STA 312s19 Assignment One (Review) ${ }^{1}$

The questions on this assignment are not to be handed in. They are practice for Quiz 1 on January 14th. Please see your textbook from STA256 and STA260 as necessary.

1. Recall the definition of a derivative: $\frac{d}{d x} f(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}$.
(a) Prove $\frac{d}{d x} x^{2}=2 x$.
(b) Let a be a constant. Prove $\frac{d}{d x} a f(x)=a \frac{d}{d x} f(x)$. To do this with confidence, let $g(x)=a f(x)$, and note $g(x+\Delta)=a f(x+\Delta)$.
2. The random variable X has probability density function $f_{x}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$, for all real x.
(a) What is the cumulative distribution function $F_{x}(x)=P(X \leq x)$? Show your work. Answer: $1-\frac{1}{1+e^{x}}$.
(b) The median of a distribution is that point m for which $P(X \leq m)=\frac{1}{2}$. What is the median of the distribution in this question? Answer: $m=0$.
3. Let $F(x)=P(X \leq x)= \begin{cases}0 & \text { for } x<0 \\ x^{\theta} & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } x>1\end{cases}$
(a) If $\theta=3$, what is $P\left(\frac{1}{2}<X \leq 4\right)$? The answer is a number. (Answer: $\frac{7}{8}$.)
(b) Find $f(x)$. Your answer must apply to all real x.
4. The discrete random variables X and Y have joint distribution

	$x=1$	$x=2$	$x=3$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$

(a) What is $p_{x}(x)$, the marginal probability mass function of X ?
(b) What is the conditional probability mass function of X given $Y=1$?
(c) What is $E(X \mid Y=1)$? (Answer: 2)

[^0]5. The Exponential (λ) distribution has density $f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{array}\right.$, where $\lambda>0$.
(a) Show $\int_{-\infty}^{\infty} f(x) d x=1$.
(b) Find $F(x)$. Of course there is a separate answer for $x \geq 0$ and $x<0$.
(c) Let X have an exponential density with parameter $\lambda>0$. Prove the "memoryless" property:

$$
P(X>t+s \mid X>s)=P(X>t)
$$

for $t>0$ and $s>0$. For example, the probability that the conversation lasts at least t more minutes is the same as the probability of it lasting at least t minutes in the first place.
(d) Calculate the moment-generating function of an exponential random variable and use it to obtain the expected value.
6. The continuous random variables X and Y have joint density

$$
f_{x, y}(x, y)= \begin{cases}2 e^{-(x+2 y)} & \text { for } x \geq 0 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Find $P(X>Y)$. (Answer: $\frac{2}{3}$)
7. The continuous random variables X and Y have joint probability density function

$$
f_{x y}(x, y)= \begin{cases}10 x^{2} y & \text { for } 0 \leq x \leq 1 \text { and } 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

Find the marginal density function $f_{y}(y)$. Show your work. Do not forget to indicate where the density is non-zero.
8. The $\operatorname{Gamma}(\alpha, \lambda)$ distribution has density $f(x)=\left\{\begin{array}{ll}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha-1} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{array}\right.$, where $\alpha>0$ and $\lambda>0$.
(a) Show $\int_{-\infty}^{\infty} f(x) d x=1$. Recall $\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} t^{\alpha-1} d t$.
(b) If X has a gamma distribution with parameters α and λ, find a general expression for $E\left(X^{k}\right)$. (Answer: $\frac{\Gamma(\alpha+k)}{\Gamma(\alpha) \lambda^{k}}$.)
(c) Use your answer to the last question to find $\operatorname{Var}(X)$. The identity $\Gamma(\alpha+1)=$ $\alpha \Gamma(\alpha)$ will help.
9. Let X have an exponential distribution with $\lambda=1$ (see Question 5), and let $Y=$ $\log (X)$. Find the probability density function of Y. Where is the density non-zero? Note that in this course, \log refers to the \log base e, or natural log, often symbolized \ln. The distribution of Y is called the (standard) Gumbel, or extreme value distribution.
10. The $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution has density $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$, where $-\infty<\mu<\infty$ and $\sigma>0$. Let the random variable T be such that $X=\log (T)$ is $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Find the density of T. This distribution is known as the log normal. Do not forget to indicate where the density of T is non-zero.
11. Choose the correct answer.
(a) $\prod_{i=1}^{n} e^{x_{i}}=$
i. $\exp \left(\prod_{i=1}^{n} x_{i}\right)$
ii. $e^{n x_{i}}$
iii. $\exp \left(\sum_{i=1}^{n} x_{i}\right)$
(b) $\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}=$
i. $\lambda e^{-\lambda^{n} x_{i}}$
ii. $\lambda^{n} e^{-\lambda n x_{i}}$
iii. $\lambda^{n} \exp \left(-\lambda \sum_{i=1}^{n} x_{i}\right)$
iv. $\lambda^{n} \exp \left(-n \lambda \sum_{i=1}^{n} x_{i}\right)$
v. $\lambda^{n} \exp \left(-\lambda^{n} \sum_{i=1}^{n} x_{i}\right)$
(c) $\prod_{i=1}^{n} a_{i}^{b}=$
i. $n a_{i}^{b}$
ii. $a_{i}^{n b}$
iii. $\left(\prod_{i=1}^{n} a_{i}\right)^{b}$
(d) $\prod_{i=1}^{n} a^{b_{i}}=$
i. $n a^{b_{i}}$
ii. $a^{n b_{i}}$
iii. $\sum_{i=1}^{n} a^{b_{i}}$
iv. $a^{\prod_{i=1}^{n} b_{i}}$
v. $a^{\sum_{i=1}^{n} b_{i}}$
(e) $\left(e^{\lambda\left(e^{t}-1\right)}\right)^{n}=$
i. $n e^{\lambda\left(e^{t}-1\right)}$
ii. $e^{n \lambda\left(e^{t}-1\right)}$
iii. $e^{\lambda\left(e^{n t}-1\right)}$
iv. $e^{n \lambda\left(e^{t}-n\right)}$
(f) $\left(\prod_{i=1}^{n} e^{-\lambda x_{i}}\right)^{2}=$
i. $e^{-2 n \lambda x_{i}}$
ii. $e^{-2 \lambda \sum_{i=1}^{n} x_{i}}$
iii. $2 e^{-\lambda \sum_{i=1}^{n} x_{i}}$
12. True, or False?
(a) $\sum_{i=1}^{n} \frac{1}{x_{i}}=\frac{1}{\sum_{i=1}^{n} x_{i}}$
(b) $\prod_{i=1}^{n} \frac{1}{x_{i}}=\frac{1}{\prod_{i=1}^{n} x_{i}}$
(c) $\frac{a}{b+c}=\frac{a}{b}+\frac{a}{c}$
(d) $\ln (a+b)=\ln (a)+\ln (b)$
(e) $e^{a+b}=e^{a}+e^{b}$
(f) $e^{a+b}=e^{a} e^{b}$
(g) $e^{a b}=e^{a} e^{b}$
(h) $\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)=\prod_{i=1}^{n} x_{i}+\prod_{i=1}^{n} y_{i}$
(i) $\ln \left(\prod_{i=1}^{n} a_{i}^{b}\right)=b \sum_{i=1}^{n} \ln \left(a_{i}\right)$
(j) $\sum_{i=1}^{n} \prod_{j=1}^{n} a_{j}=n \prod_{j=1}^{n} a_{j}$
(k) $\sum_{i=1}^{n} \prod_{j=1}^{n} a_{i}=\sum_{i=1}^{n} a_{i}^{n}$
(l) $\sum_{i=1}^{n} \prod_{j=1}^{n} a_{i, j}=\prod_{j=1}^{n} \sum_{i=1}^{n} a_{i, j}$
13. Simplify as much as possible.
(a) $\ln \prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}$
(b) $\ln \prod_{i=1}^{n}\binom{m}{x_{i}} \theta^{x}(1-\theta)^{m-x_{i}}$
(c) $\ln \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}$
(d) $\ln \prod_{i=1}^{n} \theta(1-\theta)^{x_{i}-1}$
(e) $\ln \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta}$
(f) $\ln \prod_{i=1}^{n} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} e^{-x_{i} / \beta} x_{i}^{\alpha-1}$
(g) $\ln \prod_{i=1}^{n} \frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} e^{-x_{i} / 2} x_{i}^{\nu / 2-1}$
(h) $\ln \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}$
14. For each of the following distributions, derive a general expression for the Maximum Likelihood Estimator (MLE). Carry out the second derivative test to make sure you really have a maximum. Then use the data to calculate a numerical estimate.
(a) $p(x)=\theta(1-\theta)^{x}$ for $x=0,1, \ldots$, where $0<\theta<1$. Data: 4, $0,1,0,1,3$, 2, 16, 3, 0, 4, 3, 6, 16, 0, 0, 1, 1, 6, 10. Answer: 0.2061856
(b) $f(x)=\frac{\alpha}{x^{\alpha+1}}$ for $x>1$, where $\alpha>0$. Data: $1.37,2.89,1.52,1.77,1.04$, $2.71,1.19,1.13,15.66,1.43$ Answer: 1.469102
(c) $f(x)=\frac{\tau}{\sqrt{2 \pi}} e^{-\frac{\tau^{2} x^{2}}{2}}$, for x real, where $\tau>0$. Data: $1.45,0.47,-3.33,0.82$, -1.59, -0.37, -1.56, -0.20 Answer: 0.6451059
(d) $f(x)=\frac{1}{\theta} e^{-x / \theta}$ for $x>0$, where $\theta>0$. Data: $0.28,1.72,0.08,1.22,1.86$, $0.62,2.44,2.48,2.96$ Answer: 1.517778

[^0]: ${ }^{1}$ This assignment was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312s19

