value of f=.50 for these means would thus imply a standardized range
of 3.74(.50) = 1.87.

For the convenience of the user of this handbook, Table 8.2.1 gives the
constants (c and b) relating f to d for thijs pattern and the others discussed
below for k = 2(1) 16, 25, covering the power and sample size tables provided.
Their use is illustrated later in the chapter.
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Table 8.2.1
Constants for Transforming d to fi and f to di for Patternsj=1,2,3

fi = cid di = bif
k c, [N c3 b, b, b,
2 .500 .500 .500 2.00 2,00 2.00
3 .408 408 Y 245 245 212
4 .354 373 500 283 2.68 2.00
5 316 .354 490 3.16 2.83 204
6 .289 342 .500 3.46 293 2.00
7 .267 333 .495 3.74 3.00 2.02
8 .250 327 .500 4.00 3.06 2.00
9 .236 .323 .497 424 3.10 2.00
10 224 319 .500 447 313 2.00
1 213 316 .498 4.69 3.16 201
12 .204 314 .500 4.90 3.18 2.00
13 .196 312 .499 5.10 3.2 2.01
14 .189 .310 .500 5.29 3.22 2.00
15 .183 .309 .499 5.48 3.24 2.00
16 77 307 500 5.66 325 2.00
25 .141 .300 .500 1.07 3.01 2.00

Pattern 2. A pattern of medium variability results when the k means
are equally spaced over the range, and therefore at intervals of d/(k — 1).
For Pattern 2, the f which results from any given range d is

d | k+1
2. f,== [— .
(8.2.10) 2 2\/3(k—1)
For example, for k=7,

d [7+1 d [8
f== [T~ 2 [ = 333d
z 2\/3(7—1) 2\/18 3334,

i.e., 7 equally spaced means would have the values ~ 4d, — id, — }d, 0, + }d,
+14d, and + }d, and a standard deviation equal to one-third of their range.



8.2 THE EFFECT SIZE INDEX: f 279

Note that this value for the same k is larger than f, =.267d for Pattern 1.
For a range of half a within-population standard deviation, f, =.333(.5) =
.17 (while comparably, f, =.13).

The reciprocal relationship for determining the range implied by a
tabled (or any other) value of f for Pattern 2 is

. [3k=T)
(8.2.11) d2_2f\/ T

For 7 means in Pattern 2, their range would be

3(7-1) 18
d, =2f =2f [— =3f
2 2\/7+1 8

Thus, a value of f=.50 for these equally spaced means would imply a
standardized range of 3(.50) = 1.50).

Table 8.2.1 gives the relevant constants (b, and ¢,) for varying k, making
the solution of formulas (8.2.10) and (8.2.11) generally unnecessary.

Pattern 3. It is demonstrable and intuitively evident that for any given
range the dispersion which yields the maximum standard deviation has the
k means falling at both extremes of the range. When k is even, 3k fall at
— 3d and the other 3k fall at + 3d; when k is odd, (k + 1)/2 of the means
fall at either end and the (k — 1)/2 remaining means at the other. With this
pattern, for all even numbers of means,

(8.2.12) f, = 1d.

When k is odd, and there is thus one more mean at one extreme than at
the other,
vk -1

f. =
(8.2.13) y=d—p

For example, for k =7 means in Pattern 3 (4 means at either — 4d or
+ 3d, 3 means at the other), their standard deviation is

VP11 Vas
fy=d ) d 14_.495d.

Note that f, is larger (for k=7) than f,=.333d and f, =.267d. If,
as before, we posit a range of half a within-population standard deviation,
fy = .495(.5) = .25.

The reciprocal relationship used to determine the range implied by a
given value of f when k is even is simply

(8.2.14) d, =2f,
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and when k is odd,

2k
8.2.15 dy=f——
(8215 =t

For the running example of k = 7 means, in Pattern 3 their range would
be

so that if we posit, as before, a value of f =50, for these 7 extremely placed
means, dy =2.02(.5) =1.01, i.e., slightly more than a within-population
standard deviation.

As can be seen from Table 8.2.1, there is not as much variability as a
function of k in the relationship between f and d for Pattern 3 as for the

others. f; is either (for k even) exactly or (for k odd) approximately 3d, the
minimum value being f; = .471d at k =3.

This section has described and tabled the relationship between the
primary ES index for the F test, f, the standard deviation of standardized
means, and d, the standardized range of means, for three patterns of dis-
tribution of the k means. This makes it possible to use d as an alternate
index of effect size, or equivalently, to determine the d implied by tabled
or other values of f, and f implied by specified values of d. (The use of d
will be illustrated in the problems of Sections 8.3 and 8.4) The reader is

reminded that these relationships hold only for equal sample sizes (Cases
0 and 2).

8.2.2 f, THE CORRELATION RATIO, AND PROPORTION OF VARIANCE.
Expressing f in terms of d provides one useful perspective on the appraisal
of effect size with multiple means. Another frame of reference in which to
understand f is described in this section, namely, in terms of correlation
between population membership and the dependent variable, and in the
related terms of the proportion of the total variance (PV) of the k populations
combined which is accounted for by population membership.

Just as the d of this chapter is a generalization to k populations of the d
used as an ES index for t tests on two means of Chapter 2, so is n (eta),
the correlation ratio, a similar generalization of the Pearson r, and 3? a
generalization of r?, the proportion of variance (PV) accounted for by
population membership.

To understand 52, consider the set of k populations, all of the same
variance, o2, but each with its own mean, m;. The variance of the means
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0,2 is some quantity which differs from zero when the k means are not all
equal. If we square both sides of formula (8.2.1), we note that

2 Oen’
(8.2.16) fé= s 20
is the ratio of the variance of the means to the variance of the values within
the populations.

Now consider that the populations are combined into a single *“super-
population™ whose mean is m (the mean of the population m;’s when the
populations are considered equally numerous; otherwise, their mean when
eachm, is weighted by its population size). The variance of the ‘““superpopula-
tion,” or total variance (o.2), is larger than the within-population variance
because it is augmented by the variance of the constituent population means.
It is simply the sum of these two variances:

(8.2.17) ol =0 +0,>%

We now define 2 as the proportion of the total superpopulation variance
made up by the variance of the population means:

(8.2.18) == .

The combination of this formula with formula (8.2.16) and some simple
algebraic manipulation yields

fz
2_ _
(8.2.19) "=
and
7
(8.2.20) n= \/_f_.
1+ f2

Thus, a simple function of f? yields »%, a measure of dispersion of the
m; and hence of the implication of difference in population membership to
the overall variability. When the population means are all equal, o,,% and
hence f? is zero, and »* = 0, indicating that none of the total variance is due
to difference in population membership. As formula (8.2.18) makes clear,
when all the cases in each population have the same value, o? =0, and all
of the total variance is produced by the variance of the means, so that
n* = 1.00. Table 8.2.2 provides 5? and 7 values as a function of f.

Note that 52, like all measures of ES, describes a population state of
affairs. It can also be computed on samples and its population value esti-
mated therefrom. (See examples 8.17 and 8.19.) Depending on the basis
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of the estimation, the estimate is variously called »%, ¢* (Peters and Van
Voorhis, 1940, pp. 312-325, 353-357; Cureton, 1966, pp. 605-607), or esti-
mated w? (Hays, 1981, pp. 349-366). In general, n? is presented in applied
statistics textbooks only in connection with its use in the appraisal of the
curvilinear regression of Y on X, where the populations are defined by equal
segments along the X variable, and g,,? is the variance of the X-segments’ Y
means. Although this is a useful application of %2, it is a rather limited special
case. For the broader view, see Hays (1973) (under w?), Cohen (1965, pp.
104-105), Cohen & Cohen (1983, pp. 196-198) and Friedman (1968, 1982).

n? is literally a generalization of the (point-biserial) r?> of Chapter 2
which gives the PV for the case where there are k =2 populations. It is pos-
sible to express the relationship between the dependent variable Y and
population membership X as a simple (i.e., zero-order) product moment r2,
when X is restricted to two possibilities, i.e., membership in A (X =0) or
membership in B (X = 1) (see Chapter 2). When we generalize X to represent
a nominal scale of k possible alternative population memberships, r?> no
longer suffices, and the more general % is used. It is interesting to note that
if k-population membership is rendered as a set of independent variables
(say, as dichotomous *‘dummy” variables), the simple r? generalizes to
multiple R?, which is demonstrably equal to % (see Section 9.2.1).

We have interpreted »* as the PV associated with alternative member-
ship in populations. A mathematically equivalent description of 5> proceeds
by the following contrast: Assume that we “predict” all the members of
our populations as having the same Y value, the m of our superpopulation.
The gross error of this ‘ prediction” can be appraised by finding for each
subject the discrepancy between his value and m, squaring this value, and
adding such squared values over all subjects. Call this E,. Another *predic-
tion can be made by assigning to each subject the mean of his population,
m;. Again, we determine the discrepancy between his actual value and this
“prediction” (m;), square and total over all subjects from all populations.
Call this E,. To the extent to which the k population means are spread,
E, will be smaller than E,.

8.2.21) =

i.e., the proportionate amount by which errors are reduced by using own
population mean (m;) rather than superpopulation mean (m) as a basis for
“prediction.” Or, we can view these as alternative means of characterizing
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the members of our populations, and 5? indexes the degree of increased
incisiveness that results from using the m; rather thanm.

The discussion has thus far proceeded with 5%, the PV measure. For pur-
poses of morale, and to offer a scale which is comparable to that of the fa-
miliar product moment r, we can index ES by means of 7, the correlation ra-
tio, in addition to or instead of the lower value yielded by 5%. As can be seen
from taking the square root in formula (8.2.18),, 7 is the ratio of the stand-
ard deviation of population means to the standard deviation of the values in
the superpopulation, i.e., the combined populations. Since standard devia-

Table 8.2.2

n? and n as a Function of f; f as a Function of n? and ¢

f n? n n? f n f
.05 0025 .050 .01 101 .05 .050
.10 .0099 100 .02 143 .10 101
.15 .0220 148 .03 176 15 152
.20 .0385 .196 04 204 .20 .204
25 .0588 243 .05 .229 .25 .258
.30 .0826 .287 .06 253 .30 314
35 1091 330 .07 274 .35 374
.40 .1379 3N 08 .295 .40 436
.45 .1684 410 .09 314 45 504
50  .2000 .447 .10 333 .50 577
55  .2322 482 15 .420 .55 .659
.60 2647 .514 .20 500 .60 .750
.65 2970 545 25 577 .65 855
.70 3289 573 .30 .655 .70 .980
.75 .3600 .600 .40 .816 .75 1.134
80 .3%02 625 .50 1.000 .80 1.333
.85 4194 .648 .60 1.225 .85 1.614
.90 4475 .669 .70 1.528 90 2.065
95 4744 689 .80 2.000 95 3.042

1.00 .5000 .707 90 3.000 1.00 -




284 8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE

tions are as respectable as variances, no special apology is required in work-
ing with 5 rather than 5.

In formulas (8.2.19) and (8.2.20), we have n? and 5 as functions of f.
This is useful for assessing the implication of a given value of f (in terms
of which our tables are organized) to PV or correlation. The reciprocal
relation, f as a function of 7, is also useful when the investigator, thinking
in PV or correlational terms, needs to determine the f they imply, e.g.,
in order to use the tables:

-
(8.2.22) f= \/ 1

1—-72

For the convenience of the user of this handbook, this formula is solved
for various values of 5 and % and the results presented in Table 8.2.2.

Table 8.2.2 deserves a moment’s attention. As discussed in the next
section and in Section 11.1 (and, indeed, as noted in previous chapters, par-
ticularly Chapter 3), effect sizes in behavioral science are generally small,
and, in terms of f, will generally be found in the .00-.40 range. With f small, f*
is smaller, and 1 + f2, the denominator of 72 [formula (8.2.19)] is only
slightly greater than one. The result is that for small values of f such as are
typically encountered, 5 is approximately equal to f, being only slightly small-
er, and therefore %2 is similarly only slightly smaller than f2. Thus, in the
range of our primary interest, f provides in itself an approximate correlation
measure, and {2 an approximate PV measure. For very large effect sizes, say f
> .40, f and n diverge too much for this rough and ready approximation, and
{2 and 52 even more so.

8.2.3 “SMALL,” “MEDIUM,” AND “LARGE” f VALUES. It has already
been suggested that values of f as large as .50 are not common in behavioral
science, thus providing a prelude to the work of this section. Again, as in
previous chapters, we take on the task of helping the user of this hand-
book to achieve a workable frame of reference for the ES index or measure
of the alternate-hypothetical state of affairs, in this case f.

The optimal procedure for setting f in a given investigation is that the
investigator, drawing on previous findings and theory in that area and
his own scientific judgment, specify the k means and o he expects and com-
pute the resulting f from these values by means of formulas (8.2.1) and
(8.2.2). If this demand for specification is too strong, he may specify the
range of means, d, from formula (8.2.5), choose one of the patterns of mean
dispersion of Section 8.2.1, and use Table 8.2.1 to determine the implied
value of f. On the same footing as this procedure, which may be used instead
of or in conjunction with it, is positing the expected results in terms of the
proportion of total variance associated with membership in the k populations,
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i.e., 72. Formula (8.2.22) and Table 8.2.2 then provide the translation from
n? to f. (In the case of f for interactions, see Section 8.3.4.)

All the above procedures are characterized by their use of magnitudes
selected by the investigator to represent the situation of the specific research
he is planning. When experience with a given research area or variable
is insufficient to formulate alternative hypotheses as ‘‘strong”™ as these
procedures demand, and to serve as a set of conventions or operational
definitions, we define specific values of f for *“small,” “ medium,”” and *“large”
effects. The reader is referred to Sections 1.4 and 2.2.3 for review of the
considerations leading to the setting of ES conventions, and the advantages
and disadvantages inherent in them. Briefly, we note here that these qualita-
tive adjectives are relative, and, being general, may not be reasonably des-
criptive in any specific area. Thus, what a sociologist may consider a small
effect size may well be appraised as medium by a clinical psychologist.

It must be reiterated here that however problematic the setting of an
ES, it is a task which simply cannot be shirked. The investigator who insists
that he has absolutely no way of knowing how large an ES to posit fails to
appreciate that this necessarily means that he has no rational basis for
deciding whether he needs to make ten observations or ten thousand.

Before presenting the operational definitions for f, a word about their
consistency. They are fully consistent with the definitions of Chapter 2 for
k =2 populations in terms of d, which, as noted, is simply 2f. They are
also generally consistent with the other ES indices which can be translated
into PV measures (see Sections 3.2.2 and 6.2.1).

We continue, for the present, to conceive of the populations as being
sampled with equal n’s.

SMALL EFFECT SIZE: f=.10. We define a small effect as a standard
deviation of k population means one-tenth as large as the standard deviation
of the observations within the populations. For k = 2 populations, this defi-
nition is exactly equivalent to the comparable definition of a small difference,
d =2(.10) = .20 of Chapter 2 [formula (8.2.7) and, more generally, Table
8.2.1]. As k increases, a given f implies a greater range for Patterns 1 and 2.
Thus, with k = 6 means, one at each end of the range and the remaining 4
at the middle (Pattern 1), an f of .10 implies a range d, of 3.46(.10) = .35,
while equal spacing (Pattern 2) implies a range d, of 2.93(.10) = .29. (The
constants 3.46 and 2.93 are respectively the b, and b, values at k=6 in
Table 8.2.1.) When f=.10 occurs with the extreme Pattern 3, the d, is at
(for k even) or slightly above (for k odd) 2f = .20 (Table 8.2.1). Thus, depend-
ing on k and the pattern of the means over the range, a small effect implies
d at least .20, and, with large k disposed in Pattern 1, a small effect can
be expressed in a d, of the order of .50 or larger (for example, see Table
8.2.1 in column b, for k> 12).
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When expressed in correlation and PV terms, the f=.10 definition of
a small effect is fully consistent with the definitions of Chapters 2, 3, and 6
(various forms of product moment r). An f=_10 is equivalent to  =.100
and 5% =.0099, about 1%, of the total superpopulation variance accounted
for by group membership. As already noted (particularly in Section 2.2.3),
scientifically important (or at least meaningful) effects may be of this modest
order of magnitude. The investigator who is inclined to disregard ES criteria
for effects this small on the grounds that he would never be seeking to
establish such small effects needs to be reminded that he is likely to be think-
ing in terms of theoretical constructs, which are implicitly measured without
error. Any source of irrelevant variance in his measures (psychometric
unreliability, dirty test tubes, lack of experimental control, or whatever)
will serve to reduce his effect sizes as measured, so that what would be a
medium or even large effect if one could use ‘“‘true” measures may be attenu-
ated to a small effect in practice (See Section 11.3 and Cohen, 1962, p. 151).

MEDIUM EFFECT S1ZE: f=.25. A standard deviation of k population
means one-quarter as large as the standard deviation of the observa-
tions within the populations, is the operational definition of a medium effect
size. With k = 2 populations, this accords with the d = 2(.25) = .50 definition
of a medium difference between two means of Chapter 2, and this is a
minimum value for the range over k means. With increasing k for either mini-
mum (Pattern 1) or intermediate (Pattern 2) variability, the range implied
by f = .25 increases from d = .50. For example, with k = 7 population means,
if k —2 =35 of them are at the middle of the range and the remaining two
at the endpoints of the range (Pattern 1), a medium d, = 3.74(.25) == .94
(Table 8.2.1 gives b, = 3.74 at k = 7). Thus, medium effect size for 7 means
disposed in Pattern 1 implies a range of means of almost one standard devia-
tion. If the seven means are spaced equally over the range (Pattern 2), a
medium d, =3.00(.25) =.75 (Table 8.2.1 gives b, =3.00 for k=7), i.e.,
a span of means of three-quarters of a within-population standard deviation.
As a concrete example of this, consider the 1Q’s of seven populations made
up of certain occupational groups, e.g., house painters, chauffeurs, auto
mechanics, carpenters, butchers, riveters, and linemen. Assume a within-
population standard deviation for IQ of 12 (=¢) and that their IQ means are
equally spaced. Now, assume a medium ES, hence f=.25. (Expressed in
IQ units, this would mean that the standard deviation of the seven IQ
means would be fo=.25(12)=3.) The range of these means would be
d, =.75 of the within-population o. Expressed in units of IQ, this would
be d,o0 =.75(12) =9 IQ points, say from 98 to 107. (These values are about
right [Berelson & Steiner, 1964, pp. 223-224], but of course any seven equally
spaced values whose range is 9 would satisfy the criterion of a medium ES
as defined here.)
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Viewed from the perspective of correlation and proportion of variance
accounted for, we note that f=.25 implies a correlation ratio (n) of .243
and a PV (here n?) of .0588, i.e., not quite 6%, of the total variance of the
combined populations accounted for by population membership (Table
8.2.2). Again, note that this is identical with the correlational-PV criterion
of a medium difference between two means (Section 2.2), necessarily so
since in this limiting case n =r (point biserial). It is also consistent with the
definition of a medium difference between two proportions, when expressed
as an r (fourfold point or ¢ correlation), which equals .238 to .248 when,
the proportions are in the interval .20 to .80 (Section 6.2). It is, however
smaller than the criterion for a medium ES in hypotheses concerning the
Pearson r (Section 3.2), where the medium r is .30 (and r? = .09).

LARGE EFFECT SIZE: f=.40. Our operational definition (or proposed
convention) of a large spread of k means is that the standard deviation of
the means be .40 of the standard deviation of the observations within
the populations. This is consistent with the criterion of a large difference
between two means of d = 2(.40) = .80 (Section 2.2.2) and is the minimum
range (since k = 2) which can be called large by this definition. With the
means disposed in Pattern 1, a large span for 6 means isd, = 3.46(.40) = 1.38,
fcr 7 means d, = 3.74(.40) = 1.50, for 8 means d, = 4.00(.40) = 1.60, etc.,
i.e., about 14 standard deviations (b, constants from Table 8.2.1). For equally
spaced means (Pattern 2), this implies for 6 means, a range of d, = 2.93(.40) =
1.17, for 7 means a range of d, = 3.00(.40) = 1.20, and for 8 means a range
of d, = 3.06(.40) = 1.22, etc., i.e., about 14 standard deviations (b, constants
from Table 8.2.1). We use a similar illustration to that given for medium
effect size, where for k =7 occupation groups with equally spaced popula-
tion mean IQs, we found the range d, =b,f = 3.00(.25) = .75, or, expressed
in IQ units, .75¢ =.75(12) = 9.0. Consider now a new set of 7 occupations:
house painter, chauffeur, upholsterer, mechanic, lathe operator, machinist,
laboratory assistant. Their mean IQ’s, to have a large range, would need to
cover uniformly the interval d, =b,f =3.00(.40) = 1.20, or expressed in
IQ units, again assuming that ¢ =12, 1.200 = 1.20(12) = 14.4, say from 98
to 112 (Berelson & Steiner, 1964, pp. 223-224). Again note that any set of 7
occupation groups with IQ means spanning the same range would represent
a large effect as defined here, wherever that range occurs.

In terms of correlation and proportion of variance accounted for, f = .40
implies a correlation ratio (1) of .371 and a PV (here 3?) of .1379, somewhat
more than twice the PV for a medium effect ( = .0588). Note the neces-
sary consistency with the definition in correlation-PV terms of a large
difference between two means (7 = point biserial r; see Section 2.2). This
definition is also fully consistent with the definition of a large difference
between two proportions, when expressed as an r (fourfold point or ¢
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correlation), which equals .37-.39 when the proportions fall between .20 and
.80 (Section 6.2). However, it is smaller than the criterion for a large ES in
hypotheses concerning the Pearson r, where large r is defined as .50, r’ =
PV = .25 (Section 3.2).

8.3 POWER TABLES

The power tables for this section are given on pages 289-354; the text
follows on page 355.



8.3 POWER TABLES

Table 8.3.1

Power of F testata=.01,u=1

) Fe .05 .10 .15 .20 .25 .30 .35 4o .50 .60 .70 .80
2 98.503 01 o1 (] (] 02 02 03 O+ O+ 05 06 08
3 21,198 01 ol o 62 02 02 03 O 05 07 09 N
4 13,705 01 o o1 62 02 03 O 05 07 10 & 19
5 1.259 O o1 02 02 03 03 05 06 10 15 2] 29
6 10, Olids o1 o1 02 02 03 ol 06 08 13 20 29 Lo
7 9.330 ot o1 02 03 ol 05 07 10 17 26 38 50
8 8.861 o1 o1 02 03 o 06 09 12 21 32 46 60
9 8.531 01 02 02 03 05 07 10 M 256 39 sk 68

10 8,285 o1 62 02 O 06 08 12 17 29 45 6l 75

n 8.096 o1 62 03 O+ 06 09 MW 19 3 5 67 8

12 7.946 O 02 03 05 07 N 16 22 38 s6 13 86

13 7.823 o1 62 03 05 08 12 18 25 42 61 78 89

1L} 7.721 ot 02 03 05 08 13 20 28 46 66 82 92

15 7.636 o1 62 03 06 09 15 22 30 5 70 85 94

16 7.562 o1 62 ok 06 10 16 24 33 sk W 88 96

17 7.499 ot 62 o« 07 n 17 26 3 58 18 9N 9

18 7.4k 01 62 o 07 12 19 28 39 62 B 92 98

19 7.39% O 02 o4 08 13 20 30 4t 65 83 ok 98

20 7.353 O 62 O 08 14 22 32 4k 68 8 95 99

21 7.314 [4]] 02 05 08 15 24 34 4y n 88 96 99

22 7.280 o1 03 05 09 16 25 37 49 173 9 9 9

23 7.208 01 63 05 09 17 27 39 52 6 9 98 *

24 7.220 Ot 03 05 to 18 28 W s 718 93 98

25 7.1% 01 03 06 10 19 30 43 57 80 9% 99

26 7.1 0 03 06 11 20 31 45 s9 B2 95 99

27 7.149 o1 03 06 12 21 313 47 6l 8 9 99

28 7.129 O 03 06 12 22 35 49 63 86 96 99

29 7.110 01 03 07 13 23 36 S50 65 87 97 N

30 7.093 01 03 07 13 24 38 53 67 89 97
Nn 7.077 02 03 07 b 25 39 55 69 90 98
32 7.062 02 03 07 15 26 W 56 N 9N 98
33 7.048 02 o4 08 15 27 42 58 13 92 9
34 7.035 02 o+ 08 16 28 Lk 60 75 93 9
35 7.023 02 O 08 17 30 45 62 16 o4 99
36 7.01 02 o4 08 17 N 47 63 18 o4 99
37 7.001 02 ob 09 18 32 L8 [1] 79 95 99
38 6,990 02 o 09 19 33 50 66 80 96 99
39 6.981 02 o« 09 19 W 8 68 82 96 *
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Table 8.3.1 (continued)

4o 6.971 02 o4 10 20 35 53 69 83 97 * * *®

42 6.954 02 o4 10 21 37 55 72 85 97
L 6.939 02 05 1 23 39 58 75 87 98
46 6.925 02 05 n 24 ) 60 n 89 98
L] 6.912 02 05 12 25 Lg 63 79 90 99
50 6.901 02 0s 13 27 46 65 81 92 93
52 6.890 02 05 13 28 48 67 83 93 99
5k 6.880 02 06 14 30 50 70 85 9 99
56 6.871 02 06 15 N 52 72 86 95 *

58 6.862 02 06 16 33 5b 12} 88 95
60 6.856 02 06 16 3 56 75 89 9%
68 6.828 02 07 19 4o 6 82 93 98
72 6.817 02 ©08 21 42 66 8 95 99
76 6.807 02 08 22 45 69 8 96 99

80 6.798 02 09 2 48 72 89 97 99

8l 6.790 03 09 2 €0 74 90 97 *
88 6.783 03 10 27 53 77 92 98
92 6.776 03 10 29 55 79 93 98
96 6.770 03 " 30 57 81 99
100 6.764 03 1 32 60 83 95 99
120 6.742 03 W&o 70 90 98 *
140 6.727 ol 17 W7 8 95 99

160 6.715 ol 2 54 84 97 *

180 6.706 ok FL 61 89 99

200 6.699 05 28 67 92 99

250 6.686 07 ¥ 9 97 *

300 6,677 08  bs 87 99

350 6.6 10 53 92 *

400 6.667 1" 60 95

450 6.663 13 67 97

500 6.661 15 7 99

600 6.656 19 82 *

700 6.653 24 88

800 6,651 28 93

900 6,649 32 95

1000 6,648 37 97

* Power values below this point are greater than .995,
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Table 8.3.2

Power of F testata=.01,u=2

f
n F'c W08 .10 15 20 .25 ,30 .35 .o .50 .60 ,70 .80
2 30.817 ot 01 ot ot 02 02 03 03 03 o4 06 07
3 10.925 ot ot ot 02 02 02 03 04 05 07 10 13

10 5,488 01 02 03 o 06 10 th 21 37 56 7k 87
1" 5,390 ot 02 03 o4 07 1t 17 24 W2 63 80 9
12 5.313 ot 02 03 05 08 13 19 27 48 69 85 9
13 5,249 ot 02 03 05 09 th 22 n 53 MmO 8 9%
th 5,195 ot 02 03 06 10 16 26 3 58 79 92 98
15 5.150 ot 02 os 06 1 18 27 38 62 8 % 9
16 5.111 ot 02 ob4 07 12 20 30 M 67 8 9% 9
17 5,078 01 02 ok 07 13 21 32 4g 70 8 97 9
18 5,048 ot 02 oOb 08 1k 23 35 48 9t b od *
19 5,022 ot 02 05 09 15 25 38 52 7 9N 98
20 b,999 ot 02 0s 09 17 27 4 55 BO 9% 99

21 4977 O 03 05 10 18 29 W3 58 83 95 99

22 4,959 ot 03 05 10 19 3 4 6t 85 *

23 4,943 ot 03 06 1] 20 33 48 6u 87 97

24 4,928 o1 03 06 12 22 35 51 66 89 98

43 L.914 01 03 06 12 23 37 53 69 9 98

26 4.901 o1 03 07 13 26 39 56 n 92 99

27 4,889 01 03 07 1] 26 ] 58 7% 93 99

28 4.878 01 03 07 15 27 43 60 75 9k 99

29 4,868 o1 03 07 15 23 4Ls 62 78 95 99

30 4,859 02 03 08 16 30 Ly 65 80 96 *

3 4.850 02 ol 08 17 n 49 67 81 96

32 4,842 02 [ 08 18 33 51 69 83 97

33 4,834 02 o4 09 19 3 53 70 84 98

34 4,827 02 o 09 t9 35 sk 72 86 98

35 4,820 02 ol 09 20 37 56 74 87 98

36 4,814 02 [ 10 21 38 58 7% 88 99

37 4,808 02 ol to 22 Lo 59 n” 89 99

38 4,802 02 ol 10 23 4 61 79 9 99

39 4.797 02 o4 n 24 42 63 80 91 99
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Table 8.3.2 (continued)
f
n Fe .05 00 .5 .20 .25 .30 .35 L0 .50 .60 .70 .80
40 4,791 02 05 1) 25 [ 64 81 92 9 * * *
42 4,782 02 05 12 26 46 67 84 9l *

Ll 4,774 02 05 13 28 49 70 86 95
46 4.766 02 05 14 3o 51 1 88 9%
48 4.760 02 05 1 32 54 75 90 97

50 4.753 02 06 15 33 56 77 N 97
52 boaby 02 06 16 35 59 79 92 98
sk L7k2 02 06 17 37 61 81 93 98
56 4,737 02 06 18 39 63 83 9% 9
58 4,732 02 07 19 Lo 65 8 95 99

60 4,728 02 07 20 42 67 86 96 99
64 4.720 02 08 22 46 n 89 97 99
68 4,713 02 08 24 b9 75 91 98 *
72 4,707 02 09 26 52 78 93 99
76 4,702 02 09 28 55 81 95 99

80 4,697 03 10 30 58 83 96 99
8l 4,693 03 10 32 6 8 97 *
88 4,689 03 1 34 6k 88 97
92 4,685 03 12 36 67 89 98
96 4,682 03 13 38 69 9 98

100 4.678 03 13 40 72 92 9
120 L.666 O 17 49 82 97 *
140 4,657 (] 21 58 89 99
160 4,651 05 26 66 93 99
180 L, 6hs 05 30 n 95 *

200 4,642 06 34 79 98
250 4.634 07 45 89 99
Joo 4.629 09 56 95 *
3s0 4,626 1 65 97
400 4,623 13 72 99
4so 4.621 16 79 *
500 4.620 18 84
600 4,617 2L 9
700 4.616 29 95
800 L.614 35 98
900 4,613 40 99
1000 4.612 45 99

* Power values below this point are greater than .995.
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Table 8.3.3

Power of F testata=.01,u=3

5.953 01 01 4] 02 02 03 o4 06 09 15 22 n

10 4,378 ot 02 03 o 07 N 17 25 45 67 9%
n h.313 [4)] 02 03 05 08 13 20 29 52 7 89 97
12 4,262 [}] 02 03 05 09 15 23 3h 58 79 92 98
13 4,219 01 02 03 06 10 17 27 38 63 84 9% 99
1% 4,183 o 02 o 07 12 19 30 42 68 88 97 9
15 4,153 01 02 ol 07 13 22 33 L6 n 9 98 *
16 h,126 (4] 02 ol 08 1 2k 36 50 77 93 99

17 L 104 o1 02 O4 09 16 26 Lo sk 81 9% 99
18 b, o84 1) 02 0s 09 17 29 3 58 84 96 99
19 4,067 01 02 05 10 19 N b6 62 86 97 *

