STA 347F2000 Quiz 2

Print your name and student number neatly on the first sheet.

1. (25 points) Let $p_{X Y}=\frac{x y}{25} \mathbf{1}\{x=1,2,3,4\} \mathbf{1}\{y=x, \ldots, 3\}$. Find $E[Y \mid X=2]$. Show some work, but not more than you need to find the answer. This is the easiest question; it is not very long, for the number of points.
2. (25 points) Suppose that the distribution function F_{X} is differentiable at x. Show $\operatorname{Pr}\{x<X \leq x+\triangle x\}=f(x) \triangle x+o(\triangle x)$ as $\triangle x \downarrow 0$ implies $F^{\prime}(x)=f(x)$.
3. A jar contains two objects, a fair die and a biased coin with probability of a Head equal to $\frac{1}{3}$. First you pick an object at random (equally likely). If it is the die, you roll it and count the number of dots. If it is a coin, you toss it repeatedly until the first head appears, and count the number of tails that occur before the first head. Let X denote the number resulting from this two-stage experiment.
(a) (10 Points) Find $\operatorname{Pr}(X=1)$.
(b) (15 Points) Find $E[X]$. Show your work and circle your final answer. Note: You may use the formula $\frac{1-p}{p}$ for the expected value of a geometric random variable; no proof is required. However, the answer to this question is a number. If the symbol p occurs anywhere in the final answer you circle, you can get no more than 8 out of the 15 points.
4. (25 points) Let X_{n} have a binomial distribution with parameters n and p. Let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that the product $n p=\lambda$ remains constant. Find the limiting probability mass function of X_{n}. You may use $\lim _{n \rightarrow \infty}\left(1+\frac{y}{n}\right)^{n}=e^{y}$ and other standard results about limits without proof. Note: the support of the limiting random variable is worth 10 points out of 25 .
