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Background Reading

Appendix A from Structural Equation Models: An open textbook
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Overview
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Two more issues

Maximum likelihood estimates are often not available in closed
form.

Multiple parameters.

Most real-world problems have both these features.
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No Formula for the MLE

No formula for the MLE
All we need is one example to see the problem.

Let X1, . . . , Xn be independent observations from a distribution with density

f(x|θ) =

{ 1
Γ(θ)e

−xxθ−1 for x ≥ 0

0 for x < 0

Where the parameter θ > 0. This is a gamma with α = θ and λ = 1.

∂

∂θ
`(θ) =

∂

∂θ
log

(
n∏
i=1

1

Γ(θ)
e−xixθ−1

i

)

=
∂

∂θ
log

Γ(θ)−ne−
∑n

i=1 xi

(
n∏
i=1

xi

)θ−1


=
∂

∂θ

(
−n log Γ(θ)−

n∑
i=1

xi + (θ − 1)

n∑
i=1

log xi

)

= −nΓ′(θ)

Γ(θ)
− 0 +

n∑
i=1

log xi
set
= 0
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No Formula for the MLE

Numerical MLE
By computer

The log likelihood defines a surface sitting over the parameter
space.

It could have hills and valleys and mountains.

The value of the log likelihood is easy to compute for any given set
of parameter values.

This tells you the height of the surface at that point.

Take a step uphill (blindfolded).

Are you at the top? Compute the slopes of some secant lines.

Take another step uphill.

How big a step? Good question.

Most numerical routines minimize a function of several variables.

So minimize the minus log likelihood.
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Multiple Parameters

Multiple parameters
Most real-world problems have a vector of parameters.

Let X1, . . . , Xn be a random sample from a normal distribution
with expected value µ and variance σ2.
The parameters µ and σ2 are unknown.

For i = 1, . . . , n, let yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi, where

β0, . . . , βp−1 are unknown constants.
xi,j are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameters β0, . . . , βp−1, σ
2 are unknown.
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Multiple Parameters

Multi-parameter MLE
You know most of this.

Suppose there are k parameters.

The plane tangent to the log likelihood should be horizontal at the
MLE.

Partially differentiate the log likelihood (or minus log likelihood)
with respect to each of the parameters.

Set the partial derivatives to zero, obtaining k equations in k
unknowns.

Solve for the parameters, if you can.

Is it really a maximum?

There is a multivariate second derivative test.
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Multiple Parameters

The Hessian matrix

H =

[
∂2(−`)
∂θi∂θj

]

If there are k parameters, the Hessian is a k × k matrix whose
(i, j) element is ∂2

∂θi∂θj
(−`(θ)).

If the second derivatives are continuous, H is symmetric.

If the gradient is zero at a point and |H| 6= 0, then

If all eigenvalues are positive at the point, local minimum.
If all eigenvalues are negative at the point, local maximum.
If there are both positive and negative eigenvalues at the point,
saddle point.
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Multiple Parameters

Large-sample Theory
Earlier results generalize to the multivariate case

The vector of MLEs is asymptotically normal. That is, multivariate
normal.

y

Y

Z
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Multiple Parameters

The Multivariate Normal

The multivariate normal distribution has many nice features. For us,
the important ones are:

It is characterized by a k × 1 vector of expected values and a k × k
variance-covariance matrix.

Write y ∼ Nk(µ,Σ).

Σ = [σi,j ] is a symmetric matrix with variances on the main
diagonal and covariances on the off-diagonals.

All the marginals are normal. yj ∼ N(µj , σj,j).
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Multiple Parameters

The vector of MLEs is asymptotically multivariate
normal. (Thank you, Mr. Wald)

θ̂n
.∼ Nk

(
θ,

1

n
I(θ)−1

)
Compare θ̂n

.∼ N(θ, 1
n I(θ)).

I(θ) is the Fisher information matrix.

Specifically, the Fisher information in one observation.