20 4,051 o1 03 05 1 20 33 b9 65 89 98

21 4,038 ] 03 06 1 22 36 52 68 9 99

22 4,025 ] 03 06 12 23 38 55 n 92 9

23 4,013 o 03 06 13 25 Lo 58 M 9 99

24 4,003 (] 03 07 1h 26 W3 61 77 9% 99

25 3.993 o 03 07 15 28 45 63 79 96 *

26 3.98L o1 03 07 16 30 48 66 & 97

27 3.976 01 08 17 N 50 68 83 97

28 3.969 02 03 08 18 N 52 n 85 98

29 3.962 02 o+ o8 19 35 s 73 87 98

30 3.955 02 ob 09 20 36 56 75 88 99

n 3.949 02 oly 09 21 38 58 77 90 99

32 3.9 02 ol 10 22 4 60 79 9 9

33 3.939 02 04 10 23 W0 62 80 92 9

k1) 3.934 02 ol 10 26 43 64 82 93 99

35 3.929 02 ol 1" 25 bs 66 83 9b *

36 3.928 02 [ 1" 26 L6 68 8s 9b

37 3.921 02 oS 12 27 48 70 86 95

38 3.917 02 0§ 12 28 W9 N 87 9%

39 3.914 02 05 13 29 51 73 88 96
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Table 8.3.3 (continued)
f

n fe 05 L0 .15 20 .25 .30 .35 o .50 .60 .70 .80
4o 3910 02 o5 13 30 53 7k 89 97 * * *
b2 3,906 02 05 W 32 56 77 9 98
boly 3.898 02 06 15 W 58 80 93 98
W6 3.893 02 06 16 36 61 82 9% 9
48 3.889 02 06 17 38 64 84 95 9
50 3.884 02 06 18 1) 66 86 96 99
52 3.880 02 07 19 43 69 8 97 9
5k 3.876 02 07 21 k45 7N % 97 *
56 3,873 02 07 2 47 73 9N 98
58 3.870 02 08 23 49 75 92 98
60 3.867 02 o8 2k 51 77 93 9
[ 3.862 02 09 26 55 81 95 99
68 3.857 02 09 29 59 8k 96 99
23 3.853 03 10 3 62 87 97 *
76 .89 03 N w65 89
80 3.845 03 11 36 69 9N 9
84 3.842 03 12 3B 72 9 9
88 3.839 03 13 W ™ 9% 9
92 3.837 03 W &3 77 95 9
96 3.83 03 15 45 79 96
100 3.832 03 16 48 & 97
120 3.824 ol 21 59 90 99
tho 3.018 ol 26 68 95 *
160 3.813 o5 3 76 97
180 3.810 06 3 82 9
200 3.807 o7 42 87 9
250 3.802 09 sk 95 *
300 3.798 11 66
350 3.7% 13 15 9
hoo 379 16 82 *
450 3.793 19 87
500 3.792 22 91

* Power values below this point are greater than ,995,
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Table 8.3.4
Power of F testata= .01, u=4

n Fc .05 10 5 20 .25 .30 .35 ko .50 .60 .70 .80
2 11.392 o1 o1 01 ot 02 02 02 03 ob 05 06 08
3 5,994 ot o1 1)) 02 02 02 03 o 06 10 1h 20
4 4,893 ot o o1 02 03 03 o4 06 n 18 27 03
5 4,431 o o 02 02 03 05 06 09 17 28 42 87
6 k77 o o1 02 03 os 06 09 12 23 39 56 73
7 4,018 O o1 02 03 05 08 1" 16 3 s0 69 84
8 3.910 o 02 02 o 06 09 b2 39 60 718 9
9 3.828 o1 02 03 o 07 1 17 25 W5 69 86 95
10 3.769 o 02 03 05 08 13 21 30 b 7% 9 97
n 3. 72 o 02 03 05 09 15 26 35 60 82 9% 9
12 3.682 o1 02 03 06 1" 18 28 4o 67 87 96 99
13 3.649 O 02 o4 07 12 20 32 4 72 9% 98 *
1h 3.623 o1 02 o4 07 13 23 35 50 77 93 99
15 3.601 o1 02 o4 08 15 26 39 sh 81 95 99
16 3.581 01 02 05 09 17 28 43 59 85 97 *

17 3.564 o1 02 05 10 18 3 1Y) 63 88 98

18 3.549 01 03 05 n 20 3 50 67 90 98

19 3.536 o1 03 06 n 22 37 5h 70 92 99

20 3.524 o 03 06 12 24 39 57 T %N 99

21 3.516 01 03 06 13 26 k2 60 77 95 *

22 3.50L o1 03 07 "W 27 kS 6 80 96

23 3.495 1] 03 07 15 29 48 67 82 97

24 3.487 o1 03 07 16 3 50 69 84 98

25 3.480 o1 03 08 17 33 53 72 86 98

26 3.473 o1 03 08 19 35 55 e 88 99

27 3,467 02 o4 09 20 37 58 77 90 99

28 3.462 02 ob 09 21 39 60 79 9 99

29 3,457 02 ol 1o 22 Y] 63 81 92 99

30 3.452 02 o4 10 23 3 65 83 93 *

3 348 02 ob 11 2 LS 67 8l ok

32 3.443 02 ob n 25 1Y 69 86 95

33 3.439 02 o4 12 27 b9 n 87 96

50 3,436 02 05 12 28 50 73 89 97

35 3.432 02 05 13 29 52 75 90 97

36 3.k29 02 05 13 30 sh 76 91 98

37 3.426 02 05 w32 56 78 92 98

38 3.423 02 05 1w 33 57 79 93 98

39 3.b20 02 05 15 34 59 8 % 99
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Table 8.3.4 (continued)

n Fc 05 10 .15 .20 .25 .30 .35 k0 .50 .60 .70 .80

ko .M 02 o8

&2 3.413 02 06

bh 309 02 06 18 o 67 87 9
06
07

S
£
&
k-3
+388

46 3.405 02 19 W3 70 89 97
48 3.401 02

~
o
&
w
~
~
0
-
®

50 3.398 02 07 22 W8 75 92
52 3.398 02 07 23 S0 77 9
sh 3,392 02 08 2 52 79 9
56 3.389 02 08 26 5 81 95
58 3.386 02 o035 27 57 8 9

60 3,38 02 09 28 59 85 97
64 3.330 02 10 31 63 88 98
68 3.376 03 11 W 67 90 98
72 3.373 03 1t 37 1 92 9
76 337 03 12 3 7 % 99

0] 3.368 03 13 42 7 95 *
8k 3.366 03 1 &S 80 96
88 3.36k 03 15 48 82 97
92 3.361 03 16 50
96 3.360 03 17 53

8k

86

100 3.358 03 19 55 88
120 3.352 ok 24 67 9 *

98

99

*

+ 88888

tho 3.37 05 30 76
160 3.3 06 37 Bk
180 3.3 06 43 8

200 3.339 07 b9 93
250 3.335 10 63 98
joo 3.332 12 74 99
350 3.330 15 82 *
400 3.329 19 89
450 3.328 22 93

500 3.327 26 96
600 3,326 3 98
700 3.325 &2 *
800 3.2 W9
900 3.323 56

1000 3.323 63

* Power values below this point are greater than .995,
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Table 8.3.5
Power of F testata=.01,u=5

n Fc 05 .10 15 .20 .25 .30 .35 Lo .50 .60 .70 .80
2 8,746 o o1 ol ol 02 02 02 03 ol 05 07 09
3 5,064 01 o o 02 02 03 03 ok 07 1 17 2
4 8,248 01 o 02 02 03 ol 05 07 12 21 32 u§
5 3.895 o1 o1 02 02 03 05 07 10 19 33 (7] 66
3 3.699 01 01 02 03 ol 07 10 14 28 us & 80
7 3.576 o1 o1 02 03 05 08 13 19 36 57 76 90
8 3.489 ol 02 02 Ok 07 10 16 24 ks 6 8 95
9 3.426 o1 02 03 05 08 13 20 30 53 % 9 98
10 3.388 ol 02 03 05 09 15 24 35 61 83 95 99
1 3.339 ot 02 03 06 10 18 28 W 68 88 97 *
12 3.309 o1 02 ] 07 12 2 32 46 74 92 98

13 3.284 o1 02 ol 07 W2 37 52 9 95 99
14 3.263 01 02 ol 08 15 27 41 57 84 97 *

15 3. 20k o1 02 05 09 17 30 4§ 62 87 98

16 3.229 o 02 05 10 19 33 49 66 9 99

17 3.215 o1 03 0s " 21 36 53 70 92 9

18 3.203 o1 03 06 12 23 39 s7 W % 99

19 3.192 o1 03 06 13 25 42 61 n 96 *

20 3.182 o 03 07 W 27 us 64 81 97

21 3,174 o 03 07 15 30 48 68 83 98

22 3.166 o1 03 07 16 32 51 n 86 98

23 3.159 o 03 08 18 34 [ 7% 88 99

2u 3.183 )] 03 08 19 36 57 76 90 99

25 3.147 o ol 09 20 38 60 79 9 9

26 3042 02 ol 09 2 40 63 81 93 *

7 3.137 02 Ok 10 23 43 65 83 o

28 3.133 02 o4 10 2L 4s 67 8s 95

29 3.129 02 ol n 25 4y 70 87 96

30 3.125 02 o4 " 27 b9 72 88 97

N ja2 02 ol 12 28 51 7% 90 97

32 3.118 02 05 12 29 53 76 91 98

33 3.118 02 05 13 N 111 78 92 98

34 3.112 02 05 14 32 57 80 93 98

35 3.109 02 [} 113 k1Y 59 81 9% 99

36 3.107 02 0s 15 35 61 83 95 99

37 3,104 02 05 16 36 (3] 84 95 99

38 3.102 02 06 16 38 6 86 96 99

39 3.100 02 06 17039 66 87 97 99
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Table 8.3.5 /continued)
f

n Fo .05 .10 .15 ,20 .25 .30 .35 . .50 .60 ,70 .BO
[ 1) 3.097 02 06 18 n 68 88 97 * * * * *
42 3.093 02 06 19 W3 n 90 98
Wy 3.090 02 07 20 k6 e 92 98
[73 3.087 02 07 22 49 77 93 9
4 3.086 02 07 23 S52 19 99
50 3.081 02 08 25 sk 81 96 9
52 3.079 02 08 26 57 8 96 *
(3 3.076 02 09 28 59 85 97
56 3.0 02 09 3 61 8 98
58 3,002 02 10 3N & 8 98
60 3.00 02 10 33 66 9 9
23 3.067 03 n 36 70 92 9
68 3.066 03 12 39 Th 9 9
72 3,061 03 13 k2 77 9 *
76 3,069 03 1k 45 BO 97
80 3.057 03 15 48 8 98
84 3.05% 03 16 51 86 98
88 3.053 03 18 Sk 88 99
92 3.052 03 19 57 90 99
96 3,050 O 20 60 9 99
100 3,049 O 21 62 9N *
120 3.0u4 o4 28 Te 97
140 3.040 05 35 83 99
160 3.037 06 &2 89 *
180 3.035 07 49 93
200 3.033 08 55 96
250 3.030 1 70 9
300 3.028 1k 80 *
350 3.026 18 88
400 3.025 22 93
450 3.026 26 96
500 3.023 30 98
600 3.022 39 99
700 3.022 LY *

800 3.021 56
900 3,021 63
1000 3,020 70

#* Power values below this point are greater than .995,
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Power of F testata= .01, u=6

Table 8.3.6

299

n Fc 05 L,10 .5 .20 ,25 .30 .35 L0 .50 .60 .70 .80
2 7.191 o1 01 o 01 02 02 02 03 o 06 07 10
3 kA6 01 o1 o1 02 02 03 03 05 08 13 19 28
[ 3.812 o1 01 02 02 03 oh 06 08 1 26 37 %
5 3.528 o1 01 02 03 oh 06 08 12 22 38 56 713
6 3.369 01 01 02 03 05 07 n 16 32 5 n 86
7 3.266 O 02 02 oh 06 09 15 2 W 6 83 o9
8 3.196 01 02 03 [ 07 12 19 28 51 74 90 97
9 3.143 o 02 03 oS 09 1 23 36 60 82 9% 9
10 3.103 01 02 03 06 10 17 27 4 68 88 97 *
n 3.072 ot 02 03 06 12 20 32 M M 92 99
12 3,047 01 02 oh 07 13 23 37 52 80 95 99
13 3.026 01 02 ol 08 15 27 1] 58 8s 97 *

1% 3.008 01 02 05 09 17 30 L 63 89 98

15 2,992 o1 02 05 10 20 3% 5 68 92 99

16 2,979 o1 02 05 1" 2 37 55 72 9% 9

17 2,968 ot 03 06 12 24 1] 59 76 95 -

18 2,957 O 03 06 13 26 W 63 B0 97

19 2,949 o1 03 07 15 29 L8 67 83 98

20 2,941 01 03 07 16 3 51 n 86 98

2 2.934 1] 03 08 17 kL3 5h ol 88 99

22 2.928 O 03 08 19 36 57 717 90 9

23 2,922 01 03 09 20 38 60 80 92 99

24 2,917 02 o4 09 21 M 63 82 93 *

25 2,912 02 ol 10 23 43 66 8l 95

26 2.908 02 ol 10 2 L6 69 86 96

27 2,904 02 ole 13 26 W8 N 88 96

28 2,900 02 o N 27 SO W 90 97

29 2896 02 ok 12 29 853 76 9 98

30 2.893 02 05 13 30 55 78 92 98

n 2.890 02 05 13 32 57 80 93 9

32 2.887 02 05 h 1 59 82 o 99

3 2,884 02 05 15 35 @ 83 95 9

3 2,882 02 o5 15 36 63 85 96 99

35 2,880 02 05 16 38 65 86 97 99

36 2,877 02 06 17 40 67 88 97 *

k24 2.875 02 06 18 1] 69 89 98

18 2.873 02 06 18 &3 n 90 98

39 2,871 02 06 19 ke 72 91 98
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Table 8.3.6 {continued)
f

n Fc 08 .10 .15 .20 ,25 ,30 .35 .ko .50 .60 ,70 .80
4o 2.870 02 06 20 b6 7h 92 99 * * * * *
42 2,866 02 07 2 49 77 % 9
4le 2,863 02 07 23 52 8 95 99
46 281 02 08 25 55 82 *
a8 2858 02 08 27 57 8 9
50 2,856 02 09 28 60 87 98
52 2.854 02 09 30 63 88 98
gk 2.852 02 10 32 65 90 99
56 2.850 02 10 33 68 9 99
58 2.848 02 11 35 70 93 99
60 2,87 02 Mn 37 12 % 9
6 2.8k 03 12 ko 76 95 *
68 2,841 03 13 Wk 80 97
72 2.839 03 1k k7 63 98
76 2,837 03 16 51 8 98
80 2.835 03 7 sh 88 99
[ 2,834 03 18 57 90 99
88 2.832 03 20 60 92 99
92 2.831 Ok 21 63 93 *
9% 2,830 ok 23 66 95
100 2,829 05 24 69 9
120 2,828 05 32 80 99
140 2.821 06 39 88 »
160 2.819 07 k7 93
180 2.817 o8 5l
200 2,815 09 61 98
250 2.813 12 76 *
300 2.811 16 86
350 2,810 20 92
400 2,809 24 96
450 2,808 29 98
500 2.807 34 99
600 2.806 bl *
700 2,806 3
800 2.805 62
900 2,805 69
1000 2,805 76

* Power values below this point are greater than .995,
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Table 8.3.7

Power of F testata=.01,u=8

n Fc .05 ,10 .15 ,20 .25 .30 .35 ko .50 .60 .70 .80
2 s5.k87 01 ol o1 ofr 02 02 02 03 05 o056 09 12
3 3.705 o1 o1 or 02 02 03 O 056 10 16 25 37
4 3.256 O (] 02 02 03 05 07 09 18 31 k7 65
5 3.053 ot o 02 03 o4 06 10 W 28 4 67 &
3 2.9 01 0 02 0 05 09 W 20 ko 6 8 9
7 2.861 01 02 02 o 07 N 18 27 5 75 9N 98
8 2,808 o1 02 03 05 08 W 23 W 6l 8 96 99
9 2.770 o 02 03 06 10 18 286 & n 9 98 &
10 2,740 O 02 03 o7 12 2 % 49 8 o 99

n 2.716 01 02 O 08 W4 25 k0O 56 84 97 *

12 2.697 o1 02 Oh 09 17 29 ks 62 89 98

1 2.681 (] 02 05 10 19 33 51 68 92 99

10 2.667 ol 02 05 11 22 37 S5 98 *

15 2.656 o1 03 06 12 24 42 6} 78 9%

16 2,646 01 03 05 13 27 46 66 82 98

17 2,638 ot 03 07 15 30 50 70 8 98

18 2,630 o1 0 07 16 b3} [ 7% 88 9

19 2,624 o1 0 08 18 35 57 n” 9 99

20 2.618 01 03 08 20 38 6 81 93 -

2 2.612 o1 0 09 21 & & B8 o

22 2.608 o oh 10 23 L 68 8 96

2) 2.603 02 ol 10 25 LY n 88 97

24 2,599 02 o M 26 50 T 90 97

25 2.596 02 oh 12 28 52 76 92 98

26 2,592 02 o4 12 30 55 79 93 98

27 2,589 02 05 13 32 58 81 % 9

28 2.586 02 13 1% b 60 83 95 99

29 2,583 02 05 15 35 63 85 96 99

30 2,581 02 05 15 37 65 8 97 *

n 2.5719 02 05 16 39 67 88 97

32 2.576 02 06 17 & 70 9 98

3 2,57« 02 06 18 &3 72 9 98

3 2,573 02 06 19 ks W 92 99

35 2.57 02 06 20 46 75 93 99

36 2.569 02 06 21 48 77 9% 99

37 2.567 02 07 22 50 79 95 99

38 2,566 02 07 23 52 80 95 99

39 2,86 02 07 24 sk 82 9 *
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Table 8.3.7 (continuved)

n Fe 05 L10 L1585 .20 .25

.
L4
(-]

35 M0 50 60 .70 .80

4o 2.563 02 07 25 s 83
42 2,561 02 08 27 s8 86
" 2.58 02 08 29 62 68
46 2,556 02 09 31 65 90
48 2.55 02 10 33 68 92

50 2,53 02 10 35 70 93
52 2.551 02 11 37 13 %
sk 2,550 02 11 39 75 95
56 2.548 03 12 W 78 9%
58 2.547 03 13 43 80 97

60 2,546 03
64 2,543 03
68 2.541 03 16 53 88
72 03
03

*38 888SY

2,540
76 2.538

80 2.537 03 21 64 9

8 2.53%6 O 23 67 95
88 2.535 O 26 70
92 2.53% o 26 73 97
9% 2,533 o4 28 76 98
100 2,532 o4 30 78 98
120 2,529 o5 39 868 *
140 2.526 06 W8 9
160 2.524 o7 57 97
180 2.523 09 65 99
200 2,521 10 72 99
250 2.519 14 85 %
300 2.518 19 92

350 2,517 25 97

400 2.516 30 99

450 2,516 36 99

500 2.515 &2 x

600 2,515 53
700 2.51% 63
800 2.514 72
900 2,51k 79
1000 2.513 8s

* Powsr values below this pofnt are grester than .995,
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Power of F testata = 01,u=10"

Table 8.3.8

303

n Fe .05 .10 L1585 ,20 .25 ,30 .35 4o .50 .60 .70 .80
2 4539 o1 o1 o1 o1 02 02 03 03 05 07 10 1§
3 3.258 01 o1 02 02 02 03 o 06 11 20 3N A
& 2,916 O o 02 02 03 05 08 N 2 38 5§57 ™
[ 2,752 01 o1 02 03 0 07 1N 17 3% 8 77 9
6 2,662 o1 (] 02 o4 06 10 16 28 A7 72 8 97
7 2,603 O 02 03 05 08 13 22 33 60 8 95 99
8 2,561 o1 03 03 06 10 17 28 70 91 99 *
9 2.530 01 03 o0 o7 12 21 3 49 79 95 9
10 2,506 o1 03 ok 08 & 25 Lo 57 8 97 *

n 2.487 o1 03 o 09 17 30 47 65 97 99

12 2.4n ol 03 05 10 20 35 85 7N % 99

13 2,458 01 03 05 M 23 W0 59 77 96 *

1h 2,48 01 03 06 13 26 L 65 82 o8

18 2,439 01 03 06 1 29 4 70 8 9

16 2,431 o 03 07 16 32 53 W 8 99

7 2426 01 03 08 18 35 8 78 9 *

18 2.8 01 03 08 19 39 6 82 9

19 2.43 (] 03 09 21 &2 66 85 95

20 2,408 01 oh 10 23 45 69 B8 96

2 2b03 02 o4 10 25 49 73 90 97

22 2,399 02 o N 27 52 76 92 98

23 2,396 02 ok 12 29 5% % 93 9

2u 2,393 02 oh 13 n 58 81 95 99

25 2,390 02 05 13 33 6 8 9% 99

26 2,387 02 05 w38 63 8 97 *

27 2.384 02 05 15 38 66 88 97

28 2.382 02 o5 16 4o 69 90 98

29 2,380 02 05 17 &2 N 9 98

30 2.378 02 06 18 dedy 73 92 99

Nn 2,376 02 06 19 46 76 93 99

32 2,3% 02 06 20 4B 78 9 99

33 2,372 02 06 20 50 8 95 99

3b 2.7 02 07 22 52 8 96 *

35 2,39 02 07 24 s« 83 97

36 2.38 02 07 25 5 8 97

37 2.367 02 o8 26 58 86 98

38 2,365 02 08 27 60 8 98

39 2,366 02 08 28 62 8 98
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Table 8.3.8 (continued)

n Fe .05 .10 .15 .20 .25 .30 .35 .0 .50 .60 .70 .80

40 2.363 02 08 29 63 90
42 2.361 02 09 32 67 92
Ik 2.359 02 10 L 70 93
46 2.358 02 10 36 n 95
48 2.356 02 n 39 76 96

50 2,355 02 12 L3 ] 97
52 2,353 03 12 © 81 97
Sh 2,352 03 13 4 8 98
56 2,351 03 th 48 85 98
58 2.350 03 15 50 87 99

*+3388

60 2,349 03 16 53 88 99
& 2347 03 17 57 9 99
68 2,346 03 19 61 93 w
72 2.3k 03 21 65 95
76 2303 o 23 69 96
80 2342 o 25 72 97
ok 2,31 ob 27 75 98
88 2300 o 29 78 99

92 2,339 o 31 81 99
96 2,33 05 33 8 99
100 2,338 05 35 8BS 99
120 2,335 06 L3 93 *
140 2333 07 56 97

160 2,331 08 65 99

180 2,330 10 73 *

200 2,329 12 79

250 2327 7 9

300 2.326 23 96

350 2326 29 99

4oo 2,325 36 o«

450 2,325 42

500 2,324 5

600 2,326 61

700 2,323 n

800 2,323 80
900 2,323 86
1000 2,323 91

* Power values below this point are greater than .995.
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Power of F test ata=.01,u=12

Table 8.3.9

305

n Fe .05 L0 15,20 .25 .30 .35 Lo .50 .60 .70 .80
2 3.960 01 o1 ol o1 02 02 03 ol 05 08 12 18
3 2,958 ] o1 ot 02 03 o 05 07 13 23 37 54
4 2,679 ot o1 02 03 o 06 09 13 26 uh 65 82
5 2,548 ol o1 02 03 05 08 13 20 Lo 6k 8 95
6 2,472 ol 02 02 o 07 12 19 29 54 79 % 9
7 2,422 01 02 03 o5 09 15 25 38 67 89 98 *
8 2,387 o 02 03 06 1" 20 32 W8 8 95 99

9 2.361 (] 62 o 07 W 25 39 57 8 98

10 2,30 of 02 o4 08 17 30 47 65 9 99

" 2.325 o1 02 05 10 20 35 [ 72 9% *

12 2.312 ol 02 05 1 23 40 60 78 97

13 2.301 o1 03 06 13 26 113 66 83 98

1% 2,292 o1 03 06 15 30 5 72 8 9

15 2,285 o1 03 07 16 33 6 717 9 99

16 2,278 (1] 03 08 18 37 60 81 93 *

17 2,272 ol 03 08 20 M é5 8t 95

18 2,267 [1]] 03 09 23 4s 69 87 97

19 2.262 o1 ol 10 25 8 n 90 98

20 2,258 02 ol 1 27 52 7% 92 98

2 2.255 02  Ob4 12 29 &5 80 94 99

22 2,251 02 ol 13 32 59 83 95 99

23 2,28 02 05 w3 62 B85 9% 99

2% 2,246 02 05 15 36 65 87 97 *

25 2,243 02 05 16 39 68 89 98

26 2,241 02 05 17 W n 91 98

27 2.239 02 0% 18 43 73 92 99

28 2,237 02 06 19 ué 76 94 99

29 2.235 02 06 20 u8 78 95 99

30 2,233 02 06 2 50 80 96 *

N 2,231 02 07 22 53 82 96

32 2,236 02 07 24 55 B4 97

33 2,228 02 07 25 57 8 98

3h 2,227 02 07 26 59 87 98

35 2,226 02 08 27 61 88 98

36 2,225 02 08 29 63 90 99

37 2,226 02 068 30 65 91 9

38 2.223 02 09 n 67 92 99

39 2,222 02 09 32 69 9N 99
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Table 8.3.9 (continued)

n Fe .05 10 15,20 ,25 .30 .35 M0 .50 .60 .70 .80

Lo 2.221 02 09 34 n ol 99 * * * * * *
L2 2,219 02 10 3 M 9 *

L 2,217 02 1l 39 77 9%

46 2.216 02 12 42 80 97

48 2,215 02 12 s 82 98

50 2.213 03 13 47 85 98
52 2.212 03 h 50 87 99
Sk 2.2 03 15 52 88 99
56 2.210 03 16 55 90 99
58 2,209 03 17 57 9N *

60 2,209 03 18 59 9
& 2,207 03 20 6k 95
68

2,206 03 22 68 9%
72 2,206 O 26 72 97
76 2.203 ob 26 76 98
80 2,202 O 29 19 9
84 2,202 o 31 82 9
88 2,200 o 33 84 99
92 2,200 05 3 87
9% 2.199 05 38 B9
100 2199 05 40 9N
120 2,197 07 52 9%
140 2,195 08 63 9
160 2,09 10 72 %
180 2,193 12 719
200 2.192 W 85
250 2191 20 9k
300 2.190 26 98
350 2,189 3% 9
400 2.18 W *
450 2.188 48
500 2.188 55
600 2.187 68
700 2,187 18

800 2.187 86
900 2.186 9N
1000 2.186 [

* Power values below this point are greater than .995,



8.3 POWER TABLES 307
Table 8.3.10
Power of F testata= .01, u=15
" Fo 08 .10 .15 ,20 .25 .30 .35 M0 .50 .60 .70 .80
2 3.409 01 01 01 Ol 02 02 03 ok 06 10 15 23
3 2,656 01 01 02 02 03 O 06 09 16 29 L6 64
4 2437 o1 o1 02 03 Ok 07 10 15§ 31 S§3 715 90
5 2332 01 O 02 o0 05 10 16 25 48 MW 91 98
6 2,272 01 02 03 05 08 1% 23 35 64 87 97
7 2,232 01 02 03 06 10 19 31 k6 77 9 99
8 2,203 01 02 03 07 13 26 39 56 8 98 *
9 2,182 o1 02 ok 08 16 30 k7 66 92 99
10 2,166 61 02 05 10 20 36 55 MW 95 #
n 2,183 o1 02 05 11 26 42 63 81 98
12 2,143 ot 03 06 13 28 W8 69 86 99
13 2,13 o1 03 07 15 32 s 75 90 99
1 2,127 01 03 07 17 3 s 8 93 b
15 2,120 01 03 08 20 L0 65 85 95
16 2,115 01 03 09 22 & 69 88 97
1} 2,110 o1 ok 10 25 49 7% 91 o8
18 2,106 O o+ 11 27 53 718 93 99
19 2,102 02 Ok 12 30 57 8 95 99
20 2,099 02 ok 13 32 60 B4 96 99
21 2,096 02 Ok 1 35 6k 87 97 &
22 2,093 02 05 15 38 68 89 98
2 2,090 02 05 16 4 71 91 99
2% 2,088 02 05 17 43 % 93 9
25 2.086 02 06 19 k6 77 94 99
26 2,086 02 06 20 43 79 95
27 2.083 02 06 21 51 81 96
28 2.081 02 o7 23 s B84 97
29 2,079 02 07 2+ 56 86 98
30 2,078 02 07 25 59 87 98
Nn 2,077 02 o8 27 61 B 9
32 2,006 02 08 28 63 90 99
33 2,076 02 08 30 6 92 99
1 2,073 02 09 31 68 93 99
35 2,02 02 09 33 70 9 99
36 2,01 02 09 3 72 95 &
37 2,000 02 106 36 M 95
38 2,000 02 10 37 7 9
39 2,069 02 11 39 77 97
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Table 8.3.10 (continued)

¢
n Fe 05,10 .15 .20 ,25 .30 .35 .0 .50 .60 .70 .80
40 2,068 02 1t 4 79 97 * * & x & * &
42 2,066 02 12 W& 82 98
by 2.065 02 1 46 85 9
L 2.064 0 L) 49 87 9
48 2,0 0 15 52 89 99
50 2,062 03 16 55 9N 99
52 2,060 03 17 S8 92 o+
54 2060 03 18 61 9
56 2,059 (] 19 6 95

8 2,089 03 20 66 9

60 2.058 03 22 68 96
&4 2,057 03 24 7 98
68 2,056 Ok 26 77 98

72 2,055 o 29 80 99

76 2,054 ol 32 8k 99
80 2,053 ok 3 86

84 2,052 05 b 89

88 2,052 05 k0 9

92 2,051 05 4 92

96 2,051 06 b5 Sk

100 2.050 06 48 95

120 2,048 07 61 98

140 2,047 09 N *

160 2,046 n 80

180 2,045 % 87

200 .04 16 91

250 2,00 24 97

300 2,02 32 99

350 2,082 b0

400 2,041 48

450 2.061 87

500 2,001 6b

600 2,040 76

700 2.040 86

800 2.000 92

900 2,040 95

1000 2,040 98

* Power values below this point are grester than .995,
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Table 8.3.11
Power of F test ata=.01,u=24
n Fe .05 .10 .5 .20 .25 .30 .35 L0 .50 .60 .70 .80
2 2.620 01 01 o1 02 02 03 O 05 09 15 25 38
3 2,184 o1 o1 02 02 Ok 05 08 12 26 L& 68 85
4 2,049 01 (] 02 03 06 09 15 24 48 75 92 98
5 1,983 O 02 03 05 08 15 26 38 69 91 99
3 1.9 o1 02 03 06 1 21 35 52 B 97 *
7 1.918 o 02 O+ 08 15 29 k6 66 92 99
8 1.900 01 02 o« 10 20 37 57 716 97 *
9 1.886 O 02 05 12 25 45 67 8 99
10 1.876 0 03 06 1% 30 53 75 90 *
n 1.87 02 03 07 17 36 60 82 9
12 1.860 02 03 o8 20 W 67 87 9
13 1.8 02 03 09 23 47 73 9 98
1 1850 02 o4 10 26 53 79 9% 99
15 1,846 02 o4 11 30 S8 83 9% 99
16 1.842 02 o+ 13 33 63 8 97 *
17 1.839 02 Ok W 37 68 90 98
18 1.836 02 05 16 b 72 93 99
19 1.833 02 05 17 M 76 95 99
20 1.831 02 05 19 48 80 96 *
21 1.829 02 06 20 51 83 97
22 1.827 02 06 22 55 8 98
23 1.826 02 07 2b 58 88 9
24 1826 02 07 26 62 9 9
25 1.823 02 07 28 65 92 99
26 1.82) 02 08 30 68 93 99
27 1.820 02 08 32 7 95 *
28 1,819 02 09 3% 73 96
29 1.818 02 09 36 16 96
30 1.817 02 10 38 78 97
N 1.816 02 10 40 B0 98
32 1.815 02 11 4 82 98
33 1.815 02 12 s 8 99
34 1.8 02 12 4 8 99
35 1.813 02 13 48 87 99
36 1.813 02 13 50 89 99
37 1.812 03 & 52 90 99
38 1,81 03 15 % 9 *
39 1.81 03 15 56 92
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Table 8.3.11 {continued)

n Fe 05 0 .15 .20 .25 .30 .35 40 .50 .60 .70 .80
ko 1.810 03 16 58 9 » * » - * * - »
42 1.809 03 17 62 95
W 1,809 03 19 &5 96
46 1. 03 20 68 97
) 1.807 03 22 12 98
50 1.806 03 24 M 98
52 1,806 0 28 717 9
5h 1.805 o 27 8 99
56 1.806 o 29 8 99
58 1806 O 30 8 w
60 .80 o 32 86

