The Kaplan-Meier (Product Limit) Estimate¹ STA312 Spring 2019

¹See last slide for copyright information.

The Kaplan-Meier Estimate

Reference: Chapter 3 in Applied Survival Analysis Using R

- Objective: To estimate the survival function without making any assumptions about the distribution of survival time.
- If there were no censoring, it would be easy.
- Use the empirical distribution function: the proportion of observations less than or equal to t.

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I\{t_i \le t\}$$

• Then let $\widehat{S}_n(t) = 1 - \widehat{F}_n(t)$

Discrete Time

Maybe time is always discrete in practice

- Consider times $t_0 = 0, t_1, t_2, \ldots$, maybe minutes or days.
- Let q_j = the probability of failing at time t_j , given survival to time t_{j-1} .
- $p_j = 1 q_j$ = the probability of surviving past time t_j , given survival to time t_{j-1} .

$$p_{j} = P(T > t_{j}|T > t_{j-1})$$

$$= \frac{P(T > t_{j}, T > t_{j-1})}{P(T > t_{j-1})}$$

$$= \frac{P(T > t_{j})}{P(T > t_{j-1})}$$

$$= \frac{S(t_{j})}{S(t_{j-1})}$$

$$p_j = \frac{S(t_j)}{S(t_{j-1})}$$

With
$$S(t_0) = S(0) = 1$$
,

•
$$p_1 = \frac{S(t_1)}{S(t_0)} = \frac{S(t_1)}{1} = S(t_1)$$

•
$$p_2 = \frac{S(t_2)}{S(t_1)}$$

•
$$p_3 = \frac{S(t_3)}{S(t_2)}$$

• Continuing ...

$$\bullet \ p_k = \frac{S(t_k)}{S(t_{k-1})}$$

Then,

$$= S(t_1) \frac{p_1}{S(t_2)} \frac{p_3}{S(t_3)} \cdots \frac{p_k}{S(t_k)}$$

$$= S(t_k)$$

$$S(t_k) = \prod_{j=1}^{\kappa} p_j$$

Estimate $S(t_k)$ by estimating the p_i .

- Let d_j be the number of deaths at time t_j .
- Let n_j be the number of individuals at risk before time t_j .
- Anyone censored before time t_i is no longer at risk.
- Estimated probability of failure at time t_j is $\widehat{q}_j = \frac{d_j}{n_j}$.

$$\widehat{p}_j = 1 - \widehat{q}_j = \frac{n_j - d_j}{n_j}$$

$$\widehat{S}(t_k) = \prod_{j=1}^k \widehat{p}_j$$

$$\widehat{S}(t) = \prod_{t_j \le t} \widehat{p}_j$$

Working toward a standard error for $\widehat{S}(t) = \prod_{t_i \leq t} \widehat{p}_i$

Large-sample Distribution Theory

- $\hat{p}_j = 1 \frac{d_j}{n_j} = \frac{n_j d_j}{n_j}$ is a sample proportion a sample mean.
- It is the proportion of individuals eligible at risk for failure at time t, who did not fail.
- Mean of independent Bernoullis (conditionally on n_j).
- $E(\widehat{p}_j) = p_j$, $Var(\widehat{p}_j) = \frac{p_j(1-p_j)}{n_j}$
- $\widehat{p}_j \sim N(p_j, \frac{p_j(1-p_j)}{n_j})$ by the Central Limit Theorem.
- This is for large n_j .

Large-sample Distribution Theory Continued

$$\widehat{S}(t) = \prod_{t_j \le t} \widehat{p}_j \text{ with } \widehat{p}_j = \frac{n_j - d_j}{n_j} \stackrel{.}{\sim} N\left(p_j, \frac{p_j(1 - p_j)}{n_j}\right)$$

- Sums are easier to work with than products.
- $\log \widehat{S}(t) = \sum_{t_i < t} \log \widehat{p}_j$
- Using the one-variable delta method, $\log \widehat{p}_j \sim N(\log p_j, \frac{1-p_j}{n_j p_j})$
- Sum of normals is normal (asymptotically, too).
- $E(\sum_{t_j \le t} \log \widehat{p}_j) \approx \sum_{t_j \le t} \log p_j = \log \prod_{t_j \le t} p_j = \log S(t)$

$$Var\left(\sum_{t_j \le t} \log \widehat{p}_j\right) \approx \sum_{t_j \le t} Var(\log \widehat{p}_j)$$
$$= \sum_{t_j \le t} \frac{1 - p_j}{n_j p_j}$$

Distribution of $\log \widehat{S}(t) = \sum_{t_i \le t} \log \widehat{p}_j$

$$\log \widehat{S}(t) \sim N \left(\log S(t), \sum_{t_j \le t} \frac{1 - p_j}{n_j p_j} \right)$$

- This is a stepping stone to the distribution of $\widehat{S}(t)$.
- Use the univariate delta method.
- Univariate delta method says that if $T_n \sim N(\theta, v_n)$ then $g(T_n) \sim N(g(\theta), v_n[g'(\theta)]^2)$.
- Here, $T_n = \log \widehat{S}_n(t)$, $\theta = \log S(t)$ and $g(x) = e^x$.
- $g'(\theta) = e^{\theta} = e^{\log S(t)} = S(t)$. So,

$$\widehat{S}(t) \sim N\left(S(t), S(t)^2 \sum_{t_j \le t} \frac{1 - p_j}{n_j p_j}\right)$$

Standard error of $\widehat{S}(t)$

Used in the denominator of Z-tests and $\widehat{S}(t) \pm 1.96 \, se$

$$\widehat{S}(t) \sim N\left(S(t), S(t)^2 \sum_{t_j \le t} \frac{1 - p_j}{n_j p_j}\right)$$

- Of course we don't know S(t) or p_i in the variance.
- So use estimates. Estimate S(t) with $\widehat{S}(t)$.
- And estimate p_j with $\widehat{p}_j = \frac{n_j d_j}{n_j}$.
- The resulting estimated asymptotic variance is $\widehat{S}(t)^2 \sum_{t_j \leq t} \left(\frac{d_j}{n_j(n_j d_j)} \right)$
- This is expression (3.1.2) on p. 27 of the text.
- The standard error of $\widehat{S}(t)$ is $\widehat{S}(t)\sqrt{\sum_{t_j\leq t}\left(\frac{d_j}{n_j(n_j-d_j)}\right)}$.
- In R's survival package, the default confidence interval for the Kaplan-Meier estimate uses this standard error.

Counting Processes

The theoretical state of the art

- Distribution theory for the Kaplan Meier estimate (asymptotic normality, standard error etc.) has been presented the way it was originally developed.
- The derivation is partly sound, but it has some holes.
- More recently, viewing number of deaths up to a point as a counting process (stochastic processes, STA348 and beyond) has cleaned the whole thing up.
- Results are the same, but now the proofs are rigorous.
- There was some guesswork in the development of these ideas, but the main guesses were right.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/312s19