Multinomial Distribution

Bernoulli: : $p(y)=\pi^{y}(1-\pi)^{1-y}, y=0,1$
Binomial: $p(y)=\binom{n}{y} \pi^{s}(1-\pi)^{n-s}$

$$
b=0,1, \ldots, n
$$

$$
Y \sim B(n, \pi)
$$

Multinomial
Statistical experiment with coutcomos.
Repeat independently n times
$P_{n}($ Outcome $j)=\pi j$, for $j=1, \ldots, c$
\# of times outcome; occurs is n_{j} for $j=1, \ldots, c$
Intreger-valued multivariate distribution joint distribution of

$$
n_{1}, n_{2}, \ldots n_{c}
$$

Multinomial coefficiail

Have n objects. \# of ways to label An, as type 1
n_{2} as type 2
n_{c} is type is

$$
\left(\begin{array}{cc}
n & \\
n_{1} n_{2} \cdots & n_{c}
\end{array}\right)=\frac{n!}{n_{1!} n_{2}!\cdots n_{c}!}
$$

Ex of 30 graduating students, how many ways are there for 15 to be employed in a job related to their field of study 10 employed in unrelated field, \& 5 unemplayed

$$
\binom{30}{15105}=\begin{aligned}
& \frac{30!}{15!10!5!} \\
& =465,817,912,560
\end{aligned}
$$

Multinomial distribution
Denote by $M(n, \pi)$

$$
\begin{aligned}
& \pi=\left(\pi, \pi_{2} \ldots \pi_{c}\right) \\
& \underset{\sim}{n}=\left(n_{1}, n_{2}, \ldots n_{c}\right) \quad n \sim \mu(n, \pi) \\
& P\left(n_{1}, \cdots, n_{c}\right)=\binom{n}{n_{1} n_{2} \cdots n_{1}} \pi_{1}^{n_{1}} \pi_{2}^{n_{2}} \ldots \pi_{c}^{n_{c}}
\end{aligned}
$$

Whee

$$
\sum_{j=1}^{c} \pi_{j}=1 \quad \text { and } \quad \sum_{j=1}^{c} n_{j}=n
$$

Example of 10 people at a qadvation party what is the prob that I yea later

$$
4 \text { single }
$$

$3 \begin{array}{ll}3 & \text { Married } \\ 2 & \text { Ponced }\end{array}$

$$
P\left(\text { SSSSMMMDDW) }=\pi_{1}^{4} \pi_{2}^{3} \pi_{3}^{2} \pi_{4}^{1}\right.
$$ Ten slots to pot letters in

$$
P(4,3,2,1)=\left(\begin{array}{c}
10 \\
4 \\
32
\end{array}\right) \pi_{1}^{4} \pi_{2}^{3} \pi_{3}^{2} \pi_{4}
$$

MuItinomial Distribution
statistic a Eyperimoul with c outcomes
Repeated n times
$P_{n}($ outcome $) \pi_{j}, j=1, \ldots, c$
\# of times outcome; happens is $n j, j=1, \ldots, c$

$$
\begin{aligned}
& P\left(n_{1}, \ldots, n_{c}\right)=\left(n_{1} n_{2}^{n} \cdots n_{c}\right) \pi_{!}^{n_{1}} \pi_{2}^{n_{2}} \cdots \pi_{c}^{n_{c}}, \\
& 0 \leq n_{j} \leq n, \quad 0<\pi_{j}<1, \sum_{j=1}^{c} \pi_{j}=1, \sum_{j=1}^{c} n_{j}=n
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \begin{array}{l}
\text { or }\left(n_{1}, n_{2}, \ldots n_{c-1}\right)=\frac{n!}{n!!n_{2}!\cdots n_{c-1}!\left(n-\sum_{j=1}^{c-1} n_{j}\right)!} \\
\quad x \pi_{1}^{n_{1}} \pi_{2}^{n_{2}} \cdots \pi_{c-1}^{n_{c-1}}\left(1-\sum_{j=1}^{c-1} \pi_{j}\right)^{n-\sum_{j=1}^{c-1} n_{j}}
\end{array}
\end{aligned}
$$

Can combine categories, adding Rrobab, lies, \& result is still multinomial.

