STA 347F2003 Quiz 8

- 1. Let X_0, X_1, \ldots be a stationary Markov chain with transition probabilities $P_{i,i} = \alpha$, $P_{i,i+1} = 1 \alpha$, and zero otherwise, where $0 < \alpha < 1$.
 - (a) (2 Points) Is this Markov chain irreducible? Answer Yes or No.
 - (b) (3 Points) What is the period of state 3? Why?
 - (c) (5 Points) What is $f_{3,3}^{(n)}$?
 - (d) (5 Points) What is $f_{3,3}$?
 - (e) (2 Points) Is state 3 recurrent? Answer Yes or No.
 - (f) (5 Points) What is $P_{00}^{(n)}$?
 - (g) (5 Points) Use your answer to the preceding item to show recurrence or transience.
 - (h) (3 Points) Does Theorem 4.2 apply? Answer Yes or No and say why.
 - (i) (10 Points) Try to find the stationary distribution anyway. That is, find the solution to $\pi = \pi \mathbf{P}$.
 - (j) (5 Points) Is the vector π you derived in the last question a probability distribution? Answer Yes or No, and say why.
 - (k) (15 Points) Is your π_0 equal to $\lim_{n\to\infty} Pr\{X_n = 0\}$? (By "your" π_0 I mean element zero of the vector $\boldsymbol{\pi}$ you derived). Answer Yes or No, and prove it. Hint: Start with $Pr\{X_n = 0\} = \sum_{k=0}^{\infty} Pr\{X_n = 0|X_0 = k\} Pr\{X_0 = k\}$. You can proceed even though you do not know $Pr\{X_0 = k\}$.
- 2. (40 Points) Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	2	3	4	5
0	0	1	0	0	0	0
1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	Õ	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \end{array} $		$\frac{1}{2}$	0	0
3	0	Õ	$\frac{1}{2}$	Õ	$\frac{1}{2}$	0
4	0	0	Õ	$\frac{1}{2}$	Õ	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \end{array} $
5	0	0	0	Õ	1	Õ

You will recognize this as a random walk in which states zero and 5 reflect the process back into states 1 through 4; it is directly from a homework problem. Find $\lim_{n\to\infty} Pr\{X_n = 0\}$. Show your work and *circle your answer*.

\$8 Ansu 1

Jerry's Answers to Quig &

(1a) No. b) d(3) = 1 because $f_{33} > 0$ c) $f_{33}^{(1)} = \alpha$, $f_{33}^{(n)} = 0$ for n > 1d) $f_{33} = \alpha + 0 + 0 + ... = \alpha$ e) No; it's transient because $f_{33} < 1$. f) $P_{00}^{(n)} = \alpha^{n}$ g) $\sum_{n=1}^{\infty} \alpha^{n} = \frac{\alpha}{1-\alpha} < \infty$, transient h) No, because the Marbor chain is not ineclucible. i) $P_{n} = \frac{1}{2} \left[\frac{\alpha}{\alpha} + \frac{1-\alpha}{1-\alpha} + \frac{1-\alpha}{\alpha} + \frac{1-\alpha}{1-\alpha} + \frac{1-\alpha}{1-\alpha$

$$\begin{split} \mathcal{T}_{0} = \mathcal{A} \mathcal{T}_{0} \implies \mathcal{T}_{0} = 0 \\ \mathcal{T}_{1} = (1-\mathcal{A})\mathcal{T}_{0} + \mathcal{A}\mathcal{T}_{1} = \mathcal{A}\mathcal{T}_{1} \implies \mathcal{T}_{1} = 0 \\ \mathcal{T}_{2} = (1-\mathcal{A})\mathcal{T}_{1} + \mathcal{A}\mathcal{T}_{2} = \mathcal{A}\mathcal{T}_{2} \implies \mathcal{T}_{2} = 0 \\ \vdots \\ \mathcal{T}_{j} = (1-\mathcal{A})\mathcal{T}_{j-1} + \mathcal{A}\mathcal{T}_{j} = \mathcal{A}\mathcal{T}_{j} \implies \mathcal{T}_{j} = c \\ \mathcal{S}_{0} \quad \mathcal{T}_{1} = (0, 0, \cdots) \end{split}$$

$$j$$
) N_{o} , because $\sum_{k=0}^{\infty} T_{k} = 0 \neq 1$

$$(k) \quad Y_{e2}, \quad \lim_{n \to \infty} \ P_n \in \chi_n = 0 \ 3 = \lim_{n \to \infty} \ \sum_{k=0}^{\infty} P_n f \chi_n = 0 | \chi_0 = g \ 3 P_n \otimes \chi_0 = k \ 3 \\ Bec \ln \beta \chi_n = 0 | \chi_0 = g \ 3 = 0 \ \text{fm} \ k > 0 \\ \downarrow \\ = \lim_{n \to \infty} \ P_n \in \chi_n = 0 | \chi_0 = 0 \ 3 P_n \otimes \chi_0 = 0 \ 3 \\ = \lim_{n \to \infty} \ P_0^{(n)} P_n \otimes \chi_0 = 0 \ 3 = P_n \bigotimes \chi_0 = 0 \ 3 \lim_{n \to \infty} \ \alpha^n = 0 = \mathcal{T}_0 \ . \\ (k) \quad \mathcal{T}_0 = \frac{1}{2} \mathcal{T}_1 = \mathcal{T}_1 = \mathcal{T}_0 \\ \mathcal{T}_1 = \mathcal{T}_0 + \frac{1}{2} \mathcal{T}_2 = \mathcal{T}_0 = \mathcal{T}_0 + \frac{1}{2} \mathcal{T}_2 = \mathcal{T}_0 \\ \mathcal{T}_2 = \frac{1}{2} \mathcal{T}_1 + \frac{1}{2} \mathcal{T}_3 = \mathcal{T}_0 = \mathcal{T}_0 + \frac{1}{2} \mathcal{T}_3 = \mathcal{T}_1 = 2\mathcal{T}_0 \\ \mathcal{T}_3 = \frac{1}{2} \mathcal{T}_2 + \frac{1}{2} \mathcal{T}_4 \Rightarrow \mathcal{T}_0 = \mathcal{T}_0 + \frac{1}{2} \mathcal{T}_7 = \mathcal{T}_7 = \mathcal{T}_7 \\ \mathcal{T}_4 = \frac{1}{2} \mathcal{T}_2 + \frac{1}{2} \mathcal{T}_4 \Rightarrow \mathcal{T}_0 = \mathcal{T}_0 + \mathcal{T}_5 = \mathcal{T}_7 = \mathcal{T}_7 \\ \mathcal{T}_4 = \frac{1}{2} \mathcal{T}_3 + \mathcal{T}_5 = \mathcal{T}_7 = \mathcal{T}_7 = \mathcal{T}_7 = \mathcal{T}_7 \\ \mathcal{T}_6 = \frac{1}{2} \mathcal{T}_8 = \mathcal{T}_6 (1 + 2 + 2 + 2 + 2 + 1) = 1 \cup \mathcal{T}_7 = \mathcal{T}_7 \\ \mathcal{T}_6 = \frac{1}{2} \mathcal{T}_8 = \mathcal{T}_8 + \mathcal{T}_8 = \mathcal{T}_$$