A k × k matrix

I(θ) =

[
−E

(
∂2

∂θi∂θj
log f(Y ;θ)

)]

The Fisher Information in the whole sample is nI(θ).
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Multiple Parameters

θ̂n is asymptotically Nk

(
θ, 1

nI(θ)−1
)

Asymptotic covariance matrix of θ̂n is 1
nI(θ)−1, and of course we

don’t know θ.

For tests and confidence intervals, we need a good approximate
asymptotic covariance matrix,

Based on a good estimate of the Fisher information matrix.

I(θ̂n) would do.

But it’s inconvenient: Need to compute partial derivatives and
expected values in

I(θ) =

[
E[− ∂2

∂θi∂θj
log f(Y ;θ)]

]
and then substitute θ̂n for θ.

13 / 32



Multiple Parameters

The observed Fisher information

Approximate

1

n
I(θ)−1 =

[
nE[− ∂2

∂θi∂θj
log f(Y ;θ)]

]−1

with

V̂n =

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

As in the univariate case, substitute the MLE for the parameter
instead of taking the expected value.
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Numerical MLEs

Compare the Hessian and (Estimated) Asymptotic
Covariance Matrix

V̂n =

([
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

)−1

Hessian at MLE is H =
[
− ∂2

∂θi∂θj
`(θ,Y)

]
θ=θ̂n

So to estimate the asymptotic covariance matrix of θ, just invert
the Hessian.

The Hessian is usually available as a by-product of a numerical
search for the MLE.

Because it’s needed for the second derivative test.
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Numerical MLEs

Connection to Numerical Optimization

Suppose we are minimizing the minus log likelihood by a direct
search.

We have reached a point where the gradient is close to zero. Is this
point a minimum?

The Hessian is a matrix of mixed partial derivatives. If all its
eigenvalues are positive at a point, the function is concave up
there.

Partial derivatives are usually approximated by the slopes of
secant lines – no need to calculate them symbolically.

It’s the multivariable second derivative test.
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Numerical MLEs

So to find the estimated asymptotic covariance matrix

Minimize the minus log likelihood numerically.

The Hessian at the place where the search stops is usually
available.

Invert it to get V̂n.

This is so handy that sometimes we do it even when a closed-form
expression for the MLE is available.
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Numerical MLEs

Estimated Asymptotic Covariance Matrix V̂n is Useful

Asymptotic standard error of θ̂j is the square root of the jth
diagonal element.

Denote the asymptotic standard error of θ̂j by S
θ̂j

.

Thus

Zj =
θ̂j − θj
S
θ̂j

is approximately standard normal.
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Hypothesis Tests

Confidence Intervals and Z-tests

Have Zj =
θ̂j−θj
S
θ̂j

approximately standard normal, yielding

Confidence intervals: θ̂j ± Sθ̂jzα/2
Test H0 : θj = θ0 using

Z =
θ̂j − θ0

S
θ̂j
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Hypothesis Tests

Functions of the parameter vector

Sometimes we want tests and confidence intervals for functions of
θ ∈ Rk.
Like α

λ2
(variance of a gamma)

Or 1
3(θ1 + θ2 + θ3)− 1

3(θ4 + θ5 + θ6).

Fortunately, smooth functions of an asymptotically multivariate
normal random vector are asymptotically normal.
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Hypothesis Tests

Theorem based on the delta method of Cramér
The delta method is more general than this.

Let θ ∈ Rk. Under the conditions for which θ̂n is asymptotically
Nk (θ,Vn) with Vn = 1

nI(θ)−1, let the function g : Rk → R be such

that the elements of ġ(θ) =
(
∂g
∂θ1

, . . . , ∂g∂θk

)
are continuous in a

neighbourhood of the true parameter vector θ. Then

g(θ̂)
.∼ N

(
g(θ), ġ(θ)Vn ġ(θ)>

)
.

Note that the asymptotic variance ġ(θ)Vn ġ(θ)> is a matrix product:
(1× k) times (k × k) times (k × 1).

