STA 347F 2003 Makeup Test Aids allowed: Calculator, but you won't need it.

1. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1	2	
0	$2 / 6$	$3 / 6$	$1 / 6$	
1	$3 / 6$	$1 / 6$	$2 / 6$	
2	$1 / 6$	$2 / 6$	$3 / 6$,

and let $\operatorname{Pr}\left\{X_{0}=0\right\}=\operatorname{Pr}\left\{X_{0}=1\right\}=\operatorname{Pr}\left\{X_{0}=2\right\}=\frac{1}{3}$. Notice that the matrix is doubly stochastic, and we are starting with the stationary distribution.
(a) (8 Points) What is $\operatorname{Pr}\left\{X_{0}=0, X_{1}=1, X_{2}=0\right\}$? Show some work.
(b) (2 Points) What is $\operatorname{Pr}\left\{X_{1}=2\right\}$?
(c) (2 Points) What is $\operatorname{Pr}\left\{X_{3}=2\right\}$?
(d) (2 Points) What is $\operatorname{Pr}\left\{X_{n}=2\right\}$?
(e) (4 Points) What is $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{X_{n}=2\right\}$?
(f) (4 Points) What is $\lim _{n \rightarrow \infty} P_{02}^{(n)}$?
(g) (10 Points) Starting in State 1, what is the probability of reaching State 0 before State 2? Show your work.
2. (12 Points) Let X_{0}, X_{1}, \ldots be a regular stationary Markov chain with finite state space. What is $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{X_{0}=j \mid X_{n}=i\right\}$? If this quantity does not exist, just write "The limit does not exist." Otherwise, find it and show your calculations.
3. Consider a stationary Markov chain with transition probabilities $P_{i, j}=$ α_{j}, where $\alpha_{j}>0$ and $\sum_{j=0}^{\infty} \alpha_{j}=1$, for $i=0,1, \ldots$ and $j=0,1, \ldots$.
(a) (2 Points) Is this Markov chain irreducible? Answer Yes or No.
(b) (4 Points) What is the period of this Markov. How do you know?
(c) (6 Points) What is $P_{i, j}^{(2)}$? Show your work.
(d) (6 Points) What is $P_{i, j}^{(n)}$?
(e) (6 Points) Show that State j is either transient or recurrent. Then write "Transient" or "Recurrent," and circle your answer.
(f) (8 Points) Find the stationary distribution. Start with an expression for π_{j} that comes from the formula for matrix multiplication; it's easier than you might think.
4. (12 Points) Let $\{X(t): t \geq 0\}$ be a Poisson process with rate λ, and let W_{1} be the waiting time until the first event. Derive the density of W_{1} given $X(t)=1$. Be sure to indicate where the density is non-zero.
5. (12 Points) Let $\left\{X_{1}(t), X_{2}(t), \ldots, X_{n}(t)\right\}$ be independent Poisson processes with rates $\lambda_{1}, \ldots, \lambda_{n}$, respectively. What is the probability that at least r units of time pass before the first event from any process?

Total marks $=100$ points

Jenry's answers to the Maker test
(1)
(a)

$$
\begin{aligned}
& p_{n}\left\{x_{0}=0, x_{1}=1, x_{2}=0\right\} \\
& =p_{n}\left\{x_{0}=0\right\} p_{n}\left\{x_{1}=1 / x_{0}=0\right\} p_{n}\left\{x_{2}=0 \mid x_{0}=0, x_{1}=1\right\} \\
& =p_{n}\left\{x_{0}=0\right\} p_{0}, P_{10}=\frac{1}{8} \frac{3}{6} \frac{3}{6}=\frac{3}{3.2 .6}=\frac{1}{12}
\end{aligned}
$$

