STA 347F2003 Assignment 4

Do this assignment in preparation for the quiz on Friday, Oct. 10th. It is not to be handed in.

1. Let the random variable

- X take values x_{1}, x_{2}, \ldots
- Y take values y_{1}, y_{2}, \ldots
- Z take values z_{1}, z_{2}, \ldots

This means, for example, that $\operatorname{Pr}\left\{X=x_{k}\right\}>0$ for $k=1,2, \ldots$, and that $\sum_{k=1}^{\infty} \operatorname{Pr}\left\{X=x_{k}\right\}=1$.
(a) Prove $\operatorname{Pr}\left\{X=x_{k}\right\}=\sum_{n=1}^{\infty} \operatorname{Pr}\left\{X=x_{k} \mid Y=y_{n}\right\} \operatorname{Pr}\left\{Y=y_{n}\right\}$, or else disprove it by giving a simple counter-example.
(b) Prove $\operatorname{Pr}\left\{X=x_{k} \mid Y=y_{j}\right\}=\sum_{n=1}^{\infty} \operatorname{Pr}\left\{X=x_{k} \mid Y=y_{j}, Z=z_{n}\right\} \operatorname{Pr}\{Z=$ $\left.z_{n} \mid Y=y_{j}\right\}$, or else disprove it by giving a simple counter-example.
2. Let X_{0}, X_{1}, \ldots be a stationary Markov chain. Prove that $\operatorname{Pr}\left\{X_{3}=j \mid X_{0}=i_{0}, X_{1}=\right.$ $i\}=\operatorname{Pr}\left\{X_{3}=j \mid X_{1}=i\right\}$, or else disprove it by giving a simple counter-example.
3. A stationary Markov chain has one-step transition matrix \mathbf{P}, n-step transition matrix \mathbf{P}^{n}, and vector of unconditional probabilities for X_{n} given by $\mathbf{p}^{(n)}$. Prove the following results, or else disprove one or both of them by giving simple counterexamples.
(a) $\mathbf{p}^{(n)}=\mathbf{p}^{(0)} \mathbf{P}^{n}$.
(b) $\mathbf{p}^{(n)}=\mathbf{p}^{(n-1)} \mathbf{P}$.
4. Let X_{0}, X_{1}, \ldots be a stationary Markov chain. Prove or disprove that $\operatorname{Pr}\left\{X_{0}=\right.$ $\left.i_{0}, \ldots, X_{n}=i_{n}\right\}=\operatorname{Pr}\left\{X_{1}=i_{0}, \ldots, X_{n+1}=i_{n}\right\}$ for $n=1,2, \ldots$.
5. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1
0	α	$1-\alpha$
1	$1-\alpha$	α

and let $\mathbf{p}^{(0)}=\left[\frac{1}{2}, \frac{1}{2}\right]$. What is $\mathbf{p}^{(30)}$?
6. Let X_{0}, X_{1}, \ldots be a sequence of independent and identically distributed discrete random variables, with $\operatorname{Pr}\left\{X_{n}=k\right\}=a_{k}$ for $k=1,2, \ldots$ and $n=0,1,2, \ldots$.
(a) Is it a stationary Markov chain? Answer Yes or No and prove it.
(b) If it is a stationary Markov chain, give its transition probability matrix.
7. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1	2	3
0	a_{1}	a_{2}	a_{3}	a_{4}
1	a_{1}	a_{2}	a_{3}	a_{4}
2	a_{1}	a_{2}	a_{3}	a_{4}
3	a_{1}	a_{2}	a_{3}	a_{4}

(a) What is \mathbf{P}^{2} ?
(b) What is \mathbf{P}^{20} ?
(c) What is $\mathbf{p}^{(20)}$?
8. Prove or disprove: For a stationary Markov chain with $P_{i j}=a_{j}$ for all i and j, $\mathbf{P}^{n}=\mathbf{P}$ for $n=1,2, \ldots$.
9. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1
0	0.7	0.3
1	0.4	0.6

and let $\mathbf{p}^{(1)}=\left[\frac{1}{2}, \frac{1}{2}\right]$.
(a) What is $\mathbf{p}^{(2)}$?
(b) What is $\mathbf{p}^{(0)}$? Hint: write the Law of Total Probability for $\operatorname{Pr}\left\{X_{1}=0\right\}$.
10. Starting from $\mathbf{p}^{(n)}=\mathbf{p}^{(0)} \mathbf{P}^{n}$, is it always possible to solve for $\mathbf{p}^{(0)}$ in terms of $\mathbf{p}^{(n)}$ and P? Answer Yes or No. Hint: Think of Problem 7
11. We will now see that a stationary Markov chain is reversible - that is, it is still a Markov chain when you go backwards. Let X_{0}, X_{1}, \ldots be a stationary Markov chain. What we really need to show is that for all $m<n, \operatorname{Pr}\left\{X_{m}=j \mid X_{n}=i_{n}, X_{n-1}=\right.$ $\left.i_{n-1}, \ldots, X_{m+1}=i\right\}=\operatorname{Pr}\left\{X_{m}=j \mid X_{m+1}=i\right\}$, but to make the notation simpler, just show $\operatorname{Pr}\left\{X_{0}=j \mid X_{5}=i_{5}, X_{4}=i_{4}, X_{3}=i_{3}, X_{2}=i_{2}, X_{1}=i\right\}=\operatorname{Pr}\left\{X_{0}=\right.$ $\left.j \mid X_{1}=i\right\}$. All you have to do is use the definition of conditional probability, the multiplication rule, and the usual forward Markov property. The general proof has the same structure.
12. Backwards transition probabilities are easy to obtain. Letting $m<n$, show that $\operatorname{Pr}\left\{X_{m}=j \mid X_{n}=i\right\}=P_{j i}^{(n-m)} \frac{p_{j}^{(m)}}{p_{i}^{(n)}}$. Why does this formula suggest that the backwards Markov chain might not be stationary?
13. Let a stationary Markov chain have the transition matrix given in Problem 9, and as before, let $\mathbf{p}^{(1)}=\left[\frac{1}{2}, \frac{1}{2}\right]$. You have already calculated $\mathbf{p}^{(0)}$ and $\mathbf{p}^{(2)}$. What is $\operatorname{Pr}\left\{X_{0}=0 \mid X_{1}=0\right\}$? What is $\operatorname{Pr}\left\{X_{1}=0 \mid X_{2}=0\right\}$? What do you conclude?

