STA 347F2003 Assignment 8

Do this assignment in preparation for the quiz on Friday, Nov. 14th. It is not to be handed in.

Read Sections 3 and 4 in Chapter 4. Then do the following exercises and problems. You will be given a copy of the formula sheet (see link on the class home page).

- 1. Let X have a geometric distribution; that is, $Pr\{X = k\} = (1-a)a^k$ for k = 0, 1, ..., where 0 < a < 1. Find E[X]; show your work.
- 2. Let $i \to j$ and $j \to k$. Show $i \to k$.
- 3. Do Exercises 3.1, 3.2 and 3.3 starting on page 243.
- 4. Do Problem 3.1a; also prove recurrence. Skip Part b.
- 5. Do Problem 3.3
- 6. Do Exercise 4.1. Show $\pi_k = \frac{p^k(1-p)}{1-p^5}$ (equivalent to book's answer).
- 7. Do Exercise 4.3. Also, what is the period? Is it regular?
- 8. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	2	
0	$\frac{1}{2}$	$\frac{1}{2}$	0	
1	Ō	Ō	1	•
2	1	0	0	

- (a) What is the period of this Markov chain? Why?
- (b) Is it irreducible?
- (c) What are $f_{00}^{(1)}, f_{00}^{(2)}, f_{00}^{(3)}$?
- (d) What is $f_{00}^{(n)}$ for n > 3?
- (e) What is f_{00} ?
- (f) Is state zero recurrent? Why?
- (g) Is state zero *positive* recurrent? Show your work.
- (h) Using your answer to the preceding question, what is π_0 ?
- (i) Is state 2 recurrent? Without any calculations, why?
- (j) What are $f_{11}^{(1)}$ and $f_{11}^{(2)}$?
- (k) What is $f_{11}^{(n)}$ for n > 2?
- (l) Show recurrence of State 1 from the definition.
- (m) Is State 1 positive recurrent? Show your work.

- 9. Consider a stationary Markov chain with transition probabilities $P_{i,i} = \frac{9}{10}$, $P_{i,i+1} = \frac{1}{10}$, and zero otherwise.
 - (a) What is the period of this Markov chain? Why?
 - (b) Is it irreducible?
 - (c) What is $f_{00}^{(n)}$?
 - (d) What is f_{00} ?
 - (e) Is state zero recurrent?
 - (f) What is $P_{00}^{(n)}$?
 - (g) Use your answer to the preceding item to show recurrence or transience.
 - (h) Is the general state i transient, or is it recurrent?
- 10. Consider a stationary Markov chain with transition probabilities $P_{i,j} = (1-a)a^j$ for $i = 0, 1, \ldots$ and $j = 0, 1, \ldots$
 - (a) What is the period of this Markov chain? Why?
 - (b) Is it irreducible?
 - (c) What is $P_{00}^{(2)}$? Show your work.
 - (d) What is $P_{00}^{(n)}$?
 - (e) Is state zero transient, or is it recurrent? Why?
 - (f) What is $P_{ii}^{(2)}$? Show your work. What is $P_{ii}^{(n)}$?
 - (g) Is the general state i transient, or is it recurrent? Why?
 - (h) What is $f_{00}^{(n)}$?
 - (i) What is f_{00} ?
 - (j) Is state zero positive recurrent or null recurrent? Check.
 - (k) Apply Theorem 4.2.
- 11. Consider a stationary Markov chain with transition probabilities $P_{i,0} = \frac{1}{i+2}$ and $P_{i,i+1} = \frac{i+1}{i+2}$.
 - (a) What is the period of this Markov chain? Why?
 - (b) Is it irreducible?
 - (c) What are $f_{00}^{(1)}, f_{00}^{(2)}, f_{00}^{(3)}$?
 - (d) What is $f_{00}^{(n)}$ in general?
 - (e) What is f_{00} ?
 - (f) Is state zero recurrent? Why?
 - (g) Is state zero positive recurrent? Show your work.
 - (h) Does Theorem 4.2 apply? Answer Yes or No and say why.
 - (i) Try to find the stationary distribution anyway. That is, find the solution to $\pi = \pi \mathbf{P}$. Is it a probability distribution?

- (j) Use Theorem 4.1 to find π_0 . Is this consistent with your answer to the last item?
- 12. Do Problem 4.1.
- 13. Do Problem 4.3, except let $p_i = q_i = \frac{1}{2}$. Try letting N = 6 at first. After setting up the equations, express all the other limiting probabilities in terms of π_0 . You will see the pattern for general N.