STA 347F2003 Final Formula Sheet

Sums

- If $0<a<1$ then $\sum_{k=j}^{\infty} a^{k}=\frac{a^{j}}{1-a}$.
- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
- $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.

Expected Value: If the discrete random variable Z takes values $0,1, \ldots$, then $E[Z]=$ $\sum_{k=1}^{\infty} \operatorname{Pr}\{Z \geq k\}$.
Vocabulary A state j is said to be accessible from i if $P_{i j}^{(n)}>0$ for some n. Two states that are accessible to one another are said to communicate, and we write $i \leftrightarrow j$. All the states that communicate with one another are grouped together in an equivalence class. When the state space has only one equivalence class, it is said to be irreducible. The period of a state i, written $d(i)$, is the greatest common divisor of all the integers $n \geq 1$ such that $P_{i i}^{(n)}>0$. If $P_{i i}>0$, then $d(i)=1$. All states in an equivalence class have the same period.

For any state $i, f_{i i}^{(n)}=\operatorname{Pr}\left\{X_{n}=i \mid X_{0}=i, X_{1} \neq i, X_{2} \neq i, \ldots, X_{n-1} \neq i\right\}$ is the probability that, starting in state i, the first return to i is at the nth transition. We define $f_{i i}^{(0)}=0$.
$f_{i i}=\sum_{n=1}^{\infty} f_{i i}^{(n)}$ is the probability of ever returning to state i. If $f_{i i}=1$, the state i is said to be recurrent. If $f_{i i}<1$, then i is said to be transient. Let i be a recurrent state; the return time is $R_{i}=\min \left\{n \geq 1: X_{n}=i\right\}$, with $\operatorname{Pr}\left\{R_{i}=n \mid X_{0}=i\right\}=f_{i i}^{(n)}$. If $E\left[R_{i} \mid X_{0}=i\right]=\sum_{n=1}^{\infty} n f_{i i}^{(n)}<\infty$, the state i is called positive recurrent. Otherwise, i is called null recurrent.
Theorem 3.0 $P_{i i}^{(n)}=\sum_{k=0}^{n} f_{i i}^{(k)} P_{i i}^{(n-k)}$. This is Eq. (3.2) in our text.
Theorem 3.1 State i is transient if and only if $\sum_{n=1}^{\infty} P_{i i}^{(n)}<\infty$.
Corollary 3.1 If $i \leftrightarrow j$, then states i and j are either both transient or both recurrent.
Theorem 4.1 For an irreducible, recurrent, aperiodic, stationary Markov chain, $\lim _{n \rightarrow \infty} P_{j j}^{(n)}=$ $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\frac{1}{m_{i}}$, where $m_{i}=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=E\left[R_{i} \mid X_{0}=i\right]$.
Theorem 4.2 For an irreducible, positive recurrent, aperiodic, stationary Markov chain, $\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ is uniquely determined by $\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P}$ and $\sum_{j=0}^{\infty} \pi_{j}=1$.
Binomial: $X \sim B(n, p)$ means $\operatorname{Pr}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0, \ldots, n$. Note: $E[X]=n p, V[X]=n p(1-p)$.
Poisson: $X \sim P(\mu)$ means $\operatorname{Pr}\{X=k\}=\frac{e^{-\mu} \mu^{k}}{k!}$ for $k=0,1, \ldots$ Note: $E[X]=V[X]=$ μ
Geometric: $X \sim$ Geometric (a) means $\operatorname{Pr}\{X=n\}=a(1-a)^{n-1}$ for $n=1, \ldots$. Note: $E[X]=1 / a$
Exponential: $X \sim \exp (\lambda)$ means $f_{X}(x)=\lambda e^{-\lambda x} \mathbf{1}\{x \geq 0\}$. Note $E[X]=1 / \lambda$, and $F_{X}(x)=\left(1-e^{-\lambda x}\right) \mathbf{1}\{x \geq 0\}$.
Gamma: $X \sim G(n, \lambda)$ means $f_{X}(x)=\frac{\lambda^{n}}{(n-1)!} e^{-\lambda x} x^{n-1} \mathbf{1}\{x \geq 0\}$. Note $E[X]=\frac{n}{\lambda}$. The sum of n independent exponential random variables is Gamma.