6 1.803 o 36 8

68 1.802 05 39 92

72 1.802 05 43 b

76 1,800 05 47 95

80 1.800 06 50 97

84 1.800 06 sk 98

88 1.800 06 57 98

92 1799 07 60 99

96 1.799 07 6 99
100 1.799 08 67 99
120 1.797 10 79 *
%o 1.7% 13 88

160 1. 16 9%

180 ]

200 1.795 24 98
250 1.79%% 35 *
300 1.793 46

350 .79 87

400

1.793 67

Lso 1.793 75

500 1.792 82

600 1.792 92

700 1.792 9%

800 1.792 99

900 1.792 99

1000 1.792 *

* Power values below this point are greater then .995,
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Tabile 8.3.12

Power of F testata= .05, u=1

m

n Fe 05 .10 .15 .20 .25 .30 .35 M0 .50 .60 .70 .80
2 18.513 05 05 06 06 07 ©07 08 09 10 12 W 16
3 7.709 05 05 06 07 08 09 10 12 16 20 26 32
4 5,987 05 06 06 07 09 1N 13 16 23 30 39 48
5 5,318 05 05 07 08 11 13 16 20 29 39 50 6
é Loss 05 06 07 09 12 15 20 2 35 47 60 N
7 L by 05 06 08 10 L] 18 23 28 n 55 68 79
8 4,600 05 06 08 1" 15 20 26 32 ['Y 62 75 85
9 Lush 05 07 09 12 17 22 29 36 52 68 80 89
10 LUk 05 07 09 13 18 25 32 4 57 73 8 9
n 4,35 05 07 10 b 20 27 35 & 62 77 88 95
12 4,301 os 07 10 15 22 29 38 47 66 81 91 97
13 4,260 05 07 N 16 23 32 W 51 70 8 93 98
i L,22s 05 08 M 17 25 3 b sk 73 8 95 98
15 Lh,196 06 08 12 18 26 36 LY} 57 76 89 96 99
16 ban 06 08 12 19 28 38 49 60 79 9 97 99
17 Likg9 06 08 13 20 30 Lo 52 63 8 93 98 #
18 L.130 06 08 14 21 N b2 [ 66 8k ol 98

19 4113 06 09 14 22 33 L) 57 68 86 95 9
20 4,098 06 09 15 23 I 46 59 10 88 96 99

21 L,085s 06 09 15 28 36 4B 61 73 8 97 99
22 4073 06 09 16 26 37 s0 63 715 91 97 *

23 Los2 06 10 16 27 39 52 65 77 92 98

24 4,052 06 10 17 28 40 sh 67 78 9 98

25 LO43I 06 10 18 29 L2 s6 69 80 94 99

26 Lot 06 10 18 30 43 8 N 82 95 9

27 4,026 06 10 19 31 45 §9 72 83 95 99

28 4.020 06 " 19 32 46 61 74 84 96 99

29 4,013 06 1 20 33 47 62 716 8 97 99

30 4,007 06 N 21 3 k9 & 77 8 97 *

N 4,001 06 N 21 35 50 65 78 88 97

32 3.996 06 12 22 36 8 67 80 89 98

33 3.991 06 12 22 37 53 68 81 90 98

3 3.98 o7 12 23 38 sk 69 82 91 98

35 3.982 07 12 28 39 55 7N 83 92 99

36 3.978 07 13 2 L0 56 72 8 92 99

37 3.97% 07 13 25 40 58 3 8s 93 99

38 3.970 07 13 25 Mt 59 T B6 9 99

39 3.967 07 13 26 42 60 15 87 % 99
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Table 8.3.12 (continued)

n Fe 08 0 15 .20 .25 .30 .35 W0 .50 .60 .70 .80

ko 3.963 07 1k 27 43 61 77 88 95 99 * * *
L2 3.957 07 & 28 45 63 79 8 9% *

ik 3.952 07 15 29 47 65 80 9 96

L6 3.947 07 15 30 Lk 67 8 92 9

48 3942 07 16 3 50 69 8 93 97

50 3,938 07 16 32 52 n 85 9k 98
52 3.934 gg 17 33 53 B 87 95 98

54 3.9% 17 3 55 J& 88 95 99
56 3.928¢ 08 18 36 57 76 8 9% 99
58 3.924 08 18 37 s8 77 9% 97 99
60 3.922 08 19 38 60 79 9N 97 99
64 3.91 08 20 L4 62 8 93 98 «
68 3.912 08 21 k2 65 83 9 98

72 3,908 09 22 4k 68 8 95 99

76 3,906 09 23 4 70 8 96 99
80 3.9001 09 24 48 72 89 97 99
84 3.898 09 25 s0 M 90 97 *

88 3.895 09 26 52 16 92 98

92 3.893 10 27 sk 78 9
96 3.891 10 28 55 80 9% 99

100 3.889 10 29 57 81 9%
120 3.881 1N 3 65 8 97
140 3.875 13 39 72 92 9
160 3.8 W W 77 95 99
180 3.868 15 48 82 97 %

200 3.865 16 52 8 98

* Power values below this point are grester than .995,
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Table 8.3.13
Power of F testata= .05, u=2

n Fo 05 .10 15 .20 .25 .30 .35 Lo .50 .60 .70 .80
2 9.562 05 05 06 06 ©07 o077 08 08 10 12 15 18
3 5,143 05 05 06 07 o8 09 10 12 17 22 29 37
4 4,256 05 06 06 08 09 n 1w 17 2L 33 11 [
5 3.885 o5 06 07 09 MmN 1w 17 22 32 M 56 69
[3 3.682 05 06 07 10 13 16 21 26 39 53 67 79
7 3.555 05 06 08 N w19 25 3 46 62 16 87
8 3.467 05 06 08 12 16 22 28 36 53 69 83 92
9 3.403 05 07 09 13 18 2L 32 4o 59 75 88 95
10 3.356 05 07 10 W 20 27 35 L§ 64 B 91 97
n 3.316 05 07 10 15 21 30 39 L1] 69 85 9l 98
12 3,286 06 07 1N 16 23 32 42 53 88 96 9
13 3.260 06 08 n 17 25 35 46 57 n” 9N 97 99
1 3.238 06 08 12 18 27 38 49 61 81 93 98 *
15 3.220 06 08 13 20 29 4o 82 6 B4 95 99

16 3.205 06 08 13 21 31 43 55 67 86 96 99

17 3.191 06 09 1 22 33 45 58 70 89 97 99

18 3.179 06 09 1k 23 3 W8 & 73 90 98 *

19 3.168 06 09 15 2, 36 50 64 7% 92 99

20 3.159 06 09 16 26 38 52 66 18 93 99

21 3,150 06 09 16 27 LO sk 69 80 95 99

22 3,143 06 10 17 28 42 57 n 82 9 99

23 3.136 06 10 18 29 43 59 713 8 96 *

2h 3,130 06 10 18 30 45 61 5 8 97

25 3026 06 10 19 32 47 63 77 87 98

26 3.119 06 n 20 33 48 65 79 89 98

27 3.0 06 n 20 3 s0 66 80 90 98

28 3.110 06 11 21 35 52 68 8 91 99

29 3.105 06 12 22 36 83 70 8 92 99

30 3.102 06 12 22 37 55 n 85 93 99

N 3.098 07 12 23 39 56 73 86 9% 99

32 3.095 07 12 24 Lo 58 75 87 9% 99

33 3.091 07 13 24 3] 59 76 88 95 *

34 3.088 07 13 25 42 6 77 8 9%

35 3.086 o7 13 26 43 62 79 90 96

36 3.083 07 13 26 [1} 63 80 9 97

37 3.081 07 1 27 Ls 65 8 92 97

38 3.078 07 1% 28 Lé 66 82 92 97

39 3.076 07 14 28 Ly 67 83 93 98
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Table 8.3.13 (continued)

f

n Fe .06 .10 .18 .20 .25 ,30 .35 MO .50 .60 .70 .80
40 3.07 07 15 29 48 68 84 9 98 # * * *
42 3.070 07 15 30 5 n 86 95 98
b 3,066 07 16 32 s3 73 88 9% 99
46 3,063 07 16 33 s§5 715 89 9% 99
48 3. 08 17 3% s7 77 9% 97 9
50 3.058 08 18 38 8 79 92 98 99
52 3.055 08 18 37 60 B0 93 98 «
sh 3.053 08 19 38 62 82 98
56 3.0560 08 19 40 6+ 83 9 99

58 3.049 08 20 M1 65 85 95 99
60 3.047 08 21 42 67 8 96 9

& 3.0k 08 22 W5 70 88 97 9
68 3,040 09 23 47 73 90 98 ¢

72 3.039 09 24 49 75 92 98

76 3.0 09 25 52 18 93 99

80 3,036 09 27 sk 80 9% 99

84 3.032 10 28 s6 8 95 9

88 3.031 10 29 58 8 96 99

92 3.029 10 30 60 8 97 %

200 3.on 18 59 92 *
250 3.008 22 69 97
300 3.006 25 8 99
350 3.004 29 Bk *
400 3.003 33 89
450 3.002 36 92
500 3.002 40 95
600 3.001 47 98
700 3.000 53 99
800 3.000 59 *
900 2.999 65

1000 2.999 70

* Power values below this point sre greater than .995,
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Table 8.3.14

Power of F testata= .05, u=3

315

n Fe .05 .10 L1585 .20 .25 .30 .35 Lo .50 .60 .70 .80
2 6.591 05 05 06 06 07 07 o8 09 1" 13 17 20
3 4,066 05 05 06 07 08 09 1" 13 18 25 33 L2
[ 3490 05 06 07 08 10 12 15 18 27 38 50 62
5 3.239 05 06 07 09 12 15 19 24 36 50 (] 76
é 3.098 05 06 08 10 13 18 23 29 (% 60 75 86
7 3.009 05 06 08 1" 15 21 27 35 52 69 5] 92
8 2,947 05 07 09 12 17 2k N 40 59 77 89 96
9 2.901 05 07 09 1h 19 27 36 ') 66 82 93 98
10 2,867 05 07 10 15 21 30 ko 51 n 87 9% 9
n 2.839 06 07 1N 16 26 33 bLbh 55 7% 9 97 9
12 2.817 06 o8 n 17 26 36 48 60 81 93 98 *
13 2,798 06 o8 12 19 28 39 52 64 84 95 9

1h 2.783 06 o8 13 20 30 L2 55 68 87 97 9

15 2.770 06 08 13 2 32 Ls 59 n 90 98 *

16 2,758 06 09 1h 23 34 48 62 75 92 98

17 2,748 06 09 15 2k 37 51 65 78 9l 99

18 2,70 06 09 16 26 39 83 68 80 95 99

19 2.732 06 09 16 27 W 6 n 83 96 99

20 2,725 06 10 17 28 43 59 n 85 97 *

21 .19 06 10 18 30 45 & 76 87 98

22 2.k 06 10 18 N 47 63 78 88 98

23 2,709 06 10 19 32 49 66 80 90 99

24 2.704 06 1 20 3 51 68 82 91 99

25 2,700 06 1 21 35 53 70 8 93 9

26 2,69 06 n 22 37 S 72 8 9 9

27 2.692 4 12 22 38 56 7h 87 9 99

28 2.689 07 12 23 39 58 75 88 9% *

29 2.686 07 12 28 W 60 77 89 96

30 2,683 07 13 25 42 61 79 9 9

3 2,680 07 13 25 43 63 80 9 97

32 2,678 07 13 26 ks 65 81 92 97

33 2,675 07 1h 27 46 66 83 93 98

34 2.673 07 b 28 47 68 54 9k 98

35 2.67 07 1h 29 L8 69 85 ol 98

36 2.669 07 14 29 50 70 86 95 99

37 2.668 07 15 30 51 72 87 9% 99

38 2,666 07 15 n 52 73 88 96 9

39 2,66k 07 15 32 53 74 89 97 99
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TYable 8.3.14 (continued)

n Fe 08 .10 L15 ,20 .28 .30 .35 k0 .50 .60 .70 .80
Lo 2,663 07 16 32 54 76 90 97 99 * * * *
42 2,660 07 16 W 57 78 9 98 *
(" 2.657 08 17 35 59 80 93 98
46 2,655 08 18 37 61 82 [ ] 9
L8 2,653 08 18 39 63 8k 95 99
50 2,651 08 19 4o 65 B85 96 99
52 2.6k9 08 20 L2 67 8 9% 9
Sk 2,648 08 20 W) 69 88 97 9
56 2,646 08 21 ks N 89 97 *
58 2,645 08 22 W6 72 90 98

60 2,643 09 22 W7 W 9 98

[ 2,641 09 2 50 77 93 9

68 2,69 09 25 53 80 95 99

72 2.637 09 27 56 82 9% 9

76 2.635 10 28 [] 8l 97 *

80 2,633 10 29 6 8 97

8k 2.632 10 N 63 88 98

88 2.6) 10 32 65 9 98

92 2,630 11 3l € 9N 99

9% 2,629 11 35 69 92 9

100 2,626 11 36 NN 9 99

120 2,626 13 43 B0 97 *

140 2,621 14 b9 86 9
160 2,619 16 55 91 99
180 2,618 18 61 9

200 2.616 19 66 96
250 2.614 24 77 993
300 2.612 28 84 *
350 2.61 32 90
400 2.611 37 93
450 2,610 W 96

500 2.609 45 98
600 2,609 53 93
700 2.608 60 *
800 2,608 66
900 2,607 72

1000 2,607 7

* Power values below this point are greater than .995.
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Tabie 8.3.15
Power of F testata= .05, u=4
f

n Fe .05 10 5 20 .25 30 .35 4o .50 .60 .70 LBO
2 5.192 0s 0s 06 07 08 08 09 10 13 15 19 24
3 3.478 05 05 06 07 09 10 12 1% 20 28 38 48
b 3.056 05 06 o7 08 10 13 16 20 30 b2 56 69
[ 2.866 05 06 07 09 12 16 21 26 Lo s 70 83
6 2,759 05 06 08 10 1 19 25 32 49 66 81 9
7 2,690 05 06 09 12 16 22 30 39 58 76 88 96
8 2,642 0§ 07 09 13 19 26 35 us 65 83 93 98
9 2.606 0§ 07 10t 21 29 4o 51 72 88 96 99
10 2,579 06 07 10 16 23 33 b 56 78 92 98 *
n 2,558 06 08 1 17 26 37 49 6 82 9% 99
12 2,540 06 08 12 19 28 4o 53 66 86 96 99
13 2,525 06 08 13 20 N 43 §7 70 89 98 *
14 2.513 06 o8 13 22 33 4y 61 o 92 98
15 2,503 06 09 1 23 36 50 65 78 9% 99
16 2,494 06 09 15 25 38 53 68 81 95 99
17 2.486 06 09 16 26 4o 56 n 83 96 *
18 2,479 06 09 17 28 43 59 74 86 97
19 2.473 06 10 17 30 4s 62 77 88 98
20 2,468 06 10 18 N 47 65 79 9% 9
21 2,463 06 10 19 33 50 67 8 91 9
22 2,458 06 n 20 34 52 69 84 93 99
23 2,54 06 1 21 36 54 72 85 94 99
24 2.451 06 N 2 37 56 1 8 95 *
25 2,4k 06 12 23 39 58 16 89 96
26 2, Ll 07 12 23 ko 60 78 9 9
27 2.1 07 12 26 42 62 80 91 97
28 2,439 07 13 25 43 64 81 92 98
29 2,436 07 13 26 45 66 83 93 98
30 2,434 o7 13 27 46 67 : 9l 98
N 2,432 07 1% 28 48 69 86 95 9
32 2.430 07 W 29 W n 87 9% 99
33 2,428 07 i 30 st 72 88 96 99
b 2,427 07 15 30 52 % 89 97 99
35 2,h25 07 15 3 s4 75 90 97 99
36 2.k2b 07 15 32 55 76 9 97 *
37 2,422 07 16 33 5 18 92 98
38 2,h21 07 16 3 57 19 92 98
39 2,19 07 16 35 59 80 93 98
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Table 8.3.15 (continved)
4
n Fe 05 .10 .15 .20 .25 .30 .35 O .50 .60 .70 .80
4o 2,108 07 17 36 60 81 9% 99 & * * * *
42 26 08 18 37 62 83 95 99
[ 2,b 08 18 39 65 85 99
4 2412 08 19 M1 67 8 97 99
4“8 2,410 08 20 43 69 89 97 «*
50 2,b09 08 21 W 0N 9 9
52 2,07 08 21 46 T3 91 98
sh 2,406 08 22 48 75 92 9
56 2,405 09 23 W9 77 9 9
58 2,40k 09 26 51 78 9% 99
60 2,403 09 2b 52 80 95 99
& 2,01 09 26 55 83 *
68 2,399 09 28 58 85
72 2,397 10 29 & 8

76 2.396 1 N & 89

160 2,383 17 61 9k
180 2,382 18 67 97
200 2,381 20 9%
250 2.379 25 *

72
82
300 2378 29 89
350 2,377 W 9k
4oo 2,376 39 9%
450 2,376 Wb 98

99

*

500 2,376 49
600 2,375 57
700 2.3 65
800 2,374 72
900 2,374 78
1000 2,376 82

* Power velues below this point are greater than .995,
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Table 8.3.16
Power of F testata= 05 u=5
n Fe 08 .10 .15 ,20 .28 ,30 .35 .40 .50 .60 .70 .80
2 4,387 05 0s 06 07 08 08 09 10 13 17 21 26
3 3.106 05 06 06 07 09 11 13 15 22 31 42 53
4 2,773 05 06 07 08 N w17 2 33 4 6 75
5 2.621 05 06 07 10 13 17 22 29 L 61 7% 88
3 253 05 06 08 1N 15 21 27 35 s 72 86 9h
7 2478 05 07 09 12 18 2 33 42 63 B 92 98
8 2,438 05 07 09 W 20 28 38 4 7 8 9% 99
9 2,409 05 07 10 15 23 32 43 55 n” 92 98 *
10 2,391 06 07 1" 17 25 36 48 61 83 95 99
1" 2,368 06 o8 12 19 28 ho 53 66 87 97 9
12 235 06 08 13 20 31 W 58 N 90 98 *
13 2,342 06 08 13 22 33 LY 62 75 93 9
13 2332 06 09 W 2 36 51 6 719 95 99
15 2,324 06 09 15 25 39 55 70 82 96 *
16 2,316 06 09 16 27 42 58 3 85 97
17 2,310 06 10 17 29 W 6 76 88 98
18 2,304 06 10 18 30 47 6k 79 90 9
19 2,299 06 10 19 32 49 67 82 92 9
20 2,29 06 n 20 34 52 70 8k 93 99
21 2,290 06 1N 21 36 s 72 8 9 *
22 2,286 06 1" 22 37 57 75 88 95
23 2,283 06 " 22 39 59 7 90 96
2% 2,280 06 12 23 ] 61 79 9N 97
25 2,277 07 12 24 43 63 8 92 98
26 2,275 07 13 25 [ 65 83 93 98
27 2,272 07 13 26 k6 67 8 9k 98
28 2.270 07 13 27 &7 69 86 95 99
29 2,268 07 b 28 49 N 87 9% 9
30 2.266 07 14 29 5 73 88 96 99
3N 2,265 07 W 30 52 7% 9 97 ®
32 2.263 07 5 3N s 76 91 97 *
33 2,262 07 15 32 55 77 92 98
3 2.260 07 16 33 57 719 93 98
35 2,259 07 16 3 58 80 93 98
36 2.257 07 16 35 60 81 o 99
37 2,256 07 17 3% & 83 95 9
38 2,255 07 17 37 62 8 95 99
39 2,25k 08 18 38 6k 85 96 99
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Table 8.3.16 (continued)
t

n Fe 05 10 15 .20 .25 .30 .35 40 .50 .60 .70 .80
&0 2253 08 18 39 65 86 96 99 & * * * *
42 2,250 08 19 &1 68 88 97
[ 2,249 08 20 W3 70 89 98
U6 2,248 08 21 4 72 9N 98
L] 2,246 08 21 47 % 92 99
50 2,248 08 22 W8 76 93 99
52 2,2 09 23 S0 718 9% 99
[ 2,243 09 24 s52 80 95 99
56 2,242 09 25 sh 82 96 *
58 2.2 09 26 55 83 96
60 2,260 09 26 57 8 97
& 2,238 09 28 60 8 98
68 2,237 10 30 63 8 99
7 2,23 10 32 6 9N 9
76 2,23« 10 33 69 93 99
8o 2,233 N 35 72 9% 9
84 2,22z M 37 0 95 o+
88 2,22 1 39 76 9
92 2,29 12 4 18 9
96 2.230 12 42 8 97

100 2,229 12 b 82 98
120 2,227 1% 52 89 99

140 2,225 16 59 9% *
160 2.224 18 66 97

180 2,223 20 72 98

200 2,222 23 77 9

250 2,220 28 87 *

300 2.219 33 93

350 2.218 39 96

400 2.218 ke 98

450 2.217 &9 99

500 2.217 54 *

600 2,217 63

700 2,216 n
800 2.216 17
900 2.216 83

1000 2.216 87

* Powsr values below this point sre grester than .995.



8.3 POWER TABLES 321
Table 8.3.17
Power of F testata= 05, u=6

n Fe 05 10 a5 .20 .25 .30 .35 40 .50 .60 .70 .80
2 3.866 05 05 06 07 ©08 08 09 11 Ww 18 23 29
3 2.848 05 06 06 08 09 1 13 16 2 36 46 51
4 2.573 05 06 07 09 1 18 23 36 & 66 8o
5 2.4bs 05 06 08 10 13 18 24 N L8 6 81 9
6 2,372 05 06 o08 N 1 22 30 38 58 77 90 9
7 2,326 05 07 09 13 19 26 35 4 68 8 95 99
8 2.29 o5 07 10 15 21 30 M 53 76 9 98 *
9 2.266 06 07 N 16 26 35 4y 60 8 9 99
10 2.246 06 08 11 18 27 39 52 66 8 97 «+

n 2.231 06 08 12 20 30 b3 57 n 90 98

12 2,219 06 08 13 22 33 47 62 76 93 99

13 2,209 06 09 W 23 36 8§ 67 80 95 99

1 2,200 06 09 15 25 39 8 M 83 97

15 2,193 06 09 16 27 L2 59 I 86 98

16 2186 06 10 17 29 45 62 78 8 98

17 2.181 06 10 18 31 48 66 8 91 99

18 2,176 06 10 19 33 8 69 8 93 99

19 2.1n 06 1 20 35 853 72 8 9% *

20 2168 06 11 21 37 5 7% 88 95

21 2,166 06 1N 22 39 58 77 %0 96

22 2.161 06 12 23 ko 6 79 9 97

23 2,158 07 12 24 42 63 8 93 98

2% 2156 07 12 25 4 65 83 94 98

25 2,153 07 13 26 4 68 85 95 99

26 2.151 07 13 27 48 70 8 9% 99

27 2,149 07 1h 28 50 72 88 9% 99

28 2,147 07 % 29 51 7% 89 97 99

29 2,145 07 14 3o 5 75 9N 97 *

30 2,16 07 15 N .55 77 92 98

3 2,2 07 15 33 56 19 93 98

32 2,141 07 16 3 58 8 93 99

33 2.160 07 16 35 60 82 9% 99

kN 2,138 o7 17 36 61 8 95 99

35 2,137 07 17 37 63 8 9% 99

36 2,136 07 17 38 6k 8 96 99

37 2,133 08 18 39 66 8 97 99

38 2136 08 18 4o 67 88 97 *

39 2,133 08 19 W 6 8 9
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Table 8.3.17 (continued)
f

" Fo LO05 .10 .15 .20 .25 .30 .35 Ao .50 .60 .70 .80
&0 2,132 o8 19 k2 70 89 98 * * * * * *
&2 21N 08 20 W 72 9 98
b 2,129 08 21 4 15 92 99
b6 2,126 08 22 48 77 % 9
4 2,126 08 23 S0 19 95 99
50 2125 09 24 52 81 9% 9
52 2,126 09 25 Sk 82 96 *
Sh 2,123 09 26 56 & 97
56 2,122 09 27 58 8 97
58 2,122 09 27 60 8 98
60 2,121 09 28 61 88 98
64 2119 10 30 65 91 9
68 2118 10 32 68 92 9
72 2017 10 3% N % 9
76 2.116 1 36 T 95 *

80 2,115 n 38 76 96
o 2,114 12 &0 78 97
88 2.0k 12 b2 81 98
92 2,113 12 & 83 98
96 2.112 13 111 84 99

100 2,112 13 b7 8 99

120 2.110 15 56 92 *
140 2.108 17 64 96
160 2,107 19 n 98
180 2.106 21 76 99
200 2,105 23 81 *

250 2,104 29 90
300 2,103 35 95

350 2,102 Lo 98
hoo 2.102 b6 99
hso 2.102 52 *
500 2.100 57
600 2.101 67
700 2,100 75

800 2,100 82
900 2.100 87
1000 2,100 9"

* Power values below this point are greater than .995.
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Table 8.3.18

Power of F testata= .05 u=8
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n Fe 05 .10 15 .20 .25 .30 .35 .0 .50 .60 .70 .80
2 3.230 05 05 06 07 08 09 10 1 15 20 26 34
3 2.510 05 06 06 08 10 12 15 18 28 40 53 67
o 2305 05 06 07 09 12 16 21 27 W2 s 15 8
[ 2,208 05 06 08 MN 15 20 27 35 55 7h 88 9
6 2,152 05 07 09 12 18 25 3 M 66 84 95 99
7 2118 05 07 10 1k 20 30 W 53 7% 9 ” *
8 2,089 06 07 10 16 2 35 47 60 8 95 99

9 2,070 05 08 11 18 27 4o sk 67 88 o8 o

10 2,065 06 08 12 20 31 k5 60 73 92 99

n 2,043 06 08 13 22 3 49 65 79 95 99

12 2,033 06 09 b 2 38 sk 70 83 97 o«

13 2.025 06 09 15 26 M 58 74 87 8

1% 2.018 06 09 17 29 hs 62 78 90 9

15 2.0013 06 10 18 31 4B 66 82 92 99

16 2,008 06 10 19 33 8 76 85 9k *

17 2,006 06 10 20 35 sk 73 87 95

18 2,000 06 11 21 37 57 716 % 97

19 1,996 06 11 22 4 60 79 91 97

20 1.993 06 12 23 42 63 82 93 98

21 1,990 07 12 25 4k 66 84 9 99

22 1.988 07 13 26 46 68 86 95 99

23 1,986 07 13 27 &8 n 88 96 99

24 1,986 07 13 28 50 73 89 97 9

25 1,982 07 W 29 52 75 9 98

26 1,980 07 W N sk 77 92 98

27 1,978 07 15 32 s 79 93 99

28 1.977 07 15 33 58 81 s 99

29 1,976 07 16 3 60 8 95 99

30 1.976 07 16 36 62 B 9% 99

n 1,973 07 17 37 64 86 96 9

32 1.972 07 17 38 65 87 97 *

33 1.97 08 18 39 67 88 97

3 1,970 08 18 41 69 89 98

35 1,969 08 19 42 70 90 98

36 1.968 08 19 43 72 91 o8

37 1.967 08 20 &b 3 92 99

38 1.967 08 20 4§ 75 93 99

39 1.966 08 21 by 76 9k 99
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Table 8.3.18 (continued)

n Fe .08 0 15 ,20 .25 .30 .35 .40 L,50 .60 .70 .80
4o 1.965 08 21 48 77 9% 99 * * * * * *
42 1.966 08 22 50 80 95 99

b 1.963 08 23 53 82 96 *

17 1.962 09 25 55 84 97

48 1,961 09 26 §7 B85 98

50 1,960 09 27 59 87 98

52 1.959 09 28 & 89 9

sh 1,958 09 29 63 90 99

56 1.957 09 30 65 91 99

58 1.97 10 3 67 92 99

60 1,956 10 32 69 93 99

6k 1.955 10 34 72 95 *

68 1,96 11 37 715 9

72 1953 11 39 718 97

76 1,952 12 81 98

-3

8

o

s

S
*388%

100 1,949 b sk 92
120 1.947 17 63 96
o 1.9 19 7 98
160 1,948 22 78 99
180 1,944 24 83 *

200 1.9 27 88
250 1.943 34 gg

300 1,942 ]
350 1.941 W 99
400 1,941 Sk *
hs0 1.941 60

500 1.940 66
600 1,940 75
700 1.940 82
800 1,940 88
900 1.940 92
1000 1.939 95

* Power values below this point are greater than .995.
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Table 8.3.19
Power of F test ata = .05, u= 10
n F, .05 L0 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
2 2,84 05 05 06 o7 08 09 10 12 16 23 30 39
3 2.28 05 06 07 09 11 13 17 2t 32 L 62 716
b4 2,133 05 06 07 10 13 17 23 30 47 65 8 92
5 2,03 05 06 08 11 16 22 30 L4 61 80 92 98
6 2,008 05 07 09 13 19 28 38 5 713 90 97 *
7 1.978 05 07 10 15 23 33 45 59 82 95 99
8 1.966 06 07 1 17 27 39 53 67 88 98 *
9 1.940 06 08 12 20 31 4 60 W 93 99
10 1,926 06 08 13 22 3 50 66 80 96 *
n 1,913 06 09 b 28 38 55 71 B 97
12 1,910 06 09 15 27 42 60 76 88 98
13 1.903 06 09 17 29 L6 65 81 9N 99
b 1,898 06 10 18 32 50 69 B 94 &
15 1.893 06 10 19 3% 53 73 87 95
16 1,889 06 11 20 37 57 76 90 97
17 1,885 06 11 22 39 60 79 92 98
18 1.882 06 12 23 [%3 6l 82 [ 98
19 1.879 06 12 % W 6 85 95 99
20 1877 07 12 26 47 69 8 9% 99
21 1.8 07 13 27 49 72 89 97 99
22 1872 07 13 29 &1 7% 09N 98 *
23 1,870 07 14 30 & 77 92 98
24 1.869 07 b 31 56 719 93 99
25 1,867 07 15 33 58 8 9% 99
26 1.866 07 15 3 60 8 95 99
27 1.866 07 16 36 62 85 9 99
28 1.863 07 17 37 64 86 97
29 1.862 07 17 38 66 88 97
30 1.861 07 18 40 68 89 98
3 1.860 08 18 41 70 90 98
32 1.859 08 19 43 72 91 99
33 1.858 08 19 (] 73 92 99
34 1.857 08 20 45 75 93 99
35 1.856 08 21 47 76 9% 99
36 1.856 08 21 48 78 95 99
37 1,865 08 22 49 79 95 99
38 1,854 08 22 51 81 96 *
39 1.854 08 23 52 82 96
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Table 8.3.19 (continued)

f
n FC .05 .10 5 .20 25 .30 0’5 0"0 +50 -60 »70 oso
b0 1,853 08 23 53 8 97 * * * * * * *
b2 1,852 09 25 56 85 98
[} 1.851 09 26 58 87 98
46 1,850 09 27 61 89 9
8 1.849 09 28 63 90 99
50 1,848 09 30 65 92 9
52 1,848 10 3 67 93 99
sh 1847 10 32 69 9k *
56 1,846 10 3 n 95
58 1.846 10 35 n
60 1,845 10 36 75 96
6k 1,845 h] 38 78 97
68 1,844 1] 3] 81 98
72 1,843 12 (3] 84 99
76 1,842 12 b 86 99
80 1.842 13 48 88 99
[ ) 1.8 13 51 90 *
88 1.841 14 53 92
92 1.840 1h 55 93
96 1.840 15 57 9
100 1.839 15 60 95
120 1.838 18 69 98
140 1.837 21 n 99
160 1.836 24 84 *
180 1.836 27 88
200 1,835 30 9
250 1.83 38 97
300 1,834 LT3 99
350 1.833 53 *
koo 1,833 60
&50 1.833 66
500 1.632 72
600 1.832 81

