Time Dependent Covariates¹ STA312 Spring 2019

¹See last slide for copyright information.

• "Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model" by Terry Therneau, Cynthia Crowson and Elizabeth Atkinson (2018):

https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf

• Chapter 8 in Applied Survival Analysis Using R by Dirk Moore

Time Dependent Covariates: The Idea

- In predicting the next asthma attack, air quality is important. But air quality varies from day to day.
- In predicting when a couple will have a child, income could be important. But income can vary over time. .
- In predicting when a consumer will buy a new car, recent major repairs could matter. These happen from time to time.

Types of time-dependent covariate

- Internal: Variables that relate to the individuals, and can only be measured when an individual is alive. For example, blood glucose level, number of cigarettes, marital status.
- External: Variables that can be determined independently of the individual. For example, air quality, inflation rate, drug dose (if pre-determined).

Model

• For individual *i*, we have time to event, a failure indicator, and a set of covariate values over time.

$$(t_i, \delta_i, \{\mathbf{x}_i(t), t \in (0, t_i]\})$$

• Proportional hazards assumption:

$$h(t) = h_0(t) e^{\mathbf{x}(t)^\top \boldsymbol{\beta}},$$

where $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}$, and we are assuming e^{β_0} is part of the hazard function.

Partial Likelihood

- The covariate values are those in force at time $t_{(i)}$.
- Some covariates (like type of disease) will not change over time.
- The individuals in the risk set don't depend on time, but the values of their covariates at time $t_{(i)}$ have to be available.
- It's mostly a matter of data format.

The start-stop data format² Multiple lines of data per case

subject	time1	time2	status	age	creatinine	
1	0	15	0	25	1.3	
1	15	46	0	25	1.5	
1	46	73	0	25	1.4	
1	73	100	1	25	1.6	
2	0	21	0	34	1.2	
2	21	50	0	34	1.4	
2	50	85	1	34	1.7	

.

Intervals (time1, time2] are closed on the right.

 $^{^{2}}$ Example adapted from Therneau et al. (2018)

Time-dependent covariates can help with a big problem

- It may seem obvious, but future values should not be used to predict something that happened in the past.
- Can having kids help a marriage last longer?
- You'd better watch how you analyze the data, because couples get divorced too soon to have a child.
- Almost any event that can't happen if you're dead will be less likely to happen for individuals who fail early.
- So it may seem to help.
- For example, a heart transplant ...

The Stanford Heart Study

Annals of Internal Medicine

```
> # aim stands fort for Annals of Internal Medicine
> # Time to event (death) is futime, delta = fustat
> dim(aim); head(aim)
```

[1	.] 103	7					
	patient	fustat	surgery	age	futime	wait.time	transplant
1	1	1	0	30.84463	49	NA	0
2	2	1	0	51.83573	5	NA	0
3	3	1	0	54.29706	15	0	1
4	4	1	0	40.26283	38	35	1
5	5	1	0	20.78576	17	NA	0
6	6	1	0	54.59548	2	NA	0

Original analysis

> summary(coxph(Surv(futime,fustat)~age+surgery+transplant,data=aim))

```
Call:
coxph(formula = Surv(futime, fustat) ~ age + surgery + transplant,
   data = aim)
 n= 103, number of events= 75
             coef exp(coef) se(coef) z Pr(>|z|)
age 0.05889 1.06065 0.01505 3.913 9.12e-05 ***
surgery -0.41902 0.65769 0.37118 -1.129 0.259
transplant -1.71711 0.17958 0.27853 -6.165 7.05e-10 ***
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
         exp(coef) exp(-coef) lower .95 upper .95
         1.0607 0.9428 1.0298 1.092
age
surgery 0.6577 1.5205 0.3177 1.361
```

transplant 0.1796 5.5684 0.1040 0.310

Criticism

This was very embarrassing

- People who died on the wait list did not have a chance to get the surgery.
- Some of the "outcomes" were in the past.
- (Notice how much we want to say that the transplant *influenced* survival.)
- Solution: Treat transplant as a time-dependent covariate.

Re-format the data

> head(aim.ss2,40)

%	Sho	ould	have	e re-o	ordei	red	vars	s, pu	tt	ing d	lea	ath	last
	id	surg	gery		age	tst	tart	tst	op	deat	th	tra	anspl
1	1		0	30.84	1463		0	49	.0		1		0
2	2		0	51.83	3573		0	5	.0		1		0
3	3		0	54.29	9706		0	15	.0		1		1
4	4		0	40.26	5283		0	35	.0		0		0
5	4		0	40.26	5283		35	38	.0		1		1
6	5		0	20.78	3576		0	17	.0		1		0
7	6		0	54.59	9548		0	2	.0		1		0
8	7		0	50.86	5927		0	50	.0		0		0
9	7		0	50.86	5927		50	674	.0		1		1
•	• •												
38	25		0	33.22	2382		0	24	.0		0		0
39	25		0	33.22	2382		24	1799	.0		0		1
40	26		0	30.53	3525		0	1400	.0		0		0

Better Analysis

```
> betterheart = coxph(Surv(tstart,tstop,death) ~ age+surgery+transpl,
+ data=aim.ss2); summary(betterheart)
```

```
Call:
coxph(formula = Surv(tstart, tstop, death) ~ age + surgery +
    transpl, data = aim.ss2)
```

```
n= 169, number of events= 75
```

 coef exp(coef) se(coef)
 z Pr(>|z|)

 age
 0.03138
 1.03187
 0.01392
 2.253
 0.0242 *

 surgery -0.77035
 0.46285
 0.35959
 -2.142
 0.0322 *

 transpl -0.07894
 0.92410
 0.30608
 -0.258
 0.7965

 -- Signif. codes:
 0 *** 0.001 ** 0.01 * 0.05 .
 0.1
 1

	exp(coef)	exp(-coef)	lower .95	upper .95
age	1.0319	0.9691	1.0041	1.0604
surgery	0.4629	2.1605	0.2287	0.9365
transpl	0.9241	1.0821	0.5072	1.6836

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/312s19