Log-Normal Regression¹ STA312 Spring 2019

¹See last slide for copyright information.

The Log-Normal Distribution

- Failure time t is Log-Normal (μ, σ^2) means $y = \log(t) \sim N(\mu, \sigma^2)$.
- $y = \log(t) \Leftrightarrow t = e^y$.
- The log-normal density is

$$f(t|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{(\log(t)-\mu)^2}{2\sigma^2}\right\} \frac{1}{t}$$

- P(T > 0) = 1, right-skewed.
- Median = e^{μ} , expected value is $e^{\mu + \frac{1}{2}\sigma^2}$.

Regression

- In normal regression, $\mu_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_{p-1} x_{i,p-1}$
- So just take logs of the failure times and do normal regression.
- Lots of things are familiar, except for censoring.
- Because of censoring, formulas like $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ do not apply.
- F and t distributions do not apply.
- Everything is large-sample maximum likelihood.

Interpretation in Terms of Failure Time

- People thing in terms of time, not log time.
- Don't talk about log failure time, except to statisticians.
- $\mu_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_{p-1} x_{i,p-1} = \mathbf{x}_i^\top \boldsymbol{\beta}.$
- The quantity μ_i has meaning on the time scale. The median failure time for a log-normal is e^{μ} .
- Anything that makes $\mathbf{x}_i^\top \boldsymbol{\beta}$ larger makes average (that is, median) failure time larger.
- Ideas like positive and negative relationship, "controlling for," etc. carry over directly.

Prediction intervals

- You have a good log-normal regression analysis of a set of data.
- Want to predict the value of a future observation, given the explanatory variable values. (This is a very practical goal.)
- That is, you have \mathbf{x}_{n+1} and you want to predict t_{n+1} .
- A natural prediction would be the estimated median for those \mathbf{x}_{n+1} values: $e^{\mathbf{x}_i^\top \hat{\boldsymbol{\beta}}}$.
- Estimates and predictions are more valuable when they come with a margin of error, or interval of likely values.

Prediction versus Estimation

- In statistics, we estimate parameters or functions of parameters.
- These are fixed constants.
- With increasing sample size, the confidence interval shrinks to zero.
- Prediction tries to "estimate" the value of a random variable.
- There is uncertainty about the average value, and further uncertainty that comes from variation of random variables around the average.
- Prediction intervals are always wider than confidence intervals.

Prediction for the Normal Model

- Prediction intervals for normal regression are straightforward.
- In survival analysis, the distinction between confidence intervals and prediction intervals is largely ignored.
- This is probably because the distribution theory for prediction intervals is so hard.
- Except for log-normal regression ...
- So the following is "new," and based on the derivation for ordinary regression.

Prediction Intervals

Derivation of the Prediction Interval Details will be covered in the sample problems

• Get a point prediction and interval for $y_{n+1} = \log(t_{n+1})$, and then take the exponential function.

$$\begin{array}{rcl} 0.95 &\approx & P(A < y_{n+1} < B) \\ &= & P(e^A < e^{y_{n+1}} < e^B) \\ &= & P(e^A < t_{n+1} < e^B) \end{array}$$

• $\widehat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \mathbf{C}_n).$ • $\widehat{y}_{n+1} = \mathbf{x}_{n+1}^{\top} \widehat{\boldsymbol{\beta}} \sim N(\mathbf{x}_{n+1}^{\top} \boldsymbol{\beta}, \mathbf{x}_{n+1}^{\top} \mathbf{C}_n \mathbf{x}_{n+1}).$ • $y_{n+1} \sim N(\mathbf{x}_{n+1}^{\top} \boldsymbol{\beta}, \sigma^2).$ • y_{n+1} and \widehat{y}_{n+1} are independent.

•
$$y_{n+1} - \widehat{y}_{n+1} \sim N\left(0, \sigma^2 + \mathbf{x}_{n+1}^\top \mathbf{C}_n \mathbf{x}_{n+1}\right).$$

Derivation of the Prediction Interval Continued

•
$$y_{n+1} - \widehat{y}_{n+1} \sim N\left(0, \sigma^2 + \mathbf{x}_{n+1}^\top \mathbf{C}_n \mathbf{x}_{n+1}\right)$$

• $Z = \frac{y_{n+1} - \widehat{y}_{n+1}}{\sqrt{\widehat{\sigma}^2 + \mathbf{x}_{n+1}^\top \widehat{\mathbf{C}}_n \mathbf{x}_{n+1}}} \sim N(0, 1)$

95
$$\approx P(-1.96 < Z < 1.96)$$

= $P\left(-1.96 < \frac{y_{n+1} - \hat{y}_{n+1}}{\sqrt{\hat{\sigma}^2 + \mathbf{x}_{n+1}^\top \hat{\mathbf{C}}_n \mathbf{x}_{n+1}}} < 1.96\right)$

• Isolate y_{n+1} .

0.

- Prediction interval is $\widehat{y}_{n+1} \pm 1.96\sqrt{\widehat{\sigma}^2 + \mathbf{x}_{n+1}^{\top}\widehat{\mathbf{C}}_n \mathbf{x}_{n+1}}$.
- Exponential function of the endpoints gives prediction interval for t_{n+1} .

Derivation of the Prediction Interval Concluded

Prediction interval for t_{n+1} is from

$$\exp\left(\mathbf{x}_{n+1}^{\top}\widehat{\boldsymbol{\beta}} - 1.96\sqrt{\widehat{\sigma}^2 + \mathbf{x}_{n+1}^{\top}\widehat{\mathbf{C}}_n\mathbf{x}_{n+1}}\right)$$

 to

$$\exp\left(\mathbf{x}_{n+1}^{\top}\widehat{\boldsymbol{\beta}} + 1.96\sqrt{\widehat{\sigma}^2 + \mathbf{x}_{n+1}^{\top}\widehat{\mathbf{C}}_n\mathbf{x}_{n+1}}\right)$$

where \mathbf{C}_n is the estimated asymptotic covariance matrix of $\hat{\boldsymbol{\beta}}$, obtained from the inverse of the Hessian.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/312s19