700 1.832 88
800 1.832 92
900 1.832 95
1000 1.832 97

* Power values below this point sre greater than ,995.
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Table 8.3.20

Power of F testata = .05, u =12

327

n Fe 05 L1000 L5 .20 .25 .30 .35 M0 .50 .60 .70 .80
2 2,604 05 05 06 07 08 09 11 13 18 25 3 Wb
) 2,148 05 06 07 08 10 13 17 22 3k 50 66 80
4 2,000 05 06 08 10 14 18 25 33 52 N 8 95
5 1,944 05 06 09 12 17 2 33 b 67 8 95 99
6 1,905 05 07 10 & 21 30 42 sk 78 93 99 &
7 1.879 06 o7 11 16 25 36 50 64 8 97 &

8 1,860 06 08 12 19 29 43 58 72 92 9

9 1.847 06 08 13 21 33 49 65 79 95 -

10 1.836 06 08 14 24 38 55 n 85 98

n 1,827 06 09 15 26 42 60 77 B9 99

12 1.821 06 09 17 29 46 65 81 92 99

1 1.815 06 10 18 32 & 70 8 9

1% 1,810 06 10 19 35 55 s 88 96

15 1,806 06 11 21 37 s8 18 9N 97

16 1.802 06 11 22 ko 62 8 93 98

17 1.799 06 12 24 43 66 B4 95 99

18 1,796 07 12 25 4 69 87 9% 99

19 1,79 07 13 27 48 72 8 97 9

20 792 07 13 28 51 75 91 98 =

21 1.79¢ 07 & 30 sk 77 92 98

22 1.788 07 s 31 56 80 9% 99

23 1.786 07 15 33 59 82 95

24 1.785 07 15 3 61 B4 9% 99

25 1,786 07 16 36 6 8 97 %

26 1,782 07 17 37 65 88 97

27 1,788 07 17 39 68 89 98

28 t.780 07 18 Y] 70 90 98

29 1.779 08 18 42 72 92 99

30 1,778 [ ] 19 LY n 93 99

n 1.777 [ ] 20 [13 75 9

32 1.776 08 20 47 77 S 9

n 1,776 08 21 48 B 95 9

£ 1,775 08 22 50 80 96

35 177« 08 22 s 8 9%

36 1,77 08 23 53 8 97

37 1,773 08 24 s4 8 97

38 1,777 08 24 55 85 98

39 1772 09 25 57 8 98
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Table 8.3.20 (continued)
t

n F. .05 10 .15 .20 .25 .30 .35 .0 .50 .60 .70 .BO
bo 1.m 09 26 58 87 98 * * * * * * *
42 177 09 27 61 89 99
Ly 1,770 09 28 63 91 99
173 1.769 09 30 66 92 99
48 1.768 10 N 68 9 *
50 1.768 10 32 11 95
52 1,767 10 W 73 9
sh 1,766 10 35 7¢ 96
56 1,766 11 3 717 97
58 1.7 1 38 718 97
60 1,766 11 39 80 98
6h 1.76h " b2 83 99
68 1,763 12 45 8k 99
72 1,763 12 41 88 99
76 1,762 13 50 90 %
80 1,762 1 53 92

84 1.761 14 55 93
88 1.761 15 58 gz

92 1.760 15 60
96 1.760 16 62 95
100 1.760 16 65 97
120 1,79 19 7% 99
140 1.758 23 82
160 1.757 26 88
180 1.76 29 92
200 1.756 33 95
250 1.755 &1 98
300 1,756 S0 w
350 1.754 58
400 1,756 65
450 1.7 N
500 1.75 717
600 1.753 86
700 1.753 9
800 1.753 95
900 1,73 97
1000 1,753 98

* Power values below this point are greater than .995,
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Table 8.3.21
Power of F testata= 05 u=15
n Fe W05 00 5,20 .25 .30 .35 4o .50 .60 .70 .80
2 2,352 05 05 06 07 08 10 12 14 20 28 39 51
3 1.992 05 06 07 09 1 15 19 25 39 §7 7 87
L 1,880 05 06 08 N 15 20 28 37 58 18 92 98
5 1.826 05 07 09 13 19 27 38 s0 7 9 98 *
6 1.79% 05 07 10 15 23 3 47 & 85 96 *
7 1,772z 06 07 1 18 28 W 56 7 92 99
8 1.757 06 08 12 2 33 48 65 79 9 *
9 1.7045 06 08 14 24 38 55 72 85 98
10 1,73 06 09 15 27 W3 61 78 9 99
n 1.729 06 09 17 30 4 67 83 93 *
12 1.726. 06 10 18 33 52 72 87 96
13 1.719 06 10 20 36 57 717 %0 97
i 1.715 06 1 21 39 6 81 93 98
15 1.m 06 N 23 42 65 84 95 99
16 1,708 06 12 25 45 69 87 96 99
17 1.706 07 12 25 L8 72 90 97 *
18 1,706 07 13 28 & 7 92 98
19 1.702 07 1 30 54 7 93 99
20 1,700 07 1+ 31§57 B 9% 9
21 1,698 07 15 33 60 B84 96 99
22 1,696 07 16 35 63 8 97 +
23 1.69s 07 16 37 65 88 97
24 1.6% 07 17 39 68 89 98
28 1.693 07 17 40 70 91 98
26 1.692 07 18 42 72 92 9
27 1.691 08 19 Lk 7 93 99
28 1,690 08 20 46 75 9 99
29 1.689 08 20 47 78 95 *
30 1.688 08 21 49 B0 96
3 1.687 08 22 5t 82 97
32 1.687 08 22 52 8 97
33 1.686 08 23 sS4 84 98
3b 1.686 08 24 56 86 98
35 1.685 09 25 57 87 98
36 1,686 09 25 59 88 99
37 1.686 09 26 60 89 99
318 1.683 09 27 62 9% 99
39 1.683 09 28 63 9 99
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Tabile 8.3.21 (continued)

n Fe .05 .00 .15 .20 .25 .30 .35 ko .50 .60 .70 .80
4 1683 09 28 65 92 99 x ok & x *  x &
42 1.682 09 30 68 93
b 1.688 10 32 70 95
46 1.680 10 33 73 9
[} 1.680 10 35 75 97
50 1.679 10 36 717 97
52 1.679 11 38 19 98
[ 1.678 11 39 81 98
56 1.678 n 41 83 99
58 1.677 11 43 84 99
60 1.677 12 [T} 86 99
() 1.676 12 47 89 99
68 1.676 13 50 91 *
72 1.675 13 53 93
76 1.675 b 6
80 1.6 15 59 95
84 1.674 15 62
88 1.6 16 64 97
92 1.673 17 61 98
9% 1.673 17 69 98
100 1.673 18 N9
120 1.672 21 8 *
140 1.6 25 88
160 1.670 29 92
180 1.670 33 9
200 1.670 37 97
250 1.669 47 99
300 1.669 56 %

350 1.668 64
400 1.668 72
k50 1.668 78
500 1.668 83
600 1.667 91
700 1.667 95
800 1.667 97
900 1.667 99

1000 1.667 99

* Power values below this point are greater than .995,
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Power of F testata= .05, u=24

Table 8.3.22

331

n Fe .05 .10 15 .20 .25 .30 .35 M0 .50 .60 .70 .80
2 1.966 05 06 06 08 09 11 1 17 26 39 53 69
3 1.737 05 06 07 10 13 18 24 32 52 73 88 9
4 1.663 05 07 09 12 18 26 37 49 M 9 98
5 1.627 05 07 10 15 26 35 49 64 88 98 *

13 1,606 06 08 12 19 30 45 61 7% 95 *

7 1.590 06 08 13 22 36 sh n 85 98

8 1,580 06 09 15 26 L3 62 79 9 99

9 1.572 06 09 17 30 by 69 86 95 *

10 1,566 0é 10 19 3 55 76 90 97

1" 1.561 06 1 21 38 6l 81 9% 99

12 1.557 06 1 23 L2 66 86 96 99

13 1.564 06 12 28 47 n 89 98 *

" 1.551 67 13 27 & 76 92 98

15 1.549 07 13 29 st 80 ol 99

16 1.546 07 14 32 58 83 96 99

17 1,545 07 15 3 62 8 97 *

18 1,543 07 16 36 65 89 98

19 1.642 07 16 38 69 9N 9

20 1,540 07 17 M 7 92 99

2 1,539 07 18 43 75 9% 99

22 1.538 08 19 4s 77 95 *

23 1.537 08 20 48 80 96

24 1.536 08 21 50 82 97

25 1.536 o8 22 52 84 98

26 1.53% 08 23 5h 86 98

27 .53 08 24 57 87 99

28 1.533 08 25 59 89 99

29 1.533 09 25 61 90 99

30 1.532 09 26 63 92 99

3t 1.532 09 27 65 93 *

32 1.531 09 28 66 94

33 1.531 09 29 68 9%

3 1.531 09 30 70 95

35 1.530 09 3 72 96

36 1.530 10 32 73 9%

37 1,529 10 3 75 97

38 1.529 10 35 76 97

39 1.529 10 36 78 98
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Table 8.3.22 (continved)
f
n Fe .05 .10 .15 .20 .25 .30 .35 .0 .50 .60 ,70 .80
Lo 1.529 10 37 79 98 & * * * * * * *
b2 1.528 n 39 82 9
e 1.528 1" 1] 84 99
46 1,527 11 43 8 9
48 1.527 12 Ls 88 *
50 1.526 12 47 90
52 1.526 12 4 9

Sh 1.526 13 5 92
56 V.52 13 53 93
58 1.525 13 55 94

60 1.525 1 57 95
64 1.524 th 60 97
68 1.526 15 64 98
72 1.523 16 67 98
76 1.523 17 70 99
80 1.523 18 N 99
8h V.523 18 76 99
88 1.522 19 1 *
92 1.522 20 @&
96 1.522 21 83

100 1.522 22 85

120 1.521 26 92

140 1,520 %N 96

160 1.520 36 98

180 1.520 & 99

200 1.519 47 *

250 1,519 59

300 1.519 70

350 1.519 78

Loo 1.518 85

4so 1,518 90

500 1.518 o

600 1,518 98

700 1.518 99

800 1.518 *

900 1.518

1000 1.518

* Power values below this pofnt are grester then .995,
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Table 8.3.23
Power of F testata = .10, u=1

n Fe 05 10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
2 8.526 10 N 12 13 13 w15 17 20 23 27 30
3 Lsks 10 N 12 13 15 17 19 22 28 35 L2 50
[ 3.776 10 1 13 W17 20 23 27 36 ks 55 64
5 3,458 10 n 13 16 19 23 27 32 43 55 66 76
6 3.286 10 12 1 17 2 26 N 37 S50 63 % 83
7 3,177 10 12 15 19 23 29 35 L2 s &9 80 89
8 3,002 10 12 15 20 25 32 39 47 62 15 85 92
9 3.048 10 13 16 2 28 35 43 5 6 8 89 95
10 3.007 10 13 17 23 30 37 46 5 n 83 92 97
n 2.975 n 13 18 2k 32 L0 49 58 75 87 o4 98
12 2,949 1 14 19 25 34 43 52 62 78 89 96 99
13 2,927 1 1h 19 27 36 45 55 65 81 91 97 9
i 2,909 1 1 20 28 37 48 s8 68 83 93 98 99
15 2.8 1 1521 29 39 s 60 70 86 95 98 *
16 2.881 n 15 2 N W 52 63 73 8 96 99

17 2,869 1 15 23 32 43 sh 65 75 89 97 9

18 2.859 n 16 23 33 Ls 56 68 77 9N 97 99

19 2,850 n 16 2b 34 13 58 70 79 92 98 *

20 2.843 n 16 25 36 48 60 12 8 93 98

21 2.836 1 17 2 37 s0 62 73 83 o 99

22 2.829 1 17 26 38 5 6 75 84 95 99

23 2,823 n 18 27 39 53 66 77 - 86 96 99

24 2,818 12 18 28 Lo [} 67 78 87 96 99

25 2.813 12 18 29 42 56 69 B0 8 97 99

26 2.809 12 19 29 43 57 7170 & 89 97 *

27 2.805 12 19 30 4 58 72 83 90 98

28 2.801 12 19 3 ks 60 73 8 91 98

29 2.797 12 20 32 4 61 %8s 92 98

30 2,79 12 20 32 4 62 76 86 93 99

N 2.9 12 20 33 48 63 77 87 93 99

32 2,768 12 21 34 49 65 78 88 9% 99

33 2,786 12 21 34 50 66 79 89 95 99

34 2.783 12 2 35 51 67 80 90 95 99

35 2,781 13 2 36 52 68 B 90 9% 99

36 2.779 13 22 3 53 69 82 91 96 *

37 2.1717 13 22 37 54 70 83 92 96

38 2,775 13 23 38 55 n 84 92 97

39 2.113 13 23 38 56 72 85 93 97
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Table 8.3.23 (continued)
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100 2.7 18 4 70 89 97
120 2,727 20 8 76 93 9
140 2,726 22 53 82 96 99
160 2,720 24 57 86 *

180 2,719 2% 62 89

99
200 2.8 27 65 92 99
250 2,716 31 9% o«
300 2.nb 35 B0 98

350 2.3 39 8 99

Loo 2.2 42 89 w

450 2.7 46 92

500 2. 49 o
600 2.710 11 97
700 2,709 61 98
800 2,709 66 9
900 2,708 70 *

1000 2,708 7h

* Power values below this point are greater then .995,
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Table 8.3.24
Power of F testata = 10, u=2
f
n 'e .06 10 .15 ,20 .25 .30 .35 40 .50 .60 .70 .80
2 5,462 10 1" 12 13 13 14 15 17 20 23 27 32
3 3.463 10 N 12 W 15 17 20 22 29 36 45 53
4 3.006 10 11 13 15 17 20 24 28 38 48 59 70
5 2,807 10 12 13 16 20 2 29 3 w6 59 71 8
3 2.695 10 12 W 18 22 27 33 Lo sk €8 80 89
7 2,626 10 12 15 19 24 30 37 45 6 75 86 93
8 2.575 1 13 16 21 27 3l W 50 67 81 90 9%
9 2.5388 1 13 17 22 29 37 45 55 72 85 9h 98
10 2.51 n 13 18 2 31 4o 49 59 76 B89 96 99
1 2.489 1 14 18 25 33 43 53 63 80 92 97 99
12 2.4n n W 19 27 36 46 56 67 84 94 98 *
13 2,456 n 1% 20 28 38 49 60 70 86 95 99
1 2.4 N 15 21 30 4o o1 € 713 8 97 9
15 .43 N 15 22 31 k2 s& 66 76 9 97 *
16 2,428 n 16 23 32 b 56 68 79 92 98
17 2517 1 16 26 3w W6 59 N 8 9% 99
18 2.410 " 16 24 35 48 61 3 83 95 9
19 .40 M 17 28 37 5 63 715 8 9% 9
20 2.398 12 17 26 38 52 65 77 87 97 *
21 2.393 12 17 27 39 53 67 79 88 97
22 2,389 12 18 28 W 58 69 81 90 98
23 2,388 12 18 29 42 51 n 8 9 98
2h 2,381 12 19 29 43 59 73 8 92 9
25 2.378 12 19 30 45 60 7% 86 93 99
26 2.375 12 19 31 hé 62 76 87 [ ] 9
27 2.372 12 20 32 4 63 8 88 95 99
28 2369 12 20 33 4B 65 79 8 95 99
29 2367 12 20 33 50 66 80 90 96 *
30 2.365 12 21 5 68 82 9 96
3 2,363 13 21 35 52 69 83 92 97
32 2,361 13 22 36 53 70 8 93 97
33 2.359 13 22 37 54 n 85 93 98
34 2.357 13 22 37 55 n 86 9% 98
35 2,355 13 23 38 56 74 87 95 98
36 2.3 13 23 39 57 715 8 95 98
37 2.352 13 2h ko 59 76 89 96 9
38 2,351 13 26 40 60 77 89 96 99
39 2350 13 2 41 @ 78 90 96 99
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Table 8.3.24 (continued)

f
n Fc .06 .10 .5 .20 .25 .30 .35 .0 .50 .60 .70 .80
ko 2,348 13 25 42 62 79 91 97 99 * * * *
h2 2,346 b 25 W3 [ 81 92 97 9
bk 2,300 % 26 Ly 65 82 93 98 *
W6 2,342 1w 27 [T 67 84 9k 98
48 2.3 h 28 48 69 85 95 99
50 2,339 W 28 W9 N 8 9% 9
52 2,338 15 29 s0 72 88 96 9
sh 2,336 15 30 52 74 89 97 99
56 2,335 15 31 53 75 90 97 9
58 2,334 15 3 [ 7% 9N 98 *
60 2.333 15 32 55 78 92 98
[ 2.331 16 33 58 80 93 98
68 2,329 16 35 60 8 95 99
72 2,326 17 36 62 8 96 99
76 2,326 17 38 65 8 9% 99
80 2,325 17 39 67 88 97 *
84 2.324 18 4o 69 89 98
88 2323 18 42 70 90 98
92 2,322 18 43 72 92 99
96 2,32 19 W M 93 99
100 2,32 19 45 75 93 9
120 2,318 21 52 82 97
1wo 231 23 57 87 98
160 231 25 62 9 9
180 2313 27 67 9 *
200 2312 29 1 9%
250 2.310 33 80 98
300 2,309 37 86 9
350 2,308 42 90 *
400 2,307 W6 94
450 2.307 W9 96

500 2,306 53 97
600 2,306 60 99
700 2,305 66 *

800 2,305 n
900 2,305 76
1000 2,306 80

* Power values below this point are greater than .995.
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Tabrie 8.3.25

Power of F testata=.10,u=3

10 2,283 N W 18 25 33 43 sh 64 82 93 98
n 2,226 1M 1 19 27 36 46 58 68 8 95 9
12 2,213 n " 20 28 38 50 61 72 89 97 99
13 2.202 n 15 21 30 W 53 65 76 9 98 *
1 2,192 n 15 22 N 43 56 68 79 9 98

15 2,184 n 16 23 3 4s 59 n 82 95

20 2,157 12 18 28 MW 6 711 83 9N
21 2,154

22 2,150 12 18 29 4 60 75 8 9%
23 2,147 12 19 30 46 62 77 88 95
b 2,144 12 19 n Ly 64 79 89 95
25 2,142 12 20 32 4B 66 80 90 96
26 2,939 12 20 33 S50 67 82 9 97
27 2,137 12 2 5 69 83 91 97
28 2,135 12 21 35 §3 70 8 93 98
29 2,133 13 21 36 b 72 86 98
30 2,132 13 22 37 5 73 8 95 98
)] 2.130 13 22 38 57 75 88 95 99
32 2,129 13 23 39 58 76 B89 96 99
33 2.127 13 23 39 59 77 90 9% 99
34 2126 13 23 4O &0 78 9 97 99
35 2,026 13 2 4t 61 79 9 97 99
36 2,123 13 24 42 63 81 92 98 99
37 2,122 13 25 k3 64 B2 93 98 *
38 2.121 W 25 Lk 65 83 93 98




338 8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE

Table 8.3.25 (continved)

3

-
.
.
-
o
.
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v

20 .25 .30 .35 M0 50 .60 .70 .BoO

.19 1h 26 bs 67 B4 9N
2.118 w27 W 69 86 95
2.116 1 28 W9 n 88 96
2,115 28 50 1 89 97
2.113 15 29 52 75 90 97

2,012 15 30 53 76 91 98
2,111 15 N 55 18 92 98
2,010 15 32 5 719 93 99
2,109 15 33 58 81 9% 99
82 95 99

*338838

~n
.
-
-
o
w
w
n
o

o
A2
bl
4
48
50
52
5h
56
58
60 2.107 16 34 60 83 95 99
6 2,106 16 36 63 85 96 9
68 2,104 17 37 6 88 97 *
72 2,103 17 39 68 8 98
76 2,102 17 W 7 9N 98
80 2,101 18 &2 72 92 99
84 2.101 18 M 2 93 9
88 2,100 19 4§ 76 % 99
92 2,099 19 46 78 9% 9
96 2,098 20 &8 80 9 *

100 2,098 20 A3 8 96

120 2,096 22 5 8 9

140 2,006 2 62 92 99

160 2,093 26 68 95 *

180 2,092 28 n 9

200 2,09 30 77 98

250 2,089 35 8 9

300 2,088 WK 9 *

350 2,088 A5 9

koo 2.087 50 97

k5o 2,087 sh

500 2,087 58 99

600 2.086 65 *

700 2,086 n

800 2,086 n

900 2,085 81

1000 2,085 85

* Power values below this point are grester than ,995.
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Table 8.3.26
Power of F testata= .10, u=4
f

n Fe .05 .10 .15 ,20 .25 .30 .35 .o .50 .60 ,70 .80
2 3.520 10 11 n 12 13 15 16 18 21 26 32 38
3 2,605 10 11 12 1 16 18 21 25 33 43 53 6b
b4 2,361 10 1N 13 15 18 22 27 32 4 57 70 8
5 2,269 10 12 W 1721 2 32 ) s 69 82 9N
6 2,184 10 12 15 19 28 3 b1 I 63 79 89 96
7 2,142 1" 13 16 2 27 35 W) 53 n 85 9% 98
8 2,113 n 1 17 23 30 39 48 59 77 90 97 99
9 2.091 n 13 18 2 33 43 53 6k B2 94 98 *
10 2,07 1N th 19 26 38 47 58 69 By 96 99

] 2.061 n 1w 20 28 38 50 62 73 90 97 *

12 2,050 N 1521 30 W sk 66 77 92 98

13 2.04 ] 15 22 32 W 57 70 8 % 9

1 2,03 1 16 23 W b6 60 73 B4 9% 99

15 2,027 1N 16 28 35 4 8 76 8 97 *

16 2,022 1N 6 25 37 st 6 79 8 98

17 2,017 1N 17 26 39 sS4« 69 81 9 98

18 2,012 12 17 27 M 56 N 8 92 99

19 2,009 12 18 28 42 58 7 8 93 99

20 2,006 12 18 29 Ly 6 7% 87 9 99

21 2,002 12 19 30 4 &) 78 89 95 *

22 1.999 12 19 It 47 65 80 90 96

23 1,997 12 20 32 49 67 82 92 97

24 1.9%4 12 20 n 51 69 8 93 97

25 1.992 12 21 3 52 70 8 9 98

26 1.990 12 21 35 sk 72 8 95 98

27 1.989 13 21 36 55 7 87 95 99

28 1.987 13 22 37 §7 15 89 96 99

29 1.986 13 22 38 58 77 90 97 99

30 1.98¢ 13 23 39 60 718 9 97 99

n 1.983 13 23 Lo 61 79 92 97 99

32 1.982 13 24 W 62 81 92 98 *

33 1.980 13 28 L2 64 B2 93 98

34 1.979 13 25 43 65 83 9% 98

35 1.978 ¥3 25 (™) 66 8l 94 99

36 1.977 14 26 45 67 85 95 99

37 1.977 14 26 [ 69 86 96 99

38 1,976 th 26 47 70 87 96 99

39 1.975 1% 27 8 7 88 96 99
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Table 8.3.26 (continued)
f

n Fc 08 .10 .18 ,20 .25 .30 .35 MO .50 .60 .70 ,BO
4o 1.974 14 27 L1 72 89 97 99 * * * * *
42 1.973 14 28 51 74 90 97 *
" 1.971 1w 29 52 76 91 98
46 1.970 15 30 s 78 93 98
L8 1.969 15 N 56 79 [ 99
50 1.968 15 32 57 81 9% 99
52 1.967 15 33 59 83 95 99
54 1.966 16 b 61 8l 96 99
56 1.966 16 35 62 85 96 *
58 1.965 16 35 () 86 97
60 1,96k 16 37 é5 88 97
6l 1.963 17 38 68 90 98
68 1,962 17 Lo 70 91 99
72 1.961 18 b2 n 93 99
76 1.960 18 bl 75 [ 99
80 1.959 19 L5 7 95 *

8 1.959 19 47 19 9
88 1,958 19 48 81 97

92 1.957 20 50 83 97
96 1.957 20 52 84 98

100 1.956 2 53 86 98

120 1.954 23 60 91 99

140 1.953 25 67 95 *

160 1.952 28 73 97

180 1.951 Jo 77 98

200 1.951 32 82 99

250 1.950 38 89 *

300 1.949 43 94

350 1,948 49 97

4o0 1,948 53 98

Lso 1.947 58 99

500 1.947 62 *

600 1,947 70

700 1.947 76

800 1.946 o2

900 1.946 86

1000 1.946 89

* Power values below this point are greater then .995.
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Table 8.3.27

Power of F testata=.10,u=5§

41

n Fe .05 .10 .15 ,20 .25 .30 .35 .40 .50 .60 .70 .80
2 3.108 1 1n 1 1213 15 16 18 22 28 3 M
3 2,394 10 1 12 W 16 19 22 26 35 46 58 69
4 2,196 10 n 13 16 19 23 28 3 47 62 75 8
5 2.103 10 12 W 18 22 28 3% 42 S8 7 86 94
6 2,0b9 10 12 15 20 25 32 W40 49 68 83 93 97
7 2.014 n 13 16 22 28 37 46 56 7% 89 9% 99
8 1.990 N 13 17 23 32 W 52 63 81 93 98 *
9 9N 1" 1% 18 26 35 46 57 68 86 96 99

10 1.957 1" 14 19 28 38 50 62 4] 90 97 *

11 1,946 n 14 21 30 13 sb 66 78 93 99

12 1.937 1" 15 22 32 W 57 70 81 95 9

13 1.929 n 15 23 34 by 61 74 84 96 *

h 1,923 1 16 26 36 so 6 77 81 97

15 1917 1 16 256 38 52 67 80 90 98

16 1.912 1 17 26 4o  s5 70 8 92 9

17 1,908 12 17 27 W 58 713 85 93 9

18 1,905 12 18 29 43 60 76 87 95 99

19 1.902 12 18 30 45 62 718 89 96 *

20 1.899 12 19 31 47 65 80 9 96

21 1.896 12 19 32 4 67 8 92 97

22 1,894 12 20 33 51 69 84 93 98

23 1.891 12 20 3% 52 n 86 94 98

24 1.890 12 21 35 s6 73 8 95 99

25 1.888 12 21 36 5 15 88 9% 99

26 1.886 13 22 38 57 76 90 97 99

27 1.885 13 22 39 59 718 91 97 9

28 . 1.883 13 23 4o 61 79 92 98 99

29 1.882 13 23 M 62 81 93 98 *

30 1.881 13 24 b2 23 82 ok 98

3 1.880 13 26 43 65 83 % 99

32 1.879 13 25 by 66 85 95 99

33 1.878 13 28 4s 68 86 96 99

34 1.877 W 26 k6 69 87 96 99

35 1.876 1 26 47 0 88 97 99

36 1.875 W 27 48 72 89 97 99

37 1,874 W 27 4 713 90 97 *

38 1.874 28 50 7 90 98

39 1.873 1w 28 s % 9N 98
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Table 8.3.27 (continued)
f

n Fc 08 .10 .15 .20 .25 .30 .35 .0 .50 .60 .70 .80
ho 1.872 1% 29 52 76 92 98 * * * * * x*
42 1.8 w30 sk 7% 93 99
Il 1.870 15 N 56 80 9 99
46 1.869 15 32 58 82 95 99
48 1,868 5 33 60 83 9% 9
50 1.867 15 3h 61 8s 96 *
52 1.866 16 35 63 8 97
[ 1.866 16 36 65 88 98
56 1.865 16 37 66 89 98
58 1.864 16 38 68 90 98
60 1,864 17 39 69 9 99
4 1.863 17 W 72 93 9
68 1.862 18 43 75 94 99
72 1.861 18 45 77 95 *

76 1,860 19 46 79 9

80 1.860 19 48 8 97
84 1.859 20 s0 8 98
88 1.858 20 52 85 98
92 1.88 21 sk 86 98
96 1.858 21 55 88 99
99
*

100 1.857 22 57 89

120 1.855 2b 64 94
140 1.8 27 N 97
160 1.853 29 77 98
180 1.853 32 8 9
200 1.852 34 85 *
250 1.851 ko 92
300 1.851 46 96
350 1.850 52 98
400 1.850 57 99
450 1.849 62 *

1.849 84
900 1.848 89
1000 1,848 92

* Power values below this point are greater than .995.
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Table 8.3.28
Power of F testata=.10,u=6
f
n Fe .05 L10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
2 2.827 10 1 n 2" W17 19 23 29 36 b
3 2,243 0 n 12 % 16 19 23 27 37 49 61 73
4 2.075 10 1Y 13 16 20 24 30 36 s0 66 19 89
[1 1.996 10 12 1 18 23 29 36 us 62 718 89 9%
6 1,950 " 12 15 20 26 34 43 53 n 86 95 99
7 1.919 11 13 17 22 30 39 4y 60 79 92 98 *
8 1.898 1} [ 5] 18 2% 33 bl 55 66 8s 95 99
9 1.882 1" 1 19 27 37 48 & 72 8 97 *
10 1.870 " 14 20 29 Lo 53 66 74 93 99
n 1.860 1 s 21 N 3 57 7170 8 95 99
12 1.852 n 15 2) 33 46 61 74 8s 97 *
13 1.846 11 16 24 35 s0 64 78 88 98
1 1,80 1N 16 25 3B s3 68 81 9 98
15 1.835 n 17 26 4 56 n 8 92 99
16 1.831 12 17 27 42 58 74 86 9% 99
17 1.827 12 18 29 W 6 77 88 95 *
18 1.824 12 18 30 113 64 79 90 96
19 1.821 12 19 AN 8 66 8 92 97
20 1.819 12 19 32 50 68 8 93 98
21 1.817 12 20 3 s2 7N 85 94 98
22 1.818 12 20 35 s4 n 87 95 99
23 1.813 12 21 36 56 75 89 96 99
2% 1,811 13 21 37 ST 77 90 97 99
25 1.810 13 22 38 59 78 9 97 9
26 1.808 13 23 4o 6 80 92 98 *
27 t.807 13 2) b 63 82 9 98
28 1.806 13 24 42 6l 83 94 99
29 1.805 13 26 43 66 B4 95 99
30 1.803 13 25 44 67 86 96 99
N 1.802 13 25 46 69 8 96 99
32 1.802 W 26 47 70 88 97 9
33 1.801 W 26 48 7N 89 97 *
34 1,800 14 27 49 73 90 97
35 1.799 W 27 50 W 9 98
36 1.798 w28 5 7% 9 98
37 1.798 16 29 52 76 92 98
38 1.797 1« 29 53 78 93 99
39 1.797 14 30 sh 9 9% 99




