Name \qquad
Student Number \qquad

Test 1
STA 34751991
Erindale College
All questions are worth 20 points Tables $6.1 \& 6.2$ are on the last page

1. A box contains three coins. One is a two-headed coin, one is a fair coin, and one is a biased coin with $P($ Head $)=\theta$. One of the coins is selected at random and tossed; it comes up heads. What is the probability that it was the two-headed coin?
2. Let S be a sample space, B be an event in S with $P(B)>0$, and E_{1}, E_{2}, \ldots be a sequence of mutually exclusive events in S. Show that

$$
P\left(\left[\cup E_{n=1}\right] \mid B\right)=\sum_{n=1} P\left(E_{n} \mid B\right) .
$$

3. Let the continuous random variables X and Y have joint density $f_{X Y}(x, y)=2$ for $0 \leq y \leq x \leq 1$, and zero elsewhere. Find $E[X \mid Y=y]$.

$$
\begin{aligned}
& \text { 4. Let } x_{1}, \ldots, X_{n} \text { be exponential }(\lambda) \text { random variables, and let } \\
& \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \text {. Find the distribution of } \bar{x} \text {. }
\end{aligned}
$$

5. Let X be geometrically distributed with parameter p. Show that $P(X \geq n+r \mid X>r)=P(X \geq n)$; that is, the geometric distribution has "no memory".
