Log-linear Models Part One ${ }^{1}$ STA 312: Fall 2012

${ }^{1}$ See last slide for copyright information.

Background: Re-parameterization

- Data are denoted $D \sim P_{\theta}, \theta \in \Theta$
- Likelihood function $\ell(\theta, D)=\ell(\theta)$
- Another, equivalent way of writing the parameter may be more convenient.
- Let $\beta=g(\theta), \beta \in \mathcal{B}$
- The function $g: \Theta \rightarrow \mathcal{B}$ is one-to-one, meaning $\theta=g^{-1}(\beta)$.
- Re-parameterize, writing the likelihood function in a different form.
- $\ell[\theta]=\ell\left[g^{-1}(g(\theta))\right]=\ell\left[g^{-1}(\beta)\right]=\ell_{2}[\beta]$.
- The largest value of $\ell[\theta]$ is the same as the largest value of $\ell_{2}[\beta]$.
- $\ell[\widehat{\theta}]=\ell_{2}[\widehat{\beta}]$

Invariance principle of maximum likelihood estimation

$$
\widehat{\beta}=g(\widehat{\theta})
$$

- Assume $\widehat{\theta}$ is unique, meaning $\ell(\widehat{\theta})>\ell(\theta)$ for all $\theta \in \Theta$ with $\theta \neq \widehat{\theta}$.
- What if there were a $\beta \neq g(\widehat{\theta})$ in \mathcal{B} with $\ell_{2}(\beta) \geq \ell_{2}(g(\widehat{\theta}))$.
- In that case we would have

$$
\begin{aligned}
& \ell\left[g^{-1}(\beta)\right] \geq \ell\left[g^{-1}(g(\widehat{\theta}))\right] \\
\Leftrightarrow & \ell(\theta) \geq \ell(\widehat{\theta})
\end{aligned}
$$

for some $\theta \neq \widehat{\theta}$. But that's impossible, so there can be no such β.

Main point about re-parameterization

- If you have a reasonable model, you can re-write the parameters in any way that's convenient, as long as it's one-to-one with (equivalent to) the original way.
- Maximum likelihood does not care how you express the parameters.
- Log-linear models depend heavily on re-parameterization.

Features of log-linear models

- Used to analyze multi-dimensional contingency tables.
- All variables are categorical.
- No distinction between explanatory and response variables.
- Build a picture of how all the variables are related to each other.
- ANOVA-like models for the logs of the expected frequencies.
- "Response variable" is a vector of log observed frequencies.
- Relationships between variables correspond to interactions in the ANOVA model.

ANOVA-like models

For the logs of the expected frequencies

- Relationships between variables are represented by two-factor interactions.
- Three-factor interactions mean the nature of the relationship depends...
- Etc.

It's like the rotten potatoes example

Course

Passed	Catch-up	Mainstream	Elite
No	π_{11}	π_{12}	π_{13}
Yes	π_{21}	π_{22}	π_{23}

- No relationship means the conditional distribution of Course is the same, regardless of whether the student passed or not.
- Probabilities are proportional:

$$
\frac{\pi_{11}}{\pi_{21}}=\frac{\pi_{12}}{\pi_{22}}=\frac{\pi_{13}}{\pi_{23}}
$$

- Because $\mu_{i j}=n \pi_{i j}$, same applies to the expected frequencies.

Expected frequencies are proportional

Under H_{0} of independence

$$
\begin{aligned}
& \frac{\mu_{11}}{\mu_{21}}=\frac{\mu_{12}}{\mu_{2}}=\frac{\mu_{13}}{\mu_{23}} \\
\Leftrightarrow \quad & \left(\log \mu_{11}-\log \mu_{21}\right)=\left(\log \mu_{12}-\log \mu_{22}\right)=\left(\log \mu_{13}-\log \mu_{23}\right)
\end{aligned}
$$

So the profiles are parallel in the log scale - no interaction means no relationship.

