Contingency Tables Part One*

STA 312: Fall 2022

Suggested Reading: Chapter 2

• Read Sections 2.1-	-2.4
----------------------	------

• You are not responsible for Section 2.5

Overview

Contents

1	Definitions	1
2	Study Designs and Models	3
3	Odds ratio	5
4	Testing Independence	10

1 Definitions

We are interested in relationships between variables

A *contingency table* is a joint frequency distribution.

	No Pneumonia	Pneumonia
No Vitamin C		
500 mg. or more Daily		

A contingency table

• Counts the number of cases in combinations of two (or more) categorical variables

^{*}See last page for copyright information.

- In general, X has I categories and Y has J categories
- Often, X is the explanatory variable and Y is the response variable (like regression).

Cell probabilities π_{ij}

i = 1, ..., I and j = 1, ..., J

Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	π_{3+}
Total	$\pi_{\pm 1}$	π_{+2}	1

Passed the Course

Marginal probabilities

•
$$Pr\{X=i\} = \sum_{j=1}^{J} \pi_{ij} = \pi_{i+}$$

•
$$Pr\{Y=j\} = \sum_{i=1}^{I} \pi_{ij} = \pi_{+j}$$

Conditional probabilities

$$Pr\{Y = j | X = i\} = \frac{Pr\{Y = j \cap X = i\}}{Pr\{X = i\}} = \frac{\pi_{ij}}{\pi_{i+1}}$$

i assed the Course			
Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	π_{3+}
Total	$\pi_{\pm 1}$	π_{+2}	1

- Usually, interest is in the conditional distribution of the response variable given the explanatory variable.
- Sometimes, we make tables of conditional probabilities

Cell frequencies

Course	Did not pass	Passed	Total
Catch-up	n_{11}	n_{12}	n_{1+}
Mainstream	n_{21}	n_{22}	n_{2+}
Elite	n_{31}	n_{32}	n_{3+}
Total	n_{+1}	n_{+2}	n

Passed the Course

For example

i asseu the course			
Course	Did not pass	Passed	Total
Catch-up	27	8	35
Mainstream	124	204	328
Elite	7	24	31
Total	158	236	394

Passed the Course

2 Study Designs and Models

Estimating probabilities

Should we just estimate π_{ij} with $p_{ij} = \frac{n_{ij}}{n}$?

- Sometimes.
- It depends on the study design.
- The study design determines exactly what is in the tables

Study designs

- Cross-sectional
- Prospective
- Retrospective

Cross-sectional design

- Both variables in the table are measured with
 - No assignment of cases to experimental conditions
 - No selection of cases based on variable values
- For example, a sample of n first-year university students sign up for one of three calculus courses, and each student either passes the course or does not.
- Total sample size n is fixed by the design.
- Multinomial model, with c = IJ categories.
- Estimate π_{ij} with p_{ij}
- Estimating conditional probabilities is easy.

Prospective design

- Prospective means "looking forward" (from explanatory to response).
- Groups that define the explanatory variable categories are formed before the response variable is observed.
- Experimental studies with random assignment are prospective (clinical trials).
- Cohort studies that follow patients who got different types of surgery.
- Stratified sampling, like interview 200 people from each province.
- Marginal totals of the explanatory variable are fixed by the design.
- Assume random sampling within each category defined by the explanatory variable, and independence between categories.
- Product multinomial model: A product of I multinomial likelihoods.
- Good for estimating *conditional* probability of response given a value of the explanatory variable.

Product multinomial

- Take independent random samples of sizes n_{1+}, \ldots, n_{I+} from I sub-populations.
- In each, observe a multinomial with J categories. Compare.
- Example: Sample 100 entring students from each of three campuses. At the end of first year, observe whether they are in good standing, on probation, or have left the university.
- The π_{ij} are now conditional probabilities: $\pi_{1+} = 1$
- Write the likelihood as

$$\prod_{i=1}^{3} \left[\pi_{i1}^{n_{i1}} \pi_{i2}^{n_{i2}} (1 - \pi_{i1} - \pi_{i2})^{n_{i3}} \right]$$

Retrospective design

- Retrospective means "looking backward" (from response to explanatory).
- In a *case control* study, a sample of patients with a disease is compared to a sample without the disease, to discover variables that might have caused the disease.
- Vitamin C and Pneumonia (fairly rare, even in the elderly)
- Marginal totals for the response variable are fixed by the design.
- Product multinomial again
- Natural for estimating conditional probability of explanatory variable given response variable.
- Usually that's not what you want.
- But if you know the probability of having the disease, you can use Bayes' Theorem to estimate the conditional probabilities in the more interesting direction.

3 Odds ratio

Meanings of X and Y "unrelated"

- Conditional distribution of Y|X = x is the same for every x
- Conditional distribution of X|Y = y is the same for every y
- X and Y are independent (if both are random)

If variables are not unrelated, call them "related."