For 2 categories Get Binomial.

$$
\begin{gathered}
P\left(n_{1}, n_{2}\right)=\frac{n!}{\left.n_{1}!n_{2}\right)} \pi_{1}^{n}(1-\pi)^{n-n_{1}} \\
\uparrow \quad \text { Binomial) } \\
\left(n-n_{1}\right) \quad
\end{gathered}
$$

Eypecteel value
Valcincs
$n \pi$

$$
n \pi,(1-\pi, 1
$$

Sample problem
Suppose that for recent university pladuates

- P (Job related to field of study $)=0.6$
- $P($ Job unrelated to field of stucleg $)=0.3$
- $P\left(N_{0} j_{0} b\right)$

Of 30 randomly chosen students, what is the probability that
a) 15 are employed in a job refutal to field of study, 10 are employed in a jud unselutel to their fit of studly, anal 5 are unemployed?

$$
\left.\begin{array}{l}
\frac{30!}{15!10!5!}(0.6)^{15}(0.3)^{10}(0.1)^{5} \cong 0.0129 \\
\text { dmultinom }(c(15,10,5), \text { prob }
\end{array}=(0.6, .3, .1)\right)
$$

b) Exactly 5 are unemployed? Binomial

$$
\binom{30}{5}(.1)^{5}(.9)^{25}=0.1023
$$

Conditional Rrobabilitios are also multinomial

- Given that a stuclent finds a job, what is the probability that it is in her field of study?

$$
\begin{aligned}
P\left(\text { Field } \mid J_{o b}\right) & \left.=\frac{P(\text { Field } \cap J o b)_{P(J O B)}}{} \begin{array}{rl}
.6+.3 & =\frac{2}{3}
\end{array}\right)
\end{aligned}
$$

- Suppose we choose 50 students at random from those who found jobs. What is the Probability that exactly y of them will bo employed in their field of study?

$$
P(y)=\binom{50}{y}\left(\frac{2}{3}\right)^{y}\left(\frac{1}{3}\right)^{50-y}
$$

for $y=0, \ldots 50$

Estimation

$$
\begin{aligned}
& 1=\text { Field } \\
& 2=00+\text { of Frill }
\end{aligned}
$$

Hypothetical Data Fils $3=$ wo job

Case	Jun	y_{1}	y_{2}	y_{3}
1	1	1	0	0
2	3	0	0	1
3	2	0	1	0
1	\vdots	\vdots	\vdots	\vdots
n	2	0	1	0
$n_{1} \quad n_{2}$				
n_{3}				

$$
\sum_{i=1}^{n} y_{i j}=n_{j} \quad \text { Add down columns }
$$

$$
\left(\pi_{1} \pi_{2} \pi_{3}\right)
$$

Causes (n of them) are inclepenclent $M(1, \pi)$

$$
E\left(y_{j}\right)=\pi_{j}
$$

Column totals count \# of time each outcome occurs in n independent tricils $\left(\pi, \pi_{2} \pi_{3}\right)$ Their joint distribution is $M\left(n, \frac{\pi}{\pi}\right)$
If you make a frequency table... n; are cell frequencies

Cell frequencies: Joint clist is
multinomiol

Each individual frequency is Binomial

$$
B\left(n, \pi_{j}\right)
$$

Job Category	Freq	0
Employed in Field	106	53
Employed outside Field	74	37
unemployed	20	10
Total	200	100

Litiel,hood Function

$$
\begin{aligned}
l(\pi) & =\prod_{i=1}^{n} P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots r_{c}=y_{c} j \pi\right) \\
& =\prod_{i=1}^{n} \pi_{1}^{y_{i 1}} \pi_{2}^{y_{i 2}} \ldots \pi_{c}^{y_{i c}} \\
& =\pi_{1}^{n} \sum_{i=1}^{n} \pi_{i}^{n} \sum_{2}^{n} y_{2} \ldots \pi_{c}^{\sum_{i=1}^{n} y_{1, c}} \\
& =\pi_{1}^{n_{1}} \pi_{2}^{n_{2}} \ldots \pi_{c}^{n_{c}}
\end{aligned}
$$