Log Expected Frequencies Under Independence

For the record: R code for the last plot

```
# Using mathcat.data
# Get expected frequencies to plot logs
c1 = chisq.test(tab1)
tabO = c1$expected; tab0
Course = c(1,2,3,1,2,3)
logexpect = log(c(tab0[1,],tab0[2,]))
# Plot
plot(Course,logexpect, pch=' ', frame.plot=F, axes=F,
    xlab="Course", ylab=expression(paste('log(',mu[ij],')') , xaxt='n') )
axis(side=1,labels=c("Catch-Up","Elite","MainStr"),at=1:3)
axis(side=2)
lines(1:3,logexpect[1:3],lty=2) # Did not pass
points(1:3,logexpect[1:3])
lines(1:3,logexpect[4:6],lty=1) # Yes Passed
points(1:3,logexpect[4:6],pch=19)
title("Log Expected Frequencies Under Independence")
legend(1.25,4.5,legend='Passed',lty=1,pch=19,bty='n')
legend(1.25,4.25,legend='Did not pass',lty=2,pch=1,bty='n')
```


Suggests plotting log observed frequencies

To see departure from independence

Log Observed Frequencies

For the record: R code for the last plot

```
# Using mathcat.data
Course = c(1,2,3,1,2,3)
logobs = log(c(tab1[1,],tab1[2,]))
# Plot
plot(Course,logobs, pch=' ', frame.plot=F, axes=F,
    xlab="Course", ylab=expression(paste('log(',n[ij],')') , xaxt='n') )
axis(side=1,labels=c("Catch-Up","Elite","MainStr"), at=1:3)
axis(side=2)
lines(1:3,logobs[1:3],lty=2) # Did not pass
points(1:3,logobs[1:3])
lines(1:3,logobs[4:6],lty=1) # Yes Passed
points(1:3,logobs[4:6],pch=19)
title("Log Observed Frequencies")
legend(1.25,4.5,legend='Passed',lty=1,pch=19,bty='n')
legend(1.25,4.25,legend='Did not pass',lty=2,pch=1,bty='n')
```

It would be faster to do this in MS Excel.

Regression-like model of independence for the log expected frequencies: No interaction
Use effect coding

$$
\log \mu=\beta_{0}+\beta_{1} p_{1}+\beta_{2} c_{1}+\beta_{3} c_{2}
$$

Passed	Course	p_{1}	c_{1}	c_{2}	$\log \mu$
No	Catch-up	1	1	0	$\beta_{0}+\beta_{1}+\beta_{2}$
No	Elite	1	0	1	$\beta_{0}+\beta_{1}+\beta_{3}$
No	Mainstream	1	-1	-1	$\beta_{0}+\beta_{1}-\beta_{2}-\beta_{3}$
Yes	Catch-up	-1	1	0	$\beta_{0}-\beta_{1}+\beta_{2}$
Yes	Elite	-1	0	1	$\beta_{0}-\beta_{1}+\beta_{3}$
Yes	Mainstream	-1	-1	-1	$\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}$

Notice how this assumes there are no zero probabilities.

Model of independence has main effects only

$$
\log \mu=\beta_{0}+\beta_{1} p_{1}+\beta_{2} c_{1}+\beta_{3} c_{2}
$$

Course

Passed	Catch-up	Elite	Mainstream	Mean
No	$\beta_{0}+\beta_{1}+\beta_{2}$	$\beta_{0}+\beta_{1}+\beta_{3}$	$\beta_{0}+\beta_{1}-\beta_{2}-\beta_{3}$	$\beta_{0}+\beta_{1}$
Yes	$\beta_{0}-\beta_{1}+\beta_{2}$	$\beta_{0}-\beta_{1}+\beta_{3}$	$\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}$	$\beta_{0}-\beta_{1}$
Mean	$\beta_{0}+\beta_{2}$	$\beta_{0}+\beta_{3}$	$\beta_{0}-\beta_{2}-\beta_{3}$	β_{0}

- Grand mean is β_{0}.
- Main effects for Passed are β_{1} and $-\beta_{1}$.
- Main effects for Course are β_{2}, β_{3} and $-\beta_{2}-\beta_{3}$.
- Effects always add up to zero.
- This is an additive model.
$\log \mu_{i j}=$ Grand Mean + Main effect for factor $A+$ Main effect for factor B

Textbook's notation for the additive model

 $\log \mu_{i j}=$ Grand Mean + Main effect for factor $A+$ Main effect for factor $B$$$
\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}
$$

Course

Passed	Catch-up	Elite	Mainstream	Mean
No	$\lambda+\lambda_{1}^{X}+\lambda_{1}^{Y}$	$\lambda+\lambda_{1}^{X}+\lambda_{2}^{Y}$	$\lambda+\lambda_{1}^{X}+\lambda_{3}^{Y}$	$\beta_{0}+\beta_{1}$
Yes	$\lambda+\lambda_{2}^{X}+\lambda_{1}^{Y}$	$\lambda+\lambda_{2}^{X}+\lambda_{2}^{Y}$	$\lambda+\lambda_{2}^{X}+\lambda_{3}^{Y}$	$\beta_{0}-\beta_{1}$
Mean	$\beta_{0}+\beta_{2}$	$\beta_{0}+\beta_{3}$	$\beta_{0}-\beta_{2}-\beta_{3}$	β_{0}

