Hints for Section Assignment 9

- Exercise 1.4 If $Y \sim P(\mu)$, then $V[Y]=E\left[Y^{2}\right]-(E[Y])^{2}=\mu$.
- Exercise 1.5 They want you to use a continuous version of the Law of Total Probability. Start with

$$
\operatorname{Pr}\{X=x\}=\int_{0}^{\infty} \operatorname{Pr}\{X=x \mid L=\lambda\} f_{L}(\lambda) d \lambda
$$

Recognize this integral as proportional to the integral of a Gamma density. Supply the proportionality constant and you're done.

- Problem 1.6 See Exercise 1.3.
- Problem 1.7 Use the Law of Total Probability, conditioning on the number of shocks. Answer is $e^{-\lambda t(1-\alpha)}$.
- Problem 1.11 Let T denote the waiting time. To get the density of T, differentiate $\operatorname{Pr}\{T \leq t\}=\operatorname{Pr}\{X(t) \geq k\}$. Use the product rule.