Likelihood for mu ltinomial

$$
l(\pi)=l=\pi_{1}^{n_{1}} \pi_{2}^{n_{2}} \cdots \pi_{c}^{n_{c}}
$$

Want MLE of $\left(\pi_{1}, \ldots \pi_{c}\right)$

$$
\begin{aligned}
& \frac{\partial}{\partial \pi_{k}} \log l=\frac{\partial}{\partial \pi_{k}} \log \left(\pi_{1}^{n_{1}} \pi_{2}^{n_{2}} \ldots \pi_{c-1}^{n_{c-1}}\left(1-\sum_{j=1}^{c-1} \pi_{j}\right)^{n_{c}}\right) \\
& =\frac{\partial}{\partial \pi_{n}}\left(\sum_{j=1}^{c-1} n_{j} \log \pi_{j}+n_{c} \log \left(1-\sum_{j=1}^{c-1} \pi_{j}\right)\right) \\
& =\frac{n_{k}}{\pi_{k}}+\frac{n_{c}}{1-\sum_{j=1}^{c-1} \pi_{i}}(-1) \frac{\pi_{k}+\cdots}{\frac{\pi_{k}}{\pi_{k}}}=1 \\
& \frac{n_{k}}{\pi_{k}}=\frac{n_{c}}{\pi_{c}} \quad \text { for } k=1, \ldots, c-1 \\
& \frac{n_{1}}{\pi_{1}}=\frac{n_{2}}{\pi_{2}}=\cdots=\frac{n_{c}}{\pi_{c}} \quad \text { so } \\
& \frac{n_{1}}{\pi_{1}}=\frac{n_{2}}{\pi_{2}} \Rightarrow n_{1} \pi_{2}=n_{2} \pi_{1} \Rightarrow \pi_{2}=\frac{n_{2}}{n_{1}} \pi_{1} \\
& \pi_{3}=\frac{n_{3}}{n_{1}} \pi \text {, } \\
& \pi_{4}=\frac{n_{4}}{n_{1}} \pi \text {, } \\
& \pi_{c}=\frac{n_{c}}{n_{1}} \pi_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}+\pi_{2}+\cdots+\pi_{c}=1 \text { so } \\
& n_{1} \tilde{n}_{1} \pi_{1}+\sum_{j=2}^{c} \frac{n_{j} \pi_{1}}{n_{1}}=1 \\
& =\frac{\pi_{1}}{n_{1}}+n_{1}+\sum_{j=2}^{c} n_{j}=n \\
& \Rightarrow \pi_{1}=\frac{n_{1}}{n}=p_{1} \\
& \uparrow_{2}=\frac{n_{2}}{n_{1}} \pi_{1}=\frac{n_{2}}{n_{1}} \frac{n_{1}}{n}=\frac{n_{2}}{n}=p_{2} \\
& \pi_{3}=\frac{n_{3}}{n_{1}} \pi_{1}=\frac{n_{3}}{n_{1}} \frac{n_{1}}{n}=\frac{n_{3}}{n}=P_{3} \\
& \pi_{c}=\frac{n_{c}}{n_{1}} \pi_{1}=\frac{n_{c}}{y_{1}} \frac{H_{1}}{n}=\frac{n_{c}}{n} P_{c} \\
& n_{k} \sim B\left(n, \pi_{k}\right) \quad P_{k}=\frac{n_{k}}{n}=\bar{y} k \\
& \text { CLT says } \bar{y} \dot{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right) \text {, so } \\
& P_{k} \sim N\left(\pi_{k}, \frac{\pi_{k}\left(1-\pi_{k}\right)}{n}\right)
\end{aligned}
$$

Job Category
Employed in Field
Employed outside Field
Unemployed
Total
Frequency
Pence
53
74

Find a 95% confidence interval or proportion unemployed.
using $p_{e} \dot{\sim} N\left(\pi_{n}, \frac{\pi_{2}\left(1-\pi_{r}\right)}{n}\right), C I$ is

$$
\begin{aligned}
& P_{k} \pm 1.96 \sqrt{\frac{P_{k}\left(1-P_{e}\right)}{h}}=0.1 \pm 1.96 \sqrt{\frac{0.1(1-0.1)}{200}} \\
&=0.1 \pm 0.042 \quad \sigma(0.058,0.142)
\end{aligned}
$$

Hypo the sis tests

- Likelihood ratio tests
- Pearson Chi-squared Lest

Withelihood Ratio tests in general Model $y_{1}, \ldots g_{n}$ id $F_{\beta}, \beta \in Q_{\Lambda}$
parameter space
Parameter space is the set of values the parameter (a parameter vector) can take.

