STA 347F2003 Assignment 7

Do this assignment in preparation for the quiz on Friday, Oct. 31st. It is not to be handed in.

1. Do exercises 1.1, 1.3, 1.4, 1.5, 1.10 starting on page 208.
2. Let X_{0}, X_{1}, \ldots be a regular stationary Markov chain with state space $\{0, \ldots, N\}$, so that the limiting probabilities described on page 199 exist. Show that the row vector $\boldsymbol{\pi}$ satisfies $\boldsymbol{\pi}=\boldsymbol{\pi} \mathrm{P}$.
3. Let X_{0}, X_{1}, \ldots be a regular stationary Markov chain with state space $\{0, \ldots, N\}$, and let the row vector \mathbf{x} satisfy both $\mathbf{x}=\mathbf{x P}$ and $\sum_{k=0}^{N} x_{k}=1$. Show $\mathbf{x}=\boldsymbol{\pi}$.
4. Let X_{0}, X_{1}, \ldots be a regular stationary Markov chain with state space $\{0, \ldots, N\}$. Prove or disprove: $\lim _{n \rightarrow \infty} \mathbf{p}^{(n)}=\boldsymbol{\pi}$.
5. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1	2
0	γ_{00}	γ_{01}	γ_{02}
1	γ_{10}	γ_{11}	γ_{12}
2	0	0	1

(a) Is this Markov chain regular? Answer Yes or No, and prove it.
(b) Using common sense, what is $\lim _{n \rightarrow \infty} \mathbf{P}^{n}$?
(c) Find $\boldsymbol{\pi}$ the usual way.
(d) What fact does this problem illustrate?
6. Let X_{0}, X_{1}, \ldots be a regular stationary Markov chain with state space $\{0, \ldots, N\}$ and a transition matrix that is doubly stochastic - that is, $\sum_{i=0}^{N} P_{i j}=1$ (the columns sum to one as well as the rows). Show that the limiting probability π_{j} equals $\frac{1}{N+1}$ for $j=0, \ldots, N$.
7. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1	2	3
0	a_{1}	a_{2}	a_{3}	a_{4}
1	a_{1}	a_{2}	a_{3}	a_{4}
2	a_{1}	a_{2}	a_{3}	a_{4}
3	a_{1}	a_{2}	a_{3}	a_{4}

where $0<a_{k}<1$ for $k=1,2,3,4$. What is $\boldsymbol{\pi}$?

- 1.1: Very easy if you see it.
- 1.2: Routine; answer is $1 / 32$
- 1.3: It's interesting how the answer comes out in terms of $\sum_{k=1}^{6} k \alpha_{k}$, a kind of expected value
- 1.4: They want $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{X_{n+1}=m, X_{n}=k\right\}$.
- 1.6 :
- (a) It's obvious, but try getting the answer formally by conditioning on X_{n} (using the Law of Total Probability).
- (b) So the answer to Problem 1.4 does not depend on where you start.
- (c) I don't see how you can avoid saying $P_{i k}^{(n-1)} \rightarrow \pi_{k}$, either "obviously," or by using the definition of a limit. This is perfectly okay; it's just that there does not seem to be any nice trick like the one suggested for part (a).
- 1.10: Easy if you see it.
- 1.13: You can get a backwards transition probability. Then, Theorem 1.0 from lecture will help. The answer is 0.171428 .

