Sample Questions: Survival and Hazard Functions

STA312 Spring 2019. Copyright information is at the end of the last page.

For all these questions, T is a continuous random variable with P(T > 0) = 1, density f(t) and cumulative distribution function $F(t) = P(T \le t)$.

1. The survival function is S(t) = P(T > t). Prove $E(T) = \int_0^\infty S(t) dt$.

2. The hazard function is defined by $h(t) = \lim_{\Delta \to 0} \frac{P(t < T < t + \Delta | T > t)}{\Delta}$, where $\Delta > 0$. Prove $h(t) = \frac{f(t)}{S(t)}$. 3. Prove $S(t) = e^{-\int_0^t h(x) \, dx}$.

4. Let $T \sim \exp(\lambda)$. Find the hazard function h(t) for t > 0.

- 5. Let T have the Pareto density $f(t|\theta) = \begin{cases} \frac{\theta}{t^{\theta+1}} & \text{for } t \ge 1\\ 0 & \text{for } t < 1 \end{cases}$
 - (a) Find the hazard function h(t) for t > 1.

- (b) Earlier, we found the MLE $\widehat{\theta}_n = \frac{n}{\sum_{i=1}^n \log t_i}$, and $\widehat{v}_n = \frac{\widehat{\theta}_n^2}{n}$.
 - i. Give $\widehat{h(t)}$, the maximum likelihood estimate of the hazard function evaluated at a particular time t > 1. Your answer is a formula involving t and $\widehat{\theta}_n$.

ii. We want a confidence interval for h(t), the hazard function evaluated at a particular time t > 1. Give formulas for the lower and upper 95% confidence limits. Show your work.

- 6. Let T have a gamma distribution with parameters $\alpha > 0$ and $\lambda > 0$.
 - (a) What is the hazard function?

(b) Using R, plot the hazard function for several values of α and λ . How do the parameter values influence the shape of the hazard function?

 $\tt http://www.utstat.toronto.edu/~brunner/oldclass/312s19$