STA 347F2003 Quiz 3

1. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

$$
\mathbf{P}=\begin{array}{c||c|c|c|}
& 0 & 1 & 2 \\
\hline \hline 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 \\
\hline 2 & a & b & c \\
\hline
\end{array}
$$

(a) (20 Points) What is \mathbf{P}^{2} ?
(b) (5 Points) What is $\operatorname{Pr}\left\{X_{2}=2 \mid X_{0}=2\right\}$?
(c) (10 Points) What is $\operatorname{Pr}\left\{X_{3}=1 \mid X_{0}=2\right\}$? Show some work.
(d) (10 Points) Suppose $\mathbf{p}^{(0)}=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$. What is $\operatorname{Pr}\left\{X_{2}=1\right\}$? Show some work.
(e) Suppose $\mathbf{p}^{(0)}=\left[\frac{1}{2}, \frac{1}{2}, 0\right]$.
i. (10 Points) What is $\operatorname{Pr}\left\{X_{2}=0\right\}$? Show some work.
ii. (5 Points) What is $\operatorname{Pr}\left\{X_{2}=1\right\}$? Show some work.
iii. (15 Points) What is $\operatorname{Pr}\left\{X_{25}=1\right\}$? Just write down the answer.
2. (25 Points) Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

$$
\mathbf{P}=\begin{array}{c||c|c|}
& 0 & 1 \\
\hline \hline 0 & a & 1-a \\
\hline 1 & b & 1-b \\
\hline
\end{array}
$$

Then $Z_{n}=\left(X_{n-1}, X_{n}\right)$ is a Markov chain having the four states $(0,0)$, $(0,1),(1,0),(1,1)$. Give its transition matrix.

Jerny's Answens to Quiz 3
(1) a)

$$
\text { a) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & c
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & c
\end{array}\right]=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline a+a c & b+b c & c^{2}
\end{array}\right]
$$

b) $\operatorname{Pr}\left\{x_{2}=21 x_{0}=2\right\}=c^{2}$
c)

$$
\begin{aligned}
P_{n}\left\{x_{3}=1 \mid x_{0}=2\right\} & =(a)(0)+(b)(1)+c b(c+1) \\
& =b\left(1+c+c^{2}\right)
\end{aligned}
$$

d) $P_{n}\left\{x_{2}=1\right\}=\left(\frac{1}{3}\right)(0)+\left(\frac{1}{3}\right)(1)+\left(\frac{1}{3}\right)(b+b c)=\frac{1}{3}(1+b+b c)$
e)

$$
\begin{aligned}
& \text { (i) } P_{n}\left\{x_{2}=0\right\}=\left(\frac{1}{2}\right)(1)+\left(\frac{1}{2}\right)(0)+(0)(a+a c)=\frac{1}{2} \\
& (i i) P_{n}\left\{x_{2}=1\right\}=\left(\frac{1}{2}\right)(0)+\left(\frac{1}{2}\right)(1)+(0)\left(b_{+b}\right)=\frac{1}{2} \\
& \text { (iii) } P_{n}\left\{x_{25}=1\right\}=\frac{1}{2}
\end{aligned}
$$

(2)

$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$	
$(0,0)$	a	$1-a$	0	0
$(0,1)$	0	0	b	$1-b$
$(1,0)$	a	$1-a$	0	0
$(1,1)$	0	0	b	$1-b$

