Contingency Tables: Part Two*

STA 312: Fall 2022

Suggested Reading: Chapter 2

- Read Section 2.6 about Fisher's exact test
- Read Section 2.7 about multi-dimensional tables and Simpson's paradox.

Contents

1 Testing for the Product Multinomial 1
2 Fisher's Exact Test 3
3 Tables of Higher Dimension 7

1 Testing for the Product Multinomial

Testing Association for the Product Multinomial
Prospective and retrospective designs
Prospective design:

- A conditional multinomial in each row
- I independent random samples, one for each value of X
- Likelihood is a product of I multinomials
- Null hypothesis is that all I sets of conditional probabilities are the same.

A retrospective design is just like this, but with rows and columns reversed.

[^0]Null hypothesis is no differences among the I vectors of conditional probabilities

	Attack	Stroke	Both	Neither	Total
Drug					n_{1+}
Drug and Exercise					n_{2+}
Total	n_{+1}	n_{+2}	n_{+3}	n_{+4}	n

- Both n_{1+} and n_{2+} are fixed by the design. They are sample sizes.
- Under H_{0}, MLE of the (common) conditional probability is the marginal sample proportion:

$$
\widehat{\pi}_{i j}=p_{+j}=\frac{n_{+j}}{n}
$$

- And the expected cell frequency is just

$$
\widehat{\mu}_{i j}=n_{i+} \widehat{\pi}_{i j}=n_{i+} \frac{n_{+j}}{n}=\frac{n_{i+} n_{+j}}{n} .
$$

Expected frequencies are the same!
For testing both independence and testing equal conditional probabilities,

$$
\widehat{\mu}_{i j}=\frac{n_{i+} n_{+j}}{n} .
$$

The degrees of freedom are the same too. For the product multinomial,

- There are $I(J-1)$ free parameters in the unconstrained model.
- There are $J-1$ free parameters under the null hypothesis.
- H_{0} imposes $I(J-1)-(J-1)=(I-1)(J-1)$ constraints on the parameter vector.
- So $d f=(I-1)(J-1)$.

	Attack	Stroke	Both	Neither	Total
Drug					n_{1+}
Drug and Exercise					n_{2+}
Total	n_{+1}	n_{+2}	n_{+3}	n_{+4}	n

This is very fortunate

- The cross-sectional, prospective and retrospectives are different from one another conceptually.
- The multinomial and product-multinomial models are different from one another technically.
- But the tests for relationship between explanatory and response variables are 100% the same.
- Same expected frequencies and same degrees of freedom.
- Therefore we get the same test statistics and p-values.

2 Fisher's Exact Test

Fisher's Exact Test

- Everything so far is based on large-sample theory.
- What if the sample is small?
- Fisher's exact test is good for 2×2 tables.
- There are extensions for larger tables.

Fisher's exact test is a permutation test

$$
Y
$$

	1			
	1	x	$a-x$	a
	1	$b-x$	$n-a-b+x$	$n-a$
	2	$n-b$	n	

- Think of a data file with 2 columns, X and Y, filled with ones and twos.
- X has a ones and Y has b ones.
- Calculate the estimated odds ratio $\widehat{\theta}$.
- If X and Y are unrelated, all possible pairings of X and Y values should be equally likely.
- There are n ! ways to order the X values, and for each of these, n ! ways to order the Y values.

Idea of a permutation test

- There are $(n!)^{2}$ ways to arrange the X and Y values.
- For what fraction of these is the (estimated) odds ratio
- Greater than or equal to $\hat{\theta}$ (Upper tail p-value)
- Less than or equal to $\widehat{\theta}$ (Lower tail p-value)

For a 2 -sided test, add the probabilities of all the tables less likely than or equally likely to the one we have observed. (This is what R does.)

Nice idea, but hard to compute. Fisher thought of it and simplified it.

