# Maximum Likelihood Part Two<sup>1</sup> STA 312 Spring 2019

<sup>&</sup>lt;sup>1</sup>See last slide for copyright information.

#### Appendix A from Structural Equation Models: An open textbook

**1** No Formula for the MLE

**2** Multiple Parameters

**3** Numerical MLEs

4 Hypothesis Tests

- Maximum likelihood estimates are often not available in closed form.
- Multiple parameters.

Most real-world problems have both these features.

#### No formula for the MLE

All we need is one example to see the problem.

Let  $X_1, \ldots, X_n$  be independent observations from a distribution with density

$$f(x|\theta) = \begin{cases} \frac{1}{\Gamma(\theta)} e^{-x} x^{\theta-1} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

Where the parameter  $\theta > 0$ . This is a gamma with  $\alpha = \theta$  and  $\lambda = 1$ .

$$\begin{aligned} \frac{\partial}{\partial \theta} \ell(\theta) &= \frac{\partial}{\partial \theta} \log \left( \prod_{i=1}^{n} \frac{1}{\Gamma(\theta)} e^{-x_i} x_i^{\theta-1} \right) \\ &= \frac{\partial}{\partial \theta} \log \left( \Gamma(\theta)^{-n} e^{-\sum_{i=1}^{n} x_i} \left( \prod_{i=1}^{n} x_i \right)^{\theta-1} \right) \\ &= \frac{\partial}{\partial \theta} \left( -n \log \Gamma(\theta) - \sum_{i=1}^{n} x_i + (\theta-1) \sum_{i=1}^{n} \log x_i \right) \\ &= -\frac{n \Gamma'(\theta)}{\Gamma(\theta)} - 0 + \sum_{i=1}^{n} \log x_i \stackrel{set}{=} 0 \end{aligned}$$

# Numerical MLE

By computer

- The log likelihood defines a surface sitting over the parameter space.
- It could have hills and valleys and mountains.
- The value of the log likelihood is easy to compute for any given set of parameter values.
- This tells you the height of the surface at that point.
- Take a step uphill (blindfolded).
- Are you at the top? Compute the slopes of some secant lines.
- Take another step uphill.
- How big a step? Good question.
- Most numerical routines *minimize* a function of several variables.
- So minimize the minus log likelihood.

# Multiple parameters

Most real-world problems have a *vector* of parameters.

- Let  $X_1, \ldots, X_n$  be a random sample from a normal distribution with expected value  $\mu$  and variance  $\sigma^2$ . The parameters  $\mu$  and  $\sigma^2$  are unknown.
- For i = 1, ..., n, let  $y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_{p-1} x_{i,p-1} + \epsilon_i$ , where  $\beta_0, ..., \beta_{p-1}$  are unknown constants.  $x_{i,j}$  are known constants.  $\epsilon_1, ..., \epsilon_n$  are independent  $N(0, \sigma^2)$  random variables.  $\sigma^2$  is an unknown constant.  $y_1, ..., y_n$  are observable random variables.
  - The parameters  $\beta_0, \ldots, \beta_{p-1}, \sigma^2$  are unknown.

# Multi-parameter MLE

You know most of this.

- Suppose there are k parameters.
- The plane tangent to the log likelihood should be horizontal at the MLE.
- Partially differentiate the log likelihood (or minus log likelihood) with respect to each of the parameters.
- Set the partial derivatives to zero, obtaining k equations in k unknowns.
- Solve for the parameters, if you can.
- Is it really a maximum?
- There is a multivariate second derivative test.

#### The Hessian matrix

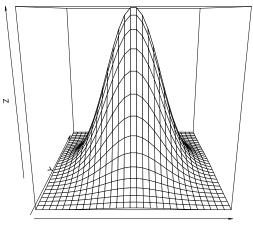
$$\mathbf{H} = \left[\frac{\partial^2(-\ell)}{\partial \theta_i \partial \theta_j}\right]$$

- If there are k parameters, the Hessian is a  $k \times k$  matrix whose (i, j) element is  $\frac{\partial^2}{\partial \theta_i \partial \theta_j} (-\ell(\boldsymbol{\theta}))$ .
- If the second derivatives are continuous, **H** is symmetric.
- If the gradient is zero at a point and  $|\mathbf{H}| \neq 0$ , then
  - If all eigenvalues are positive at the point, local minimum.
  - If all eigenvalues are negative at the point, local maximum.
  - If there are both positive and negative eigenvalues at the point, saddle point.