Put probabilities in table cells

	Y = 1	Y = 2	Total
X = 1	π_{11}	π_{12}	$\pi_{11} + \pi_{12}$
X = 2	π_{21}	π_{22}	$\pi_{21} + \pi_{22}$
Total	$\pi_{11} + \pi_{21}$	$\pi_{12} + \pi_{22}$	

$$Pr\{Y=1|X=1\} = \frac{\pi_{11}}{\pi_{11} + \pi_{12}}$$

Conditional distribution of Y given X = x

Same for all values of x

	Y = 1	Y = 2	Total
X = 1	π_{11}	π_{12}	$\pi_{11} + \pi_{12}$
X = 2	π_{21}	π_{22}	$\pi_{21} + \pi_{22}$
Total	$\pi_{11} + \pi_{21}$	$\pi_{12} + \pi_{22}$	

$$Pr\{Y = 1 | X = 1\} = Pr\{Y = 1 | X = 2\}$$

$$\Rightarrow \frac{\pi_{11}}{\pi_{11} + \pi_{12}} = \frac{\pi_{21}}{\pi_{21} + \pi_{22}} \Rightarrow \pi_{11}(\pi_{21} + \pi_{22}) = \pi_{21}(\pi_{11} + \pi_{12}) \Rightarrow \pi_{11}\pi_{21} + \pi_{11}\pi_{22} = \pi_{11}\pi_{21} + \pi_{12}\pi_{21} \Rightarrow \pi_{11}\pi_{22} = \pi_{12}\pi_{21} \Rightarrow \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = \theta = 1$$

Cross product ratio

	Y = 1	Y = 2	Total
X = 1	π_{11}	π_{12}	$\pi_{11} + \pi_{12}$
X = 2	π_{21}	π_{22}	$\pi_{21} + \pi_{22}$
Total	$\pi_{11} + \pi_{21}$	$\pi_{12} + \pi_{22}$	

$$\theta = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

Conditional distribution of X given Y = ySame for all values of y

	Y = 1	Y = 2	Total
X = 1	π_{11}	π_{12}	$\pi_{11} + \pi_{12}$
X = 2	π_{21}	π_{22}	$\pi_{21} + \pi_{22}$
Total	$\pi_{11} + \pi_{21}$	$\pi_{12} + \pi_{22}$	

$$Pr\{X = 1 | Y = 1\} = Pr\{X = 1 | Y = 2\}$$

$$\Leftrightarrow \frac{\pi_{11}}{\pi_{11} + \pi_{21}} = \frac{\pi_{12}}{\pi_{12} + \pi_{22}} \Leftrightarrow \pi_{11}(\pi_{12} + \pi_{22}) = \pi_{12}(\pi_{11} + \pi_{21}) \Leftrightarrow \pi_{11}\pi_{12} + \pi_{11}\pi_{22} = \pi_{11}\pi_{12} + \pi_{12}\pi_{21} \Leftrightarrow \pi_{11}\pi_{22} = \pi_{12}\pi_{21} \Leftrightarrow \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = \theta = 1$$

$$X$$
 and Y independent

Meaningful in a cross-sectional design Write the probability table as

	x	a-x	a
$\pi =$	b-x	1 - a - b + x	1-a
	b	1-b	1

Independence means P(X = x, Y = y) = P(X = x)P(Y = y). If x = ab then

	ab	a(1-b)	a
$\pi =$	b(1-a)	(1-a)(1-b)	1-a
	b	1-b	1

And the cross-product ratio $\theta = 1$.

Conversely

x	a - x	a
b-x	1 - a - b + x	1-a
b	1 - b	1

If $\theta = 1$, then

$$x(1 - a - b + x) = (a - x)(b - x)$$

$$\Leftrightarrow \quad x - ax - bx - x^{2} = ab - ax - bx - x^{2}$$

$$\Leftrightarrow \quad x = ab$$

Meaning X and Y are independent.

What we have learned about the cross-product ratio θ

- In a 2 × 2 table, $\theta = 1$ if and only if the variables are unrelated, no matter how "unrelated" is expressed.
 - Conditional distribution of Y|X = x is the same for every x
 - Conditional distribution of X|Y = y is the same for every y
 - -X and Y are independent (if both are random)
- It's meaningful for all three study designs: Prospective, Retrospective and Cross-sectional.

Investigate θ a bit more.

Odds

Denoting the probability of an event by π ,

$$Odds = \frac{\pi}{1 - \pi}.$$

- Implicitly, we are saying the odds are $\frac{\pi}{1-\pi}$ "to one."
- if the probability of the event is $\pi = 2/3$, then the odds are $\frac{2/3}{1/3} = 2$, or two to one.
- Instead of saying the odds are 5 to 2, we'd say 2.5 to one.
- Instead of saying 1 to four, we'd say 0.25 to one.
- The higher the probability, the greater the odds.
- And as the probability of an event approaches one, the denominator of the odds approaches zero.
- This means the odds can be any non-negative number.