The standard error of g(θ̂) is

√
ġ(θ̂)V̂n ġ(θ̂)>.
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Hypothesis Tests

Specializing the delta method to the case of a single
parameter
Yielding the univariate delta method

Let θ ∈ R. Under the conditions for which θ̂n is asymptotically
N (θ, vn) with vn = 1

n I(θ), let the function g(x) have a continuous
derivative in a neighbourhood of the true parameter θ. Then

g(θ̂)
.∼ N

(
g(θ), g′(θ)2 vn

)
.

The standard error of g(θ̂) is

√
g′(θ̂)2 v̂n, or

∣∣∣g′(θ̂)∣∣∣√v̂n
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Hypothesis Tests

Two hypothesis tests for multi-parameter problems
They also apply to single-parameter models

Wald tests and likelihood ratio tests.

They both apply to linear null hypotheses of the form H0 : Lθ = h

Where L is an r by k matrix with linearly independent rows.

This kind of null hypothesis is familiar from linear regression
(STA302).
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Hypothesis Tests

Example
Linear regression with 4 explanatory variables

θ = (β0, β1, β2, β3, β4, σ
2)

H0 : β1 = β2 = β3 = 0

H0 : Lθ = 0

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




β0

β1

β2

β3

β4

σ2

 =

 0
0
0
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Hypothesis Tests

Another example of H0 : Lθ = h
A collection of linear constraints on the parameter θ

Example with k = 7 parameters: H0 has three parts

θ1 = θ2 and

θ6 = θ7 and
1
3 (θ1 + θ2 + θ3) = 1

3 (θ4 + θ5 + θ6)

 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1
1 1 1 −1 −1 −1 0




θ1

θ2

θ3

θ4

θ5

θ6

θ7


=

 0
0
0



Notice the number of rows in L is the number of = signs in H0.
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Hypothesis Tests

Wald Test for H0 : Lθ = h
Based on (x − µ)>Σ−1(x − µ) ∼ χ2(p)

Wn = (Lθ̂n − h)>
(
LV̂nL

>
)−1

(Lθ̂n − h)

Looks like the formula for the general linear F -test in regression.

Chi-squared under H0.

Reject for large values of Wn.

df = number of rows in L.

Number of linear constraints specified by H0.
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Hypothesis Tests

The Wtest Function
Use it freely

Wtest = function(L,Tn,Vn,h=0) # H0: L theta = h

# For Wald tests based on numerical MLEs, Tn = theta-hat,

# and Vn is the inverse of the Hessian.

{

Wtest = numeric(3)

names(Wtest) = c("W","df","p-value")

r = dim(L)[1]

W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%

(L%*%Tn-h)

W = as.numeric(W)

pval = 1-pchisq(W,r)

Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval

Wtest

}
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Hypothesis Tests

Likelihood ratio tests

X1, . . . , Xn
i.i.d.∼ Fθ, θ ∈ Θ

H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ ∩Θc
0

G2 = −2 log

(
maxθ∈Θ0 L(θ)

maxθ∈Θ L(θ)

)

Under H0, G2 has an approximate chi-squared distribution for
large n.

Degrees of freedom = number of (non-redundant, linear) equalities
specified by H0.

Reject when G2 is large.
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Hypothesis Tests

Example: Multinomial with 3 categories

Parameter space is 2-dimensional.

Unrestricted MLE is (p1, p2): Sample proportions.

H0 : θ1 = 2θ2
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Hypothesis Tests

Parameter space for H0 : θ1 = 2θ2
Red dot is unrestricted MLE, Black square is restricted MLE
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Hypothesis Tests

Comparing Likelihood Ratio and Wald tests

Asymptotically equivalent under H0, meaning (Wn −G2
n)

p→ 0

Under H1,

Both have the same approximate distribution (non-central
chi-square).
Both go to infinity as n→∞.
But values are not necessarily close.

Likelihood ratio test tends to get closer to the right Type I error
probability for small samples.

Wald can be more convenient when testing lots of hypotheses,
because you only need to fit the model once.

Wald can be more convenient if it’s a lot of work to write the
restricted likelihood.
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Hypothesis Tests

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/312s19
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