# Large-sample Theory

Earlier results generalize to the multivariate case

The vector of MLEs is asymptotically normal. That is, multivariate normal.



# The Multivariate Normal

The multivariate normal distribution has many nice features. For us, the important ones are:

- It is characterized by a  $k\times 1$  vector of expected values and a  $k\times k$  variance-covariance matrix.
- Write  $\mathbf{y} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ .
- $\Sigma = [\sigma_{i,j}]$  is a symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.
- All the marginals are normal.  $y_j \sim N(\mu_j, \sigma_{j,j})$ .

The vector of MLEs is asymptotically multivariate normal. (Thank you, Mr. Wald)

$$\widehat{\boldsymbol{\theta}}_n \sim N_k\left(\boldsymbol{\theta}, \frac{1}{n}\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\right)$$

• Compare 
$$\widehat{\theta}_n \sim N(\theta, \frac{1}{n I(\theta)}).$$

- $\mathcal{I}(\boldsymbol{\theta})$  is the Fisher information matrix.
- Specifically, the Fisher information in one observation.
- A  $k \times k$  matrix

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[ -E\left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})\right) \right]$$

• The Fisher Information in the whole sample is  $n\mathcal{I}(\boldsymbol{\theta})$ .

# $\widehat{\boldsymbol{\theta}}_n$ is asymptotically $N_k\left(\boldsymbol{\theta}, \frac{1}{n}\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\right)$

- Asymptotic covariance matrix of  $\hat{\theta}_n$  is  $\frac{1}{n}\mathcal{I}(\theta)^{-1}$ , and of course we don't know  $\theta$ .
- For tests and confidence intervals, we need a good *approximate* asymptotic covariance matrix,
- Based on a good estimate of the Fisher information matrix.
- $\mathcal{I}(\widehat{\boldsymbol{\theta}}_n)$  would do.
- But it's inconvenient: Need to compute partial derivatives and expected values in

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[ E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]$$

and then substitute  $\widehat{\theta}_n$  for  $\theta$ .

# The observed Fisher information

#### Approximate

$$\frac{1}{n} \mathcal{I}(\boldsymbol{\theta})^{-1} = \left[ n E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]^{-1}$$

with

$$\widehat{\mathbf{V}}_n = \left( \left[ -\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1}$$

As in the univariate case, substitute the MLE for the parameter instead of taking the expected value.

Compare the Hessian and (Estimated) Asymptotic Covariance Matrix

• 
$$\widehat{\mathbf{V}}_n = \left( \left[ -\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1}$$

- Hessian at MLE is  $\mathbf{H} = \left[ -\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n}$
- So to estimate the asymptotic covariance matrix of  $\boldsymbol{\theta}$ , just invert the Hessian.
- The Hessian is usually available as a by-product of a numerical search for the MLE.
- Because it's needed for the second derivative test.

#### Connection to Numerical Optimization

- Suppose we are minimizing the minus log likelihood by a direct search.
- We have reached a point where the gradient is close to zero. Is this point a minimum?
- The Hessian is a matrix of mixed partial derivatives. If all its eigenvalues are positive at a point, the function is concave up there.
- Partial derivatives are usually approximated by the slopes of secant lines no need to calculate them symbolically.
- It's *the* multivariable second derivative test.

#### So to find the estimated asymptotic covariance matrix

- Minimize the minus log likelihood numerically.
- The Hessian at the place where the search stops is usually available.
- Invert it to get  $\widehat{\mathbf{V}}_n$ .
- This is so handy that sometimes we do it even when a closed-form expression for the MLE is available.