Bernoulli: $\beta=\pi, \theta=(0,1)=\{\pi: 0<\pi<1\}$
Poisson(λ): $\beta=\lambda, \boldsymbol{\theta}=(0, \infty)=\{\lambda!\lambda>0\}$

$$
\begin{aligned}
& \left.\operatorname{Normul}\left(\mu, \sigma^{2}\right) \beta=\left(\mu, \sigma^{2}\right), Q=\left\{\left(\mu, \sigma^{2}\right):-\infty<\mu<\infty, \sigma\right\} 0\right\}
\end{aligned}
$$

Null Hypothesis $H_{0}: \beta \in \Theta_{0}$ vs $H,: \beta \in B$,

$$
B_{0} \cup B_{1}=B, B_{0} \cap B_{1}=\varnothing
$$

Example: Normal data $H_{0}: \mu=0$

$$
B_{0}=\left\{\left(\mu, \sigma^{2}\right): \mu=0, \sigma^{2}>_{0}\right\}
$$

Ho: $\beta \in B_{0}$ D. 2 ML prod lems Max $\ell(\beta)$ over whole parameter space B $\max \ell(\beta)$ over just B_{0}
Form the ratio $\frac{\operatorname{Marr}_{\beta \in B_{0}} l(\beta)}{\operatorname{Mar} \ell(\beta)} \leq 1$
If a Lot less ta on one, H_{0} is questionable Test statistic $G^{2}=-2 \log \frac{\max _{\beta \in \infty_{0}} l(\beta)}{\substack{\max _{\beta} \ell(\beta)}}$
Small $L R, \log$ is bis neg $\#,-2$ makes it large positive \#.
Under some conditions when H_{0} is true,

$$
\sigma^{2} \dot{\sim} x^{2}(d f=\ldots)
$$

$d f=\#$ of (non-redundant) constraints on β imposed by H_{0}.
Suppose $y, \ldots y_{n} \sim N\left(\mu, \sigma^{2}\right) \quad H_{0}: \mu=\mu_{0}$
one constnain'l
Regression $\beta_{1}=\beta_{2}=\beta_{3}=0 \quad 3$ constraints
For ex $M\left(1,\left(\pi_{1} \pi_{2} \pi_{3} \pi_{4}\right)\right)$

$$
H_{0}: \pi_{1}=\pi_{2}=\pi_{3}=\pi_{4}=\frac{1}{4}
$$

One factor AnovA (3 trent mounts)

$$
\begin{array}{r}
H_{0} \mu_{1}=\mu_{2}=\mu_{3} \quad 2 \text { constra/ils } \\
\mu_{1}=\mu_{2}, \mu_{1}=\mu_{3}, \mu_{2}=\mu_{3}
\end{array}
$$

π con strains

Example

University administrators recognize that the percentage of students who are unemployed after graduation will vary depending upon economic conditions, but they claim that still, about twice as many students will be employed in a job related to their field of study, compared to those who get an unrelated job. To test this hypothesis, they select a random sample of 200 students from the most recent class, and observe 106 employed in a job related to their field of study, 74 employed in a job unrelated to their field of study, and 20 unemployed. Test the hypothesis using a large-sample likelihood ratio test and the usual 0.05 significance level State your conclusions in symbols and words.

What is the model

$$
y_{1}, \ldots y_{200} \text { ied } M\left(1,\left(\pi, n_{2} t_{3}\right)\right)
$$

What is $H_{0} \geq H_{0}: \pi_{1}=2 \pi_{2}$ $d f ?$

What is the parameter space B ?
Remamaa, one parameter is redunclat. there ap 2 unknown parameters.

$$
B=\left\{\left(\pi_{1}, \pi_{2}\right): 0<\pi_{1}<1,0<\pi_{2}<1,\right\}
$$

Draw it.
$\pi_{1}+\pi_{2}=1$

What in the unrestricted MLE. Just units it down.