Let us count together

- The n ! permutations of 1 s and 2 s have lots of repeats that look the same.
- There are $\binom{n}{a}$ ways to choose which cases have $X=1$.
- For each of these, there are $\binom{n}{b}$ ways to choose which cases have $Y=1$.
- So the total number of 2×2 tables with n observations, $n_{1+}=a$ and $n_{+1}=b$ is $\binom{n}{a}\binom{n}{b}$.
- Of these, the number of ways to get the values in the table is just the multinomial coefficient

$$
\left(\right)=\frac{n!}{x!(a-x)!(b-x)!(n-a-b+x)!} .
$$

Hypergeometric probability

Dividing the number of ways to get $n_{11}=x$ by the total number of equally likely outcomes,

$$
\begin{align*}
& P\left(n_{11}=x\right)\left.=\frac{\left(\begin{array}{cc}
x & a-x
\end{array} \quad \begin{array}{c}
n-x
\end{array} \quad n-a-b+x\right.}{}\right) \\
&=\frac{\binom{n}{a}\binom{n}{b}}{x!(a-x)!(b-x)!(n-a-b+x)!} \\
& \frac{n!}{a!(n-a)!} \frac{n!}{n!(n-b)!} \\
&=\frac{\binom{a}{x}\binom{n-a}{b-x}}{\binom{n}{b}} \tag{Eq.2.11,p.46}\\
&=\frac{\binom{n_{1+}+}{n_{11}}\binom{n_{2+}+}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}
\end{align*}
$$

Adding up the probabilities

Always remembering that a, b and n are fixed
$\begin{array}{ll}x & \frac{1}{2} \\ 2\end{array}$

- Fortunately, $\theta(x)$ is an increasing function of x (differentiate).
- So, tables with larger x values than the one observed also have greater sample odds ratios. Add $P\left(n_{11}=x\right)$ over x to get tail probabilities.
- Range of x :
$-x \leq \min (a, b)$
$-n_{22}=n-a-b+x \geq 0$, so $x \geq a+b-n$.
- Thus, x ranges from $\max (0, a+b-n)$ to $\min (a, b)$.

Example: Sinking of the the Titanic

```
> # help(Titanic)
> dimnames(Titanic)
$Class
[1] "1st" "2nd" "3rd" "Crew"
$Sex
[1] "Male" "Female"
$Age
[1] "Child" "Adult"
$Survived
[1] "No" "Yes"
> # Women in 1st class vs Women in crew
>
> ladies = Titanic[c(1,4),2,2,]
```


Just the ladies

```
> ladies
```

> ladies
Survived
Survived
Class No Yes
Class No Yes
1st 4140
1st 4140
Crew 3 20
Crew 3 20
> 140/144 \# Rich ladies
> 140/144 \# Rich ladies
[1] 0.9722222
[1] 0.9722222
> 20/23 \# Cleaning ladies
> 20/23 \# Cleaning ladies
[1] 0.8695652
[1] 0.8695652
> X2 = chisq.test(ladies,correct=F); X2
> X2 = chisq.test(ladies,correct=F); X2
Warning message:
Warning message:
In chisq.test(ladies, correct = F) :
In chisq.test(ladies, correct = F) :
Chi-squared approximation may be incorrect

```
    Chi-squared approximation may be incorrect
```

```
Pearson's Chi-squared test
data: ladies
X-squared = 5.2043, df = 1, p-value = 0.02253
```


Check the expected frequencies

```
> X2$expected
            Survived
Class No Yes
    1st 6.0359281 137.96407
    Crew 0.9640719 22.03593
>
> fisher.test(ladies)
Fisher's Exact Test for Count Data
data: ladies
p-value = 0.05547
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.03027561 1.41705937
sample estimates:
odds ratio
    0.1935113
```


Conclusion

Though a higher percentage of women in first class survived than female crew, it could have been due to chance.

Fisher's exact test makes sense even without the pretending we have a random sample

You could say

- Assume that status on the ship for these women (First Class passenger vs. crew) is fixed. It was what it was.
- Survival also was what it was.
- Given this, is the observed pairing of status and survival an unusual one?
- That is, for what fraction of the possible pairings is the status difference in survival as great or greater than the one we have observed?
- A little over 5% ? That's a bit unusual, but perhaps not very unusual.
- There is not even any need to talk about probability.