# Estimated Asymptotic Covariance Matrix $\widehat{\mathbf{V}}_n$ is Useful

- Asymptotic standard error of  $\hat{\theta}_j$  is the square root of the *j*th diagonal element.
- Denote the asymptotic standard error of  $\hat{\theta}_j$  by  $S_{\hat{\theta}_i}$ .
- Thus

$$Z_j = \frac{\widehat{\theta}_j - \theta_j}{S_{\widehat{\theta}_j}}$$

is approximately standard normal.

#### Confidence Intervals and Z-tests

Have  $Z_j = \frac{\hat{\theta}_j - \theta_j}{S_{\hat{\theta}_j}}$  approximately standard normal, yielding

- Confidence intervals:  $\hat{\theta}_j \pm S_{\hat{\theta}_j} z_{\alpha/2}$
- Test  $H_0: \theta_j = \theta_0$  using

$$Z = \frac{\widehat{\theta}_j - \theta_0}{S_{\widehat{\theta}_j}}$$

#### Functions of the parameter vector

- Sometimes we want tests and confidence intervals for *functions* of  $\boldsymbol{\theta} \in \mathbb{R}^k$ .
- Like  $\frac{\alpha}{\lambda^2}$  (variance of a gamma)
- Or  $\frac{1}{3}(\theta_1 + \theta_2 + \theta_3) \frac{1}{3}(\theta_4 + \theta_5 + \theta_6)$ .
- Fortunately, smooth functions of an asymptotically multivariate normal random vector are asymptotically normal.

#### Theorem based on the delta method of Cramér The delta method is more general than this.

Let  $\boldsymbol{\theta} \in \mathbb{R}^k$ . Under the conditions for which  $\widehat{\boldsymbol{\theta}}_n$  is asymptotically  $N_k(\boldsymbol{\theta}, \mathbf{V}_n)$  with  $\mathbf{V}_n = \frac{1}{n} \mathcal{I}(\boldsymbol{\theta})^{-1}$ , let the function  $g : \mathbb{R}^k \to \mathbb{R}$  be such that the elements of  $\dot{\mathbf{g}}(\boldsymbol{\theta}) = \left(\frac{\partial g}{\partial \theta_1}, \ldots, \frac{\partial g}{\partial \theta_k}\right)$  are continuous in a neighbourhood of the true parameter vector  $\boldsymbol{\theta}$ . Then

$$g(\widehat{\boldsymbol{\theta}}) \sim N\left(g(\boldsymbol{\theta}), \dot{g}(\boldsymbol{\theta}) \mathbf{V}_n \, \dot{g}(\boldsymbol{\theta})^\top\right).$$

Note that the asymptotic variance  $\dot{g}(\boldsymbol{\theta})\mathbf{V}_n \dot{g}(\boldsymbol{\theta})^{\top}$  is a matrix product:  $(1 \times k)$  times  $(k \times k)$  times  $(k \times 1)$ .

The standard error of  $g(\widehat{\boldsymbol{\theta}})$  is  $\sqrt{\dot{\mathrm{g}}(\widehat{\boldsymbol{\theta}})\widehat{\mathbf{V}}_n \, \dot{\mathrm{g}}(\widehat{\boldsymbol{\theta}})^{\top}}$ .

# Specializing the delta method to the case of a single parameter

Yielding the univariate delta method

Let  $\theta \in \mathbb{R}$ . Under the conditions for which  $\hat{\theta}_n$  is asymptotically  $N(\theta, v_n)$  with  $v_n = \frac{1}{n} I(\theta)$ , let the function g(x) have a continuous derivative in a neighbourhood of the true parameter  $\theta$ . Then

 $g(\widehat{\theta}) \sim N(g(\theta), g'(\theta)^2 v_n).$ 

The standard error of 
$$g(\widehat{\theta})$$
 is  $\sqrt{g'(\widehat{\theta})^2 \, \widehat{v}_n}$ , or  $\left|g'(\widehat{\theta})\right| \sqrt{\widehat{v}_n}$ 

#### Two hypothesis tests for multi-parameter problems They also apply to single-parameter models

- Wald tests and likelihood ratio tests.
- They both apply to linear null hypotheses of the form  $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$
- Where **L** is an r by k matrix with linearly independent rows.
- This kind of null hypothesis is familiar from linear regression (STA302).