$$
\begin{aligned}
\underset{\sim}{p}=\left(\frac{n_{1}}{n}, \frac{n_{2}}{n}, \frac{n_{3}}{n}\right) & =\left(\frac{106}{200}, \frac{74}{200}, \frac{20}{200}\right) \\
& =(0.53,0.37,0.10)
\end{aligned}
$$

Derive the restricted MCE. Your answa is a symbolic expression. It's a vector. Show your worth.
There's really only one untinoun. In B.

$$
\begin{aligned}
& l(\pi)=\left(2 \pi_{2}\right)^{n_{1}} \pi_{2}^{n_{2}}\left(1-2 \pi_{2}-\pi_{2}\right)^{n_{3}} \\
& \frac{\partial}{\partial \pi_{2}}\left(n_{1} \log \left(2 \pi_{2}\right)+n_{2} \log \pi_{2}+n_{3} \log \left(1-3 \pi_{2}\right)\right) \\
& \frac{\partial}{\partial \pi_{2}}\left(n_{1} \log 2+n_{1} \log \pi_{2}+n_{2} \log \pi_{2}+n_{3} \log \left(1-3 \pi_{2}\right)\right) \\
& =\frac{\partial}{\partial \pi_{2}}\left(n_{1} \log 2+\left(n_{1}+n_{2}\right) \log \pi_{2}+n_{3} \log \left(1-3 \pi_{2}\right)\right) \\
& =0+\frac{n_{1}+n_{2}}{\pi_{2}}+\frac{n_{3}}{1-3 \pi_{2}}(-3) \stackrel{\operatorname{set}}{=} 0 \\
& \\
& \frac{n_{1}+n_{2}}{\pi_{2}}=\frac{3 n_{3}}{1-3 \pi_{2}} \Leftrightarrow n_{1}+n_{2}-3\left(n_{1}+n_{2}\right) \pi_{2}=3 n_{3} \pi_{2} \\
& \Rightarrow n_{1}+n_{2}=3 \pi_{2}\left(n_{1}+n_{2}+n_{3}\right) \Rightarrow \pi_{2}=\frac{n_{1}+n_{2}}{3 n}
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2} & =\frac{n_{1}+n_{2}}{3 n}, \pi_{1}=2 \pi_{2}=\frac{2\left(n_{1}+n_{2}\right)}{3 n} \\
\pi_{3} & =1-\pi_{1}-\pi_{2}=1-\frac{n_{1}+n_{2}}{3 n}-\frac{2\left(n_{1}+n_{2}\right)}{3 n} \\
& =1-\frac{\beta\left(n_{1}+n_{2}\right)}{3 n}=\frac{n}{n}-\frac{n_{1}+n_{2}}{n} \\
& =\frac{n-n_{1}-n_{2}}{n}=\left(\frac{n_{3}}{n}=p_{3}\right. \\
\tilde{\pi} & =\left(\frac{2\left(n_{1}+n_{2}\right)}{3 n}, \frac{n_{1}+n_{2}}{3 n}, \frac{n_{3}}{n}\right)
\end{aligned}
$$

calculate G^{2}. Show your worl

$$
\begin{aligned}
& \begin{aligned}
G^{2} & =-2 \log \frac{\hat{\pi}_{1}^{n_{1}} \hat{\pi}_{2}^{n_{2}} / \hat{\pi}_{3}^{n_{3}} p_{1}^{p_{1}} p_{2}^{n_{2}}\left(p_{3}^{n_{3}}\right.}{}{ }^{0} \text { r } \\
& =-21 r_{1}
\end{aligned} \\
& \begin{array}{l}
=-2 \log \left(\left(\frac{\pi_{1} i_{1} n_{1}}{p_{1}}\left(\frac{\hat{\pi}_{2}}{p_{2}}\right)^{n_{2}}\right)\right. \\
=-2\left(n_{1}\right)
\end{array} \\
& =-2\left(n_{1} \log \frac{\hat{\pi}_{1}}{p_{1}}+n_{2} \log \frac{\tilde{\pi}_{2}}{p_{2}}\right) \\
& =-2\left(106 \log \frac{0.6}{0.53}+74 \log \frac{0.3}{0.37}\right) \\
& =4.739 \text { gchisf }(0.95,1)=3.841
\end{aligned}
$$

Job related to field of study is less lithely than prediction from theory.