34

8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE

Table 8.3.28 (continued)
f
n Fe W05 L0 5 .20 .25 .30 .35 4O .50 .60 .70 8O
4o 1,796 15 30 55 80 9% 99 « * * * * *
42 .79 15 31 57 82 95 99
("% 1.79% 15 32 59 84 96 99
46 1.793 15 33 & 85 97 *
48 1.792 16 35 63 87 97
50 1,791 16 36 65 88 98
52 1,799 16 37 67 B9 98
sh 1,790 16 38 68 91 99
56 1,790 17 39 70 92 99
58 1,789 17 ko n 92 99
60 .789 17 W\ 73 93 9
64 1.788 18 43 76 95 *
68 1.787 18 45 78 96
72 1.786 19 47 81 97
76 1.785 19 49 83 98
80 1,785 20 51 85 98
8 1,784 20 53 86 99
88 1.784 21 55 88 99
92 1,783 21 57 B89 99
96 1.783 22 58 91 99
100 1,783 22 60 92 *
120 1,781 25 68 96
140 1.780 28 75 98
160 1.779 31 80 99
180 1.779 33 85 *
200 1.778 36 89
250 1,778 W3 9%
300 1,777 &9 97
350 1.777 85 99
4oo 1.776 60  *
450 1.776 66
500 1.776 70
600 1.776 18
700 1.775 84
800 1.775 89
900 1.775 92
1000 1.775 %

* Power values below this point are greater than .995,
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Table 8.3.29
Power of F testata = .10, u=8
f

n Fo 05 .10 5,20 .25 .30 .35 L0 .50 .60 .70 .80
2 2,469 10 N M2 W s 17 200 25 33 W 50
3 2,038 10 N 13 15 17 21 28 30 W 55 68 80
4 1,909 10 12 Wb 17 21 26 32 ko 56 72 8 93
5 1.847 10 12 15 19 25 32 ko 49 68 84 o4 9B
6 1.811 n 13 16 2 29 37 48 58 18 9 98 *
7 1.787 n 13 17 2+ 33 L3 55 66 8BS 95 99
8 1770 1 W 19 26 36 48 61 73 90 98 &
9 1.757 N W 20 29 Lo 53 67 79 % 99
10 1.7 N 15 2 31 Lk §8 72 83 96 99
n 1.0 N 15 23 3% 4 63 76 87 98 *
12 1.733 N 16 26 3 51 67 8 90 99
13 1.7286 1 16 26 39 55 . 8 93 99
" 17 1 17 27 1 8 4 87 % 99
15 1,720 12 18 28 & 61 77 89 96 %
16 1,716 12 18 30 L4 6 8 91 9
17 1,713 12 19 31 48 67 83 93 98
18 1.m 12 19 33 5 70 8 9 98
19 1,709 12 20 3% 53 72 87 95 99
20 1.707 12 20 35 8§ 75 89 96 99
21 1,706 12 21 37 57 17 91 97 99
22 1,703 13 22 38 59 79 92 98 *
23 1,702 13 22 4o 61 8 93 98
2 1,700 13 23 k1 63 83 9 99
25 1.699 13 24 42 65 84 95 99
26 1,698 13 2 W 67 B6 96 99
27 1.697 13 25 ks 69 87 96 99
28 1.696 13 25 46 70 88 97 *
29 1.695 13 26 48 72 90 97
30 1.694 1% 27 49 74 91 98
3 1.693 w27 s0 75 92 98
32 1.692 1 28 52 76 92 99
33 1.692 % 29 53 8 93 99
3b 1.691 W 29 sk« 79 9% 99
35 1.691 W 30 55 8 95 99
36 1.690 1% 30 5 81 95 99
37 1.689 15 31 58 83 9% 9
38 1.689 15 32 59 Bk 96 *
39 1.688 15 32 60 85 97
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Table 8.3.29 (continued)
£

n Fo 05 .10 15 .20 ,25 .30 .35 .o .50 .60 .70 80
4o 1.688 15 3 61 86 97 * * * * * * *
42 1.687 15 3 63 87 98

[ 1,686 16 b13 65 89 98

b6 1.686 16 37 67 90 99

L8 1.685 16 38 69 92 99

50 1.684 16 39 n 93 99

52 1.684 17 40 73 9% 99

Sk 1.683 17 W2 75 9% 99

56 1,683 17 43 76 95 *

58 1.682 18 W 78 96

60 1.682 18 45 79 96

6l 1.681 18 48 82 97

68 1,681 19 50 84 98

72 1.680 20 52 86 99

76 1.679 20 sk 88 99

8o 1.679 21 86 90 99

84 1.679 21 58 91 99

88 1.678 22 60 93 *

92 1.678 23 62 9%
96 1.677 23 6 95

100 1.677 24 66 95
120 1.676 27 4 98
1o 1.67 30 81 99
160 1.675 33 8  *
180 1.67% 36 90

200 1,67« 39 93
250 1,673 &7 97
300 1.673 S4 99

350 1.672 61 *
400 1.672 66
450 1.672 72
500 1.672 76
600 1.671 84
700 1.6N 89
800 1.671 93
900 1.671 96
1000 1671 97

* Power values below this point are areater than ,995,
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Table 8.3.30

Power of F testata=.10,u =10

347

n Fe 05 10 5,20 .25 .30 ,35 40 .50 .60 .70 .80
2 2,248 10 N 12 13 1% 16 18 21 27 36 45 51
3 1,904 10 1N 13 15 18 22 26 32 45 60 M 8BS
4 1.799 10 12 1 17 22 28 35 43 41 18 90 9%
5 1747 1N 12 15 20 26 3% kb S4 7% 8 96 99
'3 17 1 13 17 23 1 W 52 63 83 95 99 *
7 1.697 1 13 18 25 35 4 59 N 90 98 *

8 1.683 n W 20 28 39 53 66 78 9% 9

9 1.672 n 15 21 3 [ 58 72 th 96 *

10 1.664 1 15 23 3 48 63 77 88 98

n 1.657 1 16 24 37 52 68 82 9 99

12 1.652 1 16 26 39 85 72 8 93 99

13 .68 N 17 27 42 59 76 88 95 *

i 1.6 12 18 29 45 63 79 91 97

15 1,641 12 18 30 47 66 8 93 98

16 1,638 12 19 32 5 69 85 9 98

17 1.635 12 20 3 53 72 87 96 99

18 1.633 12 20 35 5 75 8 97 99

19 1.631 12 21 37 57 718 91 98 *

20 1,630 12 22 38 60 8 93 98

21 1,628 13 22 4o 62 82 9% 99
22 1,627 13 23 41 6 84 95 99

23 1,625 13 24 43 66 86 96 99

2l 1626 13 24 kb 68 87 97 99

25 1.623 13 25 46 70 89 97 %

26 1.622 13 26 47 72 90 98

27 1.621 W 26 4 W 9N 98

28 1,620 1h 27 50 76 92 98

29 1.620 1% 28 52 77 93 99

30 1.619 14 28 53 79 9 99

N 1618 29 55 80 95 99

32 1.618 14 30 56 8 95 99

33 1.617 W 31 57 8 96 99

34 1.616 15 3 59 8k 96 *

35 1.615 15 32 60 8 97

36 1,615 15 33 61 8 97

37 1,615 15 33 62 87 98

38 1.61 15 34 64 88 98

39 1.6 15 35 65 89 98
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Table 8.3.30 (continued)
f
n Fe 05 .0 .15 20 .25 30 .35 M0 .50 .60 .70 .80
4o 1.614 15 35 66 90 98 * * * * * * *
b2 1,613 16 37 68 91 9
(%] 1.612 16 38 70 93 9
[ 73 1.612 16 4o 72 9% 9
] 1.611 17 LY Th 95 *
50 1.611 17 b2 76 95
52 1.610 17 ke 78 96
[0 1.610 18 hs 80 97
56 1,609 18 4 81 97
58 1. 18 48 83 98
60 1,609 19 9 8k 98
6 1,608 19 52 86 9
68 1.607 20 sh 89 9
” 1,607 21 56 90 9
76 1.607 21 59 92 *
80 1.606 22 61 93
8k 1.606 23 63 9
88 1,605 23 66 95

160 1,603 36 90
180 1,602 39 93
200 1.602 3 96
250 1,600 51 99
300 1.601 53 *
350 1.600

400 1.600 72
450 1.600 77
500 1.600 81
600 1.600 88
700 1.600 93
800 1.599 96
900 1.599 98
1000 1.599 99

* Powsr values below this point are greater than .995.
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Table 8.3.31
Power of F testata=.10,u =12
" Fe .05 .10 L5 .20 .25 .30 .35 .o .50 .60 .70 .80
2 2,097 10 N )] 13 15 17 19 22 29 39 Wy 61
3 1.809 10 11 13 15 19 23 28 3l 49 65 19 89
4 1,719 10 12 % 18 23 30 38 Ly 66 8 93 98
5 1.675 n 12 16 2 28 37 W7 8 718 92 98 *
3 1.649 1N 13 17 24 33 W 56 68 8 97 9
7 1.631 n W 19 27 37 50 6 76 93 939 #
8 1.619 11 16 20 30 b2 5 70 82 96
9 1.610 N 15 22 33 L7 62 76 87 98
10 1.603 1 16 24 36 51 68 81 91 9
" 1.597 N 16 25 39 85 72 B 9% 99
12 1.592 1 17 27 W2 60 77 8 9% b
13 1.588 12 18 29 k5 6 B0 92 97
i 1.585 12 18 3t 48 67 84 9% 98
15 1.582 12 19 32 51 n 86 95 99
16 1.580 12 20 3% s« W 89 96 99
17 1.578 12 20 36 5 77 9 97 &
18 1,576 Y2 21 37 59 79 92 9B
19 157 13 22 39 62 82 Sk 99
20 1.573 13 23 &1 6 84 95 99
21 1.5N 13 23 &3 66 86 9% 9
22 1,570 13 26 4k 69 88 97
2 1.569 13 25 46 n 8 9
24 1.568 13 26 &8 73 9 98
25 1.867 13 26 49 715 92 98
26 1,566 th 27 S1 77 93 9
27 1,565 1 28 52 718 9 99
28 1.565 1 29 sS4 80 95 99
29 1,56k 16 29 55 81 95 9
30 1.563 14 30 57 83 9 *
3N 1.563 14 31 s8 8 97
32 1.562 15 32 60 8 97
33 1.562 15 32 61 8 98
3k 1.561 15 33 63 88 98
35 1.561 15 3 64 B89 98
36 1.560 15 35 65 90 99
37 1.560 15 35 67 90 99
38 1.560 16 36 68 91 99
39 1,559 16 37 69 92 99
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Table 8.3.31 (continued)
f

n Fe W05 .10 L5 .20 .25 .30 .35 k0 .50 .60 .70 .80

40 1,559 16 38 70 93 9 * * * * * * *

42 1.588 16 3 N 9

by 1.58 17 M %9 *

179 1.557 17 k2 7

W8 1.557 17 by 79 97

50 1.556 18 ks 81 97

52 1.556 18 47 82

sh 1.555 18 A8 84 98

56 1.555 19 50 85 9

58 1.5 19 8§ 86 9

60 1,554 19 53 88 99

&b 1.554 20 55 99

68 1.553 21 58 92 *

72 1,663 22 60 9

76 1.583 22 63 95

80 1.552 23 65 9

84 1.552 2 68 96

88 1.552 2 70 97

92 1.551 25 72 98

96 1.551 26 b 98

100 1.581 27 16 9

120 1.550 N 84 *

140 1.549 3 89
160 1.549 38 93
180 1.549 42 96

200 1.548 46 97
250 1.548 55 99
300 1.548 63 *
350 1.547 70
400 1.547 76
450 1.547 81

500 1.567 85
600 1.547 91
700 1.547 95
800 1.546 97
900 1.546 99
1000 1.546 99

* Power values below this point are greater than .995.
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Table 8.3.32
Power of F testata=.10,u =15
14

n Fe 08 .10 .18 ,20 ,25 .30 .35 Mo .50 .60 .70 .80
2 1.9 10 N 12 13 15 17 20 24 32 43 s5 67
3 1,707 10 1 13 16 20 24 30 38 s 71 8 93
4 1.633 10 12 15 19 25 32 W & 72 87 9% 99
5 1.596 1 13 16 22 30 40 52 63 B 95 99 «#
6 1.5% 1 13 18 25 35 48 6 e 91 98 »
7 1.560 1 W 20 29 W 55 69 81 9% 99
8 1.549 11 15 22 32 W46 62 76 87 98 »
9 1.541 n 15 23 36 s 68 8 92 9
10 1,535 n 16 25 39 s 713 86 95 *
n 1.531 12 17 27 43 & 78 9% 97
12 1.527 12 18 29 W6 65 82 93 98
13 1.623 12 18 31 43 69 8 95 99
i 1.521 12 19 33 52 713 88 9% 9
15 1.518 12 20 35 6 76 91 97 *
16 1.516 12 21 37 59 79 93 98
17 1.5 12 22 39 62 82 99
18 1,513 13 22 W1 64 B85 9% 9
19 1.511 13 23 43 67 8 91 9
20 1,510 13 2 45 70 89 97 *
21 1,509 13 25 46 72 90 98
22 1.508 13 26 48 7 92 98
23 1.507 13 26 S50 76 93 99
24 1.506 14 27 552 18 9
25 1,505 14 28 sS4+ 80 95 99
26 1,504 W 29 s6 82 9 *
27 1,504 1 30 57 83 97
28 1.503 14 31 59 85 97
29 1.503 15 32 61 86 98
30 1.502 15 32 62 88 98
1] 1.502 15 33 64 8 98
32 1.501 15 3% 65 90 99
33 1.501 15 35 67 9 9
34 1.500 15 36 68 92 99
35 1.500 16 37 70 93 99
36 1.500 16 38 n 93 99
37 1.499 16 39 72 ol *
38 1499 16 39 7k 95
39 1,499 16 4o 75 95
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Table 8.3.32 {continued)
f
n Fe .05 0 15 ,20 .25 .30 .35 MO0 .50 .60 .70 .80
4o 1.498 17 [Y] 76 96 * * * * * * * *
b2 1.498 17 W3 78 97
bk 1.497 17 & 80 9
46 1497 18 46 82 98
48 1,496 18 48 84 98
50 1.496 18 4 86 99
52 1.496 19 5 87 9
sh 1,495 19 53 88 99
56 1,495 20 90 99
58 1498 20 56 9N *

80 1493 2 n 98
8h 1.492 25 3 98
88 1,492 26 75 99
92 1492 27 77 9
96 1492 28 79 99
100 1.491 29 8 99
120 1491 33 68 *
1o 1490 37 93
160 1.490 42

180 1,490 k6 98
200 1.489 50 99
250 1.489 60 *
300 1.489 68

350 1.488 75

4oo 1.488 81

hso 1.488 86

500 1,488 90

600 1.488 95

700 1488 97

800 1488 99

900 1,48 99

1000 1.488 *

* Power values below this point are grester then ,995.
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Table 8.3.33
Power of F testata= .10,u= 24
f
n Fe L,05 L1015 .20 .25 .6 .35 L0 .50 .60 .70 .BO
2 1.689 10 11 12 W 16 19 23 28 4 Sk 69 81
3 1.536 10 12 1h 17 22 29 37 173 66 84 9% 99
4 1.485 H 12 16 21 29 39 5t 63 8 96 99 *
5 1,460 n 13 18 26 36 L9 63 76 9 99 *
6 1,445 3] W 20 30 43 58 73 8 98 *
7 1.3 N 15 22 3 s0 67 8 92 99
8 1,427 1 16 25 39 56 7% 88 95 -
9 1422 N 17 27 W3 62 8 92 98
10 1417 12 18 29 48 68 85 95 9
n 1.h1h 12 19 32 174 73 89 97 9
12 1.401 12 20 35 s 18 92 *
13 1409 12 28 37 60 8 % 9
W 1407 12 22 ko 64 8 9% 99
1§ 1.h05 13 23 b2 67 88 97 *
16 1.hok 13 2b [ n 90 98
17 1.402 13 25 by T4 92 9
18 1.401 13 26 50 77 9 9
19 1.h00 13 27 52 79 95 9
20 1,399 1 28 sh 82 9 *
2 1.399 1h 29 57 8k 97
22 1.398 14 30 59 86 98
23 1.397 1% 3 61 88 98
2b 1.397 15 32 63 89 9
25 1.396 15 33 65 91 99
26 1.395 15 35 67 92 9
27 1.395 15 36 59 93 99
28 1395 85 37 n 9% >
29 1.394 16 38 1 95
30 1.39% 16 39 7% 9%
N 1.393 16 ho 76 96
32 1.393 16 L) 77 97
33 1.393 17 L2 79 97
34 1.393 17 & 8 98
35 1.392 17 Ls 82 98
36 1.392 17 46 83 98
37 1.392 17 L7 8h 99
38 1.392 18 48 85 9
39 1.39 18 [1) 86 9
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Tabie 8.3.33 (continued)

Fe 05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80

L] 1.391 18 50 87 99 * * * * * * * *
42 1391 19 52 8 99
by 1391 19 Sh 9 *
(73 1390 20 56 92
48 1.390 20 58 93
50 1389 21 60 9
52 1.389 21 62 95
54 1.389 22 6 96
56 1.389 22 6 97
58 1.389 2) 67 97
60 1.388 23 69 98
& 1.388 26 72 98
68 1.388 25 75 99
72 1.388 26 78 99
76 1.387 27 8
80 1,387 29 &

8 1.387 30 85
89 1,387 N &
92 1,387 32 ]
9% 1.386 33 90
100 1,386 3% 9
120 1,386 k0 96
140 1,385 &5 98
160 1,38 51 99
180 1.385 S§6 *
200 1.385 61

250 .38 72

300 1.38 80

350 1.384 87

koo 1.38 91

h50 1.3 9b

500 1,38 97
600 1.38 99
700 1.384 *

800 1.384
900 1,366
1000 1.384

* Power values below this point sre greater than .995.
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The 33 tables in this section yield power values for the F test when,
in addition to the significance criterion (a) and ES (f), the degrees of free-
dom for the numerator of the F ratio (u) and sample size (n) are specified.
They are most directly used to appraise the power of F tests in a completed
research post hoc, but can, of course, be similarly used for a research plan,
the details of which (e.g., significance criterion, sample size) can be varied
to study consequences to power.

The tables give values for a, u, f, and n:

1. Significance Criterion, a. Since F is naturally nondirectional (see
above, Section 8.1), 11 tables (for varying u) are provided at each of the a
levels, .01, .05, and .10.

2. Degrees of Freedom of the Numerator of the F Ratio, u. At each signi-
ficance criterion, a table is provided for each of the following 11 values
ofu: 1(1)6(2)12, 15, 24. For cases 0, 1, and 2, all of which involve a com-
parison of k =u <4 | means, the number of means which can be compared
using the tables is thus k =2 (1) 7 (2) 13, 16, and 25. For tests on interactions
(Case 3), u is the interaction df, and equals (k— 1)(r — 1), or (k= 1)(r—1)
(p — 1), etc., where k, r, p are the number of levels of interacting main effects.
Thus, u =12 for the interaction of a 4 x 5 or a 3 x 7 or a 2 x 13 factorial
design or the three-way interactionofa2 x4 x 5,a2x3x7,ora 3x3x4
factorial design.

For missing values of u (7, 9, 11, etc.), linear interpolation between tables
will yield quite adequate approximations.

3. Effect Size, f. Provision is made for 12 values of f: .05 (.05) .40 (.10)
.80. For Cases 0 and 2, f is simply defined as the standard deviation of stan-
dardized means [formula (8.2.1)]. Its definition is generalized for unequal
n (Case 1) and for interactions (Case 3), and the relevant formulas are given
in the sections dealing with those cases. For all applications, conventional
levels have been proposed (Section 8.2.3), as follows:

small: f=.10,
medium: f = .25,
large: f= .40,

4. Sample Size, n. This is, for Cases 0 and 2, the n for each of the k
sample means being compared. For the other cases, n is a function of the
sizes of the samples or “cells” involved ; see Sections 8.3.2, 8.3.4. The power
tables provide for n =2 (1) 40 (2) 60 (4) 100 (20) 200 (50) 500 (100) 1000.
Here, too, linear interpolation is quite adequate.
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The values in the body of the tables are power times 100, i.e., the percent
of tests carried out under the specified conditions which will result in rejec-
tion of the null hypothesis. They are rounded to the nearest unit and are
generally accurate to within one unit as tabled.

8.3.1 CaseO: k MeEaNS wiTH EQUAL n. The simplest case is the one-way
analysis of variance of k samples, each with the same number of observations,
n (Case 0). The F test is based on u=k — 1 numerator df, and k(n—1)
denominator df. The power tables were designed for Case 0 conditions,
and this section describes and illustrates their use under these conditions.
Later sections describe their application with unequal n’s (Case 1), in fac-
torial and other designs (Case 2), and for tests of interactions (Case 3).

In Case 0, the investigator posits an alternate hypothesis or ES in terms
of f, the standard deviation of standardized means, by one or more of the
following procedures:

1. By hypothesizing the k varying population means expressed in the
raw unit of measurement, finding the standard deviation of these means,
and dividing this by the estimated within-population standard deviation.
This is a literal application of formula (8.2.1). (See example 8.8 in Section
8.34))

2. By hypothesizing the range of the k means (d) and their pattern, and
using the formulas of Section 8.2.1. or the ¢; values of Table 8.2.1 to convert
dtof.

3. By hypothesizing the ES as a proportion of the total variance for
which population membership accounts (3%) or as a correlation ratio (),
and using the formulas of Section 8.2.2 [particularly formula (8.2.22)] or
Table 8.2.2 to convert 5 or 7 to f.

4. With experience, or perhaps by using the proposed operational defi-
nitions of small, medium, and large f values as a framework, he can work
directly with f, i.e., simply directly specify his alternate hypothesis or ES
by selecting an appropriate value of f.

Since the specification of a value of f which correctly reflects the investi-
gator’s ES expectations is crucial, cross-checking among the above routes is
recommended. Thus, for example, having reached an f by specifying an
%, it would be worthwhile to determine what range of means (d) for a given
anticipated pattern that value of f implies, and to ascertain whether this d
is consistent with expectation.

Once f is selected, the rest is simple in Case O applications. Find the
table for the a and u (= k — 1) of the problem and locate n, the common
sample size, and f. This determines their power (x 100). For nontabulated
f or u, linear interpolation is reasonably accurate.
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Hlustrative Examples

8.1 An educational psychologist performs an experiment in which
k = 4 different teaching methods are to be contrasted. A total of N = 80
pupils are randomly assigned to samples of n = 20 pupils per methods group
and are tested on an achievement criterion test following instruction. The
resulting data are tested by an overall F test of a one-way analysis of variance
design, using an a = .05 significance criterion.

In setting the ES which she expects in the population (i.e., the alternate hy-
pothesis), she believes that the 4 means should span a range d of three-
quarters of a within-population standard deviation. This judgment is based
on past experience and knowledge of the characteristics of the teaching
methods. On this basis, she further expects that the four means will be about
equally spaced along this range, thus in Pattern 2 (Section 8.2.1). From Table
8.2.1, she reads that for k = 4 in Pattern 2, f = .373d, so that, given an an-
ticipated d = .75, f = .373(.75) = .280. Having reached this value, she
cross-checks by noting [from formula (8.2.19)] that this implies an n* = /(1
+ 3 = .280%/(1 + .280% = .0727, i.e., about 7%% of the measure’s total
variance is accounted for by group membership, or in correlation ratio terms,
7 = +.0727 = .270. She observes further that f = .280 is just slightly above
the operational definition of a medium ES (f = .25). She accepts the results
of this cross-checking as consonant with her expectations. The necessary
specifications for determining the power of the F test are complete. Note
that in a one-way analysis of variance on k *levels,” the numerator df are
u=k—1=23. Thus,

a =.05, u=73, f=.28, n = 20.

In Table 8.3.14fora = .05 and u = 3, at row n = 20, she finds power for
cotumn f = .25 to be .43 and for f = .30 to be .59. Linear interpolation yields
(approximate) power of

(28— 25)
434 87D
3+ Go— )

Thus, if the standard deviation of the 4 standardized population means,
f, is .28 of a within-population standard deviation, with n =20 cases per
sample, the F test has had only a .53 probability of rejecting the null hypoth-
esis at the .05 level. Note that the operative condition is the value of f
of .28, whether the range and pattern of population means was as predicted
or whether another range and pattern, which would yield the same f, applied.

An experiment whose power is as low as .53 for detecting its anticipated
ES is relatively inconclusive when it fails to reject the null hypothesis. Given
a population f =.28, rather than f =0 as posited by the null hypothesis, it is

(.59—.43)=.43+.10=.53.
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a “‘toss-up” whether his results will be significant at the a and n conditions
which obtain. Note that even if the a criterion were liberalized to .10, linear
interpolation in Table 8.3.25 (for a =.10, u=3) between f=.25 and .30
gives approximate power at n = 20 of only .56 + .09 = .65.

This problem has been presented as if the experiment were already
completed (or at least committed), with a post hoc determination of power
under the given conditions. See problem 8.9 below for a consideration of
this problem as one of experimental planning, where, under stated conditions,
the purpose is the determination of sample size to attain a specified power.

8.2 A large scale research on mental hospital treatment programs of
chronic schizophrenics is undertaken by a psychiatric research team. A
pool of N =600 suitable patients is randomly divided into 3 (=k) equal
samples, each assigned to a different building, and in each building a differ-
ent microsocial system of roles, functions, responsibilities, and rewards of
staff and patients is instituted following training. After a suitable interval,
patients are assessed by the research team by means of behavior rating scales.
The social-scientific “‘cost” of mistakenly rejecting the null hypothesis
leads the team to decide on a = .01. The team is split, however, on the ques-
tion of how large an effect the difference in the three systems will have,
some expecting that 59 of behavior rating variance will be accounted for
by system membership, the others expecting 10%. Hence »* =.05 or .10.
In their discussion, they agree in their expectation that the population
means are at equal intervals, hence in Pattern 2 (but note that for k =3,
Pattern 2 and Pattern 1 are the same). From Table 8.2.2, they note that at
n? =.05, f=.229, and at 4* = .10, f=.333. They determine, using the con-
stants of Table 8.2.1, that the span of means for Pattern 2 for f=.229 is
d, =2.45(.229)=.56, and for f=.333, d,=2.45(.333)=.82. Thus the
proponents of 7? =.05 expect a spread of the three means of a little more
than half a within-population standard deviation, while the ? = .10 faction
expect a spread of almost five-sixths of a ¢. This translation brings them no
closer to agreement. What is the power of the eventual F test under each
of these two alternative hypotheses?

{23

a=0l, u=k-1=2, f={7,

n = 200.

In Table 8.3.2 (for a = .01, u = 2) at row n = 200, they find that at f = .20,
power is .98, and at f = .25, power is greater than .995. This means they need
have no dispute—if the f=.23 (»* = .05) faction is right, power is about
99; if the f=.33 (»* =.10) faction is right, power is greater than .995. If
either is correct, they are virtually certain to reject the null hypothesis at
a = .01 with the F test.
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In a circumstance like this, where there is *“ power to spare’’ (and assum-
ing that the »* = .05 *“pessimists”™ are not substantially overestimating the
ES), there may be an opportunity to capitalize on these riches by enlarging
on the experimental issues. For example, assume that there was a fourth
microsocial system that had been a candidate for inclusion in the experi-
ment and that adequate physical and staff resources are available for its
inclusion. It might then be worth exploring the statistical power consequences
of dividing the available 600 chronic patients into k =4 equal groups.
Assuming no change in the conditions, and for the same f values, interpola-
tion in Table 8.3.3 (for a=.01, k — | =u = 3) shows that at n = 140 (150
is not tabulated), power at f=.23 is about .97 and at f=.33, power again
exceeds .995. Thus, this experiment could be enlarged at no substantial loss
in power, assuming f is not materially lower than .23. But note that if f is
really .15, the original k = 3, n = 200 experiment has still creditable power of
.79 (Table 8.3.2), but the power of the revised k =4, n = 150 experiment is
only about .72 (interpolating between n = 140 and 160 in Table 8.3.3).

8.3.2 Case l: k Means wiTH UNEQUAL n. When the sample sizes
(n;) drawn up from the k populations whose means (m;) are being compared
are not all the same, no fundamental conceptual change occurs, but further
attention to the definition of f is required and procedures for power analysis
require accommodation from those of Case 0.

f was defined as the standard deviation of standardized means, o,,/c
[formula (8.2.1)], where o, was given for equal n in formula (8.2.2) as

- A
/\/;l(mi —m)?
om=n F—

When n’s are not equal, it is no longer true that the reference point from
which the “effects” are calculated, m, is a simple mean of the k population
means, i.e.,m =Zmi/k, but rather a weighted mean of these means, the weight
of each m; being p;, the proportion of the total N =} n; which its sample
n; comprises. Thus, for Case 1

(8.3.1) m= Z_:"_“— = Ypim;.

The m for equal n is a special case of this formula, where all the p; =
n/N =n/kn = 1/k.
Similarly, in computing the standard deviations of the means, o,,, the
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separate effects of the k populations, m; —m, must be weighted by their
proportionate sample sizes:

zk: ni(m; — m)? i pi(m; —m)?.
(8.3.2) O = i—ﬁ— =a !

Here, too, the formula given for g, for equal n in the previous section
(8.2.2) is a special case of formula (8.3.2), where all p; = 1/k.

Thus, with the understanding that for unequal n each population mean
“counts” to the extent of the relative proportion of its sample size, no
change in the definition of f is required; it is the standard deviation of the
(weighted) standardized means.

The implication of this weighting requires comment. If the populations
whose means are extreme, i.e., have large (m; —m)?, also have large n’s
relative to the others, f will be larger than with equal n; conversely, if ex-
treme populations have small n’s, f will be smaller, This suggests that in
circumstances where the researcher has reason to believe that certain of the
k populations will provide particularly discrepant means, dividing the
total N unequally with larger sample n’s drawn from these populations will
increase f (over equal n), and thereby increase power.

This statistical fact, however, cannot necessarily be taken as a mandate
to so design experiments. Its utilization depends on whether the purpose
of the research is solely to (a) test with a view to reject the null hypothesis
of equal population means, or whether it (b) seeks to reflect a *‘ natural”
population state of affairs. When there is no ‘“‘natural” population, as
when the populations are of different experimental manipulations of ran-
domly assigned subjects, as in a true experiment, we are perforce in situation
(a). When a natural population exists, our purpose may be either (a) or
).

An illustration should clarify the distinction. In an experiment where
the effect on a dependent variable of three different experimental condi-
tions is under scrutiny, each condition is a systematic artificial creation
of the experimenter. The populations are hypothetical collections of results
of a given condition being applied to all subjects. Consider, by way of con-
trast, a survey research designed to inquire into differences among Protes-
tants, Catholics, and Jews in scores on a scale of attitude toward the United
Nations (AUN). Here there are also three populations, but population
membership is not an artificial creation of the manipulative efforts of the
investigator. These are natural populations, and their properties as popula-
tions include their relative sizes in their combined superpopulation. There
is now a choice with regard to how sampling is to proceed. The investigator
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can draw a random sample of N cases of the total population and administer
the AUN scale to all N cases, then sort them into religious groups. The pro-
portions in each religious group will then not be equal, but reflect (within
sampling error) the relative sizes of the religious affiliation populations.
Alternatively, having decided to study a total of N cases, he can draw equal
samples from each religion.

Now, assume that the Jews yield a small p, and that their AUN population
mean is quite extreme. In the former sampling plan, the f, based on the
small weight given the Jews, would be smaller than the f obtained with
equal sample sizes, where the mean of the Jews would be weighted equally
with the others. The larger f would have associated with it a larger »* (as
well as greater power). But if 7 is to be interpreted as giving the proportion
of AUN variance associated with religion in the general population, i.e.,
in the natural population, where there are relatively few Jews, it is the first
sampling plan and the smaller 2 which is appropriate. The 3> from equal
sampling would have to be interpreted as the proportion of AUN variance
associated with (artificially) equiprobable religious group membership. The
equal-sampling n2 is not objectionable if the investigator wishes to consider
membership in a given religious group as an abstract effect quite apart
from the relative frequency with which that effect (i.e., that religious group)
occurs in the population, but it clearly cannot be referred to the natural
population with its varying group frequencies.