# Example

Linear regression with 4 explanatory variables

• 
$$\boldsymbol{\theta} = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \sigma^2)$$

• 
$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

•  $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{0}$ 

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

#### Another example of $H_0$ : $\mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ A collection of linear constraints on the parameter $\boldsymbol{\theta}$

Example with k = 7 parameters:  $H_0$  has three parts

•  $\theta_1 = \theta_2$  and •  $\theta_6 = \theta_7$  and •  $\frac{1}{3}(\theta_1 + \theta_2 + \theta_3) = \frac{1}{3}(\theta_4 + \theta_5 + \theta_6)$ 

Notice the number of rows in **L** is the number of = signs in  $H_0$ .

Hypothesis Tests

Wald Test for  $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ Based on  $(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \sim \chi^2(p)$ 

$$W_n = (\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h})^\top \left(\mathbf{L}\widehat{\mathbf{V}}_n\mathbf{L}^\top\right)^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h})$$

- Looks like the formula for the general linear F-test in regression.
- Chi-squared under  $H_0$ .
- Reject for large values of  $W_n$ .
- df = number of rows in **L**.
- Number of linear constraints specified by  $H_0$ .

#### The Wtest Function Use it freely

```
Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h
# For Wald tests based on numerical MLEs, Tn = theta-hat,
# and Vn is the inverse of the Hessian.
     ſ
     Wtest = numeric(3)
     names(Wtest) = c("W","df","p-value")
     r = dim(L)[1]
     W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%
          (L%*%Tn-h)
     W = as.numeric(W)
     pval = 1-pchisq(W,r)
     Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval
     Wtest
     }
```

#### Likelihood ratio tests

• 
$$X_1, \dots, X_n \stackrel{i.i.d.}{\sim} F_{\theta}, \ \theta \in \Theta$$
  
•  $H_0: \theta \in \Theta_0 \text{ v.s. } H_1: \theta \in \Theta \cap \Theta_0^c$ 

$$G^{2} = -2\log\left(\frac{\max_{\theta \in \Theta_{0}} L(\theta)}{\max_{\theta \in \Theta} L(\theta)}\right)$$

- Under  $H_0$ ,  $G^2$  has an approximate chi-squared distribution for large n.
- Degrees of freedom = number of (non-redundant, linear) equalities specified by  $H_0$ .
- Reject when  $G^2$  is large.

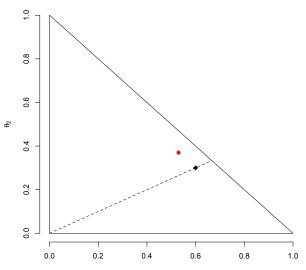
#### Example: Multinomial with 3 categories

- Parameter space is 2-dimensional.
- Unrestricted MLE is  $(p_1, p_2)$ : Sample proportions.
- $H_0: \theta_1 = 2\theta_2$

Hypothesis Tests

## Parameter space for $H_0: \theta_1 = 2\theta_2$

Red dot is unrestricted MLE, Black square is restricted MLE



# Comparing Likelihood Ratio and Wald tests

- Asymptotically equivalent under  $H_0$ , meaning  $(W_n G_n^2) \xrightarrow{p} 0$
- Under  $H_1$ ,
  - Both have the same approximate distribution (non-central chi-square).
  - Both go to infinity as  $n \to \infty$ .
  - But values are not necessarily close.
- Likelihood ratio test tends to get closer to the right Type I error probability for small samples.
- Wald can be more convenient when testing lots of hypotheses, because you only need to fit the model once.
- Wald can be more convenient if it's a lot of work to write the restricted likelihood.

# **Copyright Information**

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The  $IAT_EX$  source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/312s19