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Within Cases

Independent Observations

e Most statistical models assume independent observations.
e Sometimes the assumption of independence is unreasonable.

o For example, times series and within cases designs.
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A study can have both within cases and between cases factors.
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Within Cases

You may hear terms like

o Longitudinal: The same variables are measured repeatedly
over time. Usually lots of variables, including categorical ones,
and large samples. If there’s an experimental treatment, its
usually once at the beginning, like a surgery. Basically its
tracking what happens over time.

o Repeated measures: Usually, same subjects experience two

or more experimental treatments. Usually categorical
explanatory variables and small samples.
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Random Effects

General Mixed Linear Model

y = X8 + Zb + €

X is an n X p matrix of known constants.

(]

B is a p x 1 vector of unknown constants.

Z is an n X ¢ matrix of known constants.
b ~ N,(0,3;) with 3, unknown but often diagonal.

€ ~ N(0,021,,) , where 02 > 0 is an unknown constant.



Random Effects

Random vs. fixed effects

y = X8 +Zb + €

o Elements of 3 are called fixed effects.
o Elements of b are called random effects.
@ Models with both are called mixzed.
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Main application of random effects models

A random factor is one in which the values of the factor are a
random sample from a populations of values.

o Randomly select 20 fast food outlets, survey customers in each
about quality of the fries. Outlet is a random effects factor
with 20 values. Amount of salt would be a fixed effects factor.

o Randomly select 10 schools, test students at each school.
School is a random effects factor with 10 values.

e Randomly select 15 homeopathic medicines for arthritis (there
are quite a few), and then randomly assign arthritis patients
to try them. Drug is a random effects factor.

o Randomly select 15 lakes. In each lake, measure how clear the
water is at 20 randomly chosen points. Lake is a random
effects factor.
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Random Effects

One random factor

A nice simple example

Randomly select 5 farms.

Randomly select 10 cows from each farm, milk them, and
record the amount of milk from each one.

The one random factor is Farm.
Total n = 50

The idea is that “Farm” is a kind of random shock that pushes all
the amounts of milk in a particular farm up or down by the same
amount.
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Random Effects

Farm is a random shock

Yij=p+ 7+ €,

where

1 is an unknown constant parameter.

7; ~ N(0,02)

€ij ~ N(0,0?)

7; and ¢€;; are all independent.

02 >0 and 02 > 0 are unknown parameters.

i=1,...qand j=1,...,k

There are ¢ = 5 farms and k£ = 10 cows from each farm.

10 / 26



Random Effects

General Mixed Linear Model Notation

Yiji = p+7+e;
Y = X3 + Zb + €

Vi, 1 1000 0 €11
Yio 1 10000 g €10
Yis 1 10000 72 €L
| = () + | . o+

: iy
Yso 1 0000 1]\, €59
Ys.10 1 00001 €5.10



Random Effects

Distribution of Y;; = ,u + T - €ij

t=1,...10 cows and j =1, 5 farms

o Yij ~ N(j1,02 + 0?)

o Cov(Yy;,Y; ) = ol for j # j'

o Cov(Y;;, Yy ;) =0 for i #4'

™)



Random Effects

Classical approach: Skipping lots of details

o Distribution theory.
Components of variance.
Testing Hp : 02 = 0.
Extension to mixed models.
Nested effects.

@ Choice of F' statistics based on expected mean squares.

13 /26
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Random Effects

Repeated measures

Another way to describe within-cases

@ Sometimes an individual is tested under more than one
condition, and contributes a response for each value of a
categorical explanatory variable.

@ One can view “subject” as just another random effects factor,
because subjects supposedly were randomly sampled.

@ Subject would be nested within sex, but might cross stimulus
intensity.

e This is the classical (old fashioned) way to analyze repeated
measures.



A modern approach

Problems with the classical approach

Normality matters in a serious way for the tests of random
effects.

Sometimes (especially for complicated mixed models) a valid
F-test for an effect of interest just doesn’t exist.

When sample sizes are unbalanced, everything falls apart.

(]

Hard to incorporate covariates.
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A modern approach using the general mixed linear

model

y = X8 + Zb + €

oy~ No(XB,Z5Z + 021,
o Estimate 3 as usual with (X'X)~!X'Y.

o Estimate Xj and ¢ by maximum likelihood
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A modern approach using the general mixed linear

model

y = X8 + Zb + €

oy~ No(XB,Z5Z + 021,
o Estimate 3 as usual with (X'X)~!X'Y.

o Estimate ¥j and ¢ by maximum likelihood, or by
“restricted” maximum likelihood.

