Name _____

Student Number _____

Test 2 STA 347s 1991 Erindale College

1. (20 pts) The number of customers N entering a store on a given day is a discrete random variable with $E(N)=\mu_N$. The amount of money M_i spent by customer i is a continuous random variable with mean μ_M , and is independent of the number of customers who enter the store. Prove that the expected amount of money taken in on a given day is $\mu_N\,\mu_M$.

2. (20 pts) Let {X $_0$, X $_1$, X $_2$, } be a stochastic process. For each of the ten definitions below, write in the letter of the term or phrase being defined. Write only one letter in each space; if more than one letter applies, write the **best** one.

- a. Ergodic
- b. i and j are disjoint
- c. State Space
- d. Unitary
- e. State d is Euphoric
- f. Random Walk
- q. j is accessible from i
- h. Periodic with period d
 i. Transient
 s. i & j communicate
- j. Multivariate

- k. Class
- 1. Multipenetration
 - m. Irreducible
- n. i is accessible from j
- o. Strongly Consistent
 - p. Aperiodic
- a. Recurrent

 - t. Reflexive
- ____ Having period 1.
- _____ P{starting in state i, the process will return to i} < 1
- ____ $P_{ij}^n > 0$ for some n≥0 and $P_{ji}^m > 0$ for some m≥0.
- $---- P(X_{n+1}=j | X_n=i, X_{n-1}=i_{n-1}, ..., X_0=i_0)=P(X_{n+1}=j | X_n=i),$

- _____ Having only one class
- _____ P{starting in state i, the process will return to i} = 1

$$P_{i,i+1}=p, P_{i,i-1}=1-p \text{ for } i = 0, \pm 1, \pm 2, \dots$$

- ____ The common support of X_0, X_1, \dots
- ____ Pⁿ_{ij}>0 for some n≥0.
- ____ A set of states that communicate with one another.

3. Here is the transition probability matrix for a Markov Chain.

 $P = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0.3 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.1 & 0.0 & 0.0 & 0.0 & 0.9 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.3 & 0.3 & 0.0 & 0.4 \\ 0.0 & 0.0 & 0.5 & 0.0 & 0.0 & 0.5 \end{bmatrix}$

a) (10 pts) Identify the classes, and label each one as transient or recurrent.

b) (5 pts) If X_{14} is equally likely to be 0,1,2,3,4, or 5, what is $P(X_{15}=5)$?

c) (5 pts) What is $P_{1,4}^{100}$? (Think before you calculate).

4. Let $\{X_0, X_1, X_2,\}$ be a Markov Chain, and $P^{(r)} = [(P_{ij}^r)]$ be its matrix of r-step transition probabilities (r = 0, 1, ...).

a) (1 pt) What is the definition of $i \rightarrow j$ (give an inequality)

b) (1 pt) What is the definition of $j \rightarrow k$ (give an inequality)

c) (1 pt) What is the definition of $i \rightarrow k$ (give an inequality)

d) (2 pts) State the Chapman-Kolmogorov equations.

e) (15 pts) Use a-d to prove: $i \rightarrow j$, $j \rightarrow k \Rightarrow i \rightarrow k$. You cannot get any points if a-d are incorrect.

5. (20 pts) Suppose that the mood of an individual is a 3-state Markov chain with the following transition probability matrix: $\begin{bmatrix} 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$. What is the long-run proportion of time she is in each of the three states?

Total marks=100 points