STA 347F2000 Quiz 4

Print your name and student number neatly on the first sheet.

1. (15 Points) Let X, Y and Z be discrete random variables. Show that $E[g(Z) \mid X=x]=\sum_{y} E[g(Z) \mid X=x, Y=y] \operatorname{Pr}(Y=y \mid X=x)$. As usual, you may exchange order of summation without comment.
2. (15 Points) A particle moves in a circle through points which have been labelled 1, 2, 3, 4 (in a clockwise order). At each step k, it has probability $k / 4$ of moving to the right (clockwise), and probability $1-k / 4$ of moving to the left (counterclockwise). Give the transition probability matrix for this Markov chain.
3. Let X_{0}, X_{1}, \ldots be a stationary Markov chain with transition matrix

	0	1	2
0	0.1	0.1	0.8
1	0.2	0.2	0.6
2	0.3	0.3	0.4

(a) (10 Points) What is $\operatorname{Pr}\left(X_{17}=2 \mid X_{15}=0\right)$? Show your work, what there is of it.
(b) (10 Points) Suppose $\operatorname{Pr}\left(X_{1}=0\right)=0.1, \operatorname{Pr}\left(X_{1}=1\right)=0.4$ and $\operatorname{Pr}\left(X_{1}=2\right)=0.5$. What is $\operatorname{Pr}\left(X_{1}=0, X_{2}=1, X_{3}=2\right)$? Show your work.
(c) (10 Points) Again, suppose $\operatorname{Pr}\left(X_{1}=0\right)=0.1, \operatorname{Pr}\left(X_{1}=1\right)=$ 0.4 and $\operatorname{Pr}\left(X_{1}=2\right)=0.5$. What is $\operatorname{Pr}\left(X_{2}=1\right)$? Show some calcuations.
4. (20 Points) Let X_{0}, X_{1}, \ldots be a stationary Markov chain. Use the Markov property and common rules of probability to show $\operatorname{Pr}\left\{X_{3}=\right.$ $\left.j \mid X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}\right\}=\operatorname{Pr}\left\{X_{3}=j \mid X_{1}=i_{1}, X_{2}=i_{2}\right\}$.
5. (20 Points) Debbie and Wanda are gambling. They toss a fair coin. If it is heads, Debbie wins one dollar from Wanda. If it is tails, Wanda wins one dollar from Debbie. Suppose Debbie starts with $\$ 2$ and Wanda starts with $\$ 1$. What is the expected number of coin tosses before one of them goes broke?