On the other hand, assume that the purpose of the investigator is solely
to determine whether religious population means differ on AUN, i.e., to
determine the status of the overall null hypothesis. Thus, no issue as to the
interpretation of 52 need arise. On this assumption, if his alternate hypoth-
esis gives him confidence that the population mean of the Jews will be
discrepant, he may advantageously oversample Jews by having their n
equal (or even draw a larger sample of Jews than of the other groups) in
order to make f larger (if his alternate hypothesis is valid), and thus increase
his power.

As has already been implied, the weighting of the population means
does not change the meaning of »? nor disturb its relationship to f. Thus,
formulas (8.2.16)—(8.2.22) and Table 8.2.2 all obtain for Case 1. This is not
the case for the translation between f and d measures of range in the vari-
ous patterns detailed in Section 8.2.1 [formulas (8.2.5)-(8.2.15) and Table
8.2.1]. The assumption throughout that material is one of equal sample sizes,
and it is clear that any given d value for some pattern of k means will lead
to differing f’s depending upon how the varying p; are assigned to the m;.
The proposed conventions in regard to small, medium, and large f values
continue to be applicable for Case 1 (except, of course, for their explication
in terms of d values).
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Finally, in Case 1, where there is no common n value to use in the power
tables, one enters with their arithmetic mean:

-
(]
—

™=
3
x| Z

(8.3.3)

S
Il
rl

Aside from the use of the mean sample size, the procedure for the use
of Table 8.3 is identical with that of Case 0.

Illustrative Examples

8.3 A university political science class has designed a poll to inquire
into student opinion about the relative responsibilities and rights of local,
state, and federal governments. An index score on centralism (Cl) is derived
and its relationship to various respondent characteristics is studied. One
such characteristic is academic area, i.e., science, humanities, social science,
etc., of which there are k = 6 in all. Data are available on a random sample
of 300 respondents drawn from the university student roster. In considering
the ES that they anticipate, they note that since they intend to generalize to
the natural population of the college and are sampling accordingly, they will
have unequal sample sizes and their conception of f must take into account
the differential weighting of effects in the o, of formula (8.3.2). So computed,
they posit f at .15. They note ruefully that they expect the greatest effects
[departures from the grand weighted mean of formula (8.3.1)] to come
from the smallest academic area samples, and that if they had sampled the
academic areas equally, they could anticipate an f of .20. However, sampling
academic areas equally would result in inequalities on the “breaks” of the
data which are to be studied, e.g., sex, political party affiliation, ethnic
background. In any case, their interest lies in the correlates of CI in the
““natural”™ university population.

What is the power at a = .05 under the conditions which obtain, namely

a=.05 u=k-1=5, f=.15, n=N/k=50

Note that n is entered at the average sample size, 300/6 =50. Table
8.3.16 (for a=.05, u=15) for row n =150, column f=.15, indicates that
power = 48. Clearly, the a priori probability of the F test’s rejecting the null
hypothesis given under these conditions is not very high.

Assume that it is undesirable to increase a to .10 (which would increase
power to .61—see Table 8.3.27) or to draw a larger sample; is there some other
possible strategem to improve the prognosis for this significance test? The
following might be acceptable: The division of the cases into as many as six
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academic areas might be reconsidered, given the partially arbitrary nature
of such a partitioning. The class might discover that a somewhat less fine
discrimination into three more broadly defined academic areas such as
science, humanities—arts, and engineering might be acceptable. Assume
that under these conditions f [still based on the o,, of formula (8.3.1)] is
again computed to be about .15. The revised plan has the conditions

a=.05, u=3-1=2, f=.15, n = 300/3 =100.

In Table 8.3.13 for a= .05 and u=2, n =100, and f=.15, power = .64,
a distinct improvement over the .48 value of the previous plan. If this pro-
cess can, without doing violence to the issue, be carried a step further to a
partitioning into two areas, and if the same f can be assumed, Table 8.3.12
(for a= .05, u=1) gives power at n =300/2 =150 for f=.15 of about .74
(by linear interpolation). It must again be stressed that all this reasoning
takes place without recourse to the data which are to be analyzed, i.e., we
are in the area of planning the data analysis.

Thus, when there is some freedom available in the partitioning of a
sample into groups, power considerations may advantageously enter into the
decision. With f (and total N) constant, fewer groups and hence smaller
u with larger n will result in increased power. Although f will not in general
remain constant over changes in partitioning, this too may become a useful
lever in planning analyses, since some partitions of the total sample will lead
to larger anticipated f values, and hence greater power, than others. There-
fore, when alternative partitions are possible, the investigator should seek
the one whose combined effect on u and expected f is such as to maximize
power. See problems 8.13 and 8.14 for further discussion.

8.4 As part of an inquiry into the differential effectiveness of psychiatric
hospitals in a national system, an analysis is to be performed on the issue
as to whether the psychiatric nurses in the various hospitals differ from
hospital to hospital with regard to scores on an attitude scale of Social
Restrictiveness (Cohen & Struening, 1963; 1964). There are k = 12 psychiatric
hospitals of wide geographic distribution which have supplied quasi-random
samples of their nursing personnel of varying sizes, depending upon adminis-
trative considerations and the size of their nursing staffs. The total N = 326,
so that the average n per hospital is 326/12 = 27.2. The investigators antici-
pate that the ES of hospital on attitude is of medium size, i.e., that f=.25.
They note that the f in question includes the differential weighting of the
o of formula (8.2.3), but since they have no reason to expect any relation-
ship between the size of a hospital mean’s discrepancy from the grand mean
(i.e., the hospital’s *“effect”’) and the size of its sample, there is no need to
modify the conception of a medium ES being operationalized by f=.25.
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What is the power of the F test on means at a =.05? The conditions of the
test, in summary, are

a =05, u=k-1=11, f=.25, n=27.

There are no tables for u= 11, so that interpolation between Tables
8.3.19 (for a=.05, u=10) and 8.3.20 (for a=.05, u=12) is necessary.
Table 8.3.19 for row n =27 and column f= .25 yields power of .85. Table
8.3.20 for the same n and f gives power of .89. Linear interpolation between
these values yields a power estimate of .87. Thus, given that the (weighted)
standard deviation of the standardized means of the populations of nurses
in these 12 hospitals is .25, the probability that F will meet the a = .05 cri-
terion is .87, a value that would probably be deemed quite satisfactory.

8.3.3 Case2: Fixep MaIN EFrFecTs IN FACTORIAL AND COMPLEX DESIGNS.
In any experimental design of whatever structural complexity, a *“fixed main
effect” can be subjected to approximate power analysis with the aid of
the tables of this chapter. In factorial, randomized blocks, split-plot, Latin
square (etc.) designs, the F test on a fixed main effect involving k levels is
a test of the equality of the k population means, whatever other fixed or
random main or interaction effects may be included in the design (Winer,
1971; Hays, 1973; Edwards, 1972). We will illustrate the principles involved
in this extension by examining power analysis of a main effect in a fixed
factorial design. Except for a minor complication due to denominator df, and
some qualification in the interpretation of 72, this test proceeds as in Cases 0
and 1 above.

Consider, for example, an | x J factorial design, where there are i =3
levels of 1, j =4 levels of J, and each of the ij =12 cells contains n_ =10
observations. The structure of the analysis in the usual model which includes
interaction is:

Effect df

| y=i—1=2

J uy=j—1=3
I1xJ U =>G{-1)3J-1)=6
Within cell (error) ij(n, — 1) =12(9) =108

Total ijn.—1=119
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Now, consider the null hypothesis for the J effect, i.e., that the 4 popu-
lation means of J, through J, are equal. The 4 sample means for J are each
computed on n; =in,=3(10) = 30 observations. (Similarly, each of the 3
means for ¥ is computed on n, =jn = 4(10) = 40 observations.) The minor
complication arises at the point where one wants to determine the power
of the test on J by applying the appropriate u, =3 table at n=n, =30.
This procedure is equivalent to ignoring the fact that the | main effect and
I x J interaction exist in the design, i.e., a Case O test of 4 means, each
of n = 30. But the latter test has for its F-ratio denominator (within cell, or
error) df, 4(30 — 1) = 116. More generally, the denominator df presumed
in the calculation of the table entries is, for k means each of n cases, k(n — 1)
=(u + 1)(n—1). Thus, in this case, the table’s value is based on 3 and 116
df, while the F test to be performed is for 3 and 108df.

To cope with this problem of the discrepancy in denominator (error) df
between the presumption of a single source of nonerror variance of one-way
design on which the tables are based and the varying numbers of sources of
nonerror variance (main eflects, interactions) of factorial and other complex
designs, for all tests of effects in the latter, we adjust the n used for table
entry to

denominator df

34 ’
(8.3.4) n o1

The denominator df for a factorial design is the total N minus the total
number of cells, and u is the df of the effect in question, as exemplified above
for the 1 x J factorial design. Concretely, the J effect is tested as if it were
based on samples of size
. 108
n = m +1=28,

which together with the f value posited for the J effect, is used for entry
into the appropriate table (for a and u) to determine power.

What happens to the interpretation of f when the basis of classification
K into k levels is present together with others, as it is in factorial design?
However complicated the factorial design, i.e., no matter how many other
factors (I, J, etc.) and interactions (K x I, K x J, K x I x J, etc.) may be
involved, the definition of f for the k means of K remains the same—the
standard deviation of the k standardized means, where the standardization
is by the common within (cell) population standard deviation [formulas
(8.2.1) and (8.2.2)]. Thus, there is no need to adjust one’s conception of f
for a set of k means when one moves from the one-way analysis of variance
(Cases 0 and 1) to the case where additional bases of partitioning of the
data exist. Furthermore, the translation between f and the d measures con-
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sidered in 7.2.1 is also not affected. It is, however, necessary to consider the
interpretation of »* in Case 2.

In Section 8.2.2, n? was defined as the proportion of the total variance
raade up by the variance of the means [formula 8.2.18)]. The total variance,
in turn, was simply the sum of the within-population variance and the
variance of the means [formula (8.2.17)]. The framework of that exposition
was the analysis of variance into two components, between-populations
and within-populations. In factorial design, the total variance is made up
not only of the within (cell) population variance and the variance of the
means of the levels of the factor under study, but also the variances of the
means of the other factor(s) and also of the interactions. Therefore, the
variance base of »? of formula (8.2.18), namely o? + q,,2, is no longer the
total variance, and the formulas involving 5 and 3% [(8.2.19), (8.2.20),
(8.2.22)] and Table 8.2.2 require the reinterpretation of n as a partial corre-
lation ratio, and #* as a proportion, not of the total variance, but of the
total from which there has been excluded (partialled out) the variance due
to the other factor(s) and interactions.

This can be made concrete by reference to the | x J (3 x 4) factorial
illustration. Consider the four population means of the levels of J and
assume their f, is .30. Assume further that f, is .50 and f,,, is .20. When 52
for 3 is computed from formula (8.2.19) (or looked up in Table 8.2.2):

) f2 .30%
n= =
1+ €2 1+ .30

the results for J clearly are not in the slightest affected by the size of the
I or | x J effects. The »? for J in this design might be written in the con-
ventional notation of partial correlation, with Y as the dependent variable
under study, as nzy,..'.,‘ s> 1.e., the proportion of the Y variance associated
with J population membership, when variance due to | and to I x J is
excluded from consideration. Thus, given f, =.30, the variance of the J
means accounts for .0826 of the quantity made up of itself plus the within-
cell population variance.

In higher order factorial designs, the »? computed from an f for a given
source J might be represented as n%yy.. omer» the ““all other” meaning all
the other sources of total variance, main effects, and interactions. Each
source’s ‘‘size” may be assessed by such a partial PV. Because of their
construction, however, they do not cumulate to a meaningful total.

The proposed operational definitions of small, medium, and large ES
in terms of f have their usual meaning. When assessing power in testing
the effects of the above | x J factorial, f; and f, (and also f,, ,—see Section
8.3.4) can each be set quite independently of the others (because of their
partial nature), by using the operational definitions or by whatever other

> =.0826,
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means suit the investigator. They can, for example, be set by stating the
alternative-hypothetical cel/l means and ¢, and computing the resulting f
values for all effects (illustrated in example 8.9 of the next section).

The scope of the present treatment precludes a detailed discussion of
the power analysis of fixed effects in complex designs other than the fac-
torial. Such analyses can be accomplished using the tables of this chapter if
the following principles are kept in mind:

1. The basic ES index, f, represents the standard deviation of standardized
means, the standardization being accomplished by division by the appro-
priate 0. We have seen that for fixed factorial designs, o is the square root
of the within cell population variance. In other designs, and more generally,
o is the square root of the variance being estimated by the denominator
(““error”’) mean square of the F test which is to be performed. For example,
in repeated measurements designs using multiple groups of subjects (““split
plot” designs), there are at least two error terms, (a) a ‘“‘subjects within
groups” or between-subjects error, and (b) an interaction term involving
subjects, or within-subject error. In the definition of f for any source (i.e.,
set of means), the standardization or scaling of the g,, will come from either
(a) or (b), depending on whether the source is a between or a within source,
just as will their F ratio denominators (Winer, 1971).

2. The adjustment to n’ of formula (8.3.4) calls for the denominator df,
i.e., the df for the actual error term of the F ratio that is appropriate for the
test of that source of variance in that design. For example, consider the test
of the treatment effect in an unreplicated 6 x 6 Latin square (Edwards, 1972,
pp. 285-317). Six treatment means, each based on n = 6 observations, are to
be compared, so u = 5. Since the Latin square residual (error) mean square,
which is the denominator of the F ratio, is based on (n — 1)(n — 2) = 20 df,
the n’ for table entry is, from (8.3.4), 20/(6 + 1) + 1 = 3.86. Power would then
be found by linear interpolation between n = 3 and 4 at the f value posited
in the power table for u = 5 for the specified a level.

Illustrative Examples

8.5 An experimental psychologist has designed an experiment to
investigate the effect of genetic strain (l) at i =3 levels and conditions
of irradiation (J) at j=4 levels on maze learning in rats. He draws 24
animals randomly from a supply of each genetic strain and apportions each
strain sample randomly and equally to the four conditions, so that his
3 x 4 = 12 cells each contain a maze score for each of n, = 6 animals for a
total N of 12(6) = 72 animals. The denominator df for the F tests in this
analysis is therefore 72 — 12 = 60. He expects a medium ES for 1 and a large
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ES for J, and following the operational definitions of Section 8.2.3, sets
f, = .25 and f, = .40. Note that these values are standardized by the within
cell population and each of the main effects is independent of the other. (The
question of the | x J interaction is considered in the next section under Case
3.) What is the power of these two main effect F tests at the a = .05 criterion?

For the test on the equality of the mean maze scores for the 3 strains
(I), u=1i =2, and each mean is taken over 24 animals. However, for table
entry, we require the n’ of formula (8.3.4): 60/(2 + 1) + 1 =21. Thus, the
specifications are:

a=.05, u=2, f=.25 n =21

Table 8.3.13 (a = .05, u = 2) at row n = 21 and column f = .25 indicates
power of .40. The chances of detecting a medium effect in strain differences
for these specifications are only two in five,

For a test of equality of means of the four irradiation conditions (J),
u=j—1=3, and each mean is taken over 18 animals. Again it is n’ of
formula (8.3.4) that is required, and it is 60/(3 + 1) + 1 = 16. The specification
summary for the test on J is thus:

a =.05, u=73, f= .40, n’ = 16.

In Table 8.3.14 (a =05, u=3), at row n =16 and column f = .40, he
finds power = .75. The power of the test on irradiation conditions (J), given
the large effect anticipated, is distinctly better than that for genetic strains (I);
a probability of .75 of rejecting the null hypothesis means .75/.25, or three to
one odds for rejection under these specifications.

8.6 An experiment in developmental social psychology is designed to
study the effect of sex of experimenter (S at s =2 levels), age of subject
(A at a = 3 levels), instruction conditions (C; at ¢ = 4), and their interactions
(which are considered in the next section) on the persuasibility of elementary
school boys. A total N of 120 subjects is assigned randomly (within age
groups and equally) to the 2 x 3 x 4 =24 cells of the design; thus, there are
5 cases in each cell. Expectations from theory and previous research lead
the experimenter to posit, for each effect, the following ES for the three
effects: fg = .10, fo = .25, and f¢ = .40. (Note that these f values imply partial
n?, respectively, of .01, .06, and .14.) Using as a significance criterion a = .05,
what is the power of each of the main effects F tests?

This is a 2 x 3 x 4 fixed factorial design, and although we will not here
consider the power testing of the four interaction effects (S x A, S x C,
A x C,and S x A x C), they are part of the model (see Illustrative Example
8.7 in Section 8.3.4). The correct df for the denominator (within cell mean
square) of all the F tests is 120 — 24 = 96.
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For the test of the S effect, u=2 —1 =1, and although each mean is
based on 60 cases, the n’ for table entry is 96/(1 + 1) + 1 =49. Thus, the
specifications are

a = .05, u=1, f=.10, n’ =49,

In Table 8.3.12 for a = .05 and u = [, at column f = .10, for both rows
n = 48 and 50, power is given as .16. The probability of detecting f =.10 (a
conventionally small effect) is very poor.

For the three age groups (hence u = 2), the n’ obtained by formula (8.3.4)
is 96/(2 + 1) + 1 = 33. The specifications for the determination of the power
of the F test on the A main effect are thus:

a =05, u=2, f=.25, n’ = 33,

In Table 8.3.13 (a=.05, u=2), at row n =33 and column f =25,
power = .59. Note that f =.25 is our conventional definition of a medium
effect.

Finally, the test of the means of the four instruction conditions (hence
u =3) has for its n’ 96/(3 + 1) + 1 = 25. The specification summary:

a=.05, u=3, f = .40, n =25,

Table 8.3.14 at row n =25, column f = .40 yields power of .93. Under
these conditions, the b (Type II) error (I — power) is about the same as the
a (Type I) error, but note that a large effect has been posited.

In summary, the experimenter has a very poor (.16) expectation of detect-
ing the small S effect, a no better than fair (.59) chance of detecting the
medium A effect, and an excellent (.93) chance of finding a significant C effect,
assuming the validity of his alternate hypotheses (i.e., his f values), a = .05,
and N = 120. As an exercise, the reader may determine that changing the
specifications to 6 cases per cell (N = 144), and leaving the other specifications
unchanged, the tabled power values become .19 for S, .70 for A, and .97 for C.
Note the inconsequential improvement this 209, increase in the size of the
experiment has for the $ and C effects, although bringing A from power of
.59 to .70 might be worthwhile. Reaching significant power for $ seems hope-
less, but we have repeatedly seen that very Jarge samples are required to obtain
good power to detect small effects.

8.3.4 Case 3: TESTS OF INTERACTIONS. A detailed exposition of inter-
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action effects in experimental design is beyond the scope of this handbook;
the reader is referred to one of the standard treatments (e.g., Hays, 1981;
Winer, 1971; Edwards, 1972). We assume throughout equal n_ in the cells of
the factorial.

For our present purposes, we note that an R x C interaction can be
understood in the following ways:

1. Differences in effects between two levels of R, say R; and R, (i, k=
1,2,3,..., r; i< k) with regard to differences in pairs of C, say C;— C,
G,p=1,2,3,...,c;j < p). More simply, a contribution to an R x C inter-
action would be a difference between two levels of R with regard to a
difference between two levels of C. Thus, if in the population, the sex differ-
ence (males minus females) in conditioning to sound (C;) is algebraically
larger than the sex difference in conditioning to electric shock (C,), a sex
by conditioning stimulus (R x C) interaction would be said to exist. A first-
order interaction (R x C) is equivalent to differences between differences;
a second-order interaction (R x C x H) equivalent to differences between
differences of differences; etc. (see example 8.8 below).

2. Equivalently, a first-order interaction (R x C) can be thought of
as a residual effect after the separate main effects of R and C have
been taken out or allowed for. Thus, after any systematic (averaged over
stimulus) sex difference in conditioning is allowed for, and any systematic
(averaged over sex) difference in conditioning stimulus is also allowed
for, if there remains any variation in the sex-stimulus cells, a sex by con-
ditioning stimulus (R x C) interaction would be said to exist. A second-
order interaction (R x € x H) would be said to exist if there was residual
variation after the R, C,H, R x C, R x H, and C x H effects were removed,
etc.

3. A third equivalent conception of an R x C interaction implied by
either of the above is simply that the effect of R varies from one level of
C to another (and conversely). Thus, a nonzero sex by conditioning
stimulus interaction means (and is meant by): The effect of a given stimulus
(relative to others) varies between sexes or depends upon which sex is
under consideration. This, in turn, means that there is a joins effect of
sex and stimulus over and above any separate (main) effect of the two
variables. Equivalently, the effect of each is conditional on the other.

To index the size of an interaction, we use f defined in a way which is a
generalization of the basic definition set forth in equations (8.2.1) and
(8.2.2). First we return to the second conception of an R x C interaction
above, where we spoke of a “residual effect” after the main effects of R
and € have been taken out. Consider the cell defined by the ith level of R
and the jth level of C, the ijth cell of the table, which contains in all rc
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cells. That cell’s population mean is m;;. Its value depends on (a) the main
effect of R;, i.e., m;. —m, the departure of the population mean of level
i of R, () the main effect of C;, i.e., m; — m, the departure of the popu-
lation mean of level j of C, (c) the value of m, and (d) the interaction effect
for that cell, x;, the quantity in which we are particularly interested.
Simple algebra leads to the following definition of x;; in terms of the
cell mean (m;;), the main effect means m;., m;), and the total population
mean (m):

(8.3.5) X;=mM; —m;. —m,; +m.

When a cell has x;; =0, it has no interaction effect, i.e., its mean is
accounted for by the R; and C; main effects and the total population mean.
When all the rc cells have x values of zero, the R x C interaction is zero.
Thus, the degree of variability of the x values about their (necessarily) zero
mean is indicative of the size of the R x C interaction.

Thus, as a measure of the size of the interaction of the R x C factorial
design, we use the standard deviation of the x;; values in the rc cells. As an
exact analogy to our (raw) measure of the size of a main effect, o,,, of formula
(8.2.2), we find

_Ex
(8.3.6) oy = \/?

the square root of the mean of the squared interaction effect values for the
rc cells.
To obtain a standardized ES measure of interaction, we proceed as

before to divide by o, the within-cell population standard deviation, to obtain
f:

(8.3.7) f=2x,

The f for an interaction of formula (8.3.7) can be interpreted in the same
way as throughout this chapter, as a measure of variability and hence size of
(interaction) effects, whose mean is zero, standardized by the common within
(cell) population standard deviation. Because it is the same measure, it can
be understood:

1. in the framework which relates it to n and the proportion of variance
of Section 8.2.2, as modified in terms of partial n for Case 2 in Section 8.3.3;
or

2. By using the operational definitions of small, medium, and large f
values of Section 8.2.3 (even though the discussion in these sections was
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particularized in terms of the variability of means, rather than of interaction
effects); or

3. By writing the alternate-hypothetical cell means and computing the
x values and o, and f by formulas (8.3.5)~(8.3.7). (This latter procedure is
illustrated in example 8.9 below.)

For the sake of simplicity of exposition, the above discussion has been of
f for a two-way (first-order) interaction. The generalization of f for higher-
order interactions is fairly straightforward. For example, given a three-way
interaction, R x € x H, with R at r levels, C at ¢ levels, and H at h levels,
there are now rch cells. Consider the cell defined by the ith level of R, the
jth level of C, and the kth level of H. Its interaction effect is

Xjje = My —M; —M; —My, — X5 — X — Xy + 2,

where the x;, X;,, and x;, are the two-way interaction effects as defined in
formula (8.3.4). Analogous to formula (8.3.6), the raw variability measure is

_ ok
(8.38) Oy = —r—c—h—'

’

1.e., the square root of the mean of the squared interaction effect values for
the rch cells. It is then standardized by formula (8.3.7) to give f, the ES for a
three-way interaction.

The number of degrees of freedom (u) for an interaction is the product of
the dfs of its constituent factors: (r — 1)(c — 1) for a two-way interaction,
(r — 1)(c — 1)(h — 1) for a three-way interaction, etc.

For the reasons discussed in the preceding section on main effects, the test
on interactions in factorial designs require that n’ be used for table entry.
Formula (8.3.4) is again used with the same denominator df as for the main
effects and with u the appropriate df for the interaction.

In summary, power determination for interaction tests proceeds as follows:
u is the df for the interaction and, together with the significance criterion a,
determines the relevant power table. The table is then entered with f, which is
determined by using one or more of the methods detailed above or by using
the ES conventions, and n’, a function of the denominator df and u (8.3.4).
The power value is then read from the table. Linear interpolation for f, n,
and u (between tables) is used where necessary and provides a good approxi-
mation.

Illustrative Examples

8.7 Reconsider the experiment described in example 8.6, an inquiry
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in developmental social psychology in which the factors were sex of experi-
menter (S at s =2 levels), age of subject (A at a =3 levels), and instruction
conditions (C at ¢ =4 levels), i.e., a 2 x 3 x4 factorial design, and the
dependent variable a measure of persuasibility. There are n =5 subjects
in each of the 24 cells of the design, a total N of 120, and the denominator
df is 120 — 24 = 96. For convenience, we restate the specifications and result-
ing tabled power value for each of the main effect F tests:

S: a=.05 u=1, f=.10, n'=.49; power=.16

A: a=.05 u=2 f=.25 n'=.33; power=.59
C: a=.05 u=3 f=.40, n =.25; power=.93

]

]

Consider first the interaction of sex of experimenter by age of subject
(S x A), which is posited to be of medium size, i.e., f =.25, and the same
significance criterion. a = .05, is to be used. Note that this interaction con-
cerns the residuals in the 2 x 3 table which results when the 4 levels of C are
collapsed. The df for this interaction is therefore u=(2 — 1)(3 - 1) = 2. All
the effects in this fixed factorial design, including the S x A effect, use as their
error term the within-cell mean square, hence the denominator df, as noted
above, is 120 — 24 = 96. This latter value and u are used in formula (8.3.4)
to determine n’ for table entry: n’ = 96/(2 + 1) + 1 = 33. The specifications
for the power of the S x A effect are thus:

a =05, u=2, f=.25, n’ =33,

InTable8.3.13fora = .05and u = 2, withrow n = 33 and column f = .25,
the power of the test is found as .59, a rather unimpressive value. Note that
this is exactly the same value as was found for the A main effect, which is
necessarily the case, since the specifications are the same. For A, we also used
a =.05 and f = .25, and its u is also 2. Since S x A and A (as well as the
other effects) also share the same denominator df, their n’ values are also
necessarily the same.

Let us also specify a = .05 and f = .25 for the $ x C interaction. It is based
on the 2 x 4 table which results when the three levels of A are collapsed, and
its u is therefore (2 — 1)(4 — 1) = 3. With the same denominator df of 96, the
n’ for this effect is 96/(3 + 1) + 1 = 25. Thus,

a =.05, u=3, f=.25, n’ =25,

and Table 8.3.14 (for a = .05, u = 3) gives at row n = 33 and column f = .25
the power value .53. For the specifications for a and f the power is even
poorer than for the S x A interaction. This is because the increase in u results
in a decrease in n’.

The A x C interaction is defined by the 3 x 4 table that results when the
sex of experimenters is ignored, and its u is therefore (3 — 1)(4 — 1) = 6. For
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this u and denominator df = 96, the n’ here is 96/(6 + 1) + 1 = 14.7. For the
sake of comparability, we again posit @ = .05 and f = .25. The specifications
for the test of the A x C interaction, then, are:

a=.05, u=06, f=.25, n =14.7.

In Table 8.3.17 (a = .05, u = 6), column f = .25 gives power values of .39
at n =14 and .42 at n = 15; linear interpolation gives power of .41 for
n’ = 14.7. Note that, although the specifications remain a = .05 and f = .25,
since u is now 6, the resulting drop in n’ has produced a reduction in power
relative to the other two two-way interactions.

Finally, the three-way S x A x C interaction has u=(2-1)3 - 1)
(4 — 1) = 6, the same as for the A x C interaction, and thus the same n’ =
96/(6 + 1) + 1 = 14.7. If we posit, as before, a = .05, and f = .25, the speci-
fications are exactly the same as for the A x C interaction,

a=.05, u==6, f=.25 n' =14.7,

and necessarily the same power of .41 is found (Table 8.3.17).

Because the df for interactions are products of the dfs of their constituent
main effect factors (e.g., for A x C, u = 2 x 3 = 6), the interactions in a fac-
torial design will generally have larger u values than do the main effects, and,
given the structure of the formula for n’ (8.3.4), their n’ values will generally
be smaller than those for the main effects. This in turn means that, for any
given size of effect (f) and significance criterion (a), the power of the inter-
action tests in a factorial design will, on the average, be smaller than that of
main effects (excepting 2% designs, where they will be the same). This principle
is even more clearly illustrated in the next example.

8.8 Consider an A x B x C fixed factorial design, 3 x 4 x S (= 60 cells),
with three observations in each cell, so that N = 60 x 3 = 180. The within-
cell error term for the denominator of the F tests will thus have 180 — 60 =
120 df. To help the reader get a feel for the power of main effect and inter-
action tests in factorial design as a function of f, a, u, and the n’ of formula
(8.3.4), tabled power values for the F tests in this experiment are given in
Table 8.3.34 for the conventional f values for small, medium, and large ES at
a = .01, .05, and .10. Note that although this is a rather large experiment, for
many combinations of the parameters, the power values are low. Study of the
table shows that

1. Unless a large ES of f = .40 is posited, power is generally poor. Even at
f = .40, when a = .0l governs the test, two of the two-way interactions have
power less than .80, and for the triple interaction it is only .49. It seems clear
that unless unusually large experiments are undertaken, tests of small effects
have abysmally low power, and those for medium interaction effects for u > 4
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have poor power even at a =.10.

2. For a medium ES of f = .25, only the main effect tests at a = .10 have
power values that give better than two to one odds for rejecting the null
hypothesis. At a = .05, power ranges from poor to hopeless, and at .01, not
even the tests of main effects have power as large as .50.

TABLE 8.3.34

POWER As A FUNCTION OF f, a, u, AND n"IN A 3 X 4 x 5 DESIGN
WITH n. = 3 AND DENOMINATOR df = 120

f=.10 f=.25 f=.40
Effect u n a=.01 .05 .10 01 .05 .10 .01 .05 .10
A 2 41 05 15 25 45 70 80 93 98 99
B 3 3 04 13 22 38 63 75 90 97 99
C 4 25 03 12 21 33 58 70 86 96 98
AxB 6 18.1 03 10 18 26 51 64 80 93 97
AxC 8 143 02 09 17 23 46 59 75 91 95
Bx«C 12 10.2 02 08 16 18 39 52 66 86 92
AxBxC 24 58 02 08 14 10 29 42 49 74 83

3. For ESs no larger than what is conventionally defined as small (f = .10),
there is little point in carrying out the experiment: even at the most lenient
a = .10 criterion, the largest power value is .25.

4. At the popular a = .05 level, only at f = .40 are the power values high
(excepting even here the .74 value for the A x B x C effect).

S. The table clearly exemplifies the principle of lower power values for
interactions, progressively so as the order of the interaction increases (or,
more exactly, as u increases). For example, only for f == 40 at a = .10 docs
the power value for A x B x C exceed .80.

