STA 347F2003 Quiz 1

1. One jar contains blue balls numbered 1 and 2. Another jar contains red balls numbered 1,2 , and 3 . A jar is chosen at random, and then a ball is chosen at random from that jar.
(a) (15 pts) What is $\operatorname{Pr}\{2 \mid \operatorname{Red}\}$?
(b) (15 pts) What is $\operatorname{Pr}\{\mathrm{Blue} \mid 3\} ?$
(c) $(25 \mathrm{pts})$ What is $\operatorname{Pr}\{2\}$?
(d) (25 pts) What is $\operatorname{Pr}\{$ Blue $\mid 2\} ?$
2. (20 pts) Is it true that $\operatorname{Pr}(A \mid B)+\operatorname{Pr}\left(A^{c} \mid B\right)=1$? If it is true, then prove it. If it is not true, give a simple counter-example. Begin your answer with the words "The statement is true," or "The statement is false." Hint: You might want to start with $\operatorname{Pr}\{B\}=$ $\operatorname{Pr}\{B \mid A\} \operatorname{Pr}\{A\}+\operatorname{Pr}\left\{B \mid A^{c}\right\} \operatorname{Pr}\left\{A^{c}\right\}$ (Law of Total Probability), which you need not prove.

STA 347F2003 Quiz 1

1. One jar contains blue balls numbered 1 and 2. Another jar contains red balls numbered 1,2 , and 3 . A jar is chosen at random, and then a ball is chosen at random from that jar.
(a) (15 pts) What is $\operatorname{Pr}\{2 \mid \operatorname{Red}\}$?
(b) (15 pts) What is $\operatorname{Pr}\{$ Blue $\mid 3\}$?
(c) (25 pts) What is $\operatorname{Pr}\{2\}$?
(d) (25 pts) What is $\operatorname{Pr}\{$ Blue 2$\}$?
2. (20 pts) Is it true that $\operatorname{Pr}(A \mid B)+\operatorname{Pr}\left(A^{c} \mid B\right)=1$? If it is true, then prove it. If it is not true, give a simple counter-example. Begin your answer with the words "The statement is true," or "The statement is false." Hint: You might want to start with $\operatorname{Pr}\{B\}=$ $\operatorname{Pr}\{B \mid A\} \operatorname{Pr}\{A\}+\operatorname{Pr}\left\{B \mid A^{c}\right\} \operatorname{Pr}\left\{A^{c}\right\}$ (Law of Total Probability), which you need not prove.

Jerry's Answers to Quiz One
(i) It is OKay to make a true

a) $\operatorname{Pn}\{2 \mid R\}=\frac{1}{3}$
b) $P_{D}\{B 13\}=0$
c) $p_{\cap}\{2\}=\frac{1}{4}+\frac{1}{6}=\frac{3}{12}+\frac{2}{12}=\frac{5}{12}$
$O_{n}, P_{n}\{2\}=P_{n}\{2 \mid B\} P_{n}\{B\}+P_{n}\{2 \mid R\} P_{n}\{R\}$

$$
=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{4} \times \frac{1}{6}=\frac{5}{12}
$$

d) $P_{n}\{B 12\}=\frac{\operatorname{Pn}\{B \cap 2)}{\operatorname{Pn}\{2\}}=\frac{1 / 4}{5 / 12}=\left(\frac{3}{5}\right)$

On using Barges' theorem roplicitly is find
(2) The statemant is thus. Py tho Lau of Total Probabilety,

$$
\begin{aligned}
\operatorname{Pn}\{B\} & =\operatorname{Pn}\{B \mid A\} P_{D}\left\{A \xi+\operatorname{Pr}\{B \mid A C\} P_{s}\{A C\}\right. \\
& =\frac{P_{n}\{A \cap B\}}{P_{\cap}\{A\}} P_{S}\{A\}+\frac{P_{n}\left\{A^{\prime} \cap B\right\}}{\left.P_{n}\{A\}\right\}} \operatorname{PD}\{A C\}
\end{aligned}
$$

$$
\Rightarrow 1=\frac{P_{R}\{A \cap B\}}{P_{n}\{B\}}+\frac{P_{n}\left\{A^{C} \cap B\right\}}{P_{D}\{B\}}=P_{n}\{A \mid B\}+P_{n}\left\{A^{C} \mid B\right\}
$$

dowo

