STA 347F2003 Quiz 2

1. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	2
0	0.1	0.1	0.8
1	0.2	0.2	0.6
2	0.3	0.3	0.4

- (a) (5 Points) What is $Pr\{X_3 = 2 | X_2 = 0\}$?
- (b) (10 Points) Suppose $Pr\{X_0 = 0\} = 0.1$, $Pr\{X_0 = 1\} = 0.4$ and $Pr\{X_0 = 2\} = 0.5$. What is $Pr\{X_0 = 0, X_1 = 1, X_2 = 2\}$? Show your work.
- (c) (15 Points) What is $Pr\{X_1 = 1, X_2 = 1 | X_0 = 0\}$ Show your work.
- (d) (20 Points) What is $Pr\{X_2 = 1, X_3 = 1 | X_0 = 2, X_1 = 0\}$ Show your work.
- (e) (25 Points) Suppose $Pr\{X_0 = 0\} = 0.3$, $Pr\{X_0 = 1\} = 0.3$ and $Pr\{X_0 = 2\} = 0.4$. What is $Pr\{X_1 = 0, X_2 = 1, X_3 = 0\}$? Show your work.
- 2. (25 Points) Let $\xi_0, \xi_1, \xi_2, \ldots$ be independent random variables with $Pr\{\xi_k = 1\} = \alpha$ and $Pr\{\xi_k = 0\} = 1 \alpha$ for $k = 0, 1, \ldots$ Let $Y_n = \sum_{k=0}^n \xi_k$; finally, let $X_n = 1$ if Y_n is odd, and $X_n = 0$ if Y_n is even (zero is an even number). Clearly, X_0, X_1, \ldots is a stationary Markov chain. Give its transition matrix.

Jerry's Answers to Quig 2

Q2 Answ

$$\begin{array}{l} (D \ (a) \ (B) \\ (b) \ P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{2} = 2 \} \\ = \ P_{n} \{Y_{0} = 0 \} P_{n} \{X_{1} = 1 | \ Y_{0} = 0 \} P_{n} \{Y_{2} = 21 | Y_{p} = 0, \ Y_{1} = 1 \} \\ = \ (.1) \ (.1) \ (.6) = (006) \\ (c) \ P_{n} \{Y_{1} = 1, \ Y_{2} = 1 | \ Y_{0} = 0 \} = \frac{P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{2} = 1 \} }{P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{2} = 1 \} } \\ = \ \frac{P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{2} = 1 | \ Y_{0} = 0 \} P_{n} \{Y_{2} = 1, \ Y_{2} = 1, \ Y_{2} = 0, \ Y_{1} = 1 \} }{P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{0} = 0 \} } \\ = \ \frac{P_{n} \{Y_{0} = 0, \ Y_{1} = 1, \ Y_{0} = 1, \ Y_{0} = 0, \ Y_{1} = 0 \} = \frac{P_{n} \{Y_{0} = 2, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 1 \} }{P_{n} \{Y_{0} = 2, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 1 \} } \\ = \ \frac{P_{n} \{Y_{0} = 2, \ Y_{1} = 0, \ Y_{1} = 0, \ Y_{1} = 0 \} }{P_{n} \{Y_{0} = 2, \ Y_{1} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0 \} } \\ = \ \frac{P_{n} \{Y_{0} = 2, \ Y_{1} = 0, \ Y_{1} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 1, \ Y_{3} = 0, \ Y_{1} = 0, \ Y_{2} = 0, \ Y_{2}$$

.

92 Ansu

 $(1e) Nod P_n \{X_i = 0\}$ = $P_n \{X_i = 0 | X_0 = 0\} P_n \{Y_0 = 0\} + P_n \{X_i = 0 | X_0 = 1\} P_n \{X_0 = 1\}$ + $P_n \{X_i = 0 | X_0 = 2\} P_n \{X_0 = 2\}$

= (.1)(.3) + (.2)(.3) + (.3)(.4)= .03 + .06 + .12 = .21, and

$$P_{n} \{ Y_{1} = 0, Y_{2} = 1, X_{3} = 0 \}$$

$$= P_{n} \{ Y_{1} = 0 \} P_{n} \{ Y_{2} = 1 | Y_{1} = 0 \} P_{n} \{ Y_{3} = 0 | Y_{1} = 0, X_{2} = 1 \}$$

$$= (-21) (.1) (.2) = .00 42$$