The preparation and study of such tables in experimental planning and
post hoc power analysis is strongly recommended. The reader is invited, as an
exercise, to compute such a table for a 3 x 4 design with 15 observations per
cell, and hence the same N = 180 as above. Comparison of this table with
Table 8.3.34 should help clarify the implications of few cells (hence smaller u,
larger denominator df, and larger n’ values) to power.

Because of the relative infirmity of tests of interactions due to their often
large u, the research planner should entertain the possibility of setting, a
priori, larger a values for the interaction tests than for the tests of main ef-
fects, usually .10 rather than .05. The price paid in credibility when the null
hypothesis for an interaction is rejected may well be worth the increase in
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power thus attained. This decision must, of course, be made on the basis not
only of the design and ES parameters which obtain, but also with the substan-
tive issues of the research kept in mind.

8.9 A psychologist designs an experiment in which he will study the
effects of age (R) at r = 2 levels, nature of contingency of reinforcement (C)
at ¢ = 4 levels, and their interaction (R x C) on a dependent learning variable.
There are to be 12 subjects in each of the rc = 8 cells, and a = .05 throughout.

We will use this example to illustrate the direct specification of the
alternate hypothesis and hence the ES. Assume that the area has been well
studied and the psychologist has a ““strong” theory, so that he can estimate
the within-cell population standard deviation o =8, and further, he can
stateas an alternative to the overall null hypothesis specific hypothetical values
for each of the eight cell's population means, the m;;. The latter then imply

the R means (m,.), the C means (m;), and the grand mean m. They are as
follows:

< C; G, C. m;.
R, 41 34 30 27 33
R, 33 24 22 29 27
mj 7 29 26 28 30=m

These values, in raw form, comprise his ES for the effects of R, C, and
R x C. Their conversion to f values for the main effects is quite straight-
forward. Applying formula (8.2.2) for R and C,

o...,=\/(33 30) +(227 30) V=3,

and

=v17.5=4.183.

. =\/(37 —30)% + (29 — 30)% + (26 — 30)* + (28 — 30)*
me 4

When these are each standardized by dividing by the within-population
o = 8 [formula (8.2.1)}, he finds

fa=3/8=.375
and
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fc =4.183/8 = .523.

For the R x C interaction ES, he finds the interaction effects for each cell
using formula (8.3.4)

X;=m;—m, —m,;+m,
Thus,
X, =41-33-37+30=+1
X,,=34-33-29+30=+2

Xy =29—27-28+30=+4

These x;; values for the 2 x 4 table of means are

c, c, c, C.
R, +1 +2 +1 -4
R, -1 -2 -1 +4

Note that they are so defined that they must sum to zero in every row
and column; these constraints are what result in the df for the R x C inter-
action beingu = (r — 1 )(¢ — 1); in this case, u = 3,

Applying formula (8.3.6) to these values,

Y x} \/(+1)2 +(+22+ (+ 1D+ + (+4)?
= re

2(4)

44
= |— =2.345.
8

Standardizing to find f [formula (8.3.7)],

Thus, his alternative-hypothetical cell population means, together with
an estimate of o, have provided an f for the R x C effect (as well as for the
main effects).

One of the ways in which to understand interactions, described in the
introduction to this section, was as differences among differences. This is
readily illustrated for this problem. Return to the cell means and consider
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such quantities as m,; —m,;, i.e., the difference (with sign) between the
means of A, and A, for each level of C. They are, respectively, (41 — 33=)
+8,(34 —-24=) +10, +8, and —2. Were these four values (+8, +10, +8,

and —2) all equal, there would be zero interaction. Calling these values D,
and their mean D (here +6) for simplicity, o, can be found for a 2 x ¢ table

by
/—'E @0
o, =a] =
4c

_ \/(+8 —6)2 +(+ 10— 6)7 + (+8 — 6)% + (- 2 — 6)?

4(4)
88
= [— =234
\/16 2.345,

as before.

Since there are 8 (= rc) cells with 12 subjects in each for a total N = 96,
the denominator df for the F tests of the main effects and the interaction is
96 — 8 = 88. For the interaction test, u = (2 — 1)(4 — 1) = 3; therefore, the
n’ for table entry from formula (8.3.4) is 88/(3 + 1) + I = 23. The specifica-
tions for the test on the R x C interaction are thus:

a =05, u=23, f=.293, n =23.

In Table 8.3.14 (for a = .05, u=3) at row n’ =23, we find power at
f=.25 to be .49 and at f = .30 to be .66. Linear interpolation for f = .293
gives the approximate power value of .64. The power for the main effects:

R: a=.05 u=3, f=.375 n" =45 power=.94;
C: a=.05 u=3, f=.523, n’ =23, power=.99.

Power under these specifications for R and C is very good, but is only .64
for the interaction, despite the fact that its f of .293 is larger than a conven-
tionally defined medium effect and that the experiment is fairly large. Since
the interaction is likely to be the central issue in this experiment, the power of
.64 is hardly adequate. To increase it, the experimenter should weigh the
alternatives of increasing the size of the experiment or using the more modest
a = .10 for the interaction test. If, for example, he increases the cell size from
12 to 17, the total N becomes 136, the denominator df = 136 — 8 = 128, and
n’ for R x Cis 128/(3 + 1) + 1 = 33. The specifications then are

a=.05, u=3, f=.293, n =33,
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and power is found (by interpolation) to be .81. The size of the experiment
must be increased by 42 %, to raise the power of the interaction test from .64
to .81. On the other hand, increasing the a to .10 for the experiment as
originally planned, i.e., for

a=.10, u=3 =.293, n’ =23,

power is found to be .75.

8.3.5 THE ANALYSIS OF COVARIANCE. With a simple conceptual adjust-
ment of frame of reference, all the previous material in this chapter can
be applied to power analysis in the analysis of covariance.

In the analysis of covariance (with a single covariate), each member of the
population has, in addition to a value Y (the variable of interest or dependent
variable) a value on another variable, X, called the concomitant or adjusting
variable, or covariate. A covariance design is a procedure for statistically con-
trolling for X by means of a regression adjustment so that one can study Y
freed of that portion of its variance linearly associated with X. In addition to
the assumptions of the analysis of variance, the method of covariance adjust-
ment also assumes that the regression coefficients in the separate populations
are equal. Detailed discussion of the analysis of covariance is beyond the scope
of this treatment; the reader is referred to one of the standard texts: Blalock
(1972), Winer (1971).

Instead of analyzing Y, the analysis of covariance analyzes Y’, a regres-
sion-adjusted or statistically controlled value, which is

(8.3.9) Y =Y -b(X -X),

where b is the (common) regression coefficient of ¥ on X in each of the
populations and X is the grand population mean of the concomitant variable.
Y’ is also called a residual, since it is the departure of the Y value from the
Y X regression line common to the various populations.

The analysis of covariance is essentially the analysis of variance of the
Y’ measures. Given this, if one reinterprets the preceding material in this
chapter as referring to means and variances of the adjusted or residual
Y’ values, it is all applicable to the analysis of covariance.

For example, the basic formula for f (8.2.1) is o,/o. For covariance
analysis, a,, is the standard deviation of the k population’s adjusted means
of Y’, that is,m’, and o is the (common) standard deviation of the Y’ values
within the populations. The d measure of Section 8.2.1 is the difference
between the largest and smallest of the k adjusted means divided by the
within-population standard deviation of the Y’ values. The use and inter-
pretation of »? as a proportion of variance and 7 as a correlation ratio
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now refers to Y’, the dependent variable Y freed from that portion of its
variance linearly associated withX. And so on,

An academic point: In the analysis of covariance, the denominator
df is reduced by one (due to the estimation of the regression coefficient b).
This discrepancy from the denominator df on which the tabled power values
are based is of no practical consequence in most applications, say when
(u+ I)(n — 1) is as large as 15 or 20.

The analysis of covariance can proceed with multiple covariates X;
(i=1,2,...,p)asreadily, in principle, as with one. The adjustment proceeds
by multiple linear regression, so that
(8.3.10) Y =Y -—-b(X;-X,)—b, (X;-X,;)—"---=b, (X,— X,).
Whether Y’ comes about from one or several adjusting variables, it remains
conceptually the same. The loss in denominator df is now p instead of 1,
but unless p is large and N is small (say less than 40), the resulting overesti-
mation of the tabled power values is not material.

The procedural emphasis should not be permitted to obscure the fact
that the analysis of covariance designs when appropriately used yield greater
power, in general, than analogous analysis of variance designs. This is
fundamentally because the within-population o of the adjusted Y’ variable
will be smaller than o of the unadjusted Y variable. Specifically, where r is
the population coefficient between X and Y, ¢, =0,V1—r2, Since o
is the denominator of f {formula (8.2.1)] and since the numerator undergoes
no such systematic change (it may, indeed, increase), the effective f in an
analysis of covariance will be larger than f in the analysis of variance of
Y. This is true, of course, only for the proper use of the analysis of co-
variance, for discussion of which the reader is referred to the references cited
above.

No illustrative examples are offered here because all of the eight examples
which precede can be reconsidered in a covariance framework by merely
assuming for each the existence of one or more relevant covariates. Each
problem then proceeds with adjusted (Y’) values in place of the unadjusted
(Y) values in which they are couched.

A very general approach to the analysis of covariance (and also the anal-
ysis of variance) is provided by multiple regression/correlation analysis, as
described by Cohen and Cohen (1983). Some insight into this method and a
treatment of its power-analytic procedures are given in Chapter 9.

8.4 SAMPLE Size TABLES

The sample size tables for this section are given on pages 381-389; the
text follows on page 390.
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Table 8.4.1

n to detect f by F test ata = .01
foru=1,234

381

u=l
f
Power 05 10 .15 .20 .25 .30 .35 .k0 .50 .60 .70 .80
.10 336 85 39 22 15 1N 9 7 s 4 4 3
+50 1329 333 9 8s 55 39 29 22 15 1 9 7
.70 192 482 215 122 79 85 4V 32 21 1§ 12 9
. 2338 586 259 148 95 67 L9 38 25 18 1w N
.90 2978 7h6 332 188 120 8 62 48 31 22 17 13
.95 3564 B892 398 22k 1k 101 7k 57 37 26 20 16
.99 4808 1203 536 302 194 136 100 77 50 35 26 21
us 2
f
Power .05 o'o .|5 «20 025 o’o 0’5 obo .50 .60 o7° .00
.10 307 79 36 2 w10 8 6 s5 & 3 3
.50 1093 275 123 70 45 32 2 19 13 9 7 6
.70 1543 387 1n 98 63 W 33 26 17 12 w0 8
. 1851 M6k 207 117 76 83 39 30 20 e N 9
.90 2325 682 260 k7 95 66 W9 38 25 18 W 1
.95 2766 690 308 17A 112 78 S8 45 29 21 16 12
.99 3658 916 ho8 230 W8 103 76 59 38 27 20 16
us 3
[
Power <05 JA0 15 20 .25 .30 .35 .k0 .50 .60 .70 .80
.10 278 n 32 19 13 9 7 6 & 3 31 2
.50 933 234 105 §9 38 27 20 16 8 6 s
.70 1299 326 146 83 53 37 28 22 % 10 8 7
. 1648 388 175 98 63 L 33 25 17 12 9 8
«90 1927 483 215 122 78 s W 3N 21 15 N 9
95 2270 5§68 253 143 922 [ k8 37 2 17 13 10
99 2986 7 333 188 121 8 62 48 N 22 17 1V
uelh
f
Power .05 .10 .'5 «20 .25 .30 035 obo .50 060 070 080
.10 253 6 29 17 12 8 7 § & 3 3 2
.50 820 206 92 52 3 2 18 1% 10 7 6 8
.70 1128 283 127 72 W6 33 2 19 13 9 7 6
. 1341 336 150 85 55 38 29 22 15 1N 8 7
.90 1661 M6 18 105 68 47 35 27 18 13 10 8B
95 1948 488 218 123 79 55 M 32 21 15 1 9
99 2546 6h0 286 160 103 76 53 M 27 19 b N
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Table 8.4.2
n to detect f by F test at a = .01
foru=56,8, 10
uve=s
f
Power .08 L0 .15 ,20 .25 .30 .35 .o .50 .60 .70 .80
.10 233 59 27 16 N 8 6 § & 3 2 2
.50 737 185 82 47 30 22 16 13 9 6 § W
.70 1009 253 M3 6 W 29 2 17 1 8 6 ¢
.80 1193 299 13 76 b9 3 26 20 13 10 7 6
.90 W69 368 164k 93 60 W2 3N 2 16 12 9 7
.95 1719 431 192 109 70 49 36 28 18 13 10 8
93 2235 560 249 14 9 63 b7 36 24 17 13 10
vwe §
f
Power 08 10 .15 .20 .26 .30 .35 .0 .50 .60 .70 .80
.10 218 s 25 15 10 7 6 § 3 31 2 2
.50 673 149 76 W43 28 20 15 12 8 6 § &
.70 917 230 103 8 38 27 20 15 10 8 6 &
.80 1080 21 12 68 Lh N 23 18 12 9 7 [
.90 1326 332 148 B4 sk 38 28 22 1k 10 B8 €
.95 1547 388 173 98 63 L4 33 26 17 12 9 7
.99 2003 502 224 126 81 §7 k2 33 21 15 1N 9
ue=§
e
Power 05 10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 194 b 23 13 9 6 s 4 3 3 2 2
.50 580 16 65 37 24 17 13 10 7 §5 & 3
.70 785 197 88 S50 32 23 17 13 9 7 5 &
.80 98 230 103 58 38 22 20 15 10 8 6 §
.90 22 281 126 7 46 32 2 19 12 9 7 6
.95 1303 327 16 83 53 37 286 22 1 10 8 6
.99 1676 L20 187 106 68 48 36 27 18 13 10 8
vs 10
f
Power 05 .10 .15 .20 .25 .30 .35 k0 .50 .60 .70 .80
.10 176 4 2 12 8 6 s & 3 2 2 2
.50 §15 129 58 33 2 1s 12 9 6 5 & 3
.70 691 173 78 Lk 29 20 15 12 8 6 5 Ak
.80 810 203 9 §1 33 23 18 14 9 7 § &
.90 982 246 110 62 40 28 21 16 N 8 6 5
.95 1138 285 127 72 47 33 26 19 12 9 7 6
.99 Ws6 365 163 92 60 L2 31 24 16 1N 9 7
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Table 8.4.3

n to detect f by F test ata = .01
foru=12, 15, 24

us12
f
Power .05 .10 A5 .20 .25 .30 .35 k0o .50 .60 .70 .B0O
.10 162 b1 19 1" 8 [ b b 3 2 2 2
.50 Ley 17 53 3o 20 14 10 8 3 b 3 3
.70 623 187 70 Lo 26 18 W n 7 [4 4 3
.80 726 182 82 LT3 30 21 16 12 8 6 5 4
.90 881 2”0 99 56 36 25 19 15 10 7 6 [
.95 1017 255 114 65 b2 29 2 17 n 8 [ [
99 1297 328 15 83 5 37 28 21 W 10 8 [
ueis
f
Power +05 .10 A5 .20 .25 .30 .35 .o .50 .60 .70 .80
+10 thy 37 17 10 7 s b 3 2 2 2 e
.50 W3 104 L'y 27 17 12 9 7 5 L} 3 3
.70 548 138 62 35 23 16 12 10 [ 5 b 3
.80 632 159 n b1 26 19 W n 7 [ b Y
<90 769 193 86 L9 32 22 17 13 9 3 s 3
95 88s 222 99 56 36 26 19 15 10 7 [ 4
99 1125 282 126 72 173 32 2 19 12 9 7 s
us2b
f
Power 05 .10 5 .20 .25 .30 .35 Lo .50 .60 .70 .80
.10 18 30 1h 8 [ 4 3 3 2 2 e e-
.50 318 80 36 2 1h 10 7 6 4 3 3 2
.70 L7 105 ['y4 27 17 12 9 7 s [] 3 3
.80 L8s 121 55 n 20 15 1" 8 [ b 3 3
«90 578 1hs és 37 24 17 13 10 7 H ] 3
95 662 166 7h L2 27 19 h n 8 [ b [
99 831 209 92 53 34 2h 18 1h 9 7 5 L
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Table 8.4.4

n to detect f by F testata = .05
foru=1234

usl
f
Power .os .10 o" «20 .25 030 .35 o"o 50 .60 070 oao
.10 - 2 10 é 5 4 3 3 2 ee e e
«50 769 193 86 49 32 22 17 13 9 7 5 4
.70 1236 310 138 78 so 35 26 20 13 10 7 6
.80 15N 393 175 99 64 4s 33 26 17 12 9 7
«90 2102 526 234 132 85 59 kb W 22 16 12 9
<95 2600 651 290 163 105 73 sh L2 27 19 W n
99 3675 920 &09 231 W8 103 76 58 38 27 20 1§
us2
f
Power 05 L0 .15 .20 .25 .30 .35 kO .50 .60 .70 .80
.10 84 2 10 6 5 4 3 3 2 e ae ..
.50 662 166 M k2 27 19 15 1 8 6 5 &
.70 1028 258 115§ 65 42 29 22 17 1N 8 6 s
.80 1286 322 4 B §2 3 27 21 1 10 8 6
«90 1682 421 188 106 68 4B 35 27 18 13 10 8
.95 2060 515 230 130 83 58 43 33 22 15 12 9
.99 2855 7Nk N8 179 115 B0 59 W6 29 21 16 12
uz3
.
Power 05 L0 a5 .20 .25 .30 .35 .0 .50 .60 .70 .80
.10 79 2 10 6 4 3 3 2 2 e ee  ae
.50 577 s 65 37 24 16 13 10 7 § W& 3
.70 881 221 99 56 36 25 19 15 10 7 6 §
.80 1096 274 123 69 b5 %N 23 18 12 9 7 s
.90 Ws 35k 158 89 58 4o 30 23 15 1N 8 7
95 178 430 192 108 70 49 36 28 18 13 10 8
9 2353 589 262 148 95 66 & 38 26 17 13 10
ush
f
Power .05 Jd0 15,20 .25 .30 .35 k0 .50 .60 .70 .80
.10 )i 19 9 é 4 3 2 2 ce ee em aa
.50 sih 129 58 33 21 15 N 9 6 5 4 3
.70 776 195 87 49 32 22 17 13 9 6 S5 &
.80 956 240 107 61 39 27 20 16 10 8 6 s
.90 1231 309 138 78 S50 35 26 20 13 10 7 6
<95 W86 372 166 9 60 42 N 2 16 1N 9 7
.99 2021 506 225 127 82 57 42 33 21 15 1N 9
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Table B.4.5
n to detect f by F test at a = .05
foru=5,6,8, 10
us=s
f

Power .06 .10 .5 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 69 18 9 5 4 3 2 2 e e ee ae
.50 W67 117 53 30 19 b 10 8 6 4 3 3
.70 698 175 78 L 29 20 15 12 8 6 5§ &
. 856 215 96 sk 35 25 18 W 9 7 § &
.90 1098 275 123 69 45 3 23 18 12 9 7 5§
.95 1320 331 18 8 sk 38 28 22 4 10 8 6
R 1783 M7 199 M2 72 s0 37 29 19 13 10 8

usé
[

Power 08 .10 5 .20 .25 .30 .35 ko .50 .60 .70 .80
.10 66 17 8 5 [ 3 2 2 ee e e ee
-50 h29 108 49 28 18 13 10 8 s§ 4 3 3
.70 638 160 72 W 26 18 1tk M 7 5§ & b
. 780 195 87 50 32 22 17 13 9 6 § &
«90 995 250 112 63 W 29 21 16 N 8 6 §
«95 1192 299 133 75 by 513 25 20 13 9 7 6
.99 1606 402 179 101 65 W6 3 26 17 12 9 7

us8
f

Power .08 .10 .15 .20 ,28 .30 .35 .40 .50 .60 .70 .80
.10 60 16 7 5 3 2 2 e ee et ee ae
.50 374 9% W2 28 16 1N 8 7 5 & 3 2
.70 S48 138 61 3 23 16 12 9 6 5 & 3
.80 669 168 75 W2 27 19 & 11 8 6 & &
-90 B8 213 95 sh 35 2 18 W 9 7 5§ &4
.95 10012 286 113 6 W 29 22 17 n 8 6 5
.99 1351 338 151 8 55 39 29 22 1 10 8 6

ue=l0
r

Power 05 .10 5 .20 .25 .30 .35 4o .50 .60 .70 .80
.10 55 14 7 b 3 2 2 ce ee e ee e
«50 335 s 38 21 b 10 8 6 & 3 3 2
.70 488 123 55 N 20 W N 8 6 4 3 3
.80 591 w8 66 38 2 17 13 10 7 5 W 3
-90 77 187 B« W8 N 2 16 13 8 6 S5 &
.95 888 223 99 56 36 26 19 15 10 7 S &
+99 1177 295 132 75 48 3k 25 19 13 9 7 6
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Table 8.4.6

n to detect f by F test ata = .05
foru=12, 15, 24

us2

f
Power .05 0 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 51 13 7 4 3 2 2 ce ee e e ea
.50 306 77 35 20 13 9 7 6 & 3 3 2
.70 b3 m 50 28 18 13 1o 8 § & 13 3
.80 53 13 60 3 22 16 12 9 6 5 4 3
.90 6713 169 75 W3 26 20 15 1y 8 6 4 &
.95 796 200 89 5 33 23 17 13 9 6 5 &
.99 1062 266 M8 67 W3 30 22 17 N 8 6

u=l

f
Power .05 Jd0 .15 20 .25 .30 .35 4o .50 .60 .70 .80
.10 Y] 12 6 4 3 2 eem ce e e e e
.50 272 69 3 18 12 8 6 5 & 3 2 2
.70 39 98 M4 25 16 12 9 7 5 W 3 2
.80 un M8 s3 30 20 W 10 8 6 4 3 13
.90 588 148 66 38 2b 17 13 10 7 [ 4 3
.95 697 175 78 W 29 20 15 12 8 '3 4 b
<99 915 229 102 8 38 26 20 15 10 7 6 4

u= 2k
Power .05 L0 15 .20 .25 .30 .35 O .50 .60 .70 .80
.10 38 10 5 3 2 eee e ee e ee ee ee
.50 213 s 2 bk 9 7 s & 3 2 2 ..
.70 303 76 W 20 13 9 7 5 & 3 2 2
.80 363 9N W 23 15 n 8 6 4 3 3 2
.90 bgz  1ns 5 29 19 13 10 8 s 4 3 3
<95 525 132 59 34 22 15 " 9 6 & 4 3
.99 680 1N 76 b 28 20 15 N 8 6 4 4
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Table 8.4.7
n to detect f by F test ata = .10
foru=1,23.4
us]
f
Power .05 A0 15,20 .25 .30 .35 .40 .50 .60 .70 .80
»50 542 136 61 35 22 16 12 9 [ 5 4 3
.70 oh2 236 105 60 38 27 20 15 10 7 é 5
.80 1237 310 138 78 50 35 26 20 13 9 7 3
.90 1m7m3 k29 191 108 69 L8 36 27 18 13 10 8
.95 2165 sk2 2b1 136 87 61 ks 35 22 16 12 9
<99 3155 789 351 198 127 88 65 50 32 23 17 1
ueE?
f
Power .05 0 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.50 L75 19 53 30 20 11 " 8 6 b 3 3
.70 797 200 89 50 32 23 17 13 9 6 5 4
.80 1029 258 115 65 ] 29 2 17 N 8 [3 5
.90 1395 9 156 88 57 Lo 29 23 15 N 8 é
.95 1738 L3s 164 109 70 49 36 28 18 13 10 8
.99 2475 619 276 155 100 70 51 33 21 15 1N 9
ux 3
o
Power .05 .10 .15 .20 .25 .30 .35 L0 .50 .60 .70 .80
«50 L19 108 ['Y4 27 18 12 9 7 5 [ 3 3
.70 690 173 77 W3 28 20 15 1N 8 6 L L
.80 883 221 99 56 36 25 19 15 10 7 5 L
.90 1180 296 132 74 L8 3 25 19 13 9 7 5§
«95 1458 365 163 92 59 ) 30 24 15 n 8 7
<99 2051 513 229 129 83 58 43 33 21 15 n 9
ush
f
Power .05 .10 A5 .20 .25 .30 .35 .40 .50 .60 .70 .BO
.50 376 95 L3 24 16 1" 9 7 5 4 3 3
.70 612 154 68 38 25 18 13 10 7 5 b 3
.80 773 193 87 LT 32 22 17 13 9 6 5 4
»90 1031 258 115 65 b2 29 22 17 N 8 [ 5
.95 1267 317 1 80 51 36 27 2 13 10 7 6
.99 1768 Lh3 197 M n 50 37 28 19 13 10 8
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Table 8.4.8

n to detect f by F test ata = .10
foru=5,6,8, 10

ues 5
f
Power W05 .10 5 .20 .25 .30 .35 .40 .50 .60 .70 .80
.50 W3 8 39 22 W 10 8 6 4 3 3 2
«70 551 139 6 35 23 16 12 9 [ 5 Y 3
.80 693 174 77 L 28 20 15 12 8 6 & &
.90 922 231 103 58 37 26 20 15 10 7 6 &
.95 M28 283 126 7N 46 32 28 18 12 9 7 &
.99 156k 392 175 98 63 L4 33 25 16 12 9 7
ueb
f
Power .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.50 ny 80 36 20 13 9 7 6 & 3 3 2
.70 506 127 57 32 2 15 11 9 6 & 3 3
.80 635 159 71 ko 26 18 W 1N 7 § 4 3
.90 838 210 9k 53 34 24 18 14 9 7 5 4
.95 1022 256 Nk 65 42 29 22 17 N 8 6 §
.99 W08 353 157 B89 57 Lo 30 23 15 n 8 6
ue B
f
Power .05 10 .15 .20 .25 .30 .35 4O .50 .60 .70 .80
.50 278 70 32 18 12 9 6 § 4 3 2 2
.70 436 10 L9 28 18 13 10 8 5 L 3 3
.80 shs 137 61 35 23 16 12 9 6 s & 3
.90 77 180 80 L6 29 20 15 12 8 6 L &
95 870 218 97 55 36 25 19 W 9 7 § &4
<99 1190 298 133 75 LY ) 34 25 19 13 9 7 5
us 10
f
Power 05 L0 .15 20 .25 .30 .35 4O .50 .60 .70 .80
.50 250 63 28 16 N 8 6 s 3 3 2 2
.70 390 98 W 256 16 N 9 7 5§ & 3 2
.80 482 1221 s 31 20 W N 8 6 4 3 3
.90 633 159 71 ko 26 18 W 1N 7 § 4 3
95 765 192 85 L9 n 22 16 13 8 3 5 [
.99 oo 260 M6 66 42 30 22 17 1 8 6 s
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Table 8.4.9

n to detect fby F testata=.10
foru=12,15, 24

389

usl2
f
Power .05 J0 15 .20 .26 .30 .35 .40 .50 .60 .70 .80
.50 229 58 26 15 10 7 5 & 3 2 2 2
.70 355 89 4w 23 15 n 8 6 4 3 3 2
.80 437 1o 4 28 18 13 10 8 s§5 4 3 3
.90 sn 143 6 36 2 17 12 10 6 5 4 3
.95 68 173 77 4 28 20 15 N 8 § 4 4
.99 931 233 106 59 38 27 20 15 10 7 § W
uels
f
Power .08 10 15 .20 .25 .30 .35 Lo .50 .60 .70 .80
.50 208 52 23 13 9 6 s & 3 2 2 2
.70 315 79 3% 20 13 9 7 6 4 3 2 2
.80 386 97 43 25 16 12 9 7 § 4 3 2
.90 502 126 5 32 15 n 9 6 4 3 3
.95 603 151 68 138 25 17 13 10 7 § 4 13
.99 812 203 9 5 33 23 17 13 9 6 § &
u=24
f
Power .05 .10 A5 .20 .28 30 .35 Lo .50 .60 .70 .80
.50 161 »n 18 n 7 [ L 3 2 2 e .
.70 246 62 27 16 10 7 6 5§ 3 2 2 2
.80 298 75 34 19 12 9 7 5§ 4 3 2 2
.90 382 9% U3 25 16 n 8 7 s§ 3 3 2
.95 456 1k 52 30 19 13 10 8 § & 3 3
.99 €607 152 68 39 25 17 13 10 7 § W 3
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The tables in this section list values for the significance criterion (a),
the numerator degrees of freedom (u), the ES to be detected (f), and the
desired power. The required size per sample, n, may then be determined.
The chief use of these tables is in the planning of experiments where they
provide a basis for decisions about sample size requirements.

The 33 tables are laid out generally four to a table number, by a levels
and successively tabled u values within each a level. The subtable for the
required a, u combination is found and f and desired power are located.
The same provisions for a, u, and f are made as for the tables in Section 8.3,
as follows:

1. Significance Criterion, a. Table sets are provided for nondirectional
a of .01, .05, and .10, each set made up of tables for varying values of u.

2. Numerator Degrees of Freedom,u. For each a level, tables are provided
in succession for the 11 values of u=1 (1) 6 (2) 12, 15, 24. Since the num-
ber of means to be compared is k =u + 1, the tables can be used directly
for sets of means numbering k=2 (1) 7 (2) 13, 16, and 25, and for inter-
actions whose df equal the above 11 values of u. For missing values of u
(7,9, 11, etc.), linear interpolation between tables will yield adequate approxi-
mations to the desired n.

3. Effect Size, f. f was defined and interpreted for equal n in Sections
8.2, and generalized for unequal n in Section 8.3.2 and for interactions in
Section 8.3.4. As in the power tables, provision is made in the sample size
tables for the 12 values: .05 (.05) .40 (.10) .80. Conventional levels have
been proposed (Section 8.2.3), as follows: small ES: f= .10, medium ES:
f =25, and large ES: f=.40. (No values of n less than 2 are given, since
there would then be no within-population variance estimate from the data.)

To find n for a value of f not tabled, substitute in

(8.4.1) n= :0’8;, +1,

where n 5 is the necessary sample size for the given a, u, and desired power
at f= .05 (read from the table), and f is the nontabled ES. Round to the
nearest integer.

4. Desired Power. Provision is made for desired power values of .10
(except at a =.10 where it would be meaningless), .50, .70, .80, .90, .95, .99.
See 2.4.1 for the rationale for selecting such values for tabling, and particu-
larly for a discussion of the proposal that .80 serve as a convention for
desired power in the absence of another basis for a choice.
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8.4.1 Case 0: k MEeans wiTH EQUAL n. The sample size tables were
designed for this, the simplest case. Find the subtable for the significance
criterion (@) and numerator df (k — | =u) which obtain and locate f and
desired power, to determine n, the necessary size per each sample mean.
For nontabled f, use the tables to find n 55 and substitute in formula (8.4.1).

Ilustrative Examples

8.10 Reconsider the educational experiment on the differential effective-
ness of k =4 teaching methods to equal sized samples of n = 20 (example
8.1). Using a = .05 as the significance criterion, and f = .28, it was found that
power was approximately .53. Now we recast this as a problem in experi-
mental planning, where we wish to determine the sample size necessary to
achieve a specified power value, say .80. Initially, to illustrate the simplicity
of the use of the sample size tables for tabled values of f, we change her
specification of f to .25, our operational definition of a medium ES. Sum-
marizing, the conditions for determining n for this test are

a=.0§, u=k-1=3 f=.25, power = .80.

In the third subtable of Table 8.4.4 (for a = .05, u=3) with column
f=.25, and row power = .80, we find that we need n =45 cases in each of
the 4 method groups. Thus, slightly scaling down her ES from .28 to .25, she
needs 4(45) = 180 = N to have .80 probability of a significant result at a =
.0s.

Since her f was originally .28, we illustrate the determination of n for this
nontabled value, leaving the other specifications unchanged:

a = .05, u=3, f=.28, power = .80.