3 Tables of Higher Dimension

Tables of Higher Dimension: Conditional independence

- Suppose X and Y are related.
- Are X and Y related conditionally on the value of W ?
- One sub-table for each value of W.
- X and Y can easily be related unconditionally, but still be conditionally independent.
- Example: Among adults 18 and older, $X=$ Tattoos and $Y=$ Grey hair.
- Need a 3-way table, showing the relationship of tattoos and grey hair separately for each age group.
- Speak of the relationship between X and Y "controlling for" W, or "allowing for" W.

Was UC Berkeley discriminating against women?

Data from the 1970s
Data in a 3 -dimensional array: Variables are

- Sex of the person applying for graduate study
- Department to which the person applied
- Whether or not the person was admitted

Berkeley data

```
> ##########################################################
> # More than one Explanatory Variable at once #
> # data() to list the nice data sets that come with R #
> # help(UCBAdmissions) #
> ###########################################################
> dim(UCBAdmissions)
[1] 2 2 6
> dimnames(UCBAdmissions)
$Admit
[1] "Admitted" "Rejected"
$Gender
[1] "Male" "Female"
$Dept
[1] "A" "B" "C" "D" "E" "F"
> # Look at gender by admit.
> # Apply sum to rows and columns, obtaining the marginal freqs.
> sexadmit = apply(UCBAdmissions,c(1,2),sum)
```


Sex by Admission

```
> sexadmit
    Gender
Admit Male Female
    Admitted 1198 557
    Rejected 1493 1278
> sexadmit = t(sexadmit); sexadmit
                        Admit
Gender Admitted Rejected
    Male 1198 1493
    Female 557 1278
> rowmarg = apply(sexadmit,1,sum); rowmarg
    Male Female
    2691 1835
> percentadmit = 100 * sexadmit[,1]/rowmarg ; percentadmit
        Male Female
44.51877 30.35422
```

It certainly looks suspicious.

Test sex by admission

```
> chisq.test(sexadmit,correct=F)
Pearson's Chi-squared test
data: sexadmit
X-squared = 92.2053, df = 1, p-value < 2.2e-16
> fisher.test(sexadmit) # Gives same p-value
Fisher's Exact Test for Count Data
data: sexadmit
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    1.621356 2.091246
sample estimates:
odds ratio
    1.840856
```


But look at the whole table

```
> UCBAdmissions
```

, , Dept = A

Gender

```
Admit Male Female
    Admitted 512 89
    Rejected 313 19
, , Dept = B
    Gender
Admit Male Female
    Admitted 353 17
    Rejected 207 8
```


Berkeley table continued

```
, , Dept = C
\begin{tabular}{crr}
\multicolumn{3}{c}{ Gender } \\
Admit & Male & Female \\
Admitted & 120 & 202 \\
Rejected & 205 & 391
\end{tabular}
, , Dept = D
    Gender
Admit Male Female
    Admitted 138 131
    Rejected 279 244
```


Berkeley table continued some more

```
, , Dept = E
```

Gender		
Admit	Male	Female
Admitted	53	94
Rejected	138	299

```
, , Dept = F
```

Gender		
Admit	Male	Female
Admitted	22	24
Rejected	351	317

Look at Department A

```
> # Just Department A
> JustA = t(UCBAdmissions[,,1]); JustA
    Admit
```

```
Gender Admitted Rejected
    Male 512 313
    Female 89 19
> JustA[1,1]/sum(JustA[1,]) # Men
[1] 0.6206061
> JustA[2,1]/sum(JustA[2,]) # Women
[1] 0.8240741
> chisq.test(UCBAdmissions[,,1],correct=F)
Pearson's Chi-squared test
data: UCBAdmissions[, , 1]
X-squared = 17.248, df = 1, p-value = 3.28e-05
```

Women are more likely to be admitted.