This derivation is cleaner than the way I did it in lecture

Express G^{2} in terms of observal and expected frequencies.
From the formula sheet

$$
\begin{aligned}
\sigma^{2} & =-2 \log \frac{l\left(\hat{\beta}_{0}\right)}{l(\hat{\beta})}=-2 \log \frac{l\left(\frac{\pi}{\pi}\right)}{l(\rho)} \\
& =2 \log \left(\frac{l(\pi)}{l(p)}\right)^{-1}=2 \log \frac{l(p)}{l\left(\hat{\pi}^{\prime}\right)} \\
& =2 \log \frac{p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{c}^{n_{c}}}{\hat{\pi}_{i}^{n_{1}} \hat{\pi}_{2}^{n_{2}} \cdots \hat{\pi}_{c}^{n_{c}}}=2 \log \left(\left(\frac{p_{1}}{\pi_{1}}\right)^{n_{1}} \cdots\left(\frac{p_{c}}{\hat{\pi}_{c}}\right)^{n_{c}}\right. \\
& =2 \sum_{j=1}^{c} \log \left(\frac{p_{j}}{\hat{\pi}_{j}}\right)^{n_{j}}=2 \sum_{j=1}^{c} n_{j} \log \frac{p_{j}}{\pi_{j}} \\
& =2 \sum_{j=1}^{c} n ; \log \frac{n_{j}}{n_{i} \pi_{j}}=2 \sum_{j=1}^{c} n_{j} \log \frac{n_{j}}{\hat{\mu}_{j}}
\end{aligned}
$$

Pearson Chisquared

$$
\begin{aligned}
& X^{2}=\sum_{j=1}^{c} \frac{\left(n_{j}-\hat{\mu}_{j}\right)^{2}}{\hat{\mu}_{j}} \text { when } \hat{\mu}_{j}=n \tilde{\pi}_{j} \\
& G^{2}=2 \sum_{j=1}^{c} n_{j} \log \left(\frac{n_{j}}{\mu_{j}}\right)
\end{aligned}
$$

Same of: Determined by H_{0}
For jobs data

$$
\begin{aligned}
& \text { For jobs data } \\
& \begin{aligned}
X^{2} & =\frac{(106-120)^{2}}{120}+\frac{(74-60)^{2}}{60}+0 \\
& =4.9 \quad\left(\text { compare } G^{2}=4.74\right)
\end{aligned}
\end{aligned}
$$

Job Category	Observed Frequency	Expected Frequency
Employed in field	106	120
Employed outside field	74	60
Unemployed	20	20

Likelihood Ratio Test

$$
G^{2}=2 \sum_{j=1}^{c} n_{j} \log \left(\frac{n_{j}}{\widehat{\mu}_{j}}\right)
$$

```
>m(list=ls())
> n_j = c(106,74,20); n = sum(n_j)
> pihat_j = c(0.6,0.3,0.1); muhat_j = n * pihat_j
> G2 = 2 * sum(n_j*log(n_j/muhat_j)); G2
```

[1] 4.739477
> critval $=$ qchisq($0.95, \mathrm{df}=1$); critval \# Also on the formula sheet
[1] 3.841459
$>$ pval $=1$-pchisq(G2,df=1); pval
[1] $0.02947803<0.05$

Pearson Chi-squared Test

$$
X^{2}=\sum_{j=1}^{c} \frac{\left(n_{j}-\widehat{\mu}_{j}\right)^{2}}{\widehat{\mu}_{j}}
$$

```
> X2 = sum((n_j-muhat_j) -2/muhat_j); X2
[1] }4.
> pval = 1-pchisq(X2,df=1); pval
[1] 0.0268567
```

Rules of thumb

$$
\theta^{2}
$$

is otway

$$
11
$$

$$
"
$$

Is a die fair? Sample questions
Roll the die 300 times and observe these frequencies:

$$
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline 72 & 39 & 54 & 44 & 44 & 47 \\
\hline
\end{array}
$$

1. State a reasonable model for these data.

$$
y_{1}, \ldots y_{300} \stackrel{i i d}{=} M\left(1,\left(\pi_{1}, \ldots, \pi_{6}\right)\right)
$$

