Probability Review

Hour test in tutorial Fri Jan 18: Tables $6.1 \& 6.2$ will be provided.

First read chapter 1. Then de these probs starting on p. 16: $6,7,14,21,26,31$. Numbers 23 and 35 are classic problems; they will not be on the test, but take a look at them anyhow. Next,

1. Let S be a sample space and $A \& B$ be events in S with $P(B)>0$. Use the axioms of probability on p. 4 to prove that conditional probabilities are indeed probabilities, by completing i-iii below.
i) Show that $0 \leq P(A \mid B) \leq 1$.
ii) Show that $P(B \mid B)=1$.
iii) Let E_{1}, E_{2}, \ldots be a sequence of mutually exclusive events. Show that $P\left(\left[\bigcup_{n=1}^{\infty} E_{n}\right] \mid B\right)=\sum_{n=1}^{\infty} P\left(E_{n} \mid B\right)$.
2. Let A be an event in the sample space S, and let $S=\bigcup E_{k}$ with
$P\left(E_{k}\right)>0$ for all k and $E_{i} E_{j}=\varnothing$ for $i \neq j$. Prove the law of total probability, i.e. $P(A)=\sum^{\Pi} P\left(A \mid E_{k}\right) P\left(E_{k}\right)$. $k=1$

Now read Chapter 2, and do these probs starting on p. 75: 8, 14, 20(see prob 17), 23, 31, 35. Then do the following:
3. Let the random variable x have density $f_{x}(x)=2 x$ for $0 \leq x \leq 1$ and zero elsewhere. Let $F x(x)$ denote the distribution function of x. What is $F_{x}(2)$? Answ: 1
4. Let the random variable x have density

$$
f x(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{4 x-\frac{1}{2} x^{2}-8\right\} . \text { What is } P(x \geq 4) ? \quad \text { Answ: } 1 / 2
$$

5. Let X be exponentially distributed with parameter λ (see definition on $P .34)$. Show that $P(x \geq s+t \mid x>t)=P(x \geq s)$; that is, the exponential distribution has "no memory".
6. Let X be geometrically distributed with parameter P (see definition on $P .29)$. Show that $P(X \geq n+r \mid X>r)=P(X \geq n)$; that is, the geometric distribution has "no memory".

Now do problems 37, 47 and 48, starting on p. 79.
7. Let X be a gamma random variable with parameters n and λ.

What is $E\left[X^{k}\right]$? Answ: $\frac{(n+k-1)!}{\lambda^{k}(n-1)!}$.
8. Let x_{1}, \ldots, X_{n} be a collection of independent normal random variables with mean μ and variance σ^{2}. Show that the sample mean \bar{x} has a normal distribution with mean μ and variance σ^{2} / n.
9. Suppose the number of males arriving per hour at a store is a Poisson random variable with parameter λ_{1}, and the number of females arriving per hour is a Poisson random variable with parameter λ_{2}. Assuming that these two random variables are independent, show that the total number of people arriving per hour has a Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$.
10. Let X_{1}, \ldots, X_{n} be a collection of independent Bernoulli(p) random variables. Show that $y=\sum^{n} x_{i}$ has a Binomial distribution with i=1 parameters n and p.

Now read pp. 84-93, and do the following:
11. Let the continuous random variables X and Y have joint density $f_{X Y}(x, y)=c e^{-(x+y)}$ for $0 \leq y \leq x$, and zero elsewhere.
a) What is c? Answ: 2
b) What is the marginal density of X ?

Answ: $f_{x}(x)=2 e^{-x}\left(1-e^{-x}\right)$ for $x \geq 0$, and zero otherwise.
c) What is the conditional density of Y given $X=x$?

Answ: $e^{-y} /\left(1-e^{-x}\right)$ for $0 \leq y \leq x$, and zero otherwise.
d) What is $E[Y \mid X=12]$?

Answ: $1-12 e^{-12} /\left(1-e^{-12}\right)=.99992627$.
e) What is $\lim _{x \rightarrow \infty} E[Y \mid X=x]$? Answ: 1
f) Are X and Y independent? Answ: No (why?)
12. Let the discrete random variables X and Y have joint probability mass function $f_{X Y}(x, y)=(x+y) / 36$ for $x=1,2,3$ and $y=1,2,3$; zero otherwise. What is $E[X \mid Y=2]$? Answ: $13 / 6$.
13. Let a and b be constants, and let X and Y be discrete random variables. Show that $E[a X+b \mid Y]=a E[X \mid Y]+D$.

Now do probs 9-14 starting on p. 128. Finally, ...
14. Use the definition $\frac{d}{d x} g(x)=\lim _{h \rightarrow 0} \frac{1}{h}[g(x+h)-g(x)]$ to show that
a) $\frac{d}{d x} x^{2}=2 x$.
b) $\frac{d}{d x}[\operatorname{ag} g(x)]=a \frac{d}{d x} g(x)$
c) The derivative of a constant is zero.