Summarize analyses of sub-tables

Just the code, for reference

```
# Summarize analyses of sub-tables: Loop over departments
# Sum of chi-squared values in X2
ndepts = dim(UCBAdmissions) [3]
gradschool=NULL; X2=0
for(j in 1:ndepts)
    {
    dept = dimnames(UCBAdmissions)$Dept[j] # A B C etc.
    tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j
    Rowmarg = apply(tabl,1,sum)
    Percentadmit = round( 100*tabl[,1]/Rowmarg ,1)
    per = round(Percentadmit,2)
    Test = chisq.test(tabl,correct=F)
    tstat = round(Test$statistic,2); pval = round(Test$p.value,5)
    gradschool = rbind(gradschool,c(dept,Percentadmit,tstat,pval))
    X2 = X2+Test$statistic
    } # Next Department
colnames(gradschool) = c("Dept","%MaleAcc","%FemAcc","Chisq","p-value")
noquote(gradschool) # Print character strings without quote marks
```


Simpson's paradox

> noquote(gradschool) \# Print character strings without quote marks
Dept \%MaleAcc \%FemAcc Chisq p-value

$[1] ~ A$,	62.1	82.4	17.25	$3 \mathrm{e}-05$

$[2]$,	63	68	0.25	0.61447

| $[3]$, | 36.9 | 34.1 | 0.75 | 0.38536 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$[4]$,	D	33.1	34.9	0.3
5.58515				

$\begin{array}{lllll}{[5,]} & 27.7 & 23.9 & 1 & 0.31705\end{array}$
$\begin{array}{lllll}{[6,]} & 5.9 & 7 & 0.38 & 0.53542\end{array}$

Overall test of conditional independence

Add the chi-squared values and add the degrees of freedom.

```
> # Overall test of conditional independence
> names(X2) = "Pooled Chi-square"
> df = ndepts ; names(df)="df"
> pval=1-pchisq(X2,df)
> names(pval) = "P-value"
> print(c(X2,df,pval))
Pooled Chi-square df P-value
    19.938413378 6.000000000 0.002840164
```

Conclusion: Gender and admission are not conditionally independent. From the preceding slide, we see it comes from Department A 's being more likely to admit women than men.

Track it down

Make a table showing Department, Number of applicants, Percent female applicants and Percent of applicants admitted.

```
> # What's happening?
> whoapplies = NULL
> for(j in 1:ndepts)
+ {
+ dept = dimnames(UCBAdmissions)$Dept[j]; names(dept) = "Dept"
+ tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j
+ nj = sum(tabl); names(nj)=" n "
+ mf = apply(tabl,1,sum); femapp = round(100*mf[2]/nj,2)
+ succ = apply(tabl,2,sum); getin = round(100*succ[1]/nj,2)
+ whoapplies = rbind(whoapplies,c(dept,nj,femapp,getin))
+ } # Next Department
>
```

Now it's in a table called whoapplies.

The explanation

```
> noquote(whoapplies)
        Dept n Female Admitted
[1,] A 933 11.58 64.42
[2,] B 585 4.27 63.25
[3,] C 
[4,] D 792 47.35 33.96
[5,] E 584 67.29 25.17
[6,] F 714 47.76 6.44
```

Departments with a higher acceptance rate have a higher percentage of male applicants.

Does this mean that the University of California at Berkeley was not discriminating against women?

- By no means. Why does a department admit very few applicants relative to the number who apply?
- Because they do not have enough professors and other resources to offer more classes.
- This implies that the departments popular with men were getting more resources, relative to the level of interest measured by number of applicants.
- Why? Maybe because men were running the show.
- The "show," definitely includes the U. S. military, which funds a lot of engineering and similar stuff at big American universities.

Some uncomfortable truths

- Especially for non-experimental studies, statistical analyses involving just one explanatory variable at a time can be very misleading.
- When you include a new variable in an analysis, the results could get weaker, they could get stronger, or they could reverse direction - all depending upon the inter-relations of the explanatory variables and the response variable.
- Failing to include important explanatory variables in observational studies is a common source of bias.
- Ask:"Did you control for ..."

At least it's a start

- We have seen one way to "control" for potentially misleading variables (sometimes called "confounding variables").
- It's control by sub-division, in which you examine the relationship in question separately for each value of a control variable or variables.
- We have a good way of pooling the tests within each level of the control variable, to obtain a test of conditional independence.
- There's also model-based control, which is coming next.

Copyright Information

This document was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/312f22

[^0]: *See last slide for copyright information.