2. Without any derivation, estimate the probability of rolling a 1. Your answer is a $P_{1}^{\text {mimer }}=\frac{72}{300}=0.24$
3. Give an approximate 95% confidence interval for the probability of rolling a 1. Your answer is a set of two numbers. $u \sin s p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$

$$
\begin{aligned}
=0.24 & \pm 1.96 \sqrt{\frac{0.24 * 0.76}{300}}=0.24 \pm 0.048 \\
& =(0.192,0.288)
\end{aligned}
$$

4. What is the null hypothesis corresponding to the main question, in symbols?

$$
H_{0}: \pi_{1}=\pi_{2}=\pi_{3}=\pi_{4}=\pi_{5}=\pi_{6}
$$

5. What is the parameter space \mathcal{B} ? Remember, there are really 5 unknown parameters.

$$
B=\left\{\left(\pi_{1}, \ldots \pi_{5}\right): 0<\pi,<1, \sum_{i=1}^{5} \pi_{j}<1\right\}
$$

6. What is the restricted parameter space \mathcal{B}_{0} ?

$$
B_{0}=\left\{\left(\pi_{1}, \ldots \pi \psi_{5}\right): \pi_{1}=\pi_{2}=\pi_{3}=\pi_{4}=\pi_{5}=\frac{1}{6}\right\}
$$

$$
5
$$

8. What is the critical value of the test statistic at $\alpha=0.05$? The answer is a number. Use R.

$$
q \operatorname{chisq}(0.95,5)=11.705
$$

estimated
9. What are the expected frequencies under H_{0} ? Give 6 numbers.

$$
\begin{gathered}
\hat{\mu}_{j}=n \hat{\mu}_{;}=300 \cdot \frac{1}{6}=5 r \text {, so } \\
\begin{array}{|c|c|c|c|c|}
1 & 2 & 3 & 4 & 5 \\
\hline 50 & 50 & 50 & 50 & 50 \\
\hline
\end{array}
\end{gathered}
$$

(a) What is the value of the test statistic? Your answer is a number. Show some

$$
\begin{aligned}
G^{2}=2 & \sum_{j=1}^{c} n_{j} \log \frac{n_{j}}{n_{j}}=2\left(72 \log \frac{72}{50}+3 \log \frac{39}{50}\right. \\
& \left.+\cdots+47 \log \frac{47}{50}\right) \\
= & 13.12>11.705
\end{aligned}
$$

(b) Do you reject H_{0} at $\alpha=0.05$? Answer Yes or No.
(c) Using R, calculate the p-value.

$$
1-p \operatorname{chisq} \text { of }(13.12,5)=0.022
$$

(d) Do the data provide convincing evidence against the null hypothesis?
Yes
11. Carry out Pearson test. Answer the same questions you did for the likelihood ratio test.

$$
\begin{aligned}
\text { (a) } x^{\text {11. Carry out Pearson test. Answer the same questions you did for the likelihood ratio }} \text { test. } & \sum_{j=1}^{c} \\
& \frac{\left(n_{j}-\hat{\mu}_{j}\right)^{2}}{\hat{\mu}_{j}}=\frac{(72-50)^{2}}{50}+\frac{(39-50)^{2}}{50} \\
& +\cdots+\frac{(47-50)^{2}}{50}=14.05
\end{aligned}
$$

(b) Yes, Reject H_{0}

$$
\begin{aligned}
& \text { (c) } 1 \text {-pchisq }(14.05, d f=5)=0.015 \\
& \text { (d) Yes }
\end{aligned}
$$

12. Does the confidence interval for π_{1} allow you to reject $H_{0}: \pi_{1}=\frac{1}{6}$ at $\alpha=0.05$? Answer Yes or No. CI was (0.192,0.288) , $\frac{1}{6}=0.1667$ outside CI, So yes
13. In plain language, what do you conclude from the test corresponding to the confidence interval? (You need not actually carry out the test.)
There are more ones them dis is fair.

