Name \qquad Student Number \qquad

Test 2
STA 34751991
Erindale College

1. (20 pts) The number of customers N entering a store on a given day is a discrete random variable with $E(N)=\mu_{N}$. The amount of money M_{i} spent by customer i is a continuous random variable with mean μ_{M}, and is independent of the number of customers who enter the store. Prove that the expected amount of money taken in on a given day is $\mu_{N} \mu_{M}$.
2. (20 pts) Let $\left\{X_{0}, X_{1}, X_{2}, \ldots.\right\}$ be a stochastic process. For each of the ten definitions Delow, write in the letter of the term or phrase being defined. Write only one letter in each space; if more than one letter applies, write the best one.
a. Ergodic
b. i and j are disjoint
c. State Space
K. Class
d. Unitary
I. Multipenetration
m. Irreducible
e. State dis Euphoric
f. Random Walk
g. jis accessible from i
h. Periodic with period d
i. Transient
j. Multivariate
n. i is accessible from j
o. Strongly Consistent
p. Aperiodic
q. Recurrent
r. Markov Chain
3. i \& j communicate
t. Reflexive
___ Having period 1. P\{starting in state i, the process will return to $i\}<1$
$\ldots \quad P_{i j}^{n}>0$ for some $n \geq 0$ and $P_{j i}^{m}>0$ for some $m \geq 0$.
$\longrightarrow P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)$, for $n=0,1, \ldots$
___ Having only one class
__ P\{starting in state i, the process will return to $i\}=1$
$\ldots-P_{i, i+1}=P, P_{i, i-1}=1-p$ for $i=0, \pm 1, \pm 2, \ldots$
\ldots The common support of X_{0}, X_{1}, \ldots
___ $P_{i j}^{n}>0$ for some $n \geq 0$.
___ A set of states that communicate with one another.
4. Here is the transition probability matrix for a Markov Chain.
$P=\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 0.3 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.1 & 0.0 & 0.0 & 0.0 & 0.9 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.3 & 0.3 & 0.0 & 0.4 \\ 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.5\end{array}\right]$
a) (10 pts) Identify the classes, and label each one as transient or recurrent.
b) (5 pts) If x_{14} is equally likely to be $0,1,2,3,4$, or 5 , what is $P\left(X_{15}=5\right)$?
c) (5 pts) What is $P_{1,4}^{100}$? (Think before you calculate).
5. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots.\right\}$ be a Markov Chain, and $P^{(r)}=\left[\left(P_{i j}^{r}\right)\right]$ be its matrix of r-step transition probabilities $(r=0,1, \ldots)$.
a) (1pt) What is the definition of $\mathrm{i} \rightarrow \mathrm{j}$ (give an inequality)
b) (1 pt) What is the definition of $j \rightarrow k$ (give an inequality)
c) (1 pt) What is the definition of $i \rightarrow k$ (give an inequality)
d) (2 pts) State the Chapman-Kolmogorov equations.
e) (15 pts) Use a-d to prove: $i \rightarrow j, j \rightarrow k \Rightarrow i \rightarrow k$. You cannot get any points if a-d are incorrect.
6. (20 pts) Suppose that the mood of an individual is a 3-state Markov chain with the following transition probability matrix:

