A bit of regression: Quick and very applied ${ }^{1}$ STA312 Fall 2022

${ }^{1}$ See last slide for copyright information.

Multiple Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, k}+\epsilon_{i}
$$

- There are k explanatory variables.
- For each combination of explanatory variables, the conditional distribution of the response variable Y_{i} is normal, with constant variance σ^{2}.
- The conditional population mean of Y_{i} depends on the x values, as follows:

$$
E\left(Y_{i} \mid x_{i, 1}, \ldots x_{i, k}\right)=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, k}
$$

"Control" means hold constant

- Regression model with four explanatory variables.
- Hold x_{1}, x_{2} and x_{4} constant at some fixed values.

$$
\begin{aligned}
E\left(Y \mid x_{1}, x_{2}, x_{3}, x_{4}\right) & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4} \\
& =\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{4} x_{4}\right)+\beta_{3} x_{3}
\end{aligned}
$$

- The equation of a straight line with slope β_{3}.

■ Values of x_{1}, x_{2} and x_{4} affect only the intercept.
■ So β_{3} is the rate at which $E(Y \mid \mathbf{x})$ changes as a function of x_{3} with all other variables held constant at fixed levels.

- According to the model.

More vocabulary

$E\left(Y \mid x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{4} x_{4}\right)+\beta_{3} x_{3}$

■ If $\beta_{3}>0$, describe the relationship between x_{3} and (expected) y as "positive," controlling for the other variables. If $\beta_{3}<0$, negative.
■ Useful ways of saying "controlling for" or "holding constant" include

- Allowing for
- Correcting for
- Taking into account

Partitioning Sums of Squares

$$
\begin{array}{ccccc}
S S T & = & S S R & + & \text { SSE } \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2} & +\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
\end{array}
$$

$$
R^{2}=\frac{S S R}{S S T}
$$

Categorical Explanatory Variables

Unordered categories

- $X=1$ means Drug, $X=0$ means Placebo.
- Population mean is $E(Y \mid X=x)=\beta_{0}+\beta_{1} x$.
- For patients getting the drug, mean response is $E(Y \mid X=1)=\beta_{0}+\beta_{1}$
- For patients getting the placebo, mean response is $E(Y \mid X=0)=\beta_{0}$
- And β_{1} is the difference between means, the average treatment effect.

More than Two Categories

Suppose a study has 3 treatment conditions. For example Group 1 gets Drug 1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that the explanatory variable is Group (taking values $1,2,3$) and there is some response variable Y (maybe response to drug again).

Why is $E(Y \mid X=x)=\beta_{0}+\beta_{1} x$ (with $x=$ Group) a silly model?

Indicator Dummy Variables

With intercept

- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise

■ $E\left(Y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.

- Fill in the table.

Drug	x_{1}	x_{2}	$E\left(Y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A			$\mu_{1}=$
B			$\mu_{2}=$
Placebo			$\mu_{3}=$

Answer

- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise

■ $E\left(Y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.

Drug	x_{1}	x_{2}	$E\left(Y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A	1	0	$\mu_{1}=\beta_{0}+\beta_{1}$
B	0	1	$\mu_{2}=\beta_{0}+\beta_{2}$
Placebo	0	0	$\mu_{3}=\beta_{0}$

Regression coefficients are contrasts with the category that has no indicator - the reference category.

Indicator dummy variable coding with intercept

- With an intercept in the model, need $p-1$ indicators to represent a categorical explanatory variable with p categories.
■ If you use p dummy variables and an intercept, trouble.
- Regression coefficients are differences from the category that has no indicator.
- Call this the reference category.

What null hypotheses would you test?

Drug	x_{1}	x_{2}	$E\left(Y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A	1	0	$\mu_{1}=\beta_{0}+\beta_{1}$
B	0	1	$\mu_{2}=\beta_{0}+\beta_{2}$
Placebo	0	0	$\mu_{3}=\beta_{0}$

- Is the effect of Drug A different from the placebo? $H_{0}: \beta_{1}=0$
■ Is Drug A better than the placebo? $H_{0}: \beta_{1}=0$
■ Did Drug B work? $H_{0}: \beta_{2}=0$
■ Did experimental treatment have an effect?
$H_{0}: \beta_{1}=\beta_{2}=0$
■ Is there a difference between the effects of $\operatorname{Drug} A$ and Drug B ? $H_{0}: \beta_{1}=\beta_{2}$

Now add a quantitative explanatory variable (covariate)

 Covariates often come first in the regression equation- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise
- $x_{3}=$ Age

■ $E\left(Y \mid x_{1}, x_{2}, x_{3}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$.

Drug	x_{1}	x_{2}	$E(Y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

Parallel regression lines.

More comments

Drug	x_{1}	x_{2}	$E\left(Y \mid x_{1}, x_{2}, x_{3}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

- If more than one covariate, parallel regression planes.
- Non-parallel (interaction) is testable.
- "Controlling" interpretation holds.
- In an experimental study, quantitative covariates are usually just observed.
- Could age be related to drug if there is random assignment to drug?
- Good covariates reduce MSE, make testing of categorical variables more sensitive.

Hypothesis Testing

■ Overall F-test for all the explanatory variables at once $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$

- t-tests for each regression coefficient: Controlling for all the others, does that explanatory variable matter? $H_{0}: \beta_{j}=0$
- Test a collection of explanatory variables controlling for another collection $H_{0}: \beta_{2}=\beta_{3}=\beta_{5}=0$
- Example: Controlling for mother's education and father's education, are (any of) total family income, assessed value of home and total market value of all vehicles owned by the family related to High School GPA?
- Most general: Testing whether sets of linear combinations of regression coefficients differ from specified constants. $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{h}$.

t-tests and confidence intervals

$\widehat{\beta}_{j}$ are normally distributed.

$$
t=\frac{\widehat{\beta}_{j}-\beta_{j}}{s e_{\widehat{\beta}_{j}}} \sim t(n-k-1)
$$

Full versus Restricted Model

Restricted by H_{0}

- You have 2 sets of variables, A and B. Want to test B controlling for A.
■ Fit a model with both A and B : Call it the Full Model, or the Unrestricted Model.
- Fit a model with just A : Call it the Restricted Model. $R_{F}^{2} \geq R_{R}^{2}$.
- The F-test is a likelihood ratio test (exact).

When you add the r additional explanatory variables in set B, R^{2} can only go up

By how much? Basis of the F test.

$$
\begin{aligned}
F & =\frac{\left(R_{F}^{2}-R_{R}^{2}\right) / r}{\left(1-R_{F}^{2}\right) /(n-k-1)} \\
& =\frac{\left(S S R_{F}-S S R_{R}\right) / r}{M S E_{F}} \stackrel{H_{0}}{\sim} F(r, n-k-1)
\end{aligned}
$$

General Linear Test of $H_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{h}$

\mathbf{L} is $r \times p$, rows linearly independent

$$
\begin{aligned}
& F=\frac{(\mathbf{L} \widehat{\boldsymbol{\beta}}-\mathbf{h})^{\top}\left(\mathbf{L}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{L}^{\top}\right)^{-1}(\mathbf{L} \widehat{\boldsymbol{\beta}}-\mathbf{h})}{r M S E_{F}} \\
& \stackrel{H_{0}}{\sim} F(r, n-k-1)
\end{aligned}
$$

Equal to full-restricted formula.

Copyright Information

This document was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{EA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/312f22