There is more than one parameterization. I like this one:

$$
\begin{array}{ll}
\lambda=\beta_{0} & \text { The grand mean } \\
\lambda_{1}^{X}=\beta_{1} & \text { The main effect for } X=1 \\
\lambda_{2}^{X}=-\beta_{1} & \text { The main effect for } X=1 \\
\lambda_{1}^{Y}=\beta_{2} & \text { The main effect for } Y=1 \\
\lambda_{2}^{Y}=\beta_{3} & \text { The main effect for } Y=2 \\
\lambda_{3}^{Y}=-\beta_{2}-\beta_{3} & \text { The main effect for } Y=3
\end{array}
$$

Some effects are redundant

Just like in classical ANOVA models

$$
\begin{gathered}
\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y} \\
\text { where } \\
\sum_{i=1}^{I} \lambda_{i}^{X}=0 \text { and } \sum_{j=1}^{J} \lambda_{j}^{Y}=0
\end{gathered}
$$

Explore the meaning of the parameters

- This is a multinomial model (of independence).
- Set of unique main effects must correspond somehow to the set of unique marginal probabilities.
- But how?
- First, how many parameters are there?

Count the parameters $\log \mu_{i j}=\lambda+\lambda_{i}^{X_{i}^{1}}+\lambda_{j}^{Y}$

- There are $(I-1)+(J-1)$ unique marginal probabilities.
- There are $(I-1)+(J-1)$ unique main effects.
- Plus the grand mean λ.
- Parameterizations cannot be one-to-one unless number of parameters is the same.
- It turns out that the grand mean is redundant, but not in the way you might think.

The grand mean is redundant

 But ...You might think that since under independence

$$
\begin{aligned}
\mu_{i j} & =n \pi_{i j} \\
& =n \pi_{i+} \pi_{+j} \\
\Leftrightarrow \log \mu_{i j} & =\log n+\log \pi_{i+}+\log \pi_{+j} \\
& =\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}
\end{aligned}
$$

- We should have $\lambda=\log n$,
- And $\lambda_{i}^{X}=\log \pi_{i+}$
- And $\lambda_{j}^{Y}=\log \pi_{+j}$
- But it's not so simple.

Expressing λ in terms of the other parameters

$$
\begin{aligned}
n & =\sum_{i=1}^{I} \sum_{j=1}^{J} \mu_{i j} \\
& =\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}} \\
& =e^{\lambda} \sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_{i}^{X}+\lambda_{j}^{Y}} \\
\Leftrightarrow e^{\lambda} & =\frac{n}{\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_{i}^{X}+\lambda_{j}^{Y}}} \\
\Leftrightarrow \lambda & =\log \frac{n}{\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\lambda_{i}^{X}+\lambda_{j}^{Y}}} \neq \log n
\end{aligned}
$$

Connection of main effects to marginal probabilities

- Consider 2×2 case
- Simplify the notation

$=$

where $s=e^{\beta_{1}+\beta_{2}}+e^{\beta_{1}-\beta_{2}}+e^{-\beta_{1}+\beta_{2}}+e^{-\beta_{1}-\beta_{2}}$

Four equations in two unknowns

Solve for β_{1} and β_{2}

$$
\begin{aligned}
& \text { Y } \\
& \\
& \operatorname{Odds}(Y=1 \mid X=1)=e^{2 \beta_{2}}=\frac{a b}{a(1-b)}=\frac{b}{1-b} \\
& \operatorname{Odds}(X=1 \mid Y=1)=e^{2 \beta_{1}}=\frac{a b}{(1-a) b}=\frac{a}{1-a}
\end{aligned}
$$

So

$$
\begin{aligned}
& \beta_{1}=\frac{1}{2} \log \frac{a}{1-a} \\
& \beta_{2}=\frac{1}{2} \log \frac{b}{1-b}
\end{aligned}
$$

Regression coefficients (Main Effects)

$$
\begin{aligned}
& \beta_{1}=\frac{1}{2} \log \frac{a}{1-a} \\
& \beta_{2}=\frac{1}{2} \log \frac{b}{1-b}
\end{aligned}
$$

- Are functions of the marginal log odds.
- More generally, they are functions of log odds ratios.
- Notice $\beta_{1}=0 \Leftrightarrow a=1 / 2$.
- Zero main effects correspond to equal probabilities, if there are no interactions involving that factor.