For nontabled f, we use formula (8.4.1). For n 4, the sample size needed
to detect f = .05 for a = .05, u = 3 with power = .80, we use the same subtable
as above, the third subtable of Table 8.4.4 (for a = .05, u = 3) with column
f=.05 and row power = .80 and find n o5 = 1096. Sutstituting in formula
(8.4.1),

e 1096 e 1096
T 400(.28%) 31.36

Thus, she would need 36 cases in each of the 4 groups to have power of
.80 to detect f= .28 at a =.05. (This value of n is, as it should be, smaller
than that which resulted when a smaller f of .25 was posited above.)

+1=359.

8.11 We reconsider the social psychiatric research of example 8.2,
now as a problem in experimental planning. A pool of suitable in-patients
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is to be randomly assigned to k =3 equal samples, and each subjected to
a different microsocial system. Following this treatment, criterion measures
will then be F-tested at a =.01. Temporarily, we revise the team's two
proposed ES measures (the basis for which is described in example 8.2),
f=.229 and .333, to a range of four tabled values: f=.20, .25, .30,. 35. It
is desired that power be .90 and we seek the n required for each of these
specifications, which, in summary, are

.20
.25
a=0l, u=k-1=2 f= 30" power = .90.

35

We use the second subtable of Table 8.4.1 (for a = .01, u=2) at row
power =.90 and columns f=.20, .25, .30, and .35 and find the respective
per sample n’s of 147, 95, 66, and 49. Thus, for these conditions, an f of
.20 requires three times as large an experiment as an f of .35. Note that in
terms of proportion of variance, the respective 5? for these values are .0385
and .1091 (Table 8.2.2).

Having illustrated the direct table look-up afforded by tabled f values,
we turn to the actual f values posited by the two factions on the research
team in the original example, .229 and .333. These nontabled values require
the use of formula (8.4.1). The specifications are

229

333 power = .90.

a=01, u=2 f={

For n s, the sample size needed to detect f=.05 for a=.01, u=2,
with power .90, we use the second subtable of Table 8.4.1 (fora =.01, u=2)
with column f= .05 and row power = .90 and find n o5 = 2325. Substituting
it and f=.229 in formula (8.4.1),

2325
= —— =111.
n .2292)+ 1=11138,
and for f=.333,
2325
n= —537) +1=538.

Thus, if the “weak effect”” faction (f=.229) is correct, samples of 112
cases are required, while if the “strong effect” faction (f =.333) is correct,
only 54, less than half that number, are required per sample.

If they compromise by splitting the difference in n and use (111 + 53)/2 =
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82 cases, we can solve formula (8.4.1) for f, the “detectable effect size,”

for given a, desired power, and n:

_ Noos
(8.4.2) f—\/4——00(n )

2325
—JM = .268.

The interpretation of this result is that for an F test at a = .01 of three
means each based on 82 cases to have power of .90, the population ES
must be f=.268. Since the relationship involved is not linear, splitting the
difference in n does not split the difference on f. The latter would be f=
(-229 + .333)/2 = .281. If the latter was the basis for compromise, the experi-
ment would demand, applying formula (8.4.1) to these specifications,

2325

n=m8—l—zj+l=74.6,

or 75 cases.

There is yet a third way of splitting the difference, i.e., between the .05
and .10 proportion of variance of criterion accounted for by experimental
group membership, %, If the compromise is effected on this basis, 3% =
(.05 + .10)/2 = .075. Then, from formula (8.2.22),

.075
_Jl—._.—07_5 = .285.

Substituting this value of f with the n o5 = 2325 for these conditions in
formula (8.4.1),

2325
=— =72,
"= 20002855 T | =75
or 73 cases, which hardly differs from the n demanded by averaging the f’s
(75). This will generally be the case unless the two f's are very widely separ-
ated.

8.4.2 Cask 2: k MEANs wiTH UNEQUAL n. Sample size decisions for re-
search planning in Case 2 offer no special problems. One must keep in mind

3The concept “detectable effect size” transcends its applications here. It is useful in
post hoc power analysis, particularly in the assessment of failures to reject the null hypo-
thesis and in summarizing the results of a series of experiments bearing on the same issue.
See Cohen (1965, p. 100; 1970, p.828).
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that with unequal n;, fis the standard deviation of the p;-weighted standar-
dized means, as described in Section 8.3.2. When the sample size tables are
applied with the usual specifications, the n indicated in Case 2 is the average
sample size of the k samples, i.e., n =N/k. Similarly, for nontabled f, the n
found from formula (8.4.1) is the average sample size.

The unequal n; case arises in research planning in various circumstances.

1. In political opinion, market research, or other surveys, where a
total natural population is sampled and constitutent populations are of
varying frequency, e.g., religious affiliations (as illustrated in Section 8.3.2),
socioeconomic categories, etc. (See example 8.12 below.).

2. In experiments where one or more samples of fixed size are to be used,
and the size of one or more samples is open to the determination of the
experimenter. For example, scheduling problems may dictate that a control
sample is to have 50 cases, but the sample sizes of two experimental groups
can be determined using considerations of desired power.

3. In some experiments, it may be desired that a reference or control
sample have larger n than the other k — 1 samples. (See example 8.12
below.)

In each of these circumstances, the average n which is read from the
tables [or computed from formula (8.4.1)] is multiplied by k to yield the
total N.

Ilustrative Examples

8.12 To illustrate Case 1 in surveys of natural populations, return
to example 8.3, where a political science class designs an opinion survey of
college students on government centralism. A source of variance to be
studied is the academic areas of respondents of which there are 6 (= k).
The f for the anticipated unequal n; is posited at .15, and a =.05. Now,
instead of treating this as a completed or committed experiment (where
total N was set at 300 and power then found to be .48), let us ask what N
is required to attain power of .80. The specifications are

a=.05, u=k-1=35, f=.15, power = .80.

In the first subtable of Table 8.4.5 (for a = .05, u=15) at column f=15
and row power = .80, n =96. This is the average size necessary for the 6
academic area samples. The quantity we need is the total sample size, N =
6(96) = 576.

Example 8.3 went on to consider the effect on power of a reduction of
k from 6 to 3 more broadly defined academic areas. Paralleling this, we
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determine N needed for k = 3, keeping the other specifications unchanged:
a=.05, u=k-—-1=2, f=.15, power = .80.

From the second subtable of Table 8.4.4 (for a = .05, u = 2) for column
f=_.15, row power = .80, we find n =144, so that N = 3(144) = 432. Note
that going from 6 to 3 groups results here in a 259 reduction of the N
demanded (from 576 to 432). Of course, we assumed f to remain the same,
which would probably not be the case.

8.13 A psychophysiologist is. planning an experiment in which he
will study the effect of two drugs (A and B) on neural regeneration relative
to a control (C). He plans that n, =ng (which we call ng) but n¢ is to be
409, larger, i.e,, nc=1.4ng. He posits that the three within-population-
standardized mean differences will be (m, —m) = —.5,(mz —m) = +.5, and
(mc —m) =0, that a=.05, and he wishes power to be .90. To determine
the necessary sample size, he must first find the f implied by his alternate-
hypothetical means. His total sample size is

N=n£ +nE+ l.4nE=3.4nE N

)
Ne Ng
= = — = =, 4
PA=Pe= N = 3an, — %
and
1.4n,  1.4ng
Pe= N = 3ame =412

Combining formulas (8.3.1), (8.3.2), and (8.2.1),*

(84.3) f= \/’z"(m“__a__mjz

= V.294(—.5%) + .294(+.5%) + .412(0%) = V1470 = .38.

Collecting the specifications,

a=.05, u=k-1=2, f=.38, power = .90,

4 Although the means are equally spaced, we cannot use the d procedures of Section
8.2.1, which are predicated on equal n.
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Since f is not tabled, we proceed to find the average n by formula (8.4.1),
which calls for n o, the n required for these specifications of a, u, and power
when f =.05. In the second subtable of Table 8.4.4, a = .05 and u =2, row
power = .90, and f = .05, n o5 = 1682. Applying formula (8.4.1),

1682
n= 2000389 +1=30.1.

But this n is for Case 1, the average n per sample. The total N = 3(30.1) =
90.3. The sample sizes are unequal portions of this, as specified: The sample
size of groups A and B are each .294(90.3) = 27 and of group C is .412(90.3) =
37. Thus, with sample sizes respectively for A, B, and C of 27, 27, and 37,
he will have a .90 probability that his F test on the 3 sample means will meet
the .05 significance criterion, given that f = .38.

8.4.3 Cases 2 AND 3: FIXED MAIN AND INTERACTION EFFECTS IN FAcC-
TORIAL AND CoMPLEX DESIGNS. Infactorial design, the power values of tests
of both main and interaction effects are determined by the design’s denomina-
tor df, which in turn depends upon a single given cell sample size (n.). It is
therefore convenient to present sample size determination for all the effects
together for any given design. (In other complex designs, i.e., those with more
than one source of nonerror variance, the same methods apply, although there
may be different denominator dfs for different effects.) The reader is referred
to Sections 8.3.3 and 8.3.4 for discussions of interaction effects and the
interpretation of 5 and 4 as partial values.

The procedure for using the tables to determine the sample size required
by an effect is essentially the same as for Cases 0 and 1. The sample size table
(for specified a and u) is entered with f and the desired power, and the n is
read from the table. However, this n must be understood as the n’ of formula
(8.3.4), a function of the denominator df and the df for the effect, u. The cell
sample size implied by the n’ value read from the table is then found from

(n-Du+1)

844 M = umber of cells L

where u is the df for the effect being analyzed, and * number of cells” is the
number of (the highest order of) cells in the analysis, e.g., for all main and
interaction effects in an R x C x H design it is rch. We assume throughout
that all cells have the same n_. The n, thus computed need not be an integer.
It is therefore rounded up to the next higher integer (or down, if it is very close
to the lower integer) to determine the cell sample size that must actually be
employed. Multiplying this integral n_ value by the number of cells in the
design then gives the actual total N required by the specifications for the effect
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in question.

When f is not a tabled value, one proceeds as in Cases 0 and 1 to find n
by formula (8.4.1). This is again n’, and one proceeds as above to determine
n.and N.

Since the tests of the various effects in a factorial (or other complex) design
will demand different Ns, these must then be resolved into a single N which
will then be used in the experiment.

Illustrative Examples

8.14 Reconsider example 8.6, now as a problem in sample size deter-
mination to achieve specified power. The experiment is concerned with the
effects on persuasibility in elementary school boys of sex of experimenter
(S), age of subject (A), and instruction conditions (C), in respectively a
2 x 3 x 4 (=24 cells) factorial design. The ES posited for the three main
effectsarefg = .10, f, = .25 and fc = .40 and for all interaction tests, f = .25;
all the tests are to be performed at a = .05. Assume that power of .80 is de-
sired for all of the tests, subject to reconsideration and reconciliation of the
differing N’s which will result.

For the S effect, the specifications are thus:
a=.05, u=2-1=1, f=.10, power = .80.

In the first subtable of Table 8.4.4 for a = .05, u = 1, with column f = .10
and power = .80, we find the value 394. Treating it as n’, we then find from
formula (8.4.4) that the cell sample size implied by n’ is

h L B%-Da+D

1 =(33.75) = 34,
: 5 (33.75)

and the actual total N required for the S effect by these specifications is
24(34) = 816 (!). Although conceivable, it seems unlikely that an experiment
of this size would be attempted. Note that f = .10 operationally defines a small
ES, and we have seen in previous chapters that to have power of .80 to detect
small ES requires very large sample sizes. This virtually restricts such at-
tempts to large scale survey research of the type used in political polling and
to sociological, market, and economic research.

Consider now the N demanded by the specifications for the age effect,
which are

a=.05, u=3-1=2, f=.25, power = .80.

In the second subtable of Table 8.4.4, for a = .05 and u = 2, with column
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f = .25, and row power = .80, we find the n (= n’) value of 52. Substituting
in (8.44), n,=(52-1)(2 + 1)/24 + 1 = (7.38=) 8, hence the actual total
N = 24(8) = 192. This more modest n demand is primarily due to positing
f = .25 (medium ES).

Finally, we find n required for the test on C, as specified:

a=.05, u=4-1=3, f = .40, power = .80.

The third subtable of Table 8.4.4 (for a = .05, u = 3) at f = .40, power =
.80, yields the value 18 for n(=n').n,=(18 - )3+ 1)/24 + 1 = (3.8 =) 4,
so the total N required is 24(4) = 96. This relatively small required N ijs
primarily a consequence of positing f = .40, a large ES.

Taking stock at this point, the three tests of the main effects, of varying
specifications, have led to varying N demands of 816 for S, 192 for A, and
96 for C.

Turning now to the tests of the interactions, they all share the same
a = .05, f =.25, and the power desired specified at .80. They differ only in
their u values, but this means that they will differ in n" and therefore N:

For $ x A, u=(2 - 1)(3 — 1) = 2. The specifications are the same as for
the A main effect (a = .05, u =2, f=.25, power = .80), so the results are
the same: eight cases per cell, hence N =192,

For S x C,u=(2—1)4 — 1) = 3. From the third subtable of Table 8.4.4
(@ = .05, u = 3), for power = .80 when f = .25, the value n’ = 45 is found.
Formula (8.4.4) then gives n, = (45— 1)3 + 1)/24 + 1) =(8.33 =) 9, and
N = 24(9) = 216.

For A x C, u=3 - 1)(4 — 1) = 6. The second subtable of Table 8.4.5
(a = .05, u = 6) gives n’ = 32 for power = .80, f = .25. Formula (8.4.4) then
gives n.=32—-1)X6+ 1)/24 + 1 =(10.04 =) 10 (We round down here
since 10.04 is only trivially larger than 10.) N is therefore 24(10) = 240.

Finally, for the test of the S x A x C interaction effect, u=(2—-1)
(3 — 1)(4 — 1) = 6, and the specifications are the same as for A x C, therefore
n. = 10 and N = 240.

We have thus had an array of N values demanded by the three main and
four interaction effects ranging from 96 to 816, and some choice must be made,
Table 8.4.10 summarizes the specifications and resulting sample size demands
for the seven tests of this 2 x 3 x 4 factorial design. Surveying the results of
this analysis, the researcher planning this experiment may reason as follows:

The central issues in this research are the interactions, so the fact that
adequate power for the small S effect is beyond practical reach (816 cases in
a manipulative experiment is virtually unheard of) is not fatal. If an experi-
ment as large as N = 240 can be mounted, power of at least .80 at a = .05
can be attained for the ES values specified. The actual power values for all
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the tests are then determined by the methods of Sections 8.3.3 and 8.3.4. They
turnouttobe: $.31, A .91, C >.995,S x A 92,8 x C .88, A x C .80, and
S x A x C.80.

TABLE 8.4.10

SAMPLE StZE DEMANDS FOR THE MAIN AND INTERACTION EFFECTS IN THE
S X A x € (2 x 3 X 4) FACTORIAL DESIGN

Specifications

Effect a u f Power n, N
S .05 1 .10 .80 34 816
A .05 2 25 .80 8 192
C .05 3 .40 .80 4 96
S <A .05 2 .25 .80 8 192
SxC .05 3 .25 .80 9 216
AxC .05 6 .25 .80 10 240
SxAxC .05 6 .25 .80 10 240

Alternatively, it may well be the case that N = 240 exceeds the resources
of the researcher, but after studying Table 8.4.10 he decides that he can
(barely) manage eight cases per cell and N = 192; this will provide adequate
power for A, C, and § x A (S is hopeless, anyway). The actual power values
with N =192 for the tests of the interactions are then determined to be:
Sx A 84, SxC.79, AxC.68 and S x A x C .68. The planner may be
willing to settle for these values and proceed with N = 192.

On the other hand, we may judge that the two-to-one odds for rejection
in the F tests of the A x Cand $ x A x C interactions are not good enough.
He may be willing to decide, a priori, that he is prepared to test these inter-
actions at a = .10. Note that he need not shift to a = .10 for the other tests.
He is simply prepared to offer a somewhat less credible rejection of these two
null hypotheses if it should turn out that the increase in power is sufficient to
make it worthwhile. These tests will thus have the same specifications: a = .10,
u=206, f=.25, and, since N = 192, denominator df = 192 — 24 = [68, and
n' = 168/(6 + 1) + 1 = 25. Looking up n = 25 at f = .25 in Table 8.3.28 (for
a = .10, u = 6), he finds power = .78. He may then consider whether he pre-
fers power of .68 at a = .05 or power of .78 at a = .10 for these two tests, a
not very happy pair of alternatives. (A factor in his decision may be his
judgment as to whether f = .25 is a possibly overoptimistic estimation of the
true ES. If so, he had better opt for the a = .10 alternative since, at a = .05,
power would be less than .68).

There is another device available in research planning to bring sample size
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demands into conformity with available resources, already illustrated in prob-
lem 8.3. One should consider dropping the number of levels of a research
factor in order to reduce the size of u, particularly in interactions. In this
illustration, if only two age groups are used, u = 3for A x Cand S x A x C,
For N =192, nowin 2 x 2 x 4 = 16 cells (hence, n_ = 12), the denominator
df will be 192 — 16 =176, and n’ will be 176/(3 + 1) = 1 = 45. For a = .05
and u = 3, Table 8.3.14 gives power = .81 at f = .25 for n = 45. This appears
to be the preferred resolution of the problem in this illustration. In other cir-
cumstances an entire research factor may be dropped in the interests of in-
creasing power or decreasing sample size demand for the remainder of the
experiment.

8.15 We return to example 8.9 which described a learning experiment of
the effects of age (R) at r = 2 levels and contingency of reinforcement (C) at
¢ =4 levels on a measure of learning, so that there are 2 x 4 = 8 cells. Al-
though f may be specified by using the operational definition conventions,
example 8.9 illustrated how f values for the main effects and interaction are
arrived at by positing values for the alternate-hypothetical cell means and
within-population o and computing them from these values. We found there
that f for R was .375, for C .523, and for R x € .293, The problem is now
recast into one in which sample size is to be determined, given the desired
power and the other specifications. Assume initially that all three tests are to
be performed at a = .05 and that the power desired is at least .80.

For the test of the R (age) effect, the specification summary is thus:

a =.05, u=r—-1=1, f=.375, power = .80,

Since f = .375 is not a tabled value, we proceed by means of formulas (8.4.1)
and (8.4.4). In the first subtable of Table 8.4.4 (a = .05, u = 1), at power =
.80, the value at f = .05 is 1571. Thus, from (8.4.1),

, 15T

- 1=2893,
"= zo0arey =80

and then applying formula (8.4.4),

n = (2893 -1)(1 +1)
- 8
so that each of the eight cells will have eight cases, and N = 64 cases are
required for the test of the R effect.

For the test of the reinforcement contingency (C) effect, the specifications
are:

+1=(7.98 =) 8,

a=.05, u=c-1=3, f=.523, power = .80.
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The third subtable of Table 8.4.4 (a = .05, u = 3), gives n 45 = 1096 for

power = .80. Formula (8.4.1) then gives, for f = 523,
1096
=—— =11
n 5239 +1=11.02

and formula (8.4.4) gives

N = (11.02-1D3 + 1)

1 =(6.01 =)6,
: 2 +1=(601 =)

so that N = 8 x 6 = 48, a substantially smaller demand for the test of the C
effect.
The specifications for the test of the R x € interaction effect are:

a=.05, u=(r—1I)(c—-1)=3, f=.293, power = .80,

and, since a, u, and power are the same as for the R main effect, the n o5 =
1096 is the same. For f = .293,

1096
. 4 1=3292,
" =200c203m T 1=

and
(3292-1D3+1)
n, =
8
so N =8 x 17 = 136 for the R x C test.
So again, as will so often be the case for interactions, the sample size de-
mand is large relative to those for the main effects. If the experimenter is pre-

pared to mount that large an experiment, power for testing the interaction
effect will be .80, and it will be much better than that for the main effects:

R: a=.05 u=1, f=.375 n =(136—-8)/(1 +1)+1=65.
From Table 8.3.12, power = .99.

C:. a=.05 u=3, £=.523, n"=(136-8)/3+1)+1=33.
From Table 8.3.14, power > .995.

+1=(16.96 =) 17

If the experimenter finds N = 136 a larger experiment than he can manage,
he may investigate the consequence to the N required by switching to an
a = .10 criterion for the R x C test. For this change in the specifications,
n,s for a=.10, u=3 (third subtable of Table 8.4.7) is 883, n’ = 26.71,
n,=14and N =112,

As another possibility, he may retain a = .05, but settle for power = .70
for the R x C test. From Table 8.4.4 for a = .05, u = 3, n 4 is found to be
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881, so n’ is computed as 26.66, n_ as 14 and N = 112. Thus, for the reduction
in N from 136 to 112, he may either use the lenient a = .10 criterion with
power = .80, or the conventional a = .05 but with power = .70.

Finally, as in the preceding problem, he may consider giving up one of the
reinforcement conditions so that there are only 2 x 3 = 6 cells and the u for
R x C is reduced to (2 — 1)(3 — 1) = 2. If the choice of which condition to
omit may be made on purely statistical grounds, the table of alternate-hypo-
thetical population means presented in problem 8.9 above suggests that C, is
the best candidate. Note that the omission of the means for C, will change all
three f values. The f for R x C increases to .328 (and is slightly decreased for
the main effects). For the revised 2 x 3 design, then, the specifications for
R x Care:

a = .05, u=2, f=.328, power = .80,
and via formulas (8.4.1) and (8.4.4), n_is found tobe 16 and N =6 x 16 =
96. (The reader may wish to check the above as an exercise.) Thus, by re-
moving the condition that makes the least contribution to the interaction, its
f is increased (from .293 to .328), its u is decreased, and the result is that for
a = .05 and power = .80, 96 rather than 136 cases are required. The experi-
menter might well decide to follow this course.

This and the preceding problem tell a morality tale about research design.
The possibility of studying many issues within a single experiment, so well
described in the standard textbooks on experimental design and the analysis
of variance, should be accompanied by a warning that the power of the result-
ing tests will be inadequate unless N is (usually unrealistically) large or the
ESs are (also usually unrealistically) large. Recall that this principle is not re-

TABLE 8.4.11

n PER GROUP AND ToTtaL N as A FUNCTION OF k FOR k GROUPS.
UNDER THE CONDITIONS a = .05 AND POWER = .80 FOR f=.25

k u n N
2 1 64 128
3 2 52 156
4 3 45 180
5 4 39 195
6 5 35 210
7 6 32 224
9 8 27 243
11 10 24 264
13 12 22 286
16 15 20 320

25 24 15 375
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stricted to factorial or other complex designs; a simple one-way analysis of
variance on k groups will, unless f is large, require relatively large N (as
illustrated in problem 8.3). Consider the standard conditions a = .05, f = .25
(medium ES), and desired power = .80 for a one-way design with k groups.
Table 8.4.11 shows now the required n per group and total N (= nk) vary
as k increases (the n values are simply read from Tables 8.4.4-8.4.6). Although
the required sample size per group decreases as k increases, the total N in-
creases with k. Although for a medium ES 1[50 subjects provide adequate
power to appraise two or three treatments, that number is not sufficient for
six or seven. The reader might find it instructive to construct and study tables
like 8.4.11 for other values of f and a.

8.4.5 THE ANALYSIS OF COVARIANCE. As was discussed in the section
on the use of the power tables in the analysis of covariance (8.3.5), no special
procedural change takes place from analogous analysis of variance designs.
What changes is the conception of the dependent variable, which becomes
Y’, a regression-adjusted or statistically controlled value {defined in formula
(8.3.9)), whose use may result in a larger ES than the use of the unadjusted
Y. Population means, variances, ranges, etc., now merely refer to this adjusted
variable in place of the unadjusted variable of the analysis of variance. For
more detail, see Section 8.3.5. See also the alternative approach to data-
analytic problems of this kind by means of multiple regression/correlation
analysis in Chapter 9.

Thus, sample size estimation in the analysis of covariance proceeds in
exactly the same way as in analogous analysis of variance designs.

8.5 THE USE OF THE TABLES FOR SIGNIFICANCE TESTING

8.5.1 INTRODUCTION. As is the case in most of the chapters in this
handbook, provision for facilitating significance testing has been made in
the power tables as a convenience to the reader. While power analysis is
primarily relevant to experimental planning and has as an important para-
meter the alternative-hypothetical population ES, once the research data
are collected, attention turns to the assessment of the null hypothesis in the
light of the data (Cohen, 1973). (See Section 1.5, and for some of the advan-
tages of the corollary approach in ¢ tests, Section 2.5.)

Because of the discrepancy between the actual denominator df in a fac-
torial or other complex design and the one-way design (Cases 0 and 1) as-
sumed in the construction of the tables, it does not pay to undertake the
adjustments that would be necessary to use the tabled values of F, for sig-
nificance testing in Cases 2 and 3, since F tables are widely available in
statistical textbooks and specialized collections (e.g., Owen, 1962). Accord-
ingly, we do not discuss or exemplify the use of the F, values in the power
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tables in this handbook for significance testing of fixed main effects or inter-
actions (Cases 2 and 3).

For significance testing, the function of the data of interest to us in the
Case 0 and 1 applications of this chapter is the F ratio for the relevant null
hypothesis which is found in the sample, F,.

In each power table (8.3) for a given significance criterion a and numerator
df, u, the second column contains F,, the minimum F necessary for signifi-
cance at the a level for that u. The F_ values vary with n, the relevant sample
size. Significance testing proceeds by simply comparing the computed F,
with the tabled F..

8.5.2 SIGNIFICANCE TESTING IN CASE 0: k MEANS WITH EQUAL n. Find
the power table for the significance criterion (a) and numeratordf, u=k -1,
which obtain. Enter with n, the size per sample mean, and read out F_. If
the computed F, equals or exceeds the tabulated F., the null hypothesis is
rejected.

Illustrative Examples

8.16 Assume that the educational experiment described in 8.1 has been
performed: a comparison (at a =.05) of the differential effectiveness of
k =4 teaching methods, for each of which there is a random sample of
n = 20, Whatever the history of the planning of this experiment, including
most particularly the anticipated ES (f =.280), what is now relevant is the
F value (between groups mean square/within groups mean square) com-
puted from the 4(20) = 80 achievement scores found in the completed experi-
ment, F,. Assume F, is found to equal 2.316. Thus, the specifications for the
significance test are

a=05 wu=k-1=3 n=20, F =2316

To determine the significance status of the results, checking column
F., of Table 8.3.14 (a=.05, u=3) for n=20 gives F =2.725. Since the
computed F, of 2.316 is smaller than the criterion value, the results are not
significant at a = .05, i.e., the data do not warrant the conclusion that the
population achievement means of the four teaching methods differ.

8.17 In example 8.2, a power analysis of an experiment in social psy-
chiatry was described in which k =3 equal samples of n =200 each were
subjected to different microsocial systems. Consider the experiment com-
pleted and the data analyzed. In planning the experiment, it was found that
for the population ES values which were posited, at a = .01, power would
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be very large. This is, however, not relevant to the significance-testing proce-
dure. Assume that the F_ is found to equal 4.912. What is the status of the
null hypotheses on the three population means? The relevant specifications
are

a=.0l, u=k-1=2, n = 200, F,=4.912.

Table 8.3.2 (for a =.01 and u =2) with row n =200 yields F_ = 4.642.
Since F, exceeds this value, the null hypothesis is rejected, and it is concluded
(at a = .01) that the three population means are not all equal. Note that one
does not conclude that the population ES of the power specifications (in
this case there were two values, n2 = .05 and .10, or f=.23 and .33) neces-
sarily obtains. In fact, the sample n* is uFj[uF + (u+ 1)(n—1)]=.016
and the best estimate of the population 5? is .013 (=e¢?). See section 8.2.2
above and Cohen (1965, pp. 101-106 and ref.).

8.5.2 SIGNIFICANCE TESTING IN CAsSe |: k MEANS wiTH UNEQUAL n.
When the sample n’s are not all equal, the significance testing procedure
is as in Case 0 except that one enters the table with their arithmetic mean,
i.e., N/k [formula (8.3.3)]. This will generally not yield a tabled value of n,
but the n scale is such that on the rare occasions when it is necessary, linear
interpolation between F_ values is quite adequate.

Ilustrative Examples

8.18 Example 8.3 described an opinion poll on government centralism
on a college campus in which there would be a comparison among means
of k = 6 academic area groups of unequal size, with a total sample size of
approximately 300. The F test is to be performed at a =.05. Assume that
when the survey is concluded, the actual total N =293, and F, =2.405.
Since N = 293, the n needed for entry is N/k =293/6 = 48.8. What is the
status of the null hypothesis of equal population means, for these specifi-
cations, i.e.,

a =05, u=k—-1=5, n =48.8, F, = 2.405.

In Table 8.3.16 (for a = .05, u=35) see column F_. There is no need for
interpolation, since, using the conservative n of 48, F =2.246, which is
exceeded by F, = 2.405. Therefore, the null hypothesis is rejected, and it
can be concluded that the academic area population means on the centralism
index are not all equal. (Note again the irrelevance to conclusions about the
null hypothesis of the alternate-hypothetical ES of the power analysis
described in example 8.3. )
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8.19 In example 8.4, samples of varying n of psychiatric nurses from
k =12 hospitals were to be studied with regard to differences in mean
scores on an attitude scale of Social Restrictiveness towards psychiatric
patients. The total N =326, so the average n per hospital is N/k = 27.2.
The significance criterion is a =.05. When the data are analyzed, the F,
of the test of Hy: m; =m, = ... =m,, equals 3.467. The specifications
for the significance test, thus, are

a=.05, u=k-1=11, n=272, F, = 3.467.

There are no tables for u=11. Although we can linearly interpolate
between F, values for u=10 and u=12 to find F, for u=11, it would
only be necessary to do so if F, fell between these two F_ values. The F,
value for the smaller u (here 10) will always be larger than that of the larger
u (here 12). Thus, if F, exceeds the F, for u=10, it must be significant,
and if F, is smaller than F, for u = 12, it must be nonsignificant. Accordingly,
we use Table 8.3.19 (for a = .05, u = 10) with rown =27, and find F_ = 1.864.
Since F, = 3.467 is greater than this value, we conclude that the null hypothe-
sis is rejected at a = .05. Again we call to the reader’s attention that we do
not conclude that the population ES used in the power analysis of example
8.4 necessarily obtains (Cohen, 1973). That value was f = .25, hence (Table
8.2.2) the population »? posited was .0588. For the sample, 5 is .1083 and
€2, the best estimate of the population »?, is .0771 (Section 8.2.2).



CHAPTER 9

Multiple Regression and
Correlation Analysis

9.1 INTRODUCTION AND USE

During the past decade, under the impetus of the computer revolution
and increasing sophistication in statistics and research design among be-
havioral scientists, multiple regression and correlation analysis (MRC) has
come to be understood as an exceedingly flexible data-analytic procedure re-
markably suited to the variety and types of problems encountered in be-
havioral research (Cohen & Cohen, 1983; Pedhazur, 1982; McNeil, Kelly &
McNeil, 1975; Ward & Jennings, 1973). Although long a part of the con-
tent of statistics textbooks, it had been relegated to the limited
role of studying linear relationships among quantitative variables, usually in
the applied technology of social science. For example, in psychology it was
largely employed in the forecasting of success or outcome using psychological
tests and ratings as predictors in personnel selection, college admission,
psychodiagnosis, and the like. In its *“ new look,” fixed model MRC is a highly
general data-analytic system that can be employed whenever a quantitative
** dependent variable™ (Y) is to be studied in its relationship to one or more
research factors of interest, where each research factor (A, B, etc.) is a set
made up of one or more * independent variables” (IVs). The form of the re-
lationship is not constrained: it may be straight-line or curvilinear, general or

407
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conditional, whole or partial. The nature of the research factors is also not
constrained: they may be quantitative or qualitative (nominal scales), main
effects or interactions, variates of direct interest, or covariates to be partialled
(as in the analysis of covariance). Research factors and their constituent IVs
may be correlated with each other or u