STA 347F2003 Assignment 4

Do this assignment in preparation for the quiz on Friday, Oct. 10th. It is not to be handed in.

- 1. Let the random variable
 - X take values x_1, x_2, \ldots
 - Y take values y_1, y_2, \ldots
 - Z take values z_1, z_2, \ldots

This means, for example, that $Pr\{X = x_k\} > 0$ for $k = 1, 2, \ldots$, and that $\sum_{k=1}^{\infty} Pr\{X = x_k\} = 1$.

- (a) Prove $Pr\{X = x_k\} = \sum_{n=1}^{\infty} Pr\{X = x_k | Y = y_n\} Pr\{Y = y_n\}$, or else disprove it by giving a simple counter-example.
- (b) Prove $Pr\{X = x_k | Y = y_j\} = \sum_{n=1}^{\infty} Pr\{X = x_k | Y = y_j, Z = z_n\} Pr\{Z = z_n | Y = y_j\}$, or else disprove it by giving a simple counter-example.
- 2. Let X_0, X_1, \ldots be a stationary Markov chain. Prove that $Pr\{X_3 = j | X_0 = i_0, X_1 = i\} = Pr\{X_3 = j | X_1 = i\}$, or else disprove it by giving a simple counter-example.
- 3. A stationary Markov chain has one-step transition matrix \mathbf{P} , *n*-step transition matrix \mathbf{P}^n , and vector of *unconditional* probabilities for X_n given by $\mathbf{p}^{(n)}$. Prove the following results, or else disprove one or both of them by giving simple counter-examples.
 - (a) $\mathbf{p}^{(n)} = \mathbf{p}^{(0)} \mathbf{P}^n$.

(b)
$$\mathbf{p}^{(n)} = \mathbf{p}^{(n-1)} \mathbf{P}$$
.

- 4. Let X_0, X_1, \ldots be a stationary Markov chain. Prove or disprove that $Pr\{X_0 = i_0, \ldots, X_n = i_n\} = Pr\{X_1 = i_0, \ldots, X_{n+1} = i_n\}$ for $n = 1, 2, \ldots$
- 5. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	
0	α	$1 - \alpha$	
1	$1-\alpha$	α	

and let $\mathbf{p}^{(0)} = [\frac{1}{2}, \frac{1}{2}]$. What is $\mathbf{p}^{(30)}$?

- 6. Let X_0, X_1, \ldots be a sequence of *independent and identically distributed* discrete random variables, with $Pr\{X_n = k\} = a_k$ for $k = 1, 2, \ldots$ and $n = 0, 1, 2, \ldots$
 - (a) Is it a stationary Markov chain? Answer Yes or No and prove it.
 - (b) If it is a stationary Markov chain, give its transition probability matrix.

7. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1	2	3	
0	a_1	a_2	a_3	a_4	
1	a_1	a_2	a_3	a_4	,
2	a_1	a_2	a_3	a_4	
3	a_1	a_2	a_3	a_4	

(a) What is \mathbf{P}^2 ?

(b) What is \mathbf{P}^{20} ?

- (c) What is $p^{(20)}$?
- 8. Prove or disprove: For a stationary Markov chain with $P_{ij} = a_j$ for all i and j, $\mathbf{P}^n = \mathbf{P}$ for n = 1, 2, ...
- 9. Let X_0, X_1, \ldots be a stationary Markov chain with transition matrix

	0	1
0	0.7	0.3
1	0.4	0.6

and let $\mathbf{p}^{(1)} = [\frac{1}{2}, \frac{1}{2}].$

- (a) What is $\mathbf{p}^{(2)}$?
- (b) What is $\mathbf{p}^{(0)}$? Hint: write the Law of Total Probability for $Pr\{X_1 = 0\}$.
- 10. Starting from $\mathbf{p}^{(n)} = \mathbf{p}^{(0)} \mathbf{P}^n$, is it always possible to solve for $\mathbf{p}^{(0)}$ in terms of $\mathbf{p}^{(n)}$ and \mathbf{P} ? Answer Yes or No. Hint: Think of Problem 7
- 11. We will now see that a stationary Markov chain is reversible that is, it is still a Markov chain when you go backwards. Let X_0, X_1, \ldots be a stationary Markov chain. What we really need to show is that for all m < n, $Pr\{X_m = j | X_n = i_n, X_{n-1} = i_{n-1}, \ldots, X_{m+1} = i\} = Pr\{X_m = j | X_{m+1} = i\}$, but to make the notation simpler, just show $Pr\{X_0 = j | X_5 = i_5, X_4 = i_4, X_3 = i_3, X_2 = i_2, X_1 = i\} = Pr\{X_0 = j | X_1 = i\}$. All you have to do is use the definition of conditional probability, the multiplication rule, and the usual forward Markov property. The general proof has the same structure.
- 12. Backwards transition probabilities are easy to obtain. Letting m < n, show that $Pr\{X_m = j | X_n = i\} = P_{ji}^{(n-m)} \frac{p_j^{(m)}}{p_i^{(m)}}$. Why does this formula suggest that the backwards Markov chain might not be stationary?
- 13. Let a stationary Markov chain have the transition matrix given in Problem 9, and as before, let $\mathbf{p}^{(1)} = [\frac{1}{2}, \frac{1}{2}]$. You have already calculated $\mathbf{p}^{(0)}$ and $\mathbf{p}^{(2)}$. What is $Pr\{X_0 = 0 | X_1 = 0\}$? What is $Pr\{X_1 = 0 | X_2 = 0\}$? What do you conclude?