STA 347F2003 Quiz 9

1. (30 Points) Typographical errors in a document occur according to a Poisson process with rate $\lambda=2$ per page. Given that the first page contained three errors, what is the probability of exactly ten errors in the first six pages?
2. (30 Points) Given $L=\lambda$, the random variable X has a Poisson distribution with parameter λ. The continuous random variable L has density $f_{L}(\lambda)=e^{-\lambda} \mathbf{1}\{x \geq 0\}$. Find the marginal probability $\operatorname{Pr}\{X=x\}$. Circle your answer.
3. Visits to a Web site occur according to a Poisson process with rate λ per hour.
(a) (30 Points) Given n visits in the first hour, find the probability that k of them occurred in the interval $(0, p]$, where $0<p<1$ (so p is a fraction of an hour).
(b) (10 Points) The conditional distribution from question (3a) has a name. What is it?

STA 347F2003 Formula Sheet 2

If $0<a<1$ then $\sum_{k=j}^{\infty} a^{k}=\frac{a^{j}}{1-a}$.
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.
Binomial: $X \sim B(n, p)$ means $\operatorname{Pr}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0, \ldots, n$. Note: $E[X]=n p, V[X]=n p(1-p)$.
Poisson: $X \sim P(\mu)$ means $\operatorname{Pr}\{X=k\}=\frac{e^{-\mu} \mu^{k}}{k!}$ for $k=0,1, \ldots$ Note: $E[X]=V[X]=$ μ

Exponential: $X \sim \exp (\lambda)$ means $f_{X}(x)=\lambda e^{-\lambda x} \mathbf{1}\{x \geq 0\}$. Note $E[X]=1 / \lambda$, and $F_{X}(x)=\left(1-e^{-\lambda x}\right) \mathbf{1}\{x \geq 0\}$.
Gamma: $X \sim G(n, \lambda)$ means $f_{X}(x)=\frac{\lambda^{n}}{(n-1)!} e^{-\lambda x} x^{n-1} \mathbf{1}\{x \geq 0\}$. Note $E[X]=\frac{\lambda}{n}$. The sum of n independent exponential random variables is Gamma.

Jerry's Answers to Quig 9.
(1)

$$
\begin{aligned}
& \operatorname{Pr}\{x(6)=10 \mid \times(1)=3\}=\frac{P_{n}\{N(0,1]=3, N(0,6]=10\}}{P_{n}\{N(0,1]=3\}} \\
& =\frac{P_{n}\{N(0,1]=3, N(1,6]=7\}}{P_{n}\{N(0,1]=3\}}=\frac{\left.P_{n}\{N(0,\})=3\right\} P_{n}\{N(1,6]=7\}}{P_{n}\{N(0,1]=3\}} \\
& =\frac{e^{-(2)(5)}\left[(2)(5]^{7}\right.}{7!}=\frac{e^{-10} 10^{7}}{7!} \pi .09
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \operatorname{Po}\{x=x\}=\int_{0}^{\infty} P_{0}\{x=x \mid L=\lambda\} f_{L}(\lambda) d \lambda \\
& =\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!} e^{-\lambda} d \lambda=\int_{0}^{\infty} \frac{1}{x!} e^{-2 \lambda} \lambda^{(x+1)-1} d \lambda \\
& =\frac{1}{2^{x+1}} \int_{0}^{\infty} \frac{2^{x+1}}{([x+1]-1)!} e^{-2 \lambda} \lambda^{(x+1)-1} d \lambda \\
& =\frac{1}{2^{x+1}} \text { for } x=0,1, \ldots
\end{aligned}
$$

(3)

$$
\begin{aligned}
& P_{n}\{N(0, p]=k \mid N(0,1]=n\}=P_{n}\{N(0, p]=k, N(0,1]=n\} \\
& \operatorname{Pr}\{N(0,1]=n\} \\
& =\frac{P_{n}\{N(0, P]=\varepsilon, N[p, 1]=n-k\}}{P_{n}\{N(0,1]=n\}} \\
& =\frac{P_{D}\{N(0, p]=k\} P_{s}\{N(p, 1]=n-k\}}{P_{s}\{N(0,1]=n\}} \\
& =\frac{e^{-\lambda p}(\lambda p)^{k}}{k!} \frac{e^{-\lambda(1-p)}[\lambda(1-p)]^{n-k}}{(n-k)!} \\
& \frac{e^{-\lambda} \lambda^{n}}{n!} \\
& =\frac{n!}{k!(n-2)!} \frac{\lambda^{k+1} / p^{n-2} p^{k}(1-p)^{n-2}}{\lambda^{n}} \\
& =\binom{n}{k} p^{z}(1-p)^{n-z} \cdot B / \operatorname{No\mu }^{2}+\mathcal{N}_{2}
\end{aligned}
$$