Chances of a ore are greater than 1/6.
14. Is there evidence that the chances of getting 2 through 6 are unequal?
(a) What is the null hypothesis?

$$
H_{0}: \pi_{2}=\pi_{3}=\pi_{4}=\pi_{5}=\pi_{6}
$$

(b) What is the restricted parameter space \mathcal{B}_{0} ? It's convenient to make the first category the residual category.

$$
B_{0}=\left\{\left(\pi_{2},-\pi_{6}\right), 0<\pi_{;}<1, \sum_{i=2}^{6} \pi_{j}<1, \pi_{2}=\pi_{3}=\ldots=\pi_{6}\right\}
$$

(c) Write the likelihood function for the restricted model. How many free parameters are there in this model?

$$
l_{0}=\left(1-5 \pi_{2}\right)^{n_{1}} \pi_{2}^{n_{2}} \pi_{2}^{n_{3}} \pi_{2}^{n_{4}} \pi_{2}^{n_{5}} \pi_{2}^{n_{6}}
$$

(d) Obtain the restricted MLE $\widehat{\boldsymbol{\pi}}$. Your final answer is a set of 6 numbers.

$$
\begin{aligned}
& \frac{\partial}{\partial \pi_{2}} \log l_{0}=\frac{\partial}{\partial \pi_{2}} \log \left(\left(1-5 \pi_{2}\right)^{n_{1}} \pi_{2}^{n-n_{1}}\right) \\
& =\frac{\partial}{2 \pi_{2}}\left(n_{1} \log \left(1-5 \pi_{2}\right)+\left(n-n_{1}\right) \log \pi_{2}\right)
\end{aligned}
$$

$$
=n_{1}(-5)
$$

$$
1-5 \pi_{2}
$$

$$
\begin{aligned}
& \Leftrightarrow \frac{5 n_{1}}{1-5 \pi_{2}}=\frac{n-n_{1}}{\pi_{2}} \\
& \Leftrightarrow 5 n_{1} \pi_{2}=n-n_{1}-5 \pi_{2}\left(n-n_{1}\right) \\
& \Leftrightarrow 5 n_{1} \pi_{2}+5\left(n-n_{1}\right) \pi_{2}=n-n_{1} \\
& \Leftrightarrow 5 \pi_{2}\left(\pi_{1}+n-\pi_{1}\right)=n-n_{1} \\
& \Leftrightarrow \pi_{2}=\frac{n-n_{1}}{5 n} \\
&=1-5 \pi_{2}=1-4 \frac{1}{4}+\frac{n_{1}}{n}=\frac{n_{1}}{n} \\
& \tilde{\pi}=\left(\frac{n, n_{1}}{n}, \frac{n-n_{1}}{5 n_{1}}, \frac{n-n_{1}}{5 n}, \frac{n-n_{1}}{5 n}\right. \\
& \approx=\left(\frac{72}{300}, \frac{228}{300},-\frac{2508}{1500}\right) \\
&=(0.24,0.152,0.152,0.152,0.152,0.152)
\end{aligned}
$$

	1	2	3	4	5	6
OHs	72	39	54	44	44	47
E $\times 0$	72	45.6	45.6	45.6	45.6	45.6

(e) Give the estimated expected frequencies $\left(\widehat{\mu}_{1}, \ldots, \widehat{\mu}_{6}\right)$.

$$
\begin{aligned}
n \underset{\sim}{\pi} & =300(0.24,0.152 \cdots, 0.152 \\
& =(72,4506,45.6,45.6 \cdots 45.6)
\end{aligned}
$$

(f) Calculate the likelihood ratio test statistic. Your answer is a number.

$$
\begin{aligned}
\sigma^{2}=2 \sum_{j=1}^{c} n_{j} \log \frac{n_{j}}{A_{j}}=2\left(72 \log \frac{72}{72}\right. & +39 \log \frac{39}{45.6} \\
& \left.+\cdots+47 \log \frac{47}{45.6}\right) \\
& =2.62
\end{aligned}
$$

(g) Do you reject H_{0} at $\alpha=0.05$? Answer Yes or No. Crt value with $d f=4$ is $9.4 \delta \delta$, so L
(h) Using R, calculate the p-value.

$$
1-\text { pchisf }(2.62,4)=0.62>0.05
$$

(i) Do the data provide convincing evidence against the null hypothesis?
No
(i) what do you conclude, in words

There is no evidence that the chances of 2 through 6 are unegcal.