(b) ($\frac{1}{3}$ (Stant wito statisnars distribution)
(c) $\left(\frac{1}{3}\right)$
(d) $\left(\frac{1}{3}\right)$
(c) $\left(\frac{1}{3}\right)$
(f) $\frac{1}{3}$
(g) Let $A=\{$ Reach O leforo 2$\}$

$$
\begin{aligned}
& u= P_{n}\left\{A \mid x_{0}=1\right\} \\
&= P_{n}\left\{A / x_{0}=1, x_{1}=0\right\} P_{10} \\
&\left.+P_{n} \xi A \mid x_{0}=1, x_{1}=1\right\} P_{11} \\
&+P_{n}\left\{A / x_{y}=1, x_{1}=2\right\} P_{02} \\
&= 1 \cdot P_{10}+u P_{11}+0=\frac{3}{6}+\frac{1}{6} u \\
& \Leftrightarrow 5 / 6 u=\frac{3}{6} \\
& \Leftrightarrow u=\frac{3}{5}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P_{n}\left\{x_{0}=j \mid x_{n}=i\right\}=\lim _{n \rightarrow \infty} \frac{p_{n}\left\{x_{0}=j, x_{n}=i\right\}}{P_{n}\left\{x_{n}=i\right\}} \\
& =\lim _{n \rightarrow \infty} \frac{p_{n}\left\{x_{n}=i \mid x_{0}=j\right\} P_{n}\left\{x_{0}=j\right\}}{P_{n}\left\{x_{n}=i\right\}} \\
& =P_{n}\left\{x_{0}=j\right\} \frac{\lim _{n \rightarrow \infty} P_{i}(n)}{\lim _{n \rightarrow \infty} P_{n}\left\{x_{n}=i\right\}}=\operatorname{Pn}\left\{x_{0}=j\right\} \frac{\pi_{i}}{\pi_{i}} \\
& =P_{n}\left\{x_{0}=j\right\}
\end{aligned}
$$

(3) (a) Yes
(b) $P_{\text {eriod }}=1$ becauzo $P_{i j}>0$ all;
(c) $P_{i j}^{(2)}=\sum_{k=0}^{\infty} P_{i k} P_{k j}=\sum_{k=0}^{\infty} \alpha_{k} \alpha_{j}=\alpha_{j} \sum_{k=0}^{\infty} \alpha_{k}=\alpha_{j}$
(d) $p_{i j}^{(n)}=\alpha ; \quad$ (Sincs $p^{2}=p \Rightarrow p_{i}^{p}=p$)
(e) $\sum_{n=1}^{\infty} p_{j j}^{(n)}=\sum_{n=1}^{\infty} \alpha_{j}=\infty$, So Recurnent
(f)

$$
\begin{aligned}
\pi_{j} & =\sum_{k=0}^{\infty} \pi_{k} P_{k ;}=\sum_{k=0}^{\infty} \pi_{k} \alpha_{j}=\alpha_{;} \sum_{k=0}^{\infty} \pi_{k} \\
& =\alpha_{j}
\end{aligned}
$$

(4) Fo $0<w \leq t, \frac{d}{d w} P_{s}\left\{w_{1} \leq w \mid X(A)=1\right\}$

$$
\begin{aligned}
& =\frac{d}{d w} p_{n}\{X(w)=1 \mid X(x)=1\}=\frac{d}{d w} \frac{p_{n}\{X(w)=1, X(x)=1\}}{\left.p_{n} \xi X(x)=1\right\}} \\
& =\frac{d}{d w} \frac{p_{n}\left\{X(w)=1 \beta p_{n}\{X(x)-x(w)=0\}\right.}{p_{n}\{X(x)=1\}} \\
& =\frac{d}{d w} \frac{e^{-\lambda a r} \lambda^{\prime} w e^{-\lambda(x-w)}}{e^{-\lambda A}} \lambda^{\prime \prime} \quad
\end{aligned}
$$

so tho danzity is $\frac{1}{t} 1\{0<w \leqslant t\}$
(5) Set T_{i} bo saiting tine until birst event from paocoss i.

$$
\begin{aligned}
P & \left\{\bigcap_{i=1}^{n} T_{i}>r\right\} \stackrel{\text { ind }}{\downarrow} \prod_{i=1}^{n} P_{r}\left\{T_{i}>r\right\}=\prod_{i=1}^{n} e^{-\lambda_{i} r} \\
& =\sum^{\infty}-r \sum_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