Odds ratio

- Conditional Odds is an idea that makes sense.
- Just use a conditional probability to calculate the odds.
- Consider the *ratio* of the odds of Y = 1 given X = 1 to the odds of Y = 1 given X = 2.

• Could say something like "The odds of cancer are 3.2 times as great for smokers."

$$\frac{\text{Odds}(Y=1|X=1)}{\text{Odds}(Y=1|X=2)} = \frac{P(Y=1|X=1)}{P(Y=2|X=1)} \left/ \frac{P(Y=1|X=2)}{P(Y=2|X=2)} \right.$$

Simplify the odds ratio

	Y = 1	Y = 2	Total
X = 1	π_{11}	π_{12}	π_{1+}
X = 2	π_{21}	π_{22}	π_{2+}
Total	$\pi_{\pm 1}$	π_{+2}	1

$$\frac{\text{Odds}(Y=1|X=1)}{\text{Odds}(Y=1|X=2)} = \frac{P(Y=1|X=1)}{P(Y=2|X=1)} / \frac{P(Y=1|X=2)}{P(Y=2|X=2)} \\
= \frac{\pi_{11}/\pi_{1+}}{\pi_{12}/\pi_{1+}} / \frac{\pi_{21}/\pi_{2+}}{\pi_{22}/\pi_{2+}} \\
= \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} \\
= \theta$$

So the cross-product ratio is actually the odds ratio.

The cross-product ratio is the odds ratio

- When $\theta = 1$,
 - The odds of Y = 1 given X = 1 equal the odds of Y = 1 given X = 2.
 - This happens if and only if X and Y are unrelated.
 - Applies to all 3 study designs.
- If $\theta > 1$, the odds of Y = 1 given X = 1 are greater than the odds of Y = 1 given X = 2.
- If $\theta < 1$, the odds of Y = 1 given X = 1 are less than the odds of Y = 1 given X = 2.

Odds ratio applies to larger tables

	Admitted	Not Admitted
Dept. A	601	332
Dept. B	370	215
Dept. C	322	596
Dept. D	269	523
Dept. E	147	437
Dept. F	46	668

The (estimated) odds of being accepted are

$$\widehat{\theta} = \frac{(601)(668)}{(332)(46)} = 26.3$$

times as great in Department A, compared to Department F.

Some things to notice

About the odds ratio

- The cross-product (odds) ratio is meaningful for large tables; apply it to 2x2 sub-tables.
- Re-arrange rows and columns as desired to get the cell you want in the upper left position.
- Combining rows or columns (especially columns) by adding the frequencies is natural and valid.
- If you hear something like "Chances of death before age 50 are four times as great for smokers," most likely they are talking about an odds ratio.

4 Testing Independence

Testing independence with large samples

For cross-sectional data

Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	$1 - \pi_{1+} - \pi_{2+}$
Total	$\pi_{\pm 1}$	$1 - \pi_{+1}$	1

Passed the Course

Under $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$

- There are (I-1) + (J-1) free parameters: The marginal probabilities.
- MLEs of marginal probabilities are $\hat{\pi}_{i+} = p_{i+}$ and $\hat{\pi}_{+j} = p_{+j}$
- Restricted MLEs are $\widehat{\pi}_{ij} = p_{i+} p_{+j}$
- The null hypothesis reduces the number of free parameters in the model by (IJ 1) (I 1 + J 1) = (I 1)(J 1)
- So the test has (I-1)(J-1) degrees of freedom.

Estimated expected frequencies

Under the null hypothesis of independence

$$\widehat{\mu}_{ij} = n \widehat{\pi}_{ij}$$

$$= n \widehat{\pi}_{i+} \widehat{\pi}_{+j}$$

$$= n p_{i+} p_{+j}$$

$$= n \frac{n_{i+}}{n} \frac{n_{+j}}{n}$$

$$= \frac{n_{i+} n_{+j}}{n}$$

$(Row total) \times (Column total) \div (Total total)$

Test statistics

For testing independence

$$G^{2} = 2\sum_{i=1}^{I}\sum_{j=1}^{J}n_{ij}\log\left(\frac{n_{ij}}{\widehat{\mu}_{ij}}\right) \qquad X^{2} = \sum_{i=1}^{I}\sum_{j=1}^{J}\frac{(n_{ij}-\widehat{\mu}_{ij})^{2}}{\widehat{\mu}_{ij}}$$

With expected frequencies

$$\widehat{\mu}_{ij} = \frac{n_{i+}n_{+j}}{n} = \frac{\text{(Row total) (Column total)}}{\text{Total total}}$$

And degrees of freedom

$$df = (I-1)(J-1)$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/312f22