Within-cases analysis of binary responses ${ }^{1}$ STA442/2101 Fall 2017

${ }^{1}$ This slide show is an open-source document. See last slide for copyright information.

The idea

- There are several binary responses for each case.
- Like was the person employed right after graduation, 6 months after, one year after . . Yes or No
- Or did the consumer purchase at least one computer in 2020, 2021, $2022 \ldots$
- Binary choices in laboratory studies can be repeated measures.
- Model: Logistic regression with a random shock for case, pushing all the log odds values for that case up and down by the same amount.
- Random shock is added to the regression equation for the \log odds.
- Usually the random shock is normal - what else?

A random intercept model

For $i=1, \ldots, n$ and $j=1, \ldots, m$

- $B_{1}, \ldots, B_{n} \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right)$
- Conditionally on $B_{i}=b_{i}$ for $i=1, \ldots, n$, binary responses $y_{i j}$ are independent with

$$
\log \left(\frac{\pi_{i j}}{1-\pi_{i j}}\right)=\left(\beta_{0}+b_{i}\right)+\beta_{1} x_{i j 1}+\ldots+\beta_{k} x_{i j k}
$$

where $\pi_{i j}=P\left\{y_{i j}=1\right\}$.
Some of the $x_{i j}$ could be dummy variables for time period or treatment, different for $j=1, \ldots, m$ within case i.

Law of Total Probability

Formula sheet: $\operatorname{Pr}(A)=\sum_{j=1}^{k} \operatorname{Pr}\left(A \mid B_{j}\right) \operatorname{Pr}\left(B_{j}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left\{\mathbf{Y}_{i}=\mathbf{y}_{i}\right\}=\int_{-\infty}^{\infty} \operatorname{Pr}\left\{\mathbf{Y}_{i}=\mathbf{y}_{i} \mid B_{i}=b_{i}\right\} f_{\sigma^{2}}\left(b_{i}\right) d b_{i} \\
= & \int_{-\infty}^{\infty}\left(\prod_{j=1}^{m} \operatorname{Pr}\left\{Y_{i j}=y_{i j} \mid B_{i}=b_{i}\right\}\right) f_{\sigma^{2}}\left(b_{i}\right) d b_{i} \\
= & \int_{-\infty}^{\infty}\left(\prod_{j=1}^{m}\left(\frac{e^{\mathbf{x}_{i j}^{\prime} \beta+b_{i}}}{1+e^{x_{i j}^{\prime} \beta+b_{i}}}\right)^{y_{i j}}\left(1-\frac{e^{\mathbf{x}_{i j}^{\prime} \beta+b_{i}}}{1+e^{\mathbf{x}_{i j}^{\prime} \beta+b_{i}}}\right)^{1-y_{i j}}\right) f_{\sigma^{2}}\left(b_{i}\right) d b_{i} \\
= & \int_{-\infty}^{\infty} \frac{e^{\sum_{j=1}^{m} y_{i j} x_{i j}^{\prime} \beta+b_{i}}}{\prod_{j=1}^{m}\left(1+e^{\mathbf{x}_{i j}^{\prime} \beta+b_{i}}\right)} f_{\sigma^{2}}\left(b_{i}\right) d b_{i} \\
= & \int_{-\infty}^{\infty} \frac{e^{m b_{i}+\sum_{j=1}^{m} y_{i j} x_{i j}^{\prime} \beta}}{\prod_{j=1}^{m}\left(1+e^{\mathbf{x}_{i j}^{\prime} \beta+b_{i}}\right)} f_{\sigma^{2}\left(b_{i}\right) d b_{i}}
\end{aligned}
$$

The Likelihood Function

$\prod_{i=1}^{n} \operatorname{Pr}\left\{\mathbf{Y}_{i}=\mathbf{y}_{i}\right\}$ as a function of the model parameters

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\prod_{i=1}^{n} \int_{-\infty}^{\infty} \frac{e^{m b_{i}+\sum_{j=1}^{m} y_{j i} x_{j}, \boldsymbol{\beta}}}{\prod_{j=1}^{m}\left(1+e^{x_{i j} \beta+b_{i}}\right)} f_{\sigma^{2}}\left(b_{i}\right) d b_{i}
$$

Maximum likelihood

- In principle, this is mostly straightforward.
- It's all classical likelihood stuff.
- We just have a random intercept in this class.
- But the model can be extended to

$$
\mathbf{w}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \mathbf{b}
$$

- Where \mathbf{w} is a vector of \log odds.
- That's what the glmer function in the lme4 package does.

There are problems

- Nobody can do the integral.
- It's really brutal for multivariate normal \mathbf{b} and complicated designs.
- The approximate solutions are imperfect.
- There are numerical issues, even in our simple case.
- For the general case, it's easy to specify models whose parameters are not identifiable.
- This does not apply to us, but there is massive confusion in the user community.

The glmer function in the lme4 package

- Syntax is like lmer for linear models.
- And like glm for generalized linear models with fixed effects.
- We are going to keep it simple.
- Just add $+(1 \mid$ Subject $)$ for the random shock (intercept).
- Use effect coding (contr.sum) if there are interactions between factors.
- Anova(model, type='III') from the car package to test each effect controlling for all others.
- For follow-up tests, fit a no-intercept model on a combination variable and test contrasts on the categories of the combination variable using the linearHypothesis function from the car package.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{LA}} \mathrm{TE}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/brunner/oldclass/312f22