16 / 26



A modern approach

Restricted maximum likelihood
For the record

y = X8 + Zb + €

o Transform y by the ¢ x n matrix K.

@ The rows of K are orthoganal to the columns of X, meaning
KX =0.
@ Then

Ky = KXB+KZb+Ke
KZb + Ke
~ N(0,KZX,Z'K' 4 0’KK')

Estimate 3, and 02 by maximum likelihood.

A big theorem says the resulting “restricted” MLE does not
depend on the choice of K.



A modern approach

Nice results from restricted maximum likelihood

o I statistics that correspond to the classical ones for balanced
designs.

o For unbalanced designs, “F statistics” that are actually
excellent F' approximations — not quite F', but very close.

o R’s nlme4 package and SAS proc mixed.
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Random Intercept Models for Within-cases

@ Drop the complicated classical mixed model machinery.
@ Retain the basic good idea.

e Each subject (person, case) contributes an individual shock
that pushes all the data values from that person up or down
by the same amount.
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Random Intercept Models for Within-cases

Drop the complicated classical mixed model machinery.

Retain the basic good idea.

(]

Each subject (person, case) contributes an individual shock
that pushes all the data values from that person up or down
by the same amount.

e Because cases are randomly sampled (pretend), it’s a random
shock.

This is still a mixed model, but it’s much simpler.

19 / 26
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Females and males carry out a discrimination task under 3 levels
of background noise. Each subject contributes a discrimination
score at each noise level.

o It’s a 2 x 3 factorial design.
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o Model:
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= (Bo+bi) + Bisi + Badij1 + Badij2 + Basidiji + Bssidij2 + €

You could say that the intercept is N (o, af). It’s a random
intercept.
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In matrix form: y = X8+ Zb + €
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Random Intercept Models

In matrix form: y = X8+ Zb + €

For 2 females and 2 males

Yij = Bo + Bisi + Badiji + Badijo + Pasidiji + Pssidij + bi + €

Yiu 1 1 1 0 1 o0

Yio 1 1 0 1 0 1

Yis 1 1 -1 -1 -1 -1

Yor 1 1 1 0 1 o0 Bo
Yao 1 1 0 1 0 1 8
Yas | |1 1 -1 -1 -1 41 B2
Yoo |71 -1 1 0o -1 o0 g |
Yao 1 -1 0 1 0 -1 B4
Ya3 1 -1 -1 -1 1 1 Bs
Yu 1 -1 1 0 -1

Yio 1 -1 0 1 0 -1

Yis 1 -1 -1 -1 1 1
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Continuing y = X3 + Zb + €
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Continuing y = X3 + Zb + €

Y11
Y12
Y13
Yo1
Yoo
Ya3
Y31
Y32
Y33
Y
Yyo
Y3

=XB+

where cov(b) = o?1,.
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Random Intercept Models

€11

€13
€21
€22
€23
€31
€32
€33
€41
€42
€43




1med
Linear Mixed Effects Models




1med
Linear Mixed Effects Models

e Download and install the package.
@ The 1mer function acts like an extended version of 1m.

o We will use just a fraction of its capabilities.
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Syntax

noisel = lmer(discrim ~ sex*noise + (1 | ident))

@ Response variable ~ Fixed effects + (Random effects)
@ sex*noise is short for sex + noise + sex:noise.
e Specification of fixed effects is like 1m.

e Specification of random effects looks like (A|B).

o A is 1m-like syntax for the random effects.
o It creates the Z matrix in y = X3 + Zb + €.
o With a new independent copy for every value of B.
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@ Reaction time tested every day for days 0-9 of sleep
deprivation.

o Ten observations on each of 18 subjects.

@ Roughly linear, and each subject has her own slope and
intercept.
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Another example

Compare noisel = lmer(discrim ~ sex*noise + (1 | ident))

@ Reaction time tested every day for days 0-9 of sleep
deprivation.

o Ten observations on each of 18 subjects.

@ Roughly linear, and each subject has her own slope and
intercept.

Reaction ~ Days + (Days | Subject)

Random slope and intercept.
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This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any
part of it as you like and share the result freely. The IATEX source
code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/312£22
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