STA 347F2003 Quiz 3

1. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

$\mathbf{P} = -$		0	1	2
	0	1	0	0
	1	0	1	0
	2	a	b	С

- (a) (20 Points) What is \mathbf{P}^2 ?
- (b) (5 Points) What is $Pr\{X_2 = 2 | X_0 = 2\}$?
- (c) (10 Points) What is $Pr\{X_3 = 1 | X_0 = 2\}$? Show some work.
- (d) (10 Points) Suppose $\mathbf{p}^{(0)} = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]$. What is $Pr\{X_2 = 1\}$? Show some work.
- (e) Suppose $\mathbf{p}^{(0)} = [\frac{1}{2}, \frac{1}{2}, 0].$
 - i. (10 Points) What is $Pr\{X_2 = 0\}$? Show some work.
 - ii. (5 Points) What is $Pr\{X_2 = 1\}$? Show some work.
 - iii. (15 Points) What is $Pr\{X_{25} = 1\}$? Just write down the answer.
- 2. (25 Points) Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

$$\mathbf{P} = \frac{\begin{array}{|c|c|c|c|c|} 0 & 1 \\ \hline 0 & a & 1-a \\ \hline 1 & b & 1-b \end{array}}$$

Then $Z_n = (X_{n-1}, X_n)$ is a Markov chain having the four states (0,0), (0,1), (1,0), (1,1). Give its transition matrix.

Jerry's Answors to Quiz 3 $(\widehat{D}_{a}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 &$ Õ < 2 b) $P_{n} \xi X_{2} = 2|X_{0} = 2\xi = C^{2}$ c) $P_n \{ X_3 = 1 \mid X_0 = 2 \} = (a)(o) + (b)(1) + cb(c+1)$ $= \left(\frac{1}{5} \left(1 + C + C^2 \right) \right)$ d) $P_{n} \in X_{2} = 13 = (\frac{1}{3})(0) + (\frac{1}{3})(1) + (\frac{1}{3})(b+bc) = (\frac{1}{3}(1+b+bc))$ e) (i) $P_n \{ X_2 = 0 \} = (\frac{1}{2})(1) + (\frac{1}{2})(0) + (0)(\alpha + \alpha c) = (\frac{1}{2})$ $(ii) P_n \{Y_2 = 1\} = (\frac{1}{2})(0) + (\frac{1}{2})(1) + (6)(6+6c) = (\frac{1}{2})$ $(\lambda i i) Pn \{ \chi_{25} = 1 \} = \frac{1}{2}$ (1, d) (0,1) (1,1)(90) (0,0) a 1-a 0 0 (91) 0 0 16 1-6 a | 1-a | O |(10) \mathcal{O} (1,1)D 6 Ø 1-6