STA 347F2003 Quiz 4

1. (30 Points) Let the discrete random variable X take values x_{1}, x_{2}, \ldots, Y take values y_{1}, y_{2}, \ldots, and Z take values z_{1}, z_{2}, \ldots. Prove
$\operatorname{Pr}\left\{X=x_{k} \mid Y=y_{j}\right\}=\sum_{n=1}^{\infty} \operatorname{Pr}\left\{X=x_{k} \mid Y=y_{j}, Z=z_{n}\right\} \operatorname{Pr}\left\{Z=z_{n} \mid Y=y_{j}\right\}$,
or else disprove it by giving a simple counter-example.
2. (40 Points) Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition probabilities satisfying $P_{i j}=a_{j}$ for all i and j. Prove or disprove: $\mathbf{P}^{n}=\mathbf{P}$ for $n=1,2, \ldots$.
3. (30 Points) Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1
0	a	$1-a$
1	b	$1-b$

and let $\mathbf{p}^{(3)}=[c, 1-c]$, where $a \neq b$ and c is between a and b. Find $\operatorname{Pr}\left\{X_{2}=1\right\}$. Show your work.

Jenny's Answers to Quiz 4

$$
\begin{aligned}
& \text { (1) RHS }=\sum_{n=0}^{\infty} P_{n}\left\{X=x_{k} \mid Y=y_{j}, Z=z_{n}\right\} P_{n}\left\{Z=z_{n} \mid Y=y_{j}\right\} \\
& =\sum_{n=0}^{\infty} \frac{P_{n}\left\{X=x_{k}, Y=y_{j}, Z=z_{n}\right\}}{P_{n}\left\{Y=y_{j}, z=z_{n}\right\}} \frac{P_{n}\left\{Y=y_{j}, z=z_{n}\right\}}{P_{n}\left\{Y=y_{j}\right\}} \\
& =\frac{P_{n}\left\{X=x_{n}, Y=y_{j}\right\}}{P_{n}\left\{Y=y_{j}\right\}}=P_{n}\left\{X=x_{n} \mid Y=y_{j}\right\}=L H S
\end{aligned}
$$

(2) Proof by induction.
a) Show for $n=1 ; p^{\prime}=p$ True.
b) Assume for $n-1$ (Induction hyp pothes is) ${\underset{2}{p n}}_{p^{n-1}}^{\text {(}}=\underset{\sim}{p}$
c) Show for n

$$
\begin{aligned}
{\underset{\sim}{P}}^{n} & =\underset{\sim}{P^{n-1}} \underset{\sim}{P} \underset{\sim}{p} \underset{\sim}{P}=\left[\sum_{k=0}^{\infty} P_{i k} P_{k j}\right] \\
& =\left[\sum_{k=0}^{\infty} a_{k} a_{j}\right]=\left[a_{j} \sum_{i=0}^{\infty} a_{k}\right]=\left[a_{j}\right]=\left[P_{i j}\right] \\
& =\underset{\sim}{P} \quad \text { done }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& P_{n}\left\{x_{3}=0\right\}=P_{n}\left\{x_{3}=0 \mid x_{2}=0\right\} P_{n}\left\{x_{2}=0\right\}+P_{n}\left\{x_{3}=0 \mid x_{2}=1\right\} P_{n}\left\{x_{2}=P^{\}}\right. \\
& \text {Hing } k=P_{n}\left\{X_{n}=1\right\}
\end{aligned}
$$

Letting $k=\operatorname{Pn}\left\{X_{2}=1\right\}$, this is

$$
\begin{aligned}
& c=a(1-k)+b k=a-a k+b k \\
& \Leftrightarrow c-a=k(b-a) \Leftrightarrow k=\frac{c-a}{b-a}=\operatorname{Pn}\left\{x_{2}=1\right\}
\end{aligned}
$$