What if there are interactions?

$$
\log \mu=\beta_{0}+\beta_{1} p_{1}+\beta_{2} c_{1}+\beta_{3} c_{2}+\beta_{4} p_{1} c_{1}+\beta_{5} p_{1} c_{2}
$$

- Five parameters correspond to five probabilities
- A saturated model

Passed	Course	p_{1}	c_{1}	c_{2}	$p_{1} c_{1}$	$p_{1} c_{2}$	Interactions only
No	Catch-up	1	1	0	1	0	β_{4}
No	Elite	1	0	1	0	1	β_{5}
No	Mainstream	1	-1	-1	-1	-1	$-\beta_{4}-\beta_{5}$
Yes	Catch-up	-1	1	0	-1	0	$-\beta_{4}$
Yes	Elite	-1	0	1	0	-1	$-\beta_{5}$
Yes	Mainstream	-1	-1	-1	1	1	$\beta_{4}+\beta_{5}$

$\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}$

Interactions are departures from an additive model

Course

Passed	Catch-up	Elite	Mainstream	Sum
No	β_{4}	β_{5}	$-\beta_{4}-\beta_{5}$	0
Yes	$-\beta_{4}$	$-\beta_{5}$	$\beta_{4}+\beta_{5}$	0
Sum	0	0	0	0

- Add to zero down each row and across each column.
- Unique interaction effects are easy to count.
- They correspond to products of dummy variables.
- If non-zero, they make the profiles non-parallel.

Why probabilities and effects (β values) are one-to-one in general

- Since we know $n, \pi_{i j}$ and $\mu_{i j}$ are one-to-one.
- $\mu_{i j}$ and $\log \mu_{i j}$ are one-to-one.
- So if we have all the β values, we can solve for the $\pi_{i j}$.

Suppose we have all the $\pi_{i j}$ values. Can we solve for the $\beta \mathrm{s}$?

- We can get the $\log \mu_{i j}$ values.
- β_{0} is the mean of all the $\log \mu_{i j}$.
- Look how easy it is to solve for the main effects.

Course

Passed	Catch-up	Elite	Mainstream	Mean
No	$\log \mu_{11}$	$\log \mu_{12}$	$\log \mu_{13}$	$\beta_{0}+\beta_{1}$
Yes	$\log \mu_{21}$	$\log \mu_{22}$	$\log \mu_{23}$	$\beta_{0}-\beta_{1}$
Mean	$\beta_{0}+\beta_{2}$	$\beta_{0}+\beta_{3}$	$\beta_{0}-\beta_{2}-\beta_{3}$	β_{0}

- Interaction terms are just differences between differences (the difference depends).
- So we can get all the β s.

Extension to higher dimensional tables

- Relationships between variables are represented by two-factor interactions.
- Three-factor interactions mean the nature of the relationship depends ...etc.
- This holds provided all lower-order interactions involving the factors are in the model.
- Stick to hierarchical models, meaning if an interaction is in the model, then all main effects and lower-order interactions involving those factors are also in the model.

Bracket notation for hierarchical models

- Enclosing two or more factors (variables) in brackets means they interact.
- And all lower-order effects are automatically in the model.
- Suppose there are 4 variables, A, B, C, D
- $(A B)(C D)$ means A is related to B and C is related to D, but A is independent of C and D, and B is independent of C and D.
- The log-linear model includes 4 main effects and 2 interactions.

More examples

- $(A)(B)(C)(D)$ means mutual independence.
- $(A B)(A C)(A D)(B C)(B D)(C D)$ means all two-way relationships are present, but the form of those relationships do not depend on the values of the other variables.
- Sometimes called "homogeneous association."

Given bracket notation, write the model in λ notation

- $(X Y)(Z)$

$$
\log \mu_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}
$$

- ($X Y Z$)

$$
\begin{aligned}
\log \mu_{i j k}=\lambda & +\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z} \\
& +\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z} \\
& +\lambda_{i j k}^{X Y Z}
\end{aligned}
$$

Parameter estimation: Iterative proportional model fitting

- Indirect maximum likelihood: Goes straight to estimated expected frequencies, and then estimates all the parameters (unique or not) from there.
- Just specify a list of vectors: Bracket notation.
- Each vector contains a set of indices corresponding to variables
- $1=$ rows, $2=$ cols, etc.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{LA}} \mathrm{TEX}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~ brunner/oldclass/312